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With the emerging of the cloud computing, secure search over encrypted cloud data has 
become a hot research spot. Previous schemes achieve weaker query privacy-preserving 
ability due to the limitations of query trapdoor generation mechanisms. In these schemes, 
a data owner usually knows fully well the query contents of data users and a data 
user can also easily analyze query contents of another data user. In some application 
scenarios, the data user may be unwilling to leak their query privacy to anyone else 
except himself. We propose a privacy-enhanced search scheme by allowing the data user to 
generate random query trapdoor every time. We leverage Bloom filter and bilinear pairing 
operation to construct secure index for each data file, which enables the cloud to perform 
search without obtaining any useful information. We prove that our scheme is secure 
and extensive experiments demonstrate the correctness and practicality of the proposed 
scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of cloud computing, more and more organizations and individual users are beginning to 
outsource their private data to cloud for enjoying IT cost savings, quick deployment, excellent computation performance, 
and on-demand high quality services. But, the cloud, as a semi-trusted entity [1], is not fully trusted by its customers 
usually due to many reasons [2]. Thus, cloud customers are usually reluctant to outsource their sensitive data to cloud in 
the form of plaintext. An effective solution is to encrypt data before outsourcing.

However, encryption makes effective data retrieval and utilization a very challenging task. Song et al. first introduced a 
practical technique that allows users to securely search over encrypted data through keywords in [3]. Later, many searchable 
encryption schemes have been proposed based on symmetric key and public-key setting [4–9] to strengthen security and 
improve query efficiency. Recently, with the growing popularity of cloud computing, how to securely and efficiently search 
over encrypted cloud data becomes a research focus. Some approaches have been proposed in [10–18] based on traditional 
searchable encryption schemes which aim to protect data users’ access privacies and query privacies with better query 
efficiency for cloud computing.

Although existing secure query techniques allow the cloud server to perform effective search over encrypted data without 
knowing any useful information of data files and user query contents, most of these schemes that are designed based on 
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the symmetric encryption setting will straightway leak user query privacies to some internal entities, besides cloud, due to 
the limitations of the mechanism of query trapdoors generation. More precisely, to obtain the query trapdoors, authorized 
data users have to ask the data owner for encrypted query keyword(s) or keyword encryption key(s), which not only either 
requires the data owner to always keep online or brings heavy key management overhead, but also causes the data owner to 
know fully well the query contents of data users. In fact, in many application scenarios, data users are reluctant to disclose 
their query contents to any other entities, including data owners, for example, a suspected patient may be not willing to 
public his query contents to anyone else when he searches electronic medical record data for knowing pathogeneses and 
symptoms.

On the other hand, obviously, different data users have the same query trapdoor forms when they use identical query 
keywords to query because all authorized data users have the same query trapdoors returned by data owners or adopt the 
same keys to encrypt their query keywords. Thus, it is inevitable that a data user explicitly knows other data users’ query 
contents by comparing query trapdoor literally. Moreover, we cannot exclude the possibilities that cloud attempts to collude 
with a compromised data user to expose query privacies of other data users in an open cloud environment.

To release the participation of the data owner and eliminate query key management cost in the process of query, some 
searchable encryption schemes based on the public-key setting have been proposed such as [4,19], which allow the data 
user to generate query trapdoor using own private key. However, these schemes still cannot achieve strong privacy protect 
if they are applied directly in the cloud environment, because secure indexes are encrypted using public key and, in the 
process of matching between secure indexes and encrypted query keywords, the cloud is able to obtain query contents 
easily by dictionary attack. Moreover, every time the data user uses the same private key to encrypt query keywords, thus 
the cloud can obtain data user’s query keywords by analyzing the previous query results and submitted encrypted query 
keywords.

1.1. Our contributions

In this paper, we propose a query privacy-enhanced secure search scheme over encrypted cloud data based on secure 
index technique by letting the data user generate query trapdoor using randomly chosen secret keys every time. In our 
scheme, the query contents of a data user cannot be obtained or inferred by any other entities, including the cloud server, 
the data owner, and the other data users, except the user data himself. We mainly make three key contributions as follows. 
First, we present an efficient secure search scheme with strong query privacy protection. Our scheme allows a data user to 
generate random query trapdoor every time by randomizing query keyword encryption key while enables the cloud server 
to correctly query over encrypted secure index. Second, security analysis and proof show that our scheme is secure and 
query privacy-enhanced. Lastly, we implement our scheme, evaluate and compare performances on a real data set with the 
representative searchable encryption schemes SSE [5] and secure KNN [9].

The rest of our paper is organized as follows. We first review related work in Section 2. In Section 3, we define our 
system model, threat model, security definition, and several necessary techniques. We define and construct our secure 
scheme in detail and analyze its correctness in Section 4. In Section 5, we analyze the complexity and security of our 
proposed scheme. We prove that our scheme is strong privacy protective and secure in Section 6 and evaluate our scheme 
through practical experiments in Section 7. Lastly, we conclude this paper in Section 8.

2. Related work

2.1. Conventional searchable encryption

Song et al. first introduced a practical technique [3] that allows a data owner to use an unconventional encryption 
method to encrypt each word of a document and a server to perform secure search by going through the whole encrypted 
document using a specified encrypted keyword. To improve the efficiency and system availability, in [6], Goh et al. made use 
of Bloom filters and pseudo-random functions to construct secure searchable index for each encrypted data file and defined 
search semantic security model against adaptive chosen keyword attack. The construction allows data owners to dynamically 
update new files without requiring rebuilding existing indexes, but the query privacy may be revealed if keywords have been 
searched before. To further improve security and search efficiency, in [5], Curtmola et al. adopted the inverted index [20]
technique and hash table to design a novel searchable encryption scheme named SSE (Searchable Symmetric Encryption) and 
formally presented new and stronger security definitions. But, this scheme requires predefining a global keywords dictionary 
which incurs indexes rebuilding when updating data files. Other schemes based symmetric-key such as [7,8] had also been 
proposed to improve searchable encryption techniques. In [4] Boneh et al. first constructed a searchable encryption scheme 
under public-key setting. To improve user query experiences and enrich search functionalities, multi-keywords conjunctive 
and disjunctive search schemes over encrypted data were proposed in [19,21,22].

2.2. Secure search in cloud computing

The data outsourcing service paradigm promotes the further study on secure privacy-preserving search for cloud comput-
ing. Based on SSE [5], Wang et al. [13] first used keyword relevance score to implement top-k secure search over encrypted 
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Fig. 1. A system model of secure search over encrypted cloud data.

cloud data by improving the order-preserving symmetric encryption technique [23]. Cao et al. [10] used secure KNN compu-
tation scheme [9] to construct a multi-keyword ranked search scheme, and in [14] Sun et al. further developed the scheme 
and made relevance ranking more accurate by introducing cosine measure based similarity scores for text search. One year 
later, Sun et al. [15] adopted secure KNN computation again to propose an efficient and query results verifiable multi-
keyword secure query scheme by constructing secure index tree and using signature technique. To tolerate minor typos, Li 
et al. [11] proposed fuzzy keyword search over encrypted cloud data. To further improve the user experience, Wang et al. 
adopted Bloom filters and secure KNN computation to propose a multi-keyword fuzzy query scheme for cloud computing 
in [16]. A secure and dynamic secure search scheme in [17] and a personalized secure search scheme in [18] were proposed, 
in which the KNN is skillfully employed. However, in these schemes, due to limitations of query trapdoors generation, the 
query keywords of a data user are very easily leaked to other entities such as the data owner or the other data user. In this 
paper, we emphasize the problem of strong privacy protection of user query without considering ranked query and fuzzy 
query mechanism to be adapted to those application scenarios that need to strictly protect user query contents.

3. Background information

To clarify our proposed problems, in this section, we present our system model, threat model, security definition, and 
several supporting techniques used to implement our scheme.

3.1. System model

We adopt a multi-owner and multi-user system architecture of search over encrypted cloud data, which includes cloud, 
multiple data owners, and multiple data users, as illustrated in Fig. 1. The cloud, including storage centers, computing 
centers, and key generation centers (KGC), abides by cloud computing protocols to provide services for his clienteles. Data 
owners use a semantically secure symmetric encryption scheme to encrypt data files and construct secure searchable data 
indexes, then store them to the data center. Authorized users obtain data decryption key and keyword encryption key from 
data owners through secret communication channels. The data user generates random query trapdoor for query keywords 
every time by using the shared keyword encryption key and randomly chosen random numbers. Upon receiving search 
trapdoor, the computing centers perform search and return query results to the data user.

3.2. Threat model and security definition

3.2.1. Threat model
The semi-trusted threat model has been widely adopted in the secure search work under the cloud environment [10,

12–15,17,18], in which the cloud is considered as an “honest-but-curious” entity. That is, the cloud promises that it always 
correctly obeys data escrow and functionality protocols, but tries to infer some useful information about data files and query 
requests because of “curiosities”.

In this paper, the user query need to achieve strong privacy protection, i.e., anyone else other than the query user should 
not be able to gain the query contents. To evaluate the strength of query privacy protection of data users, we assume that 
the cloud can collude with another entity to obtain a data user’s query contents, such an entity includes a data owner or a 
data user. In other word, though data owners and data users are all trusted, they are prohibited from knowing a data user’s 
query contents.
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3.2.2. Security definition
Our key idea is to design nondeterministic query trapdoor generation mechanism for query to achieve strong privacy 

protection and build secure searchable index to implement secure query over encrypted cloud data, which involves two 
security requirements. First, the cloud cannot obtain any plaintext information of data from searchable index. Second, the 
cloud server, the data owner, and the data users cannot gain query contents of a data user. So, we define the semantic 
security of searchable index against keyword attack and strong privacy protection of query trapdoor as follows.

Definition 1. Semantic security of searchable index against keyword attack:
The constructed searchable index is semantic secure if any probabilistic polynomial-time adversary A (i.e., the cloud) 

chooses two different data files F 1 and F 2, lets a simulator S simulate the data owner to build indexes for F 1 and F 2, 
but A cannot distinguish which index is for which data file. That is, any adversary A cannot deduce and obtain any useful 
plaintext information of data files from their indexes. Please refer to the art [6] for more detailed definition and description 
about the semantic security of searchable index against keyword attack.

Definition 2. Strong privacy protection of query trapdoor:
For any probabilistic polynomial-time adversary A, who chooses two different keywords W 1 and W 2 with the same 

length, lets a simulator S simulate the data user to generate query trapdoors for W 1 and W 2, but A cannot distinguish 
which trapdoor is for which keyword. In other words, if A cannot determine which keyword is encrypted in a query with 
probability non-negligible different from 1/2, then we define the generated trapdoor to be strong privacy protective. There 
is a only restriction that the adversary A cannot perform search algorithm over encrypted indexes when distinguishing W 1
and W 2.

3.3. Basic techniques

In this section, we briefly introduce several important techniques. They are certificateless public key cryptography, Bloom 
filter, bilinear map, Decisional Diffie–Hellman problem, and Bilinear Diffie–Hellman problem.

3.3.1. Certificateless public key cryptography (CL-PKC)
The certificateless public key cryptography [24] is developed on the foundation of the identity-based cryptography, which 

eliminates the inherent key escrow problem of the identity-based cryptography (i.e., KGC always knows user secret key) and 
does not require certificates to guarantee the authenticity of public keys. Yet, CL-PKC still requires to involve a semi-trusted 
third party KGC to generate the user’s partial public key and the partial private key, but the KGC knows noting about user 
secret information which is necessary to achieve integrated the public/private key.

3.3.2. Bloom filter
A Bloom filter [25] is a space-efficient probabilistic data structure which is used to test whether an element is a member 

of a set. An empty Bloom filter is a bit array of m bits, where all bits are set to 0 initially. Given a set W = {w1, w2, ..., wn}
of n elements, in order to insert an element w ∈ W into a Bloom filter, it needs to feed the element w to k independent 
hash functions from H = {hi |hi : {0, 1}∗ → [0, m −1], 1 ≤ i ≤ k} to get k positions, and sets all these positions to 1. It confirms 
whether an element q is in W or not, by means of checking whether all the positions corresponding to hi(q) equal to 1, 
1 ≤ i ≤ k. If all are 1, the element q is in W , or resulting in a false positive. If any one of these positions is 0, it is obvious 
that q is not in W . We can control false positive rate by adjusting Bloom filter parameters. If n elements are inserted into 
an m-bits Bloom filter which contains k independent hash functions, the false positive rate is f p = (1 − (1 − 1

m )kn)k , where 
1
m → 0, f p ≈ (1 − e− kn

m )k . So, given m and n, when k = m
n ln 2, the minimum false positive rate is 2−k ≈ 0.6185

m
n .

3.3.3. Bilinear pairing map
In this paper, we use G1 and G2 to denote two cyclic multiplicative groups of large prime order q. A bilinear pairing 

map [26] e :G1 ×G1 →G2 satisfies the following properties:

• Computable: For any Q , Z ∈ G1, there is a polynomial time algorithm to compute e(Q , Z) ∈G2.
• Bilinear: For all x, y ∈ Z

∗
q and Q , Z ∈ G1, the equality e(Q x, Z y) = e(Q , Z)xy holds.

• Non-degenerate: If g , h are generators of G1, then e(g, h) is a generator of G2.

3.3.4. Decisional Diffie–Hellman (DDH) assumption
Let g represent a generator of G1. We pick up three elements a, b, c uniformly at random from Z∗

q . The DDH [27] hard-
ness assumption is as follows: for any efficient polynomial time algorithm A, the probability that A correctly distinguishes 
(ga, gb, gab) and (ga, gb, gc) is negligible, i.e., there exists a negligible function ε such that

|Pr[A(ga, gb, gab) = 1] − Pr[A(ga, gb, gc) = 1]| ≤ ε(l)

where l is a large security parameter, which determines the size of order q.
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Table 1
Notations description.

Notation Description

D O a data owner
U an authorized data user
F the files collection, denoted as n data files F = {F1, ..., Fn}
C the ciphertext collection of F , denoted as C = {C1, ..., Cn}, Ci = Enc(sk, Fi), 0 ≤ i ≤ n

Enc denotes a symmetric encryption scheme with the key sk
W i the keyword set of a file Fi , denoted as W i = {w1, w2, w3...} extracted from Fi , 0 ≤ i ≤ n
I the secure searchable index collection of F , denoted as I = {I1, ...,In}

Ii is the secure index of corresponding data file Fi , 0 ≤ i ≤ n
Tu(w) U ’s query trapdoor, w denotes a query keyword
Uid U ’s unique identifier
F I Di Fi ’s unique identifier Fi ∈ F , 0 ≤ i ≤ n

Fig. 2. An overview of our proposed secure search scheme over encrypted cloud data.

3.3.5. Bilinear Diffie–Hellman (BDH) assumption
Let g represent a generator of G1. We pick up three elements a, b, c uniformly at random from Z∗

q . The BDH [6]
hardness assumption is as follows: given (g, ga, gb, gc), for any efficient polynomial time algorithm A, the probability that 
A correctly distinguishes (ga, gb, gc) and (ga, gb, e(g, g)abc) is negligible, i.e., there exists a negligible function ε such that

|Pr[A(ga, gb, gc) = 1] − Pr[A(e(g, g)abc) = 1]| ≤ ε(l)

where l is a large security parameter, which determines the size of order q.

4. A privacy-enhanced secure search scheme over encrypted cloud data

4.1. Problem definition

For ease reading, we first describe some notations used in our scheme in Table 1.
According to the system model described in Section 3.1, D O encrypts F to be C and creates secure index Ii for each 

data file Fi based on the corresponding set W i to form collection I . C and I are outsourced to the cloud server together. 
To obtain desired data files, U submits query trapdoor to the cloud server, who is responsible for searching over the secure 
index set I without obtaining any plaintext information about data files and query keywords. In addition, we consider that 
the cloud is a typical semi-trusted third party entity (honest-but-curious), which can play a role of KGC to assist U to 
generate his private key and public key used for authentication.

We give the basic idea of our secure search scheme as illustrated in Fig. 2. The a part denotes the secure index con-
struction process, where (wi)ek represents the encryption of keyword wi under key ek, {h1, ..., hk} denotes k independent 
hash functions with the same range {0, m − 1}, and ‘⊕’ represents an exclusive-OR operation. The b part denotes the secure 
search over the m-bit array for an authorized data user, where the solid arrow denotes a successful query and the dotted 
arrow denotes that Fi is not a query result of keyword w .

Definition 3. A secure search scheme over encrypted cloud data consists of the following six probabilistic polynomial time 
algorithms.

• Setup(1l): On input a sufficiently large security parameter l, the cloud as KGC runs it to output a system master key 
and a public parameter tuple.
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• Keygen(Uid, 1l′ ): On input U ’s unique identifier and a sufficiently large security parameter l′ , the algorithm generates 
U ’s public/private key pair and his a signature δu .

• Authen(pubu, {δu, Uid}): Given Uid and δu of U , D O runs the algorithm using U ’s public key pubu to check whether U
is a legal user and determine whether authorize to U .

• BuildIndex(W i, F I Di, ek): D O runs it to build a searchable secure index for each Fi ∈F under the keyword encryption 
key ek. The algorithm outputs the secure index Ii of Fi .

• Trapdoor(w, ek): U invokes the algorithm to encrypt query keyword w using the encryption key ek and some randomly 
chosen numbers, outputs Tu(w). It is a probabilistic encryption algorithm.

• Query(Tu(w), F I Di, Ii ): Finally, the cloud accepts Tu(w) and performs search over Fi through its F I Di and encrypted 
index Ii .

4.2. Scheme construction

We now formally give construction of our scheme. The concrete implementation of each polynomial time algorithm is 
described as follows.

Setup(1l): Let G1 and G2 be two bilinear cyclic multiplicative groups of prime order q, and a bilinear pairing map e :
G1 × G1 → G2. Let g denote a random generator of G1. On input a sufficiently large security parameter l, the system 
outputs a system master key mk ∈ Z

∗
q and a keyword encryption key ek and sends ek to all data owners through private 

communication channels. The system calculates g1 = gmk as well as chooses three hash functions H1 : {0, 1}∗ → Z
∗
q , H2 :

{0, 1}∗ → {0, 1}s , H3 : {0, 1}∗ → G1, and a hash function family H = {bf hi |bf hi : {0, 1}∗ → [0, m − 1], 1 ≤ i ≤ k}, where s in 
H2 is a security strength coefficient. Finally, the KGC opens a system parameter tuple mpk = {G1, G2, g, g1, H1, H2, H3, H}.

Keygen(Uid, 1l′ ): This is an interaction between U and KGC. To avoid an illegal user to pretend U to generate his key, 
U inputs a security parameter l′ and the algorithm mainly performs the following two procedures.

• Generation of public/private key: U chooses a large integer uk ∈ Z
∗
q at random as U ’s secret value and computes Ru =

guk , and transmits Uinfo = (Uid, Ru) to KGC through secure communication channels. After receiving the uinfo , KGC cal-

culates Q u = H1(Uid) and outputs U ’s partial public key partial_pubu = R
1

mk+Q u
u . KGC transmits partial_pubu to U , and U

uses his Uid to compute Q ′
u = H1(Uid) again and checks whether the following two equalities hold, e(Ru , g) = e(guk, g)

and e(partial_pub
1

uk
u , g1 g Q u

′
) = e(g, g). If they hold, which means the returned user information Uinfo is not tampered 

by the cloud server, U uses his secret value uk to determine his public key pubu = (Xu = Ru, Yu = partial_pubuk
u ) and 

private key priu = uk. If any one of them does not hold, U outputs ⊥ and aborts partial private/public key.
• Signature: After U generates his public/private key successfully, he randomly chooses a large integer ru ∈ Z

∗
q and uses his 

private key uk to compute a signature of knowledge δu = {δ1, δ2}, where δ1 = g H1(Uid ||ru) ∈ G1 and δ2 = [H1(Uid||ru) +
(uk × H1(δ1)) mod q] ∈ Zq .

Finally, U will send {δu, Uid} to the data owner.

Authen(pubu, {δu, Uid}): After receiving {δu, Uid}, D O uses U ’s public key to verify δ1 by checking e(δ1, g) = e(gδ2 , g)/

e(X H1(δ1)
u , g). If the equality holds, U passes identity authentication and accepts authorization and obtains the data file 

decryption key sk and keyword encryption key ek. If not, U outputs ⊥ and D O aborts authorization. Note that how data 
owners authorize actions to data users and perform fine-grained data access control in the cloud computing environment 
is another research field and is out of the scope of this paper, and Yu et al. proposed a feasible and practical solution for 
the theme, please refer to [28] for more details on this. The correctness of the user authentication can be demonstrated as 
follows.

e(gδ2 , g)/e(X H1(δ1)
u , g) = e(g H1(Uid||ru)+(uk×H1(δ1)), g)/e(R H1(δ1)

u , g)

= e(g H1(Uid||ru), g) × e(g(uk×H1(δ1)), g)

e(R H1(δ1)
u , g)

= e(g H1(Uid||ru), g) × e(g(uk×H1(δ1)), g)

e(guk×H1(δ1), g)

= e(g(H1(Uid||ru), g)

= e(δ1, g)

BuildIndex(W i, F I Di, ek): D O constructs a searchable secure index for each Fi ∈ F before he stores data files to the cloud 
server. The procedure is described as follows:

• D O creates an m-bit array Ii for the data file Fi and all bits are initially set to 0.
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• For each unique keyword w ∈ W i of file Fi
1. Encrypt w: encrypt w to be H3(w)ek and calculate e(H3(w)ek, g1);
2. Associate w with Fi : given Fi ’s identifier F I Di , compute E(F I Di) = H2(F I Di) and Cw = H2(e(H3(w)ek, g1)) ⊕

E(F I Di), where ‘⊕’ represents an exclusive-OR operation;
3. Create a secure index for Fi : take advantage of the hash functions family H, compute bf h1(Cw), bf h2(Cw), ...,

bf hk(Cw), insert them into Ii by setting these positions to 1.
• Finally, Ii is regarded as a secure searchable index of Fi .

Trapdoor(w, ek): Given the query keyword w , like previous works, U normally adopts owner-authorized key ek to obtain 
trapdoor as H3(w)ek . However, the trapdoor is deterministic and cannot achieve strong privacy protection since the same 
query keyword has the same ciphertext every time. Re-encrypting the value H3(w)ek by using random key can make 
the trapdoor harder to break. So, the algorithm randomly chooses an element r from Z∗

q and re-encrypt H3(w)ek to be 
H3(w)ek · gr . To enable the cloud to effectively perform query over the encrypted data, the algorithm further chooses 
another random element r′ and generates there secret values to be gr , gr′

, e(g, g1)
r′

, which are used in the Query algorithm. 
Trapdoor outputs the query trapdoor for w as Tu(w) = (H3(w)ek · gr, gr, gr′

1 , e(g, g1)
r′
). We can easily see that the algorithm 

will generate totally different query trapdoor even for the same query keyword due to the random elements r, r′ .

Query(Tu(w), F I Di, B Fi ): To obtain query results of trapdoor Tu , given the encoded identifier E(F I Di) = H2(F I Di) and the 
index Ii of Fi , the cloud server checks whether the following equality holds:

k∏
n=1

e(g, (gr′
1 )

bf hn(H2(
e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))/k

) = e(g, g1)
r′

we use bf hn(H2(e(H3(w)ek · gr, g1)/e(gr, g1)) ⊕ E(F I Di)) to denote a value (0 or 1) of a position in the array Ii . If the 
equality holds, the encrypted data file Fi is regarded as a correct search result of Tu . The correctness proof of the Query
algorithm will be given in next subsection.

In the above algorithms, Setup is a system parameters initialization of the whole scheme. We refer to the idea of certifi-
cateless public key cryptography to construct U ’s public/private key pair and simplify user authentication through algorithms 
Keygen and Authen, which effectively solve the private key distribution, key escrow, and authentication problems in the cloud 
environment. In the algorithm BulidIndex, we create a secure index for each data file independently using the Bloom filter, 
which allows a data owner to dynamically update his data files (add or delete data files to or from the cloud) without 
influencing the indexes of other data files and is more suitable for the cloud environment in contrast to previous solutions, 
such as [10,11,13–15] that need to rebuild indexes when updating data. A data user generates trapdoor by the algorithm 
Trapdoor and the cloud performs search according to secure indexes and query trapdoor by Query.

4.3. Scheme correctness

In this subsection, we give the correctness verification of Query algorithm according to the properties of the bilinear map. 
Specifically, when U wants search some encrypted data files containing the keyword w , he invokes Trapdoor to generate a 
query trapdoor Tu(w) and then submits it to the cloud, who receives Tu(w), given the file index B Fi and E(I Di) of Fi , and 
checks whether the following equality holds.

k∏
n=1

e(g, (gr′
1 )

bf hn(H2(
e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))/k

) = e(g, g1)
r′

If the equality holds, then Fi is a correct query result of w . The correctness of query can be verified by the following 
derivation and description. Because,

k∏
n=1

e(g, (gr′
1 )

bf hn(H2(
e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))/k

)

= e(g, gr′
1 )

1
k

∑k
n=1 bf hn(H2(

e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))

For the exponent part, we can reduce:

1

k

k∑
n=1

bf hn

(
H2

(e(H3(w)ek · gr, g1)

e(gr, g1)

)
⊕ E(F I Di)

)

= 1

k

k∑
bf hn

(
H2

(e(H3(w)ek, g1)e(gr, g)

e(gr, g1)

)
⊕ E(F I Di)

)

n=1
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= 1

k

k∑
n=1

bf hn(H2(e(H3(w)ek, g1)) ⊕ E(F I Di))

So,

k∏
n=1

e(g, (gr′
1 )

bf hn(H2(
e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))/k

)

= e(g, gr′
1 )

1
k

∑k
n=1 bf hn(H2(e(H3(w)ek,g1))⊕E(F I Di))

On the other hand, recall that D O creates the secure searchable index for each file Fi with the keyword set W i , according 
to the following way, for each keyword w ′ ∈ W i of Fi , D O computes:

Cw ′ = H2(e(H3(w ′)ek, g1) ⊕ E(F I Di)

and inserts Cw ′ to an m-bits Bloom filter Ii using H. Thus, for the query keyword w , if there exists a keyword w ′ in W i
that satisfies w ′ = w , then the corresponding k positions of bf hi(H2(e(H3(w)ek, g1))) ⊕ E(F I Di)) are 1 in the array Ii for 
all i = 1, 2, ..., k. That is,

1

k

k∑
n=1

bf hn

(
H2

(e(H3(w)ek · gr, g1)

e(gr, g1)

)
⊕ E(F I Di)

)

= 1

k

k∑
n=1

bf hn(H2(e(H3(w)ek, g1) ⊕ E(F I Di))

= 1

k

k∑
n=1

bf hn(H2(e(H3(w ′)ek, g1) ⊕ E(F I Di))

= 1

i.e.,

k∏
n=1

e(g, (gr′
1 )

bf hn(H2(
e(H3(w)ek ·gr ,g1)

e(gr ,g1)
)⊕E(F I Di))/k

) = e(g, g1)
r′

4.4. About false positive

It is well known that a Bloom filter can introduce a false positive when a query keyword w /∈ W i is submitted by U
but the file Fi is regarded as a correct result returning back to the U . We know the false positive rate incurred by the ith 
file index is f pi = (1 − e

−k|Wi |
m )k , where |W i| is the number of keywords of the file Fi . Let sn denote the current number 

of outsourced data files and R denote a query result set. We suppose that, in a query using a keyword w , the query result 
set R does not include any data files (i.e., |R| = 0 and no false positive occurrences for all sn file indexes in this query) the 
probability can be denoted as follows:

Prcorrect =
sn∏

i=1

(1 − f pi) =
sn∏

i=1

(1 − (1 − e
−k|Wi |

m )k)

Theoretically, we can calculate an appropriate hash functions number k to maximize the probability Prcorrect . But in 
cloud computing environments, the total size of data set sn is unknown and incremental because data files are dynamically 
updated, which make the calculation for k become difficult. To solve this problem, we estimate an upper bound |W |max on 
the number of descriptive keywords for each data file. If file Fi ’s descriptive keywords |W i| < |W |max , we add additional 
|W |max − |W i | random elements in W i . Eventually we set k = m

|W |max
ln 2 to minimize false positives incurred by per-index 

at the price of more index construction overhead and the probability of a false positive is:

f p = 2−k = 2− m
|W |max

ln 2

For any query result set R , if there are no false positives in R , the probability is:

prcorrect = (1 − f p)sn−|R|

= (1 − 2− m
|W |max

ln 2
)sn−|R|
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Table 2
Complexity analysis.

Algorithm Computation cost Output size Complexity

Keygen 4T H1 + 6EG1 + MZ
∗
q
+ 2AZ

∗
q
+ 4P 3|G1| + 2|q| O(1)

Authen T H1 + 2EG1 + MG2 + 3P – O(1)

BuildIndex |W |(T H3 + EG1 + 2T H2 + P + T⊕ + kTbf h) m O(|W |)
Trapdoor T H3 + MG1 + 3EG1 + EG2 3|G1| + |G2| O(1)

Query P + T H2 + T⊕ + kTbf h – O(1)

On the other hand, if there exist some false positives in R , the mathematical expectation of false positives in R can be 
calculated as:

E = f p + 2 × f p2 + 3 × f p3 + · · · + |R| × f p|R|

= f p × (1 − f p|R|)
(1 − f p)2

− |R| × f p|R|+1

1 − f p

= f p × (1 + f p|R|+1) − f p|R|+1 × (1 + |R|)
(1 − f p)2

where f p = 2− m
|W |max

ln 2.

5. Complexity and security analysis

5.1. Complexity analysis

In this subsection, we theoretically analyze the complexity of the each algorithm in our proposed secure search scheme. 
For ease of reading, the computation cost, output size, and computation complexity are described in Table 2. The notations 
T H1 , T H2 , T H3 , Tbf h denote the computation cost of hash function H1, H2, H3, and bf hi (1 ≤ i ≤ k), respectively. T⊕ denotes 
the run time of an XOR operation. P denotes a pairing operation, EG1 and EG2 denote an exponentiation operation in G1
and G2 respectively, MG1 and MG2 denote a multiplication in G1 and G2 respectively, MZ

∗
q

denotes a multiplication in Z∗
q , 

and AZ
∗
q

denotes an addition in Z∗
q . W is the keyword set of a data file F and m is the bit length of Bloom filter.

5.2. Security analysis

In this subsection, we analyze the security of the scheme from three aspects, i.e., query privacy, data files, and the 
searchable index.

Query Privacy: For implementing strong privacy protection, we require that anyone else cannot obtain the query contents 
other than the query user himself, including the cloud server, data owners, and other data users. Recall that a data user 
u generates the query trapdoor for a query keyword w as Tu(w) = (H3(w)ek · gr, gr, gr′

1 , e(g, g1)
r′
), where r, r′ are two 

random elements chosen by the u for this query. If other entities wish to learn the actual value of the trapdoor or distin-
guish two trapdoors, they have to solve the discrete logarithm problem in Z∗

q with large prime q, however, which is hard 
further according to the DDH and BDH assumptions. Therefore, our proposed trapdoor construction achieves strong privacy 
protection for every time query due to the randomly chosen elements r, r′ as long as the discrete logarithm problem is 
hard.

Data Files: Recall that D O uses the semantically secure symmetric encryption scheme Enc(sk, ·) to encrypt files before 
outsourcing. The semantic security of Enc(sk, ·) guarantees data files confidentiality.

Searchable Index: Give a keyword set W i of data file Fi , for each keyword w ∈ W i , D O first encrypts the w to be H3(w)ek

and calculates e(H3(w)ek, g1), i.e., e(H3(w), g1)
ek . Obviously, the cloud cannot obtain the random value in G2 as long as 

the ek is kept secretly under the BDH assumption. Thus, in Ii , the cloud cannot determine the k positions of inserting the 
keyword w by using hash functions bf h1, ..., bf hk . In addition, an adversary may be able to reveal the approximate number 
of keywords of each data file by the amount of 1 s in each Bloom filter. To hide the information on how much each data file 
has keywords, we have estimated an appropriate upper bound |W |max on the number of keywords and pad some random 
elements for each file so that the number of keywords of each data file equals to |W |max . Detailed proof will be given in 
next section.

6. Security proof

We will adopt the same way used in [5] to prove that our scheme is semantically secure and strong privacy protective 
under the BDH and DDH assumptions.
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We first briefly introduce some necessary notions used for our security proof, referring to [5] to get more detailed 
information about these notions.

History H: Given an outsourced data file set F and a query vector Wq = {w1, w2, ..., wq}, we use H = (F , Wq) to denote a 
history. For any keyword w ∈ Wq , we can search one or more data files in F via w .

View V: The view is the encrypted version of the History. It includes an encrypted data files set C = {Enc(sk, F1), ...,
Enc(sk, Fn)}, Fi ∈ F , an encrypted query keyword set T = {T (w1), ...T (wq)}, and a built secure index set I . Formally, we 
denote the view of a history as V (H) = (C, I, T ). Intuitively, the cloud can only see the view V of the history H .

Trace T: Given a history H , a trace represents a query result set induced by H and denoted as T (H) = {(|Ci |, Ci), w j ∈
Ci ∧ w j ∈ Wq, 1 ≤ i ≤ n, 1 ≤ j ≤ q}, where Ci = Enc(sk, Fi) is a query result of the keyword w j ∈ Wq . The cloud knows 
nothing beyond the ciphertext result Ci and its length |Ci | in a query.

Theorem 1. If DDH and BDH problem assumptions hold for any polynomial time adversary, our constructed searchable indexes achieve 
semantic security against choose keyword attack security and the query contents of a data user achieve strong privacy protection.

Proof. According to [5] and the definition of IND-CKA in [6], there exists a polynomial size simulator S which can sim-
ulate a view V ∗(H) based on the trace T (H). We claim that a searchable encryption scheme is semantically secure if all 
polynomial-size adversaries cannot distinguish V (H) from V ∗(H). Given the trace T (H) = {(|Ci |, Ci), 1 ≤ i ≤ n}, the S does 
the following operations to simulate V ∗(H).

Simulating C: S selects a random C∗
i ∈ {0, 1}|Ci | and a random file identifier F I D∗

i ∈ {0, 1}s , 1 ≤ i ≤ n. S outputs C∗ =
{(C∗

i , F I D∗
i ), 1 ≤ i ≤ n}.

Simulating T : S first generates an empty set T ∗ . For each w j ∈ Wq , S chooses four random values w∗
j1, α, β ∈ G1 and 

γ ∈G2 that satisfy e(g, β) = γ . Let T (w j) = (w∗
j1 · α, α, β, γ ), S puts T (w j) to T ∗ and outputs T ∗ = {T (w j), 1 ≤ j ≤ q}.

Simulation I: S first generates a bit array I∗
i with the length of m, all bits are set 0 initially. Then, for each C∗

i ∈ C∗ , if w j ∈
Wq and Ci is a query result of the keyword w j , S takes the first random value w∗

j1 from T (w j) ∈ T ∗ and computes C∗
w j

=
H2(e(w∗

j1, g1)) ⊕ H2(I D∗
i ). Finally, S exploits the hash functions family H, computes bf h1(C∗

w j
), bf h2(C∗

w j
), ..., bf hk(C∗

w j
), 

and inserts them into the I∗
i . S outputs I∗ = {I∗

i , 1 ≤ i ≤ n}.
Obviously, the view V ∗(H) simulated by the S has the same trace as the V (H) that the cloud has, and we can easily 

verify the conclusion by searching on I∗ via query trapdoor T (w j) ∈ T ∗ for each j, 1 ≤ j ≤ q. We claim that no polynomial-
size adversary can distinguish the view V (H) from V ∗(H) = {C∗, T ∗, I∗}.

Distinguish (C and C∗): We adopt the semantically secure symmetric encryption scheme Enc(sk, ·) to encrypt data files 
in F . The semantic security of Enc(sk, ·) guarantees that no polynomial-size adversary can distinguish between C and C∗ .

Distinguish (T and T ∗): S chooses four random values T (w j) = (w∗
j · α, α, β, γ ) to simulate the query trapdoor for 

each keyword w j ∈ Wq submitted by U , where w∗
j · α, α, β ∈ G1 and γ ∈ G2. In practice, we know that U uses 

the keyword encryption key ek and two randomly chosen elements r, r′ to generate the trapdoor of w j for this 
query as (H3(w j)

ek · gr, gr, gr′
1 , e(g, g1)

r′
), where (H3(w j)

ek · gr, gr, gr′
1 ∈ G1 and e(g, g1)

r′ ∈ G2. As long as the ran-
dom elements r, r′ are kept confidentially for this query, anyone else except U cannot correctly distinguish the tuple 
(H3(w j)

ek · gr, gr, gr′
1 , e(g, g1)

r′
) from (w∗

j1 · α, α, β, γ ), therefore no polynomial-size adversary can distinguish between T
and T ∗ . This also further demonstrates that the cloud server cannot collude with a data owner or a data user to obtain U ’s 
query keywords and our scheme achieves strong privacy protection if the DDH and BDH assumptions hold.

Distinguish (I and I∗): For a data file Fi , for each keyword w j , S randomly chooses an element w∗
j , calculates e(w∗

j ,

g1) ∈ G2, and inserts it into the B F ∗
i using k hash functions. In practice, D O encrypts w j as H3(w j)

ek and calculates 
e(H3(w j)

ek, g1) = e(H3(w j), g1)
ek ∈ G2 and inserts it into the Ii . We say that the cloud cannot distinguish between e(w∗

j ,

g1) and e(H3(w j), g1)
ek as long as ek is kept secretly under the BDH assumption. Consequentially, no polynomial-size 

adversary can correctly distinguish between I and I∗ . �
7. Experimental evaluation

7.1. Evaluation setup

To evaluate the efficiency and performance of our proposed scheme more realistically, we choose a real data set RFC 
(Request For Comments Database) [29] as our experimental data. So far, this database contains 7389 plain text files and the 
total size achieves 378 MB. We select 5000 data files to build experimental subset and extract 100 keywords for each RFC 
file as its keyword set by reserving technical keywords and removing Stop Words (e.g., ‘the’, ‘is’, ‘at’, ‘want’, ‘should’, and so 
on). We should fill some dummy elements for data files if the number of the extracted keywords is less than 150. We set 



JID:YJCSS AID:3045 /FLA [m3G; v1.195; Prn:9/01/2017; 16:31] P.11 (1-14)

H. Yin et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
Fig. 3. (a) The running time of secure index construction with different number of data files and the same size of keywords dictionary (4000). (b) The 
running time of secure index construction with different size of keywords dictionary and the fixed number of data files (1000).

m = 1000 and n = 100, to minimize the false positive induced by Bloom filter, and set k = ln 2 ×(1000/100) = 0.693 ×10 = 7
and the false positive is around 0.6185m/n = 0.618510 = 0.819%.

The software and hardware configurations are as follows. The client side is a Windows 7 desktop system with Intel Core 
2 Duo CPU 2.26 GHz, 3 GB memory, and 320 GHz hard driver. The server side is a virtual machine with Core 2 Duo CPU 
4 × 2.394 GHz, 8 GB memory on the Dell blade server M610, and the Linux Centos5.8 OS.

7.2. Implementation details

We adopt Java language relying on JPBC, which is Java library of the Pairing-Based Cryptography Library [30], to im-
plement bilinear pairing operations. In the experiment, we choose the type A elliptic curve group which is a symmetric 
bilinear setting, has 160-bit prime order and can achieve 1024-bit security level. You can download JPBC library and read 
the detailed guide for it in [31]. In addition, we use the AES symmetry encryption scheme to instantiate Enc(sk, ·) used to 
encrypt data files and use the message digest algorithm SHA to implement H2 hashing {0, 1}∗ to a string of length s = 160. 
For H1 : {0, 1}∗ → Z

∗
q , we invoke the API function getZr().newRandomElement() to achieve an equal functionality. To map an 

arbitrary keyword w ∈ {0, 1}∗ to elliptic curve group for implementing H3 : {0, 1}∗ →G1, we first make use of the MD5 algo-
rithm to compute a 128-bit hash value hv(w) and revoke the API function getG().newElementFromHash(hv(w),0,hv(w).length)
to get an elliptic curve parameter for w .

7.3. Evaluation results

To evaluate the performance of our scheme and compare it with several developed searchable encryption technologies, 
we implement the secure KNN computation scheme [9] and the SSE scheme [5], which have been deeply exploited to 
develop secure search schemes over encrypted cloud data in [10,11,13–18]. The SSE is a single keywords secure search 
scheme based on encrypted inverted indexes and secure KNN is a multiple keywords secure search scheme based on the 
encrypted vector space model. Though they are preeminent searchable encryptions, both of them cannot achieve strong 
privacy protection of query keywords due to the limitations of generating query trapdoors for data users. In addition, 
a pre-defined keywords dictionary is necessary to implement SSE and KNN.

7.3.1. Index construction
Fig. 3(a) shows that the time cost of secure index construction for the three schemes increases linearly with the number 

of data files when fixing the size of the keywords dictionary as 4000. We can see that the KNN and Our Scheme spend much 
more time on index construction than SSE. This is because the multiplication operations between vectors and matrixes in 
KNN and the pairing operations in Our Scheme spend more time than pseudo-random functions and symmetrical encryption 
in SSE. When the number of data files reaches 2000, the time costed on index construction in KNN and Our Scheme is about 
4000 s and 3500 s, respectively. Fig. 3(b) shows the time cost for the three schemes when varying the size of the keywords 
dictionary and fixing the number of data files as 1000. We can observe that the size of the keywords dictionary has no 
influence on index construction for Our Scheme, while the KNN increases from 300 s to 7800 s and SSE increases from 
110 s to 4300 s when the size of the dictionary increases from 1000 to 9000. Although the index construction consumes 
relatively much time at the data owner side, it is noteworthy that the process is a one-time operation.

7.3.2. Trapdoor generation
Fig. 4(a) shows the time cost of trapdoor generation for these schemes with the same size of keywords dictionary as 4000 

and different number of query keywords varied from 2 to 16. We can observe that Our Scheme and SSE all increase linearly 
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Fig. 4. (a) The running time of trapdoor generation with different number of query keywords and the same size of keywords dictionary (4000). (b) The 
running time of trapdoor generation with different size of keywords dictionary and the fixed number of query keywords (10).

with an increasing number of query keywords, while Our Scheme consumes more time to generation query trapdoor for data 
users due to the time-consuming pairing and exponentiation operations on group. When the number of query keywords 
reaches 16, the consumed time on trapdoor generation in Our Scheme is about 2.6 s. It is acceptable for data users. In 
addition, when the number of query keywords is less than 14, KNN needs to spend more time to generate query trapdoor 
compared to Our Scheme, while it is insensitive to the number of query keywords for trapdoor generation when fixing the 
size of the keywords dictionary. Fig. 4(b) shows the time cost of trapdoor generation for these schemes when varying the 
size of the keywords dictionary and fixing the number of query keywords as 10. We can see that Our Scheme and SSE are 
not affected by the size of the keywords dictionary since Our Scheme and SSE on trapdoor generation are independent of 
the pre-defined keywords dictionary, while KNN suffer from an approximatively quadratic growth with the size of keyword 
dictionary increases. Among them, the SSE consumes the least time to generate query trapdoor for data users.

7.3.3. Search efficiency
Fig. 5 shows that Our Scheme needs to spend more time for searching at the cloud server side compared with KNN 

and SSE. This is because that our search algorithm involves the pairing operations that need more computation time than 
symmetrical encryption used in KNN and SSE. However, Our Scheme can achieve effective strong privacy protection for 
user’s query contents by employing the pairing operation very flexibly that KNN and SSE cannot implement due to the 
symmetrical encryption. Fig. 5(a) shows that the search time of the three schemes increases linearly with an increasing 
number of data files and Fig. 5(b) shows that the KNN is insensitive to the number of query keywords in the query process 
while the number of query keywords has a direct influence on search efficiency for Our Scheme and SSE. Fig. 5(c) further 
shows that Our Scheme needs not the pre-defined keywords dictionary that is necessary for implementing KNN and SSE.

7.3.4. Search precision
The two most frequent and basic measures for information retrieval effectiveness are precision and recall. We use them 

to evaluate our search accuracy. The Precision is the fraction of retrieved files that are relevant:

Precision = #(relevant items retrieved)

#(retrieved items)

The Recall is the fraction of relevant files that are retrieved:

Recall = #(relevant items retrieved)

#(relevant items)

Because Bloom filters do not introduce false negatives, so the recall always keeps 100%. With increased number of query 
keywords, the false positives introduced by the Bloom filter increase and the #(retrieved items) may contain some irrelevant 
results. From the Fig. 6(a), we can see that, when the number of hash functions is equal to 1, the secure indexes of data 
files lead to an extremely low precision and the query precision gradually increases with an increasing number of hash 
functions, and approximatively achieves 100% when the number of hash functions is set to the optimal value k = 7. Fig. 6(b) 
shows that, when fixing the size of the data file set and varying the number of the query keywords from 2 to 14, the query 
precision slightly decreases with the increasing number of the query keywords while recall still always keeps 100%. We can 
see that precision is not less than 97.7% when the number of query keywords achieves 14, which is acceptable for data users 
in practice.
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Fig. 5. (a) The search time for different size of data files and with the same size of keywords dictionary (4000), and query keywords (10). (b) The search 
time for different size of query keywords with the same size of data files (2000) and the same dictionary size (4000). (c) The search time for different size 
of dictionary with the same size of data files (2000), and query keywords (10).

Fig. 6. (a) Evaluation of retrieval effectiveness for different number of hash functions in Bloom filter with the fixed size of query keywords (10) and data 
files (2000). (b) Evaluation of retrieval effectiveness for different numbers of query keywords with the fixed file size (2000) and the hash functions (k = 7) 
in Bloom filter.

8. Conclusion

In this paper, we propose a query privacy-enhanced and secure keyword query scheme for the cloud computing. Our 
scheme can correctly and efficiently perform search over encrypted cloud data with strong privacy protection under a 
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stronger threat model. We theoretically prove that our scheme is secure and query privacy-enhanced based on DDH and 
BDH hardness assumptions. Finally, the extensive experiments demonstrate the validity and practicality of our proposed 
scheme.
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