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a b s t r a c t

With the rapid development of cloud computing, secure search has become a hot research spot, which
is a promising technique that allows a data user to perform privacy-preserving keyword-based search
over encrypted cloud data. In this paper, we further consider the secure search problem based on a
practical application scenario that a data owner needs to grant different keyword query permissions
for different data users to achieve flexible access control on outsourced encrypted data in the cloud
computing environment. To address this problem, we propose a fine-grained authorized keyword
secure search scheme by leveraging the ciphertext policy attribute-based encryption (ABE), which not
only supports privacy-preserving keyword-based search over encrypted data, but also inherits flexible
and fine-grained data privilege control properties of ABE. Moreover, our proposed scheme is able to
achieve fine-grained search permission update with very small communication and computation cost.
By running the attribute revocation sub-protocol and attribute addition sub-protocol, the data owner
can flexibly and efficiently update a data user’s keyword search permissions when the data user’s
system role changes. We provide detailed performance analysis and rigorous security proof for our
scheme. Extensive experiments demonstrate the correctness and practicality of the proposed scheme.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Cloud computing is an emerging and promising information
technology and service paradigm by providing for its customers
low-cost and elastic resources, convenient data sharing and ac-
cesses, on-demand high quality application services, and the
powerful parallel processing abilities with minimal management
effort [37]. Compared with the traditional information technol-
ogy, abundant advantages brought by the cloud computing have
motivated more and more individual users and enterprises to
migrate their data and computation task to the cloud server.

Data outsourcing is the most attractive and popular appli-
cation scheme in the cloud computing. Cloud customs usually
wish to outsource their data to the cloud server to enjoy scalable
and flexible data storage and management services with minimal
capital outlays and management overhead [7]. However, once
data is uploaded to cloud servers, data owners also correspond-
ingly lose the direct physical control on their data since the
cloud servers are operated by remote commercial organizations,
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which are far away from data owners [29]. Consequentially, the
outsourced data may face the dual-threat from the cloud server
and external attackers. Therefore, the data security problem is the
most important factor considered for the data owners to deter-
mine whether to outsource their private data to the cloud server.
Researchers propose that the data encryption is the simplest and
most effective way to guarantee the security of outsourced cloud
data [17,28]. However, data encryption makes the conventional
plaintext keyword based query techniques unavailable [29].

Searchable encryption provides a mechanism that allows a
user to perform encrypted keyword query over encrypted data
stored at a remote server. The first practical searchable encryp-
tion scheme was proposed by Song et al. in [32]. The continual
improvements in [1,3,4,8,10,13,14,18,19,21] make the searchable
encryption more efficient, securer, and more flexible to support
query results verification and data dynamic update in the cipher-
text environment. Recently, with the rapid prevalence of cloud
computing, researchers begin to explore efficient and feature-
rich secure search techniques over outsourced encrypted cloud
data such as secure ranked multi-keyword search, secure fuzzy
keyword search, secure similarity search, and secure personalized
search. To achieve these goals, some excellent schemes have
been proposed in [5,6,12,22,23,33,34,38,39,42–45]. However, all
above schemes assume that an authorized data user has sufficient
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access to search all outsourced data files. In other words, the data
owner allows a data user to use arbitrary keywords to obtain all
eligible data files without enforcing any data access control on
outsourced data files. In some real-world application scenarios,
the data owner (e.g., data executives of an enterprise) may desire
to grant different keyword query permissions for different data
users in a fine-grained manner to flexibly and strictly determine
which users have the access privilege to which data files [15].
For example, a technical manager of a company may be allowed
to search technique documents of all products while an ordinary
programmer can only obtain the development documents related
to his current projects yet both of them are prohibited from
accessing financial statements of the company. Carrying out thus
a flexible and fine-grained data access control is not a trivial work
for the data owner, since the data is outsourced to the remote
cloud server in the encryption form in the system. Moreover,
the dynamics of data users make the flexible data access autho-
rization more challenging. For example, a programmer can be
promoted to the technical manager. Once the role of the data user
changes, the data owner should update the data user’s data access
privilege immediately.

1.2. Our contributions

In this paper, we mainly make three key contributions, which
can be summarized as follows.

1. We present a fine-grained authorized keyword secure
search scheme with efficient search permission update by evolv-
ing the popular ciphertext policy attribute-based encryption (CP-
ABE) scheme proposed in [2]. Therefore, our proposed scheme
can be regarded as a new primitive called searchable ciphertext
policy attribute-based encryption with search permission update
(SCP-ABE-SPU).

2. We propose an efficient and fine-grained search permis-
sion update protocol, which includes two sub-protocols: attribute
revocation sub-protocol and attribute addition sub-protocol. By run-
ning attribute update protocol, the data owner is able to flexibly
update a data user’s keyword query permissions in a fine-grained
manner when the data user’s system role changes.

3. We make detailed performance analyses for our proposed
authorized keyword search scheme and search permission update
protocol. The formal security proof and thorough security analysis
are provided. Extensive experimental results on a real data set
demonstrate the correctness and practicality of the proposed
scheme.

The remainder of this paper is organized as follows. We review
the related work in Section 2. The related background, including
system model, threat model, and several basic techniques to be
used in the paper, is described in Section 3. We formally construct
the authorized keyword secure search scheme and search permis-
sion update protocol in Sections 4 and 5, respectively. Thorough
performance and security analyses are provided in Sections 6 and
7, respectively. We make experimental evaluation for our scheme
in Section 8 and conclude the paper in Section 9.

2. Related work

2.1. Secure search over encrypted cloud data

Wang et al. [38] first used encrypted keyword relevance score
as ranking criterion to implement single keyword top-k secure
search over encrypted cloud data. They extends their confer-
ence version by putting on ranked search result authentication
mechanism in [39]. To achieve multi-keyword ranked search over
encrypted cloud data, Cao et al. [5] used encrypted space vector
model to design a ‘‘coordinate matching’’-based multi-keyword

ranked secure search scheme. They improved the ranked accuracy
in [6] by introducing TF×IDF rule. Sun et al. [34] proposed to use
the tree-based index structure to improve multi-keyword search
efficiency and use cosine similarity measure to achieve higher
search result ranking accuracy under the space vector model.
Sun et al. [33] extended their scheme [34] to make it enable
authenticity check over the returned search results. Similar to
Sun et al.’s works [34] and [33], Xia et al. [43] also constructed
tree-based index under the space vector and TF×IDF model to
achieve efficient and accurate multi-keyword ranked search. An
important difference from [34] and [33] is that Xia et al.’s scheme
is able to deal with the deletion and insertion of data files flexibly
and efficiently. Based on the same technical route as above multi-
keyword schemes, Li et al. [23] proposed a very efficient multi-
keyword search scheme over encrypted cloud data by supporting
classified sub-dictionary computation. By building a search inter-
est model according to a data user’s search history, Fu et al. [12]
proposed a personalized multi-keyword secure search scheme to
improve user search experience. To tolerate minor typos, fuzzy
keyword search schemes over encrypted cloud data were also
proposed in [22] and [42]. Yin et al. fully considered the data
security and search privacy in multiple data owners scenario
and proposed a secure conjunctive multi-keyword ranked search
scheme over encrypted cloud data in [45].

2.2. Authorized keyword secure search based on attribute encryption

Zheng et al.’s work designed a novel cryptographic primitive
to achieve fine-grained query authorization by exploiting the
attribute-based encryption (ABE) [30], called attribute-based key-
word search (ABKS) [47] and Sun et al. exploited ABE to realize
fine-grained owner-enforced search authorization in the multiple
data owners model [35]. Later, several authorized keyword secure
search schemes are proposed in [9,24–27,31,40,41,46]. However,
each of these schemes has respective limitations. Specifically,
the schemes [35] and [40] used the access structure that only
allows AND policies and schemes [9,24,27,41] considered AND
and OR gates of attributes but do not support threshold gate.
The authors proposed an efficient ciphertext-policy searchable
attribute-based encryption scheme in [46], which supports AND,
OR, and threshold gate. However, the trapdoor cannot achieve un-
linkability security property due to the deterministic encryption.
In [26], miao et al. proposed the attribute-based keyword search
over hierarchical data with tree access structure supporting AND,
OR, and threshold gate, but disenabling the search permission
update. Schemes [25] and [31] use composite-order group to
set up pairing environment, which incurs the impractical search
complexity [9]. In addition, we emphasize that none of the above
schemes achieve fine-grained search permission update. In some
application scenarios, flexibly updating a data user’s keyword
search permission may be more practical and attractive.

3. Background

3.1. System model

As shown in Fig. 1, there are three entities in our system
model. They are the data owner, the cloud server, and data users.
To guarantee data confidentiality, before outsourcing data files,
the data owner encrypts data files as well as builds secure search-
able indexes for enabling the efficient search over encrypted
data. Each secure searchable index is embedded an access control
policy by the data owner, which defines what type of users can
search on this index. An authorization data user with a set of at-
tributes submits a query trapdoor (i.e., encrypted query keyword)
to cloud server to obtain the interested data files. Upon receiving
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Fig. 1. A system model of search over encrypted data on a remote cloud center.

the query trapdoor, the cloud server is responsible for performing
search over encrypted outsourced data. Specifically, only when
the data user’s attribute set satisfies the access control policy
embedded in an index, the cloud server can perform correct query
over the secure index. Finally, the cloud server returns back the
encrypted query results to the data user.

In addition, assume that secure channels exist between the
data owner and data users, by which the system authentication
can be conducted correctly and secretly. After passing the system
authentication, the data user obtains some important compo-
nents from the data owner such as data file decryption key and
query permissions via existed secure channels.

3.2. Threat model

In this paper, the data owner and data users are the trusted
entities. Similar to previous related works, we consider the cloud
server as ‘‘honest-but-curious’’ in the sense that the cloud server
could strictly obey data escrow protocols and correctly fulfill the
functional responsibilities while it may try to obtain as many
contents as possible from encrypted data files, secure searchable
index, and query trapdoor. We also assume that the cloud server
cannot launch collusion attacks with the data owner and data
users.

In general, the security mainly captures the notion that the
cloud server cannot obtain any underlying plaintext information
from outsourced data files, searchable index, and query trapdoors.
Now, we first give the formal security definitions through the
following games between a challenger B and the adversary A.

Adaptively Chosen-Keyword Attack Game:
Setup. The challenger B initializes running environment and

sends public parameters to the adversary A.
Phase 1. A adaptively requests search trapdoor TA(w) for

any keyword w for polynomially many times from B with the
attribute sets S1, . . . , Sq.

Challenge. A define a challenge access tree T∗ such that none
of the attribute sets S1, . . . , Sq from Phase 1 satisfy T∗. A submits
two keywords w0, w1 and T∗ to B. B flips a random binary coin
b ∈ {0, 1} and encrypts wb with T∗ as Iwb , which is sent to A.

Phase 2. A continues to query the search trapdoor TA(w) for
chosen keyword w (including w0 and w1) with the attribute set
Sqw from B. The only restriction is that if the attribute set Sqw in
TA(w) satisfies T∗, then w ̸= w0, w1 (in other word, if w = w0 or
w = w1, then Sqw0

or Sqw1
does not satisfy T∗).

Guess. Finally, A outputs a guess b′ of b.
The advantage that a probabilistic polynomial time adversary

A wins the above game is defined as Adv = Pr[b′
= b] −

1
2 .

Definition 1. The proposed fine-grained authorized keyword
secure search scheme is semantically secure against an adaptively
chosen-keyword attack if the advantage Adv that any probabilis-
tic polynomial time adversary wins the above game is negligible.

Chosen-Plaintext Keyword Attack Game:
Setup The challenger B initializes running environment and

public parameters to the adversary A.
Phase 1 The adversary is allowed to access trapdoor encryp-

tion oracle, denoted by E, for many times and inputs two key-
words w0 and w1.

Challenge The adversary sends w0 and w1 to the challenger.
The challenger flips a random binary coin b ∈ {0, 1} and encrypts
wb as E(wb), which is given the adversary.

Phase 2 The adversary continues to access the encryption
oracle E.

Guess The adversary inputs the guess b′ of b.
The advantage that a probabilistic polynomial time adversary

A wins the above game is defined as Adv = Pr[b′
= b] −

1
2 .

Definition 2. The proposed fine-grained authorized keyword
secure search scheme is semantically secure against a chosen-
plaintext keyword attack if the advantage Adv that any proba-
bilistic polynomial time adversary wins the above game is
negligible.

3.3. Basic techniques

3.3.1. Bilinear pairing map
Let G1 and G2 denote two cyclic multiplicative groups of order

q. A bilinear map e : G1 × G1 → G2 satisfies the following
properties:

• Computable: For any Q , Z ∈ G1, there is a polynomial time
algorithm to compute e(Q , Z) ∈ G2.

• Bilinear: For all x, y ∈ Z∗
q and Q , Z ∈ G1, the equality

e(Q x, Zy) = e(Q , Z)xy holds.
• Non-degenerate: If g, h are generators of G1, then e(g, h) is

a generator of G2.

3.3.2. Attribute-based encryption
Attribute-Based encryption (ABE) is able to effectively enforce

access control over encrypted data in a fine-grained manner by
leveraging an access control policy. Depending on that the access
control policy is embedded into the decryption key or ciphertext,
the ABE can generally be classified into two categories: KP-ABE
(key-policy ABE) [15] and CP-ABE (ciphertext-policy ABE) [2].
Since an access tree can flexibly achieve AND, OR, and threshold
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operations among attributes, it is widely used to represent the
access control policy in the ABE system.

1. Access Tree T In the access tree T , a non-leaf node and a leaf
node represent a threshold gate and an attribute, respectively.
Each node x in T contains two values: numx and kx. numx is the
number of child nodes of the node x and kx is its threshold value
(1 ≤ kx ≤ numx). If x is a non-leaf node, kx = 1 means the node
is an OR gate and kx = numx represents an AND gate. If x is a
leaf node, then kx = 1. For ease of description, several notations
about an access tree are defined as follows.

• parent(x): the parent of node x.
• index(x): the label of node x. The child nodes of a node y in

T are labeled from 1 to num.
• attr(x): the attribute associated with the leaf node x.

2. Satisfying access tree T Let Tx be the subtree of T rooted at
the node x. If a set of attributes S satisfies Tx, we denote it as
Tx(S) = 1. Tx(S) can be computed as follows. If x is a non-leaf
node, evaluate Tx′ (S) for all children x′ of node x. Tx(S) return 1 if
and only if at least kx children return 1. If x is a leaf node, Tx(S)
returns 1 if and only if attr(x) ∈ S. Thus, according to the above
recursive computation, if set S satisfies T , then Tr (S) = 1, where
r is the root node of T .

3.3.3. Decisional Diffie–Hellman (DDH) problem and assumption
DDH Problem: Let g represent a generator of the group G with

order q. There are three random elements a, b, c in Z∗
q . Given

(g, ga, gb), the problem is to distinguish the valid element gab

from the random element gc . A PPT algorithm A has an advantage
AdvDDHP

A in solving DDHP if:

AdvDDHP
A ≤ |Pr[A(ga, gb, gab) = 1] − Pr[A(ga, gb, gc) = 1]|

DDH assumption: for any probabilistic polynomial time algorithm
A, AdvDDH

A is negligible.

3.3.4. Decisional Bilinear Diffie–Hellman (DBDH) problem and as-
sumption

DBDH Problem: Let g represent a generator of the group G1
with order q. Suppose a challenger chooses four elements
a, b, c, z ∈ Z∗

q at random and computes ga, gb, gc, e(g, g)abc,
e(g, g)z , where e is a bilinear map. The DBDH problem is to find a
probabilistic polynomial time algorithm A has advantage AdvDBDH

A
in distinguishing the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)z) if

AdvDBDH
A ≤ |Pr[A(ga, gb, gc, e(g, g)abc) = 1]

− Pr[A(ga, gb, gc, e(g, g)z) = 1]|

DBDH Assumption: for any probabilistic polynomial time algo-
rithm A, AdvDBDh

A is negligible.

4. Fine-grained authorized keyword based secure search
scheme

In this section, we construct a fine-grained authorized key-
word secure search scheme.

To achieve fine-grained authorized keyword search for dif-
ferent data users, our basic idea is that the data owner en-
crypts an index keyword under an access tree. An authorized
data user whose attributes satisfy the access tree will be able to
use the keyword to perform data searching. By defining different
access trees for different index keywords, the data owner is
able to flexibly determine which keywords can be searched by
which authorized data users in a fine-grained manner. In addi-
tion, we organize the encrypted index keywords and encrypted

data files as secure inverted index for achieving sub-linear search
complexity [10,20].

4.1. Setting initialization

Let G1 and G2 be two cyclic multiplicative groups with large
prime order q. g is a generator of group G1. A bilinear map is
denoted as e : G1 × G1 → G2 with aforementioned three
properties. We define two cryptography hash functions H1 :

{0, 1}∗ → Z∗
q hashing an arbitrary length string to an element

in Z∗
q and H2 : {0, 1}∗ → G1 hashing an arbitrary length string to

a group element in G1. Finally, we define Lagrange coefficients as
follows:

△i,S(x) =

∏
j∈S,j̸=i

x − j
i − j

where S denotes a set of elements in Z∗
q and i, j ∈ Z∗

q .

4.2. Key generation

In this key generation phase, the data owner chooses two
random elements α, β from Z∗

q and generates two keys k1, k2 as
follows:

KEY =

⎧⎨⎩ k1 =

(
β,

1
β

, gα

)
k2 = (e(g, g)α, h = gβ )

In our scheme, the data owner uses k1 to grant query privilege
for data users and uses k2 to encrypted index keywords for
constructing secure searchable index, respectively, where 1

β
∈ Z∗

q
denotes an inverse of element β .

4.3. Index keyword encryption and data outsourcing

Without loss of generality, we use notation w to denote an
index keyword. The data owner takes the following two steps to
generate encrypted posting list of the keyword w. First, the data
owner defines an access tree Tw and chooses a polynomial qx for
each node x in Tw . These polynomials are chosen in a top-down
manner, starting from the root node R. For each polynomial qx of
x, the data owner sets the degree dx of qx to be one less than the
threshold value kx of the node x, i.e., dx = kx − 1. For the root
node R, he chooses a random element s ∈ Z∗

q and sets qR(0) = s
and then sets dR other points of qR randomly to completely define
it. For any other node x in Tw , he sets qx(0) = qparent(x)(index(x))
and chooses dx other points to completely define qx. Let Y be the
set of leaf nodes Tw . The data owner uses k2 and Tw to encrypt
index keyword w as follows:

Iw =(Tw, Ĩ ′

w = e(g, g)αsH1(w), Ĩ ′′

w = hsH1(w),

∀y ∈ Y : Iy = gqy(0), I ′y = H2(attr(y))qy(0))

Second, the data owner encrypts data files containing the key-
word w by using semantically secure AES encryption scheme
under the key k and then uses Iw to associate with all these
encrypted data files to form the corresponding posting list.

4.4. Index keyword re-encryption

After receiving the encrypted index, the cloud server re-
encrypts Iw for the keyword w to achieve effective and flexible
data user search permission update in our scheme. To achieve
this goal, the data owner needs to generate an attribute key Ka
for each attribute a in the attribute universe A. We use

AK = {∀a ∈ A : Ka}
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to denote the attribute key universe. The data owner uploads AK
to the cloud server and the cloud server uses it to re-encrypt each
posting list Iw as follows:

I∗

w =(Tw, Ĩ ′w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

∀y ∈ Y ∧ ∀Kattr(y) ∈ AK : Iy = gqy(0),

I ′y = (H2(attr(y))qy(0))Kattr(y) )

We emphasize that the purpose of introducing AK and
re-encrypting each index keyword is to achieve effective search
permission update in our query system. We defer the discussion
of how to implement this property in the latter section.

4.5. Data user grant

When a data user wishes to join the system, the data user
first needs to obtain the search privilege from the data owner.
In this phase, a group of keys are distributed to the data user,
by which the data user can generate legal query trapdoor for a
certain query keyword.

Assume there is a new data user u, the process of granting
search permission for u includes the following steps. First, the
data owner assigns a set of attributes S for u and uses k1 to
generate the key based on S as:

Gu =(G1 = g
α
β ,G2 = g

1
β

∀a ∈ S,Ga = H2(a)ra ,G′

a = g ra )

where ra ∈ Z∗
q is a randomly chosen element for each attribute

a ∈ S. Second, the data owner generates an attribute key subset
according to the attribute key universe AK and S as:

AK = {∀a ∈ S : Ka} ⊂ AK

Finally, the data owner sends tuple (k, S, Gu,AK) to the data
user through secure communication channels, where k is the
symmetric encryption key of data files.

Upon receiving the tuple (k, S, Gu,AK) from the data owner,
u employs the attribute key subset AK to update the Gu as
follows:

G∗

u =(G1 = g
α
β ,G2 = g

1
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ga = H2(a)ra ,

G′

a = (g ra )
1
Ka )

In this paper, we consider an authorized data user to be
trusted, which means he does not leak the received security
parameters to other illegal users.

4.6. Trapdoor generation

Assume u wants to obtain all data files that contain keyword
w0, u uses G∗

u to encrypt w0 to generate query trapdoor by doing
the following. First, u randomly chooses an element r ∈ Z∗

q and
computes λ1 = r · H1(w0), λ2 = gλ1 = g rH1(w0), T1 = G1(G2)r =

g
α
β · g

r
β = g

α+r
β . Second, for each a ∈ S, u computes Ta = λ2Ga =

g rH1(w0)H2(a)ra . Eventually, the trapdoor of query keyword w0 is
denoted as:

Tu(w0) =(T1 = g
α+r
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ta = g rH1(w0)H2(a)ra ,

T ′

a = G′

a = (g ra )
1
Ka ),

which will be submitted to the cloud server.

4.7. Secure search over encrypted inverted index

Cloud is equipped with powerful storage capacity and compu-
tation power, besides storing all encrypted data files and secure
searchable index, it is also responsible for performing search on
behalf of data users. Upon receiving a query trapdoor Tu(w0)
of the query keyword w0 submitted by data user u, the cloud
will perform search over encrypted inverted index and return
encrypted data files that contain the keyword w0 if and only if
the following two conditions must be satisfied simultaneously:
(1) the cloud can find an encrypted posting list with keyword
w that satisfies w = w0 and (2) the data user u must hold the
query privilege of the keyword w, i.e., u’s attribute set assigned
by the data owner must satisfy the access tree Tw . Otherwise,
u cannot obtain any data files from the cloud server. Moreover,
in the whole query process, the cloud cannot know any use-
ful information about data files, inverted index, and u′s query
keyword.

In what follows, we describe the secure search process per-
formed by the cloud server in detail. Given the query trapdoor
Tu(w0) and an encrypted posting list I∗

w , for ease of understand-
ing, we regard the whole search process as two sub-procedures,
which are actually transparent for both cloud server and data
users.

The first sub-procedure is to determine whether the data user
u has access to I∗

w , i.e, the cloud server decides whether u’s
attribute set S satisfies the access tree Tw . The detailed process
can be described as follows.

Let x be a node from Tw ,

• For each leaf node x, let a = attr(x) denote the attribute
associated with x, if a ∈ S, then compute:

Fx =
e(Ta, Ix)
e(T ′

a, I ′x)

=
e(g rH1(w0) · H2(a)ra , gqx(0))

e((g ra )
1
Ka , (H2(a)qx(0))Ka )

=
e(g rH1(w0), gqx(0)) · e(H2(a), g)ra·qx(0)

e(H2(a), g)
ra·qx(0)·Ka· 1

Ka

= e(g, g)rH1(w0)qx(0)

if a /∈ S, we define Fx = ⊥.
• For each non-leaf node x in Tw0 (In a down-top and recursive

manner), let Sx denote an arbitrary kx-sized set of child
nodes z such that Fz ̸= ⊥; if no such set exists then the
node is not satisfied by u’s attribute set S and define Fx = ⊥;
otherwise, compute using Lagrange interpolation:

Fx =

∏
z∈Sx

F
∆i,S′x

(0)
z

=

∏
z∈Sx

(e(g, g)rH1(w0)·qz (0))∆i,S′x
(0)

=

∏
z∈Sx

(e(g, g)rH1(w0)·qparent(z)(index(z)))∆i,S′x
(0)

=

∏
z∈Sx

e(g, g)rH1(w0)·qx(i)·∆i,S′x
(0)

= e(g, g)rH1(w0)·qx(0)

where i = index(z), S ′
x = (∀z ∈ Sx : index(z)), and ∆i,S′

x
is the

Lagrange coefficient.
• For the root node R of the access tree Tw , according to the

above recursive operation, if FR = ⊥ then T is not satisfied
by the u’s attribute set S; otherwise,

FR = e(g, g)rH1(w0)·qR(0) = e(g, g)rH1(w0)s
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After finishing the above recursive operations, if FR = ⊥, then
this means that u’s attribute set S does not satisfy Tw; otherwise,
the cloud server continues to perform the second sub-procedure
to judge whether the query keyword w0 satisfies w0 = w by
verifying whether the following equation is true:

Ĩ ′w =
e(̃I ′′w, T1)

FR
If the equation is true, this means that w = w0 holds. u obtains
all encrypted data files that contain keyword w(w0) according
to the posting list I∗

w from the cloud server. Finally, u uses the
symmetric key k to decrypt them locally.

Now, we verify the correctness of the search by the following
derivation:

e(̃I ′′w, T1)
FR

=
e(hsH1(w), g

α+r
β )

e(g, g)rH1(w0)s

=
e(gβsH1(w), g

α+r
β )

e(g, g)rH1(w0)s

=
e(g sH1(w), gα+r )
e(g, g)rH1(w0)s

=
e(g sH1(w), gα)e(g sH1(w), g r )

e(g, g)rH1(w0)s

=
e(g, g)αsH1(w)e(g, g)rH1(w)s

e(g, g)rH1(w0)s

If the query keyword w0 is exactly the same as w (i.e., H1(w) =

H1(w0)) then,

e(̃I ′′w, T1)
FR

=
e(g, g)αsH1(w)e(g, g)rH1(w)s

e(g, g)rH1(w0)s

= e(g, g)αsH1(w)

= Ĩ ′w

5. User search permission update

In this section, we design two attribute update sub-protocols:
an attribute addition sub-protocol and an attribute revocation
sub-protocol. By the proposed attribute update sub-protocols, the
data owner is able to flexibly update search permission for a data
user when the data user’s role changes in the system. We first
present the construction of our protocol and then make a dis-
cussion about it from functionality, performance, and correctness
three aspects.

5.1. Attribute revocation sub-protocol

When the data owner decides to revoke a previously assigned
attribute a from a specified data user u, the system needs to run
the attribute revocation protocol among the data user, the cloud
server, and other data users except u. We describe running details
of this protocol from different entities as follows.

• Data Owner: The data owner generates a new attribute key
K ′
a for a to replace the old attribute key Ka in the set AK and

then sends K ′
a to the cloud server and data users who have

been assigned the attribute a except u.
• Cloud Server: Upon receiving the K ′

a, the cloud server first
adds it to AK and deletes the old key Ka for the attribute
a. Then, for each encrypted posting list with the keyword
w, if existing one leaf node in the access tree Tw associates
with the attribute a, then the cloud server updates the value
I ′a of I∗

w as (I ′a)
K ′
a for the attribute a and keeping other leaf

nodes unchanged. The new I∗
w is denoted as follows (assume

Fig. 2. Attribute revocation sub-protocol.

that the lead node x in Tw associates the attribute a i.e., a =

attr(x)):

I∗

w =(Tw, Ĩ ′w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

Ix = gqx(0), I ′x = (H2(attr(x))qx(0))
Kattr(x)K ′

attr(x)

∀y ∈ Y ∧ ∀Kattr(y) ∈ AK \ {x} : Iy = gqy(0),

I ′y = (H2(attr(y))qy(0))Kattr(y) )

• Data Users: when a data user u’ who has been assigned the
attribute a receives the updated attribute key K ′

a from the
data owner, he first updates his attribute key subset AK by
replacing the previous key Ka using K ′

a and then updates

the previous G′
a as (G′

a)
1
K ′
a and keeps other attribute keys

unchanged. The new G∗

u′ is denoted by:

G∗

u′ = (G1 = g
α
β ,G2 = g

1
β ,

Ga = H2(a)ra ,G′

a = (g ra )
1

KaK ′
a

∀b ∈ S ∧ ∀Kb ∈ AK \ {a},Gb = H2(b)rb

G′

b = (g rb )
1
Kb )

A high-level description of the attribute revocation protocol is
given in Fig. 2.

5.2. Attribute addition sub-protocol

When the data owner decides to add a new attribute b to a
specified data user u, the system runs the attribute addition pro-
tocol between the data owner and the data user u. We describe
running details of this protocol from the two different entities as
follows.

• Data Owner: The data owner randomly chooses an element
rb ∈ Z∗

q and uses attribute key Kb ∈ AK of attribute

b to compute Gb = H2(b)rb and G′

b = (g rb )
1
Kb . The tu-

ple (b, Kb,Gb,G′

b) is sent to u via secure communication
channels.

• Data User: Upon receiving tuple (b, Kb,Gb,G′

b) from the data
owner, u updates following sets:
(1) Update previous query keyword encryption secret key
set G∗

u as

G∗

u =(G1 = g
α
β ,G2 = g

1
β ,

(∀a ∈ S ∧ ∀Ka ∈ AK : Ga = H2(a)ra ,

G′

a = (g ra )
1
Ka )

⋃
(Gb = H2(b)rb ,G′

b = (g rb )
1
Kb ))

(2) Update previous attribute set S as S := S ∪ {b}.
(3) Update previous attribute key subset AK := AK ∪ {Kb}.

A high-level description of the attribute addition protocol is given
in Fig. 3.
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Fig. 3. Attribute addition sub-protocol.

Fig. 4. Access tree of encrypting index keyword w1 and w2 , respectively.

5.3. Discussion

5.3.1. Functionality
Our proposed search permission update protocol allows the

data owner to achieve flexible and fine-grained keyword search
privilege control by revoking or adding attributes from or to a
data user when the data user’s role changes in the system. For
example, for an encrypted posting list I∗

w , once certain attributes
are revoked from a data user that leads to his remaining attributes
no more satisfy the access tree Tw . Accordingly, the data user loses
the search privilege of the posting list with keyword w; mean-
while, the data user still keeps search privilege of other posting
lists as long as his remaining attributes satisfy corresponding
access trees. On the other hand, adding new attributes for a data
user is equivalent to granting new keyword search permissions
for the data user. Obviously, a data user can be easily revoked
from the search system thoroughly by revoking his all attributes
previously assigned.

5.3.2. Performance
The proposed search permission update protocol is extremely

efficient and only needs a few computation cost and communi-
cation cost for the data owner, the cloud server, and data users.
We can see that, in these two sub-protocols, the data owner does
not need to re-encrypt data files and re-build secure index, which
significantly releases the data owner’s operations. As shown in
Figs. 2 and 3, when the user attribute update occurs, we can
see that the data owner, the cloud server, and data users may
need to perform a few operations. We will numerically describe
performance cost of these operations in Sections 6 and 8.

5.3.3. Correctness
Since the correctness of attribute adding protocol is obvious,

we use an example to illustrate the correctness of the attribute re-
vocation protocol. Assume that there are a data user Alicewho has
attributes {a1, a2, a3, a4} and two encrypted keywords I∗

w1
and

I∗
w2

, which is embedded the access tree Tw1 and Tw2 , respectively,
as shown in Fig. 4. Obviously, Alice has the query permissions of
keywords w1 and w2, since her attribute set satisfies access trees
Tw1 and Tw2 simultaneously.

At some point, if attribute a3 is revoked from Alice, Alice loses
the query permission of keyword w1 even she still owns a3 from
his own perspective. This is because that Alice does not obtain the
updated attribute key K ′

a3 from the data owner and cannot update
the element G′

a3 of her query trapdoor generation key G∗

Alice. When

Table 1
Notations used in performance analysis.
Notations Description

P Pairing operation
MG Multiplication operation in group G
MZ∗

q Multiplication operation in Z∗
q

EG Exponentiation operation in group G
H Hash computation

|α|
Bit length of α, if α is a string;
Cardinality of α, if α is a set.

Y Leaf-node set of an access tree
S Attribute set of a data user
N Least interior nodes satisfying an access tree

Table 2
The computation cost and output size of each phase in our secure search scheme.
Phase Computation cost Output size

KG P + 2EG1 2|Z∗
q |+2|G1|+|G2|

IKE (2|Y |+1)EG1 + EG2 + MZ∗
q + |Y |H2 (2Y + 1)|G1|+|G2|

IKR |Y |EG1 (2Y + 1)|G1|+|G2|

DUG (3|S|+2)EG1 + |S|H2 2(|S|+1)|G1|

TG H1 + MZ∗
q + 2EG1 + (|S|+1)MG1 2(|S|+1)|G1|

SS (2|S|+1)P + (|N|+1)MG2 + |N|EG2 0

Alice continues to use G∗

Alice to encrypt keyword w1 to request
data files from the cloud server, the cloud server first needs to
compute Fx for each leaf node x in Tw1 . Correspondingly, the leaf
node a3 is computed as follows:

Fa3 =
e(Ta3 , Ia3 )
e(T ′

a3 , I
′
a3 )

=
e(g rH1(w1) · H2(a3)ra3 , gqa3 (0))

e((g ra3 )
1

Ka3 , (H2(a3)qa3 (0))
Ka3K

′
a3 )

=
e(g rH1(w1), gqa3 (0)) · e(H2(a3), g)ra3 ·qa3 (0)

e(H2(a3), g)
ra3 ·qa3 (0)·Ka3 ·K ′

a3 ·
1

Ka3

=
e(g rH1(w1), gqa3 (0)) · e(H2(a3), g)ra3 ·qa3 (0)

e(H2(a3), g)
ra3 ·qa3 (0)·K

′
a3

̸= e(g, g)rH1(w1)qa3 (0)

We can see that the parent node of a3 and a4 is an AND gate.
According to our proposed scheme, Fa3 ̸= e(g, g)rH1(w1)qa3 (0) will
lead to FR1 = ⊥ for the root node R1 of Tw1 in the recursion
process. That is, Alice’s attribute set no longer satisfies Tw1 . On
the other hand, Alice can still search the keyword w2, since the
correct value FR2 = e(g, g)rH1(w1)·qR2 (0) can be computed by node
a4 for the OR gate.

6. Performance analysis

This section provides the performance analysis for the pro-
posed authorized keyword search scheme and the search per-
mission update protocol. For clear and accurate performance
description, we first define several necessary notations as shown
in Table 1.

6.1. Performance of authorized keyword search scheme

From the view of system level operations, the proposed fine-
grained authorized keyword secure search scheme described in
Section 4 includes Key Generation (KG), Index Keyword Encryption
(IKE), Index Keyword Re-encryption (IKR), Data User Grant (DUG),
Trapdoor Generation (TG), Secure Search (SS). For ease of reading,
we describe the computation cost and output size of each phase
in Table 2.
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Table 3
The computation cost and output size of attribute update protocol.
Protocol Entity Computation cost Output size

ARP
Data owner 0 |Z∗

q |

Cloud server naEG1 na|G1|

Data user EG1 |G1|

AAP Data owner 2EG1 2|G1|+2|Z∗
q |

Data user 0 0

6.2. Performance of search permission update protocol

The search permission update protocol includes two sub-
protocols: attribute revocation protocol (ARP) and attribute ad-
dition protocol (AAP), which are run among entities when data
user’s system role changes. For ease of reading, we describe the
computation cost and output size of each entity in Table 3.

In Table 3, the notation na denotes the total number of en-
crypted posting lists whose access trees contain attribute a and
we ignore the time cost of set union operation.

7. Security proof and analysis

In this section, we first provide the security proofs of the
searchable index and trapdoor construction and then give thor-
ough security analysis for our proposed scheme.

7.1. Security proof

Let Search(Iw, T (w′)) denote the secure search algorithm,
which takes an index Iw and a trapdoor T (w′) as input, and out-
puts 1 if the attribute set in T (w′) satisfies the access tree in Iw

and w = w′; otherwise, it outputs 0 (It’s concrete implementation
is present in Section 4.7).

Intuitively, the adversary A has two approaches to distin-
guish the challenge ciphertext Iw0 from Iw1 (i.e., decide b = 1
or b = 0): one is to access the search algorithm and judge
Search(Iwb , T (w0)) = 1 or Search(Iwb , T (w1)) = 1; the other is
to directly recover the message wb from the original ciphertext
Iwb . Now, we prove that in the above two games A cannot break
our proposed scheme with a non-negligible advantage.

Theorem 1. Our proposed fine-grained authorized keyword se-
cure search scheme is semantically secure against an adaptively
chosen-keyword attack in the generic bilinear group model.

Proof. We prove that our proposed scheme is semantically
secure in the generic bilinear group model based on the following
adaptive chosen-keyword security game between the challenger
B and the adversary A, where H2 is modeled as a random oracle
and H1 is a secure hash function.

Setup. The challenger B initializes running environment and
sends (G1,G2, e,H1,H2, g, q, h = gβ , e(g, g)α) to the adversary
A.

Phase 1. When A requests the value of H2 on any string a, B
generate a new random value ta ∈ Z∗

q and provides g ta as the
response to H2(a).

On a trapdoor query corresponding to the attribute set Sj ∈

[S1, Sq], a new random value r (j) ∈ Z∗
q is chosen, for each attribute

ai ∈ Sj, B randomly chooses a new value r (j)a and computes

G = g
α+r(j)

β ,G′
= g r(j) ,Ga = g tar

(j)
a ,G′

a = g r(j)a . Finally, for any
keyword w chosen by A, A generates the trapdoor as:

TA(w) = (T1 = g
α+r(j)

β ,

∀a ∈ Sj : Ta = g r(j)H1(w)g tar
(j)
a , T ′

a = g r(j)a ),

Table 4
Encryption functions used in the security proof.
Function Construction Public key Private key Random value

E1 e(g, g)αsH1(w) e(g, g)α α s
E2 gβsH1(w) gβ β s
E3 g rH1(w)H2(a)ra g α, β r, ra

which is sent to A. Obviously, this is a legal trapdoor construction
of w from A’s perspective, where we do not consider the attribute
key subset, since it does not influence the security.

Challenge. A defines an access tree T∗ such that none of the
attribute sets S1, . . . , Sq from Phase 1 satisfy it and chooses two
challenge keywords w0 and sends w1. w0, w1, and T ∗ to B. B
randomly chooses a bit b ∈ {0, 1} and encrypts wb with T∗ as:

Iwb =(T ∗, Ĩ ′

wb
= e(g, g)αsH1(wb), Ĩ ′′

w = hsH1(wb),

∀a ∈ Y : Ia = gqa(0), I ′a = g taqa(0)),

where Y is the leaf node set of T∗.
Phase 2. A repeats Phase 1 for any keyword w with attribute

set Sqw . The only restriction if w = w0 or w = w1, then Sqw0
or

Sqw1
does not satisfy T∗.

Guess. In our scheme, intuitively the adversary can output
correct b by using the trapdoor TA(w) with attribute set Sqw and
to access the search algorithm Search(Iwb , TA(w)) to decide b = 0
or b = 1. There exist two cases as below.

(1) If w = w0/w1, we claim that the adversary cannot
output correct b by letting Search(Iwb , TA(w0)) = 1 or Search
(Iwb , TA(w1)) = 1, since neither Sqw0

nor Sqw1
satisfies T∗ en-

crypting Iwb . The intrinsic reason is that in CP-ABE, the adversary
can never construct a query for e(g, g)γαs, where γ can be set
as H1(wb) in this paper, when the attribute set does not satisfy
the access tree. Detailed proof has been provided in [2]. There-
fore, in our scheme, the adversary can never obtain the correct
e(g, g)H1(wb)αs by e(̃I ′′wb

, T1)/FR. Without the value and a correct
comparison between the value and Ĩ ′wb

, the Search algorithm
always outputs 0 even w = w0/w1.

(2) If w ̸= w0/w1 and the attribute set Sqw satisfies T∗.
Since Sqw satisfies T∗, A can compute e(̃I ′′wb

, T1)/FR =

e(g, g)αsH1(wb)e(g, g)rH1(wb)s/e(g, g)rH1(w)s. Obviously, the value
e(g, g)H1(wb)αs cannot be effectively calculated due to w ̸= w0/w1,
which causes that Search algorithm always outputs 0. □

On the other hand, the adversary A can disclose the keyword
information from ciphertexts Ĩ ′w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w)

=

gβsH1(w), Ta = g rH1(w)H2(a)ra from index Iw and trapdoor Tu(w).
Next, we prove that these encryptions are semantically secure
against chosen-plaintext attack. For ease of description, we define
three encryption functions according to the above ciphertext
constructions, as shown in Table 4, which are modeled as the
encryption oracle in our proof.

Theorem 2. The index keyword encryption E1 is semantically secure
against chosen-plaintext keyword attack if DBDH assumption holds.

Proof. Suppose there exists a probabilistic polynomial time ad-
versary A that has a non-negligible advantage ϵ to break E1, we
can construct a simulator B who can solve the DBDH problem
with a non-negligible advantage ϵ

2 .
The challenger C first flips a binary coin µ. If µ = 0, C sets

tuple t0 : (g, A = ga, B = gb, C = gc, Z = e(g, g)abc); if µ = 1,
he sets tuple t1 : (g, A = ga, B = gb, C = gc, Z = e(g, g)z), where
a, b, c, z are chosen from Z∗

q at random uniformly. Tuple tµ is sent
to simulator B. The simulator B plays the following game with
adversary A on behalf of challenger C.
Setup B sends the public parameter (G1,G2, g, q, e,H1,H2) to A.
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Phase 1 A accesses the encryption function E1 many times using
arbitrary keywords to ask corresponding ciphertext. Finally, he
outputs two keywords w1 and w2 and sends them to B.
Challenge B flips a binary coin γ and encrypts keyword wγ as
E = (Z)H1(wγ ).

If µ = 0, Z = e(g, g)abc . Since α and s are also randomly
chosen elements in encryption block E1, we let ab = α and c = s.
Thus, we have E = (Z)H1(wγ )

= (e(g, g)ab)cH1(wγ )
= e(g, g)αsH1(wγ ).

Therefore, E is a valid index keyword encryption using E1. If
µ = 1, Z = e(g, g)z . Then we have E = e(g, g)zH1(wγ ). Since z
is a random element, therefore E is a random element in G2 from
A’s perspective and contains no information about wγ .
Phase 2 A continues to ask the encryption oracle E1.
Guess A outputs a guess γ ′ of γ . If γ ′

= γ , then B outputs the
guess µ′

= 0 of µ. This means C sent the valid encryption tuple
t0 : (g, A = ga, B = gb, C = gc, Z = e(g, g)abc) to B. Since A
has advantage ϵ to break E1, therefore, the probability A outputs
guess γ ′ of γ satisfying γ ′

= γ is 1
2 + ϵ. Correspondingly, the

probability that B outputs guess µ′ of µ satisfying µ′
= µ = 0

is 1
2 + ϵ. If γ ′

̸= γ , then B outputs the guess µ′
= 1 of µ. This

means random tuple t1 was sent to B. Therefore, the probability
A outputs guess γ ′ of γ satisfying γ ′

= γ is 1
2 . Correspondingly,

the probability that B outputs guess µ′ of µ satisfying µ′
= µ = 1

is 1
2 .
Hence, the overall advantage that B solves the DBDH problem

can be computed:⏐⏐⏐⏐12Pr[µ = µ′
|µ = 0] +

1
2
Pr[µ = µ′

|µ = 1] −
1
2

⏐⏐⏐⏐
=

⏐⏐⏐⏐[1
2

(
1
2

+ ϵ

)
+

1
2

·
1
2

]
−

1
2

⏐⏐⏐⏐ =
ϵ

2

Since ϵ is non-negligible, therefore ϵ
2 is also non-negligible. This

conclusion means B is able to solve the DBDH problem with
a non-negligible advantage, which contradicts DBDH problem
assumption. □

Theorem 3. The index keyword encryption E2 is semantically secure
against chosen-plaintext keyword attack if DDH assumption holds.

Proof. Suppose there exists a probabilistic polynomial time ad-
versary A has a non-negligible advantage ϵ to break E2, we can
construct a simulator B who can solve the DDH problem with a
non-negligible advantage ϵ

2 .
The challenger C first flips a binary coin µ. If µ = 0, C sets

tuple t0 : (g, A = ga, B = gb, C = gab); if µ = 1, he sets
tuple t1 : (g, A = ga, B = gb, C = gc), where a, b, c , are chosen
from Z∗

q at random uniformly. Tuple tµ is sent to simulator B. The
simulator B plays the following game with adversary A on behalf
of challenger C.
Setup B sends the public parameter (G1,G2, g, q, e,H1,H2) to A.
Phase 1 A accesses the encryption function E2 many times using
arbitrary keywords to ask corresponding ciphertext. Finally, he
outputs two keywords w1 and w2 and sends them to B.
Challenge B flips a binary coin γ and encrypts keyword wγ as
E = (C)H1(wγ ). If µ = 0, C = gab. Since β and s are also randomly
chosen elements in encryption block E2, we let a = β and b = s.
Thus, we have E = (C)H1(wγ )

= (gab)H1(wγ )
= gβsH1(wγ ). Therefore,

E is a valid index keyword encryption using E2. If µ = 1, C = gc .
Then we have E = gcH1(wγ ). Since c is a random element, therefore
E is a random element in G1 from A’s perspective and contains
no information about wγ .
Phase 2 A continues to ask the encryption oracle E2.
Guess A outputs a guess γ ′ of γ . If γ ′

= γ , then B outputs the
guess µ′

= 0 of µ. This means C sent the valid encryption tuple
t0 : (g, A = ga, B = gb, C = gab) to B. Since A has advantage

ϵ to break E2, therefore, the probability A outputs guess γ ′ of γ

satisfying γ ′
= γ is 1

2 + ϵ. Correspondingly, the probability that
B outputs guess µ′ of µ satisfying µ′

= µ = 0 is 1
2 + ϵ. If γ ′

̸= γ ,
then B outputs the guess µ′

= 1 of µ. This means random tuple
t1 was sent to B. Therefore, the probability A outputs guess γ ′ of
γ satisfying γ ′

= γ is 1
2 . Correspondingly, the probability that B

outputs guess µ′ of µ satisfying µ′
= µ = 1 is 1

2 .
Hence, the overall advantage that B solves the DDH problem

can be computed:⏐⏐⏐⏐12Pr[µ = µ′
|µ = 0] +

1
2
Pr[µ = µ′

|µ = 1] −
1
2

⏐⏐⏐⏐
=

⏐⏐⏐⏐[1
2

(
1
2

+ ϵ

)
+

1
2

·
1
2

]
−

1
2

⏐⏐⏐⏐ =
ϵ

2

Since ϵ is non-negligible, therefore ϵ
2 is also non-negligible.

This conclusion means B is able to solve the DDH problem
with a non-negligible advantage, which contradicts DDH problem
assumption. □

Theorem 4. The query keyword encryption E3 is semantically secure
against chosen-plaintext keyword attack if DDH assumption holds.

Proof. The proof of this theorem is similar to that of Theorem 3.
The only difference is in the Challenge phase due to different
encryption construction. We only describe this part of contents
as follows.
Challenge B flips a binary coin γ and encrypts keyword wγ as
E = (C)H1(wγ )H2(a)ra , where H2(a)ra can be considered as the
public parameter from B’s perspective, although the data user
never publish it to anyone else in practice.
If µ = 0, C = gab. Since r is also randomly chosen elements
in encryption block E3, we let r = ab. Thus, we have E =

(C)H1(wγ )H2(a)ra = E = (gab)H1(wγ )H2(a)ra = E = g rH1(wγ )H2(a)ra .
Therefore, E is a valid index keyword encryption using E3. If
µ = 1, C = gc . Then we have E = gcH1(wγ )H2(a)ra . Since c is a
random element, therefore E is a random element in G1 from A’s
perspective and contains no information about wγ . □

7.2. Security analysis

We provide a thorough security analysis for our scheme from
four aspects, i.e., data files security, searchable index security,
search security, and trapdoor privacy and unlinkability.

• Security of data files: The security of data files can be
well guaranteed by using the semantically secure symmetric
encryption such as AES.

• Security of search index: In each encrypted posting list,
the corresponding index keyword is contained in encryption
block E1 and E2, which has been proved to be semantically
secure against chosen-plaintext keyword attack under the
DBDH and DDH assumption, respectively. This indicates that
the cloud server cannot recover the index keyword informa-
tion from each encrypted posting list as long as DBDH and
DDH assumption hold.

• Search security: According to our search algorithm, in a
complete search processes, the cloud server is able to obtain
several intermediate computation results containing under-
lying keyword information such as Fx = e(g, g)rH1(w)qx(0),
FR = e(g, g)rH1(w)s, and e(̃I ′′w ,T1)

FR
= e(g, g)H1(w)αs where x and

R denote a non-leaf node and the root node of a access tree
respectively, r, qx(0), s, α are random elements in terms of
the cloud server. Obviously, all of them are the encryption
of E1, which is semantically secure against chosen plaint-
keyword attack as proved in Theorem 2. This means that



H. Yin, Z. Qin, J. Zhang et al. / Journal of Parallel and Distributed Computing 135 (2020) 56–69 65

Fig. 5. Time cost of user grant and trapdoor generation.

it is difficult to recover keyword information from these
intermediate results, which guarantees that the cloud server
cannot obtain any useful information from search processes.

• Trapdoor privacy and unlinkability: Given the query trap-
door Tu(w) of query keyword w, the cloud server can-
not recover w from each Ta = g rH1(w0)H2(a)ra , a ∈ S,
where S is u’s attribute set, due to the intractability of
encryption block E3 under the DDH assumption (Theorem 4),
which guarantees query trapdoor privacy. Since E3 is able
to effectively defense chosen-plaintext keyword attack by
introducing random element r , therefore it is a nondeter-
ministic encryption, which achieves query trapdoor unlink-
ability property. That is, the identical query keywords bear
totally different query trapdoors.

8. Experimental evaluation

We conduct experimental evaluation for the proposed scheme
on Enron Email Dataset [11] and randomly select 4000 text files to
build our experimental subset, from which 800 index keywords
are extracted by using Hermetic Word Frequency Counter [36].
All programs are developed in Java language and leveraging JPBC
library [16]. The elliptic curve group Type A [16] is used in our
experiments. The client running configuration is a Windows 7
desktop system with 2.30 GHz Intel Core i5-6200 CPU, 4 GB
memory and the server is an Ubuntu 16.04 system with 3.60 GHz
Intel Core i7-7700 CPU, 16 GB memory. The client performs ‘‘Key
Generation’’, ‘‘User Grant’’, ‘‘Index Keywords Encryption’’, ‘‘Trap-
door Generation’’ and server side performs search over encrypted
data.

8.1. Time cost of user grant and trapdoor generation

A data user’s search authorization is that the data owner
assigns the legal query keyword encryption key to the data user
according to the data user’s system role. Fig. 5(a) shows that
the time cost of user grant is linear to the number of user
attributes. That is, the more attribute the data user has, the more
time the data owner needs to spend to generate query keyword
encryption key for the data user. Once the data user obtains the
query key from data owner, he is able to generate legal query
trapdoor with respect to query keyword. Moreover, the trapdoor
generation time has nothing to do with the number of user’s
attributes, as shown Fig. 5(b). This is because that, in this process,
only two relatively consuming-time exponentiation operations
are involved regardless of how many the data user has attributes.

Table 5
The time cost of encrypting one index keyword for different number of attributes.
l 2 3 4 5 6 7 8 9
t 0.437 0.594 0.764 0.953 1.107 1.280 1.499 1.623

8.2. Time cost of secure index construction

Secure index construction is to encrypt each index keyword
with specified access tree to form corresponding encrypted post-
ing list. Table 5 shows the time cost t (in seconds), of encrypting
one index keyword when varying the number l, of leaf nodes
(attributes) of the specified access tree. We can see that the time
cost continually increases with the number of leaf nodes. When
l = 9, the encryption time achieves about 1.623 s, it is a relatively
time-consuming process.

To comprehensively evaluate the time cost of secure index
construction over given data set, we conduct several groups of
experiments for different scales of index keyword set and data
file set, as shown Figs. 6(a) and 6(b). For ease of testing, each
group experiment adopts the same access tree to encrypt index
keywords, the number of leaf nodes in the access tree is 3, 6, and
9, respectively. From Fig. 6(a), we can see that the cost time of
secure index construction linearly increases with the number of
index keywords when fixing the size of the data file set. Fig. 6(b)
shows the size of the data file set has little influence on secure
index construction, which is a good property since the size of
data file set is generally much larger than the number of index
keywords in practice. In addition, the more leaf nodes (attributes)
are in the access tree, the more time is spent to construct secure
index.

In conclusion, although the secure index construction is a
relatively time-consuming process for the data owner, it is a
one-time operation.

8.3. The time cost of secure index re-encryption

Upon receiving the secure index from the data owner, the
cloud server needs to re-encrypt them for achieving fine-grained
and efficient user attribute update. Fig. 7(a) shows that, when
fixing the number of data files (n = 2000), the time cost of re-
encrypting secure index for the cloud server linearly increases
with the number of index keywords. Fig. 7(b) shows that, when
fixing the number of index keywords (u = 600), the scale of the
data files does not almost affect the time cost of secure index
re-encryption. Similar to the secure index construction, the more
leaf nodes (attributes) are in the access tree, the more time is
spent to re-encrypt secure index for the cloud server, as shown
in Figs. 7(a) and 7(b).
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Fig. 6. Time cost of secure index construction for the data owner.

Fig. 7. Time cost of secure index re-encryption for the cloud server.

8.4. The time cost of search

In order to clearly demonstrate the relationship between the
search time and the number l of leaf nodes in the access tree and
the number s of data user’s attributes, we adopt a simple access
tree construction with only one interior node to encrypt an index
keyword as shown Fig. 8, where a1, . . . , al denotes l leaf nodes
(each corresponds to an attribute) and 1 ≤ m ≤ l. Obviously, a
data user has a set of attributes S, if |S ∩ L| = m, then the data
user has the query permission of the index keyword encrypted
by the access tree, where L = {attr(a1), . . . , attr(al)}, |S| = s, and
|L| = l.

Figs. 9(a) and 9(b) show the time cost of search over one
encrypted posting list when using different values of m, l, and
s. Experimental results demonstrate that, when the data user’s
attributes satisfy the access tree (i.e., |S ∩ L| = m), the search time
is only determined by value m and irrelevant to l and s. The larger
the value m is, the more time needs to be spent for the cloud
server. In addition, when the data user’s attributes do not satisfy
the access tree (i.e., |S ∩ L| ̸= m), the search time is almost zero,
since, in this case, no time-consuming computation is involved
such as pairing operation and exponential operation.

Fig. 10 shows the average time cost of search in our experi-
mental data set. Fig. 10(a) shows that, when fixing the number
of data files (n = 2000), the time cost of search increases
linearly with an increasing number of index keywords. While
keeping the number of index keywords unchanged (u = 400),
the number of data files have no influence on search time, as

Fig. 8. Access tree construction used to encrypt an index keyword in the
experiments.

shown in Fig. 10(b). We also observe that the time cost can be
reduced remarkably by increasing the number of threads when
the programs are run in a parallel computing environment. Note
that, in our experiments, we assume the data user holds all index
keywords’ query permissions. Therefore, in practical application,
the actual search time cost should be less than our experimental
results. An extreme case is that when a data user’s attributes do
not satisfy all access trees, the search time cost is almost zero
regardless of the number of index keywords.

8.5. The time cost of search permission update

A user’s search permission update would take place when
attributes are added/revoked to/from the user. The processes
mainly rely on our designed attribute addition protocol and at-
tribute revocation protocol. Therefore, we evaluate the time cost
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Fig. 9. Time cost of search over one encrypted posting list.

Fig. 10. Average time of search over experimental data set.

of search permission update by running these two sub-protocol
implementations. Table 6 demonstrates each party’s time cost
(in seconds) of running designed attribute revocation protocol,
where a denotes a revoked attribute from a data user u and na
denotes the total number of encrypted posting lists, whose access
trees contain attribute a, stored at the cloud server. We can see
that, in the process of performing the protocol, the time cost at
the cloud server side linearly increases with na and each other
data user except u spends about 0.047 s to complete the protocol,
while the execute time at the data owner side is almost zero.
Table 7 shows the time cost (in seconds) of attribute addition
protocol, where b denotes an added attribute to a data user u
and nb denotes the total number of encrypted posting lists, whose
access trees contain attribute b, stored at the cloud server. We
can see that it is an extremely efficient protocol, the time cost
occurrence is only at the data owner side, who spends about
0.094 s to complete the protocol regardless of nb.

9. Conclusion

In this paper, we propose a fine-grained authorized keyword
secure search scheme over encrypted cloud data by evolving the
off-the-peg CP-ABE scheme proposed in [2]. Our scheme allows
the data owner to flexibly grant keyword search permissions

Table 6
The time cost of running attribute revocation protocol.
na 100 200 300 400 500 600

Data owner 0 0 0 0 0 0
Cloud server 1.02 1.762 2.656 3.289 4.112 4.983
Data user 0.047 0.048 0.047 0.047 0.045 0.047

Table 7
The time cost of running attribute addition protocol.
nb 100 200 300 400 500 600

Data owner 0.094 0.095 0.095 0.092 0.094 0.095
Cloud server 0 0 0 0 0 0
Data user 0 0 0 0 0 0

with different data users in a fine-grained manner by embedding
different access control policies into different index keywords.
Moreover, our scheme supports efficient and fine-grained user
search permission update by two designed attribute update sub-
protocols. Finally, we valuate the performance for our scheme by
extensive experiments in the real data set. How to hide access
tree construction and user’s attributes in our search system to
achieve full privacy-protection will be our future work.
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