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Abstract—Secure search techniques over encrypted cloud data allow an authorized user to query data files of interest by submitting

encrypted query keywords to the cloud server in a privacy-preserving manner. However, in practice, the returned query results may be

incorrect or incomplete in the dishonest cloud environment. For example, the cloud server may intentionally omit some qualified results

to save computational resources and communication overhead. Thus, a well-functioning secure query system should provide a query

results verification mechanism that allows the data user to verify results. In this paper, we design a secure, easily integrated, and

fine-grained query results verification mechanism, by which, given an encrypted query results set, the query user not only can verify the

correctness of each data file in the set but also can further check how many or which qualified data files are not returned if the set is

incomplete before decryption. The verification scheme is loose-coupling to concrete secure search techniques and can be very easily

integrated into any secure query scheme. We achieve the goal by constructing secure verification object for encrypted cloud data.

Furthermore, a short signature technique with extremely small storage cost is proposed to guarantee the authenticity of verification

object and a verification object request technique is presented to allow the query user to securely obtain the desired verification object.

Performance evaluation shows that the proposed schemes are practical and efficient.

Index Terms—Cloud computing, query results verification, secure query, verification object

Ç

1 INTRODUCTION

1.1 Motivation

CLOUD computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rap-
idly provisioned and released with minimal management
effort or service provider interaction [1]. Driven by the
abundant benefits brought by the cloud computing such as
cost saving, quick deployment, flexible resource configura-
tion, etc., more and more enterprises and individual users
are taking into account migrating their private data and
native applications to the cloud server. A matter of public
concern is how to guarantee the security of data that is out-
sourced to a remote cloud server and breaks away from the
direct control of data owners [2]. Encryption on private data
before outsourcing is an effective measure to protect data

confidentiality [3]. However, encrypted data make effective
data retrieval a very challenging task.

To address the challenge (i.e., search on encrypted data),
Song et al. first introduced the concept of searchable encryp-
tion and proposed a practical technique that allows users to
search over encrypted data through encrypted query key-
words in [4]. Later, many searchable encryption schemes
were proposed based on symmetric key and public-key set-
ting to strengthen security and improve query efficiency [5],
[6], [7], [8], [9], [10], [11], [12]. Recently,with the growing pop-
ularity of cloud computing, how to securely and efficiently
search over encrypted cloud data becomes a research focus.
Some approaches have been proposed based on traditional
searchable encryption schemes in [13], [14], [15], [16], [17],
[18], [19], [20], [21], which aim to protect data security and
query privacies with better query efficient for cloud comput-
ing. However, all of these schemes are based on an ideal
assumption that the cloud server is an “honest-but-curious”
entity and keeps robust and secure software/hardware envi-
ronments. As a result, correct and complete query results
always be unexceptionally returned from the cloud server
when a query ends every time. However, in practical applica-
tions, the cloud server may return erroneous or incomplete
query results once he behaves dishonestly for illegal profits
such as saving computation and communication cost or due
to possible software/hardware failure of the server [22].

Therefore, the above fact usually motivates data users to
verify the correctness and completeness of query results.
Some researchers proposed to integrate the query results
verification mechanisms to their secure search schemes [23],
[24], [25], [26], (e.g., embedding verification information
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into the specified secure indexes or query results). Upon
receiving query results, data users use specified verification
information to verify their correctness and completeness.
There are two limitations in these schemes:

1) These verification mechanisms provide a coarse-
grained verification, i.e., if the query result set con-
tains all qualified and correct data files, then these
schemes reply yes, otherwise reply no. Thus, if the
verification algorithm outputs no, a data user has to
abort the decryption for all query results despite
only one query result is incorrect.

2) These verification mechanisms are generally tightly
coupled to corresponding secure query construc-
tions and have not universality.

In a search process, for a returned query results set that
contains multiple encrypted data files, a data user may wish
to verify the correctness of each encrypted data file (thus, he
can remove incorrect results and retain the correct ones as
the ultima query results) or wants to check how many or
which qualified data files are not returned on earth if the
cloud server intentionally omits some query results. These
information can be regarded as a hard evidence to punish
the cloud server. This is challenging to achieve the fine-
grained verifications since the query and verification are
enforced in the encrypted environment. In [27], we pro-
posed a secure and fine-grained query results verification
scheme by constructing the verification object for encrypted
outsourced data files. When a query ends, the query results
set along with the corresponding verification object are
returned together, by which the query user can accurately
verify: 1) the correctness of each encrypted data file in the
results set; 2) how many qualified data files are not returned
and 3) which qualified data files are not returned. Further-
more, our proposed verification scheme is lightweight and
loose-coupling to concrete secure query schemes and can be
very easily equipped into any secure query scheme for
cloud computing.

However, some necessary extensions and important
works need to be further supplied to perfect our original
scheme such as detailed performance evaluation and formal
security definition and proof. More importantly, in the dis-
honest cloud environment, the scheme suffers from the fol-
lowing two important security problems:

1) Just as possibly tampering or deleting query results,
the dishonest cloud server may also tamper or forge
verification objects themselves to make the data user
impossible to perform verification operation. Spe-
cially, once the cloud server knows that the query
results verification scheme is provided in the secure
search system, he may return inveracious verifica-
tion object to escape responsibilities of misbehavior.

2) When a data user wants to obtain the desired verifi-
cation object, some important information will be
revealed such as which verification objects are being
or have been requested before frequently, etc. These
information may leak query user’s privacy and
expose some useful contents about data files. More
importantly, these exposed information may become
temptations of misbehavior for the cloud server. We
will detailedly describe this part content in Section 7.

1.2 Our Contributions

In this paper, we extend and reinforce our work in [27] to
make it more applicable in the cloud environment and more
secure to against dishonest cloud server. The main contribu-
tions of this paper are summarized as follows:

1) We formally propose the verifiable secure search sys-
tem model and threat model and design a fine-
grained query results verification scheme for secure
keyword search over encrypted cloud data.

2) We propose a short signature technique based on cer-
tificateless public-key cryptography to guarantee the
authenticity of the verification objects themselves.

3) We design a novel verification object request tech-
nique based on Paillier Encryption, where the cloud
server knows nothing about what the data user is
requesting for and which verification objects are
returned to the user.

4) We provide the formal security definition and
proof and conduct extensive performance experi-
ments to evaluate the accuracy and efficiency of
our proposed scheme.

The rest of this paper is organized as follows. We reviews
the related work in Section 2. Section 3 illustrates back-
ground and presents the preliminary techniques. We pro-
pose the query results verification scheme in Section 4 and
the a discussion of the scheme is shown in Section 5. We
describe the signature and authentication of verification
object in Section 6. In Section 7, a secure verification object
request mechanism is proposed. We analyze the security
and evaluate performances of our proposed scheme in
Sections 8 and 9. In Section 10, we conclude the paper.

2 RELATED WORK

2.1 Secure Search in Cloud Computing

Essentially, the secure search is thus a technique that allows
an authorized data user to search over the data owner’s
encrypted data by submitting encrypted query keywords in
a privacy-preserving manner and is an effective extension
of traditional searchable encryption to adapt for the cloud
computing environment. Motivated by the effective infor-
mation retrieve on encrypted outsourced cloud data, Wang
et al. first proposed a keyword-based secure search scheme
[13] and later the secure keyword search issues in cloud
computing have been adequately researched [14], [15], [16],
[17], [18], [19], [20], [21], which aim to continually improve
search efficiency, reduce communication and computation
cost, and enrich the category of search function with better
security and privacy protection. A common basic assump-
tion of all these schemes is that the cloud is considered to be
an “honest-but-curious” entity as well as always keeps
robust and secure software/hardware environments. As a
result, under the ideal assumption, the correct and complete
query results always be unexceptionally returned from the
cloud server when a query ends every time.

2.2 Verifiable Secure Search in Cloud Computing

In practical applications, the cloud server may return erro-
neous or false search results once he behaves dishonestly
for illegal profits or due to possible software/hardware
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failure of the cloud server. Because of the possible data cor-
ruption under a dishonest setting, serval research works
have been proposed to allow the data user to enforce query
results verification in the secure search fields for cloud com-
puting. In [23], Wang et al. applied hash chain technique to
implement the completeness verification of query results by
embedding the encrypted verification information into their
proposed secure searchable index. In [24], Sun et al. used
encrypted index tree structure to implement secure query
results verification functionality. In this scheme, when the
query ends, the cloud server returns query results along
with a minimum encrypted index tree, then the data user
searches this minimum index tree using the same search
algorithm as the cloud server did to finish result verifica-
tion. Zheng et al. [25] constructed a verifiable secure query
scheme over encrypted cloud data based on attribute-based
encryption technique (ABE) [28] in the public-key setting.
Sun et al. [26] referred to the Merkle hash tree and applied
Pairing operations to implement the correctness and com-
pleteness verification of query results for keyword search
over large dynamic encrypted cloud data. However, these
secure verification schemes cannot achieve our proposed
fine-grained verification goals. Furthermore, these verifica-
tion mechanisms are generally tightly coupled to corre-
sponding secure query schemes and have not universality.

3 BACKGROUND

To clarify our proposed problems, in this section, we pres-
ent our system model, threat model, and several preliminar-
ies used to implement our scheme.

3.1 System Model

The systemmodel of the secure search over encrypted cloud
data usually includes three entities: data owners, data users,
and the cloud server, which describes the following sce-
nario: data owners encrypt their private data and upload
them to cloud server for enjoying the abundant benefits
brought by the cloud computing as well as guaranteeing
data security. Meanwhile, the secure searchable indexes are
also constructed to support effective keyword search over
encrypted outsourced data. An authorized data user obtains
interested data files from the cloud server by submitting
query trapdoors (encrypted query keywords) to the cloud
server, who performs search over secure indexes according
to trapdoors and sends the query results to the data user.

The above application scenario is based on an ideal
assumption that the cloud server is considered as an honest
entity and always honestly returns all qualified query
results. In this paper, we consider a more challenging
model, where the query results would be maliciously
deleted or tampered by the dishonest cloud server. When
the query results face the risks that are deleted or tampered,
a well-functioning secure query system should provide a
mechanism that allows the data user to verify the correct-
ness and completeness of query results. To achieve the
results verification goal, we propose to construct secure ver-
ification objects for data files that are outsourced to the
cloud with encrypted data and secure indexes together. The
query results along with corresponding data verification
object are returned to the data user when a query ends. The

improved system model of verifiable secure search over
encrypted cloud data is illustrated in Fig. 1.

3.2 Threat Model

In this paper, compared with the previous works, an impor-
tant distinction about the threatmodel is that the cloud is con-
sidered to be an untrusted entity. More specifically, first of all,
the cloud server tries to gain some valuable information from
encrypted data files, secure indexes, and verification objects
(e.g., a misbehaving cloud administrator aims at obtaining
these information for possible monetary profits). Then, the
cloud server would intentionally return false search results
for saving computation resource or communication cost. Fur-
ther, if the cloud server knows a query results verification
mechanism is embedded, hemay tamper or forge verification
objects to escape responsibilities of misbehavior.

Similar to the previous works, both data owners and
authorized data users are considered to be trusted in our
threat model.

3.3 Preliminaries

3.3.1 Bloom Filter

A Bloom Filter [29] is a space-efficient probabilistic data
structure which is used to test whether an element is a
member of a set. An empty Bloom filter is a bit array of m
bits, where all bits are set to 0 initially. Given a set
S ¼ fa1; a2; . . . ; ang of n elements, in order to insert an ele-
ment a 2 S into a Bloom filter, it needs to use l independent
hash functions h1; . . . ; hl with the same output range
½0;m� 1� to hash a to get l different positions in the Bloom
filter, and sets all these positions to 1. To determine whether
an element b is in S or not, it checks whether all the positions
corresponding to hiðbÞ equal to 1, 1 � i � l. If all are 1, then
a 2 S or resulting in a false positive due to hash collision. If
any one of these positions is 0, then b =2 S. We can control
false positive rate by adjusting Bloom Filter parameters. If n
elements are inserted into an m-bit Bloom filter which uses l
independent hash functions, the false positive rate is
fp ¼ ð1� ð1� 1

mÞlnÞl, where 1
m ! 0; fp � ð1� e�

ln
mÞl. There-

fore, givenm and n, when l ¼ m
n ln 2, theminimum false posi-

tive rate is 2�l. As a matter of fact, the standard Bloom Filter
does not support element deletion operations because each
bit of the BloomFilter cannot record the number of hash colli-
sions when inserting different elements. To allow effective
element deletion, in [30], Fan et al. designed Counting Bloom
Filter by using fixed size counters to represent an element
instead of single bits. When an element is inserted, the corre-
sponding counters are incremented by 1 and the correspond-
ing counters are decreased by 1when an element is deleted.

Fig. 1. A system model of verifiable secure search over encrypted cloud
data.
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3.3.2 Pseudo Random Function

A pseudo-random function [31] prf : f0; 1g� � f0; 1gt !
f0; 1gs is a computationally efficient function, which maps
an arbitrary length string x 2 f0; 1g� to a random s-bit string
y under a given key � 2 f0; 1gt such that y looks like being
randomly chosen from the range space f0; 1gs. It satisfies
the following properties:

� Computability: Given x 2 f0; 1g� and � 2 f0; 1gt ,
there is a polynomial time algorithm to compute
prfð�; xÞ.

� Collision Resistance: Give two distinct numbers
x; y 2 f0; 1g� and � 2 f0; 1gt , it is computationally
infeasible to satisfy prfð�; xÞ ¼ prfð�; yÞ.

� One-wayness: Give the value prfð�; xÞ, it is compu-
tationally infeasible to calculate x and �.

3.3.3 Bilinear Map

Let G1 and G2 be two cyclic multiplicative groups with
the same large prime order q. A bilinear map [32],
e : G1 � G1 ! G2, satisfies the following properties:

� Computable: For any Q;Z 2 G1, there is a polyno-
mial time algorithm to compute eðQ;ZÞ 2 G2.

� Bilinear: For all x; y 2 Z�
q and Q;Z 2 G1, the equality

eðQx; ZyÞ ¼ eðQ;ZÞxy holds.
� Non-degenerate: If g; h are generators of G1, then

eðg; hÞ is a generator of G2.

3.3.4 Paillier Encryption

Paillier encryption [33] is a public-key encryption scheme
with the remarkable additive homomorphic property and
normally consists of Gen, Enc, and Dec three polynomial-
time algorithms. We briefly introduce these algorithms
as follows:

� Genð1nÞ: The probabilistic polynomial-time algo-
rithm takes the secure parameter n as input and out-
puts ðN; p; q;cðNÞÞ where N ¼ pq, p and q are n-bit
primes, and cðNÞ ¼ ðp� 1Þðq � 1Þ. The public key is
pk ¼ N and the private key is sk ¼< N;cðNÞ > .

� Encðpk;mÞ: The Enc is a probabilistic polynomial-
time algorithm, which takes the public key pk and a
messagem as input and outputs the ciphertext ofm

c ¼ ½ð1þNÞm 	 rN modN2�;
where r is a randomly chosen number from Z�

N .
� Decðsk; cÞ: The Dec is a deterministic polynomial-

time algorithm, which takes the private key sk and
the ciphertext c of the message m as input and out-
putsm

m ¼
� ½ccðNÞ modN2� � 1

N
	 cðNÞ�1 modN

�
:

4 QUERY RESULTS VERIFICATION SCHEME

4.1 Scheme Overview and Problem Definition

Fig. 2 shows an overview of the query results verification
process. In brief, when a query ends, both query results and
corresponding verification objects are returned to the data
user by the cloud server. Upon receiving these data, the
data user first checks the authenticity of verification objects
and then continued to verify query results according to the
verification objects if verification objects pass the test; other-
wise, the data user rejects this query. The notations used in
this paper are shown in Table 1.

In what follows, we further state our proposed problem.
Given F , the data owner first forms the files collection
fFwgw2W and uses any semantically secure encryption
scheme such as AES to encrypt fFwgw2W to get the cipher-
text files collection fCwgw2W . Given a query trapdoor of key-
word w, the cloud server returns Rw to the data user.
Theoretically, the set Rw should be equal to Cw, however,
which may be incomplete (i.e., jRwj < jCwj) or contain
some incorrect data due to the possible misbehaviours of
the dishonest cloud server. To allow an authorized data
user to verify the query results Rw, our main idea is that the
data owner constructs a secure verification object VOw for
each Cw in fCwgw2W , by which the data user can efficiently
verify the correctness and completeness of the returned
query result set Rw. Let fVOwgw2W denote the correspond-
ing verification objects collection of fCwgw2W .

4.2 The Verification Object Construction

To maximize reduce storage and communication cost and
achieve privacy guarantee of the verification objects, in this
paper, we will utilize Counting Bloom Filters and the
pseudo-random function prfk to construct our verification

Fig. 2. The process of query results verification.

TABLE 1
Notations Used in This Paper

Notations Description

F The plaintext set of data files
C The ciphertext set of data files
W The keywords dictionary
w Any keyword inW
Fw The set of data files containing the keyword w
Cw The corresponding cipertext set of Fw

Rw The set of query results containing the keyword w
VOw The verification object of Cw

prfk A pseudo-random function with the key k
H A hash function family with l hash functions

h1; h2 . . . ; hl with the same range ½0;m� 1�
jaj If a is a string, jaj denotes the bit length of a;

If a is a set, jaj denotes the cardinality of a
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objects, on which the authorized data user can efficiently
perform query results verification. Next, we elaborate on
the construction process of verification objects as follows.

Given a ciphertext set Cw of Fw, the data owner first gen-
erates a Counting Bloom Filter VOw with m counters, in
which each counter is set to be 0 initially. Then, for each
encrypted data file c 2 Cw, he uses the pseudo-random
function prfk under the key k to calculate the secret value
prfkðcÞ. Further, he continues to uses l hash functions
h1; . . . ; hl of the hash function family H to hash the prfkðcÞ
to get h1ðprfkðcÞ 2 ½0;m� 1�; . . . ; hlðprfkðcÞÞ 2 ½0;m� 1�.
Lastly, the data owner inserts these hash values into the
Counting Bloom Filter VOw by performing operations that
the corresponding counter VOw½hiðprfðcÞÞ�; 1 � i � l is
increased by 1. Our basic idea is to let the VOw represent the
verification object of Cw.

However, Cw’s verification object VOw reveals the num-
ber of the data files contained in Cw and the cloud server
can easily obtain the statistical information that how many
data files are in Cw by calculating

Pm�1
i¼0 VOw½i�Þ=l. To avoid

revealing the size of the set Cw, an effective method is to all
VOws in fVOwgw2W have the same value ðPm�1

i¼0 VOw½i�Þ by
padding different number of random elements for different
verification object VOw. However, directly padding random
elements into VOw by hashing these random elements to the
range ½0;m� 1� will disable the effective query results veri-
fication since the VOw contains some invalid data (i.e., ran-
dom elements).

To address this problem, we propose to let the data
owner generate a pad region only used for random ele-
ments pad. Specifically, given a set Cw, the data owner first
generates a Bloom Filter VOw with n counters and inserts all
data files in Cw into the first m counters using prfk and H.
Then, let jCwjmax denote the maximum number of data files
containing some keyword w 2 W , i.e., jCwjmax ¼ max
fjCwi

j; i ¼ 1; . . . ; jW jg, the data owner generates l�
jCwjmax �

Pm�1
i¼0 VOw½i� random strings fR1; R2; . . .g and

uses a pad function P with the range ½m;n� 1� to compute
PðRÞ, the corresponding position VOw½PðRÞ� is increased by
1. The pad function P can be defined as

PðxÞ ¼ mþ ðprfkðxÞmod ðn�mÞÞ; x 2 f0; 1g�:
After padding, all VOws in fVOwgw2W satisfy

Xn�1

j¼0

ðVOw½j�Þ ¼ l� jCwjmax:

Fig. 3 shows an example of our verification object. The
whole process of constructing verification objects is shown
in Algorithm 1.

Algorithm 1. Constructing Verification Objects

Input:
The ciphertext files collection C ¼ fCwgw2W

Output:
The verification objects collection fVOwgw2W

1: Generate an empty set VO={};
2: for each Cw 2 C do
3: Generate a Counting Bloom Filter VOw with n counters;
4: for each c 2 Cw do
5: Calculate vc ¼ prfkðcÞ;
6: Calculate h1ðvcÞ; . . . ; hlðvcÞ using hash function familyH;
7: VOw½h1ðvcÞ�; . . . ; VOw½hlðvcÞ� are increased by 1 in VOw;
8: end for
9: Generate l� ðjCwjmax � jCwjÞ random strings R1; R2; . . .
10: Calculate PðR1Þ;PðR2Þ; . . .
11: VOw½PðR1Þ�; VOw½PðR2Þ�; . . . are increased by 1 in VOw;
12: Add the VOw into VO

13: end for
14: return VO ¼ fVOwgw2W

4.3 Verifying the Correctness and Completeness
of Query Results

When a query ends, the query results set and corre-
sponding verification object are together returned to the
query user, who verifies the correctness and complete-
ness of query results based on the verification object.
Our proposed query results verification scheme not only
allows the query user to easily verify the correctness of
each encrypted data file in the query results set, but also
enables the data user to efficiently perform completeness
verification before decrypting query results. More impor-
tantly, for an incomplete query results set, our verifica-
tion objects can definitely tell the data user that the
cloud server has omitted how many qualified data files
for a query, which is a significant advantage compared
with the previous related works.

We give an example to illustrate how to perform query
results verifications. Assume that an authorized data user
submits an encrypted query keyword w to the cloud server,
the cloud server performs query operations and returns
back the query results set Rw along with the corresponding
verification object VOw. The data user only needs two steps
to finish the correctness verification for each data file c in
Rw. First, the data user uses the shared key k and the hash
functions family H to calculate h1ðprfkðcÞÞ; . . . ; hlðprfkðcÞÞ.
Second, he checks all counters correspond to VOw½h1

ðprfkðcÞÞ�; . . . ; VOw½hlðprfkðcÞÞ�. If these counters are all
greater than 0, then c is a correct query result; otherwise, c is
regarded as an incorrectness query result as long as one of
them is equal to 0 and should be removed from Rw. The cor-
rectness verification process is shown in Algorithm 2.

In terms of the query results completeness verification,
our well constructed verification object is able to allow the
data user to quickly find out the number of data files that
satisfy the query yet are not returned by the cloud server if
the cloud server does intentionally omit some data files. The
verification process is described in detail as follows. Given
Rw and VOw, the data user first invokes the Algorithm 2 to
do the correctness verification. Then, If jRwj 6¼ 0, for each
correct data file c, he calculates h1ðprfkðcÞÞ; . . . ; hlðprfkðcÞÞ

Fig. 3. An example of the verification object.
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using the shared key k and the corresponding counters
VOw½h1ðprfkðcÞÞ�; . . . ; VOw½hlðprfkðcÞÞ� in VOw are decreased
by 1. Finally, the data user calculates the following value:

Rem ¼
�Xm�1

j¼0

VOw½j�
�
=l:

If Rem ¼ 0, then the cloud server has returned back all data
files that satisfy the query; otherwise, the data user can con-
firm that the cloud server has omitted Rem qualified data
files in the query. The completeness verification is shown in
Algorithm 3.

Algorithm 2. Correctness Verification

Input:
The query results set Rw and corresponding verification
object VOw for some query keyword w.

Output:
Rw

1: for each c in Rw do
2: Calculate vc ¼ prfkðcÞ;
3: Calculate h1ðvcÞ; . . . ; hlðvcÞ using hash function familyH;
4: Check all counters h1ðvcÞ; . . . ; hlðvcÞ in VOw. If one of them

is equal to 0, then remove c from Rw;
5: end for
6: return Rw.

Algorithm 3. Completeness Verification

Input:
The query results set Rw that has past correctness verifica-
tion, and corresponding verification object VOw for some
query keyword w.

Output:
The number of data files that have not been returned by the
cloud server Rem

1: if jRwj 6¼ 0 then
2: for each c in Rw do
3: Calculate vc ¼ prfkðcÞ;
4: Calculate h1ðvcÞ; . . . ; hlðvcÞ using hash function familyH;
5: The corresponding counters h1ðvcÞ; . . . ; hlðvcÞ in VOw are

decreased by 1;
6: end for
7: end if
8: Calculate Rem ¼

Pm�1

j¼0
ðVOw½j�Þ
l

9: return Rem.

5 DISCUSSION

5.1 About False Positive

It is worth noticing that our proposed scheme may allow an
incorrect query result to pass the correctness verification
due to the fact that Bloom Filter may yield false positives
with a certain probability because of hash collisions. Fortu-
nately, we can adjust the Bloom Filter parameters to mini-
mize the false positive rate. More specifically, in this paper,
given the bit length m of each verification object VOw and
the number of data files in Cw, i.e., jCwj, we set the number
of hash functions l to be m

jCwj � ln 2 to minimize the false posi-
tive rate to be

1�
�
1� 1

m

ljCwj �l

� ð1� e�ljCwj=mÞl ¼ 2�l � 0:6185m=jCwj:

However, the set size jCwi
j is different for different

Cwi
; wi 2 W; 1 � i � jW j, to choose the same hash functions

family H with the same number of hash functions l for all
verification object in fVOwgw2W , we set

l ¼ m

jCwjmax

� ln 2;

where jCwjmax is the maximum number of data files contain-
ing a certain keyword w. Thus, for any set Cw0 that satisfies
jC0

wj < jCwÞjmax, the false positive rate incurred by the cor-
responding VOw0 is less than 0:6185m=jCwjmax .

For example, to guarantee that the false positive rate
induced by Bloom Filter is less than 0.01, we can set the
number of hash functions to be l ¼ log 1

2
0:01 ¼ 7 and the

length of Bloom Filter to bem ¼ jCwjmaxlog 0:61850:01.

5.2 Size of Verification Objects

In addition, the bit length of each counter in VO should be
discussed adequately, because the huge VOwill bring heavy
storage cost and communication cost, which makes the veri-
fication object impractical. Generally, the 4 bits for each
counter are sufficient for Counting Bloom Filters. We give a
simple derivation and more detailed analysis please refer to
[30]. Theoretically, the probability that the ith counter has
been increased by j times, when inserting the set
Cw; 1 � i � m;w 2 W using l hash functions, can be denoted

PrðcðiÞ ¼ jÞ ¼ jCwjl
j

� �
1

m

� �j�
1� 1

m

�jCwjl�j

:

According to the Stirling’s approximation, the probability
that any counter is greater or equal j is

PrðcðiÞ 
 jÞ � jCwÞjl
j

� ��
1

mj

�
�

�
ejCwjl
jm

�j

:

To minimize the false positive rate, we set l ¼ m
jCwj � ln 2 and

further simplify the above inequality

prðcðiÞ 
 jÞ � m
e ln 2

j

� �j

:

Hence, if we set the bit length of each counter to be 4, obvi-
ously, when j ¼ 16, the counter happens overflow and the
probability can be calculated as prðcðiÞ 
 16Þ � 1:37�
10�15 �m. Obviously, the value is infinitesimal and the
probability of happening overflow can be ignored.

5.3 An Enhanced Completeness Verification
Construction

For completeness verification, a significant advantage of our
constructed verification object is that the query user can
quickly count the number of data files omitted by the cloud
server for an incomplete query result set. As a more strict
completeness verification requirement (i.e., which qualified
data files are not returned in a query), an enhanced verifica-
tion object based on the Counting Bloom Filter was
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proposed in our work [27], which further allows the data
user to definitely obtain the file identifier of each data file
that satisfies the query yet is omitted by the cloud server, by
reasonably designing the identifiers of data files and
secretly preserving them in the corresponding verification
object. Here, we are not intend to elaborate on the verifica-
tion construction to avoid unnecessary repetition. Interested
readers please refer to [27] to obtain details about this.

6 SIGNATURE AND AUTHENTICATION

OF VERIFICATION OBJECT

Under the dishonest threat model, the cloud server may
tamper or forge verification objects to escape responsibilities
of misbehaviour if it knows a query results verification
mechanism is involved in the secure search scheme. There-
fore, authenticating the verification object itself is the first
indispensable step for the data user when he receives query
results and the corresponding verification object from the
cloud server. To achieve this goal as well as prevent the
cloud server from sending forged verification object to a
data user, digital signature over verification objects is a nat-
ural and good choose. That is to say, on one hand, the data
owner computes a signature on each verification object
using his private key after constructing verification objects;
on the other hand, the data user verify the authenticity of
verification object using the data owner’s public key upon
receiving the specified verification object in a query.

However, traditional digital signature techniques such as
DSA require certificates to guarantee the authenticity of
public key by Certification Authority, which is generally
considered to be costly to use due to expensive certificate
library management and maintenance problems. To elimi-
nate the certificates, certificateless signature schemes [34],
[35], [36], [37], [38] have been proposed based on the certifi-
cateless cryptography [39], [40]. In this paper, we present an
efficient short signature scheme based on [34] and [36] to
significantly reduce the storage and communication cost of
signatures of verification objects. Compared to above exist-
ing schemes, the signature length of our scheme is only a
half or one-third of these schemes. In certificateless cryptog-
raphy, there needs a trusted Key Generation Center (KGC)
to help the user to generate public/private key pair, while
KGC cannot obtain user’s public/private key.

Assume that there exists a trusted KGC in our system, o
is a data owner and u denotes an authorized data user, our
proposed certificateless signature for verification object is
composed of the following seven steps.

� Setup: Let G1 and G2 be two cyclic multiplicative
groups of prime order q, which are equipped with
an efficiently computable bilinear map e. Let g be a
generator of G1. On input a sufficiently large secure
parameter l, KGC generates system master key
mk 2 Z�

q and system public key Spub ¼ gmk as well
as two cryptographic one-way hash functions
H1 : f0; 1g� ! Z�

q and H2 : f0; 1g� � G1 ! Z�
q . KGC

opens the system public parameter params ¼
fG1;G2; e; q; g; Spub;H1; H2g and keepsmk as secret.

� Extract-partial-private-key: o sends his/her identity
ID 2 f0; 1g� to KGC. The KGC computes
QID ¼ H1ðIDÞ, dID ¼ g

1
mkþQID and sends dID to o via

secure communication channels. KGC opens a public
value PVID ¼ Spub 	 gQID to data users.

� Set-secret-value: o randomly picks up a value
kID 2 Z�

q as own secret value.
� Set-private-key: o first computes H�

1ðIDÞ according
to his own identity ID and then verifies whether the
following equation holds or not

eðSpub	gH�
1
ðIDÞ; dIDÞ

¼ eðgmk 	 gH�
1
ðIDÞ; g

1
mkþQIDÞ

¼ eðgmkþH�
1
ðIDÞ; g

1
mkþH1ðIDÞÞ

¼ eðg; gÞmkþH�
1
ðIDÞ=mkþH1ðIDÞ

¼ eðg; gÞ:

If the above equation holds (i.e., H�
1ðIDÞ ¼ H1ðIDÞ

holds), then o confirms that his identity ID is not
tampered and o further determines the complete pri-
vate key as skID ¼< dID; kID > according to the
partial key dID and the secret value kID.

� Set-public-key: o computes H1ðIDÞ and uses the
secret value kID to generate his public key

pkID ¼ ½Spub 	 gH1ðIDÞ�kID
¼ ½Spub 	 gQID �kID
¼ ðPVIDÞkID :

� Sign: Given a verification object VOw, o signs the VOw

using his private key as follows:

s ¼ ðdIDÞ
1

kIDþH2ðVOw;pkIDÞ:

Upon receiving a query result set Rw and its verification
object VOw, the authorized data user u first verifies the
authenticity of VOw by invoking the verification algorithm
Ver(params; VOw; ID; pkID; s), which decides whether the
following equation holds or not

eðs; pkID 	 ðPVIDÞH2ðVOðwÞ;pkIDÞÞ ¼ eðg; gÞ:

If the above equation holds, then u continues to verify the
correctness of Rw according to the verification object VOw;
otherwise, u refuses this query. If the returned VOw is
not forged or tampered with by the cloud server, the
above equation holds because (for ease writing, let
� ¼ H2ðVOw; pkIDÞ)

eðs; pkID	ðPVIDÞH2ðVOw;pkIDÞÞ
¼ eððdIDÞ

1
kIDþ�; pkID 	 ðPVIDÞ�Þ

¼ eðg 1
mkþQID

	 1
kIDþ�; ðPVIDÞkIDþ�Þ

¼ eðg 1
ðmkþQIDÞðkIDþ�Þ; ½Spub 	 gQID �kIDþ�Þ

¼ eðg 1
ðmkþQIDÞðkIDþ�Þ; gðmkþQIDÞðkIDþ�ÞÞ

¼ eðg; gÞ:

A comparison is presented in Table 2, where the group with
160-bit order is used to instantiate G1 and G2.
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7 SECURELY REQUESTING VERIFICATION OBJECT

Another important question is that how to obtain the correct
verification object from the set fVOwgw2W without leaking
any useful information to the cloud server. A simple way is
to organize the set fVOwgw2W as fðw; VOwÞgw2W , thus the
cloud server can very easily return back the correct verifica-
tion object according to the submitted keyword w by the
data user. However, the straightforward method compro-
mises the security and privacy of whole secure query sys-
tem from three aspects at least. First, the set fðw; VOwÞgw2W
contains plaintext information of all keywords in W .
Second, the query keywords of the data user are leaked (i.e.,
query privacy) when he submits a keyword w of interest to
request the corresponding VOw; Third, the cloud knows the
associations between the keywords and verification objects
that may allow the cloud server to obtain some useful infor-
mation about data files (e.g., which data files contain a given
query keyword w).

To remedy these drawbacks, in [27], we proposed to
encrypt each keyword by a pseudo random function fprfk
and store the verification object set fð fprfkðwÞ; VOwÞgw2W in a
lookup table T. When the data user wishes to obtain VOw

after performing a query using keyword w, he encrypts w asfprfkðwÞ under the shared key k and summits the ciphertext
to the cloud server. The cloud server returns back the verifi-
cation object by scanning T according to fprfkðwÞ without
knowing any underlying plaintext about w. However, we
find the construction still leaks some important information
including: (1) the submitted verification object request infor-
mation, for example, whether data users often adopt the
same keyword to request verification objects, (2) which veri-
fication object is being requested and returned in the current
request task, and (3) which verification objects are fre-
quently or rarely requested. These exposed information
may become temptations of behaving dishonestly for the
dishonest cloud server. For example, if the cloud server
knows some verification objects are returned rarely, he may
maliciously delete these data for saving storage space.

Therefore, our goal is to prevent the cloud server from
obtaining these information by using the Paillier encryption
scheme to design thus a secure verification object request
mechanism.

Now, we describe our proposed verification object
request scheme in detail. First of all, the authorized data
user generates the public/private pair ðpk ¼ N; skÞ for the
Paillier encryption system, where N denotes a large com-
posite number. For a certain keyword wi 2 W (assume
jW j ¼ d) that the data user wants to request the correspond-
ing verification object VOwi

from the cloud server, the data
user sets a flag fi for wi to be 1 to denote VOwi

to be the
desired verification object. For other all keywords
wj 2 Wð1 � j � d; j 6¼ iÞ, he sets the corresponding flag
fj ¼ 0ð1 � j � d; j 6¼ iÞ. Then, the data user encrypts each

flag fkðk ¼ 1; 2; . . . ; dÞ using the Paillier encryption under the
public key pk and a randomly-chosen rk 2 Z�

N as follows:

ck ¼ ½ð1þNÞfk 	 rNk modN2�:
Further, the data user sends the ciphertext set fckj1 � k � dg
to the cloud sever. Upon receiving the set, the cloud server
computes the following ciphertext for each ck according to
the corresponding verification object VOwk

in fVOwgw2W
stored in the cloud server

c�k ¼ c
VOwk

k ¼ ½ð1þNÞfk 	 rNk mod N2�VOwk

¼ ½ð1þNÞfk	VOwk 	 rN	VOwk

k mod N2�
¼ ½ð1þNÞfk	VOwk 	 ðrVOwk

k ÞN mod N2�;

and further computes

c� ¼
�Yd

k¼1

c�k mod N2

�
¼

�Yd
k¼1

c
VOwk

k modN2

�

¼
�
ð1þNÞ

Pd

k¼1
fk	VOwk 	

�Yd
k¼1

rVOw
k

�N

mod N2

�

¼
�
ð1þNÞ1	VOwi 	

�Yd
k¼1

rVOw
k

�N

mod N2

�

¼
�
ð1þNÞVOwi 	

�Yd
k¼1

rVOw
k

�N

mod N2

�
:

After finishing the above calculation, the cloud server sends
c� to the data user. Obviously, c� is an effective Paillier
encryption of the message VOwi

under the public key
pk ¼ N and the random number

Qd
k¼1 ðrVOw

k Þ. Therefore, the
data user can successfully decrypt c� with the owned pri-
vate key sk to gain the objective verification object VOwi

locally. During the whole process, the cloud server knows
nothing about which verification object is requested and
which verification object is actually returned every time due
to the undeterministic Paillier encryption.

Algorithm 4. Securely Obtaining Verification Object

Input:
The keyword setW; jW j ¼ d and corresponding verification
object set fðsjjVOÞwgw2W , the submitted keyword wi.

Output:
The objective verification object ðsjjVOÞwi

1: Generate the public/private pair ðpk; skÞ
2: for k 2 ½1; d� do
3: if wi ¼ wk then
4: Set fk ¼ 1 and encrypt fk as EpkðfkÞ
5: else
6: Set fk ¼ 0 and encrypt fk as EpkðfkÞ
7: end if
8: end for
9: for each k 2 ½1; d� do
10: Calculate ck ¼ EpkðfkÞðsjjVOÞwk

11: end for
12: Calculate c� ¼ Qd

k¼1 ck
13: Decrypt c� as VOwi

¼ Dskðc�Þ
14: return ðsjjVOÞwi

.

TABLE 2
Comparison of Different Signature Schemes

[34] [35] [36] [37] [38] Our

public key length (bits) 320 320 160 160 320 160
signature length (bits) 320 320 320 480 320 160
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In addition, to verify the authenticity of returned verifica-
tion object itself, the corresponding signature should also be
returned together. A common way is to attach the signature
to its verification object by sjjVO, where jj denotes a string
concatenation notation. Thus, the verification object set can
be denoted as fðsjjVOÞwgw2W . Algorithm 4 shows the algo-
rithm of securely obtaining a verification object and we use
Epk andDsk to denote the Paillier encryption and decryption
respectively, for simplicity.

8 SECURITY ANALYSIS

8.1 Security of Verification Object

Similar to the secure index semantic security [5], the secu-
rity of the verification object aims to capture the notion that
the verification object reveals nothing about contents of data
files. A more formal and rigorous security definition is the
verification object indistinguishability, which is synoptically
described as that, given two verification objects VOw; VOw0 of
set Cw;Cw0 for two different keywords w;w0, no polynomial-
time adversary A can determine which verification object is
for which data file set with probability that is non-negli-
gible greater than 1/2. We use formulation of verification
object indistinguishability to prove the semantic security
of our scheme and formally use the following game to
define the formulation. The Verification Object Indistin-
guishability Game ð dGameÞ: Let f denote the verification
object construction algorithm described in Algorithm 1.
There is a challenger B and a probabilistic polynomial
time adversary A in this game.

1) A asks B for the output of f for his submitted chal-
lenging set Cw for different keyword wmany times.

2) A sends two different set Cw0
and Cw1

to B, which are
not challenged in setp 1. A continues to ask B for the
output of f for Cw. The only restriction is that Cw is
not Cw0

or Cw1
.

3) After receiving Cw0
and Cw1

, B chooses a bit
b 2 f0; 1g with probability 1/2 and invokes fðCwb

Þ to
output the verification object VOwb

for Cwb
.

4) VOwb
is sent to A, A outputs his guess b0 of b. If b ¼ b0,

the game input 1, and 0 otherwise. We say A wins
the game and succeeds if the input is 1.

Intuitively, if the verification object is indistinguishable,
the probability of A wins the game is at most negligibly
greater that 1/2, since it is easy to succeed with probability
1/2 by taking a random guess to input b0. Before proving
the security of the verification objects, we first give the fol-
lowing two definitions.

Definition 1. The advantage of the probabilistic polynomial time
A in winning the above game is defined as

AdvfA ¼ Pr½b ¼ b0� � 1

2

����
����:

If AdvfA is negligible, we say that our constructed verifica-
tion object is semantically secure and achieves indistingu
ishability.

Definition 2. Given a computationally efficient and keyed func-
tion F: f0; 1g� � f0; 1gt ! f0; 1gs, for any probabilistic poly-
nomial time distinguisher D and an arbitrary length string

x 2 f0; 1g�, the advantage that D distinguishes FkðxÞ from a
random string r of length s is defined as

AdvFD ¼ jPr½DðrÞ ¼ 1� � Pr½DðFkðxÞÞ ¼ 1�j;
where k 2 f0; 1gt and r is chosen at random uniformly from
f0; 1gs (the output of a random function). If F is a pseudo-
random function, then the advantage AdvFA is negligible under
the randomly chosen key k from f0; 1gt.
Definition 2 means that no polynomial time algorithm can

distinguish the output of a pseudo-random function from the
output of a real random function [31]. According to the con-
struction of verification objects, it is easy to see that achieving
the indistinguishability of verification objects needs to guar-
antee that the positions in the Bloom Filter of the inserted ele-
ments are indistinguishable, which can further reduce to
guarantee the indistinguishability of inserted elements (for a
set Cw, the inserted elements include data files and padding
elements). In Algorithm 1, we use the pseudo-random func-
tion guarantee the indistinguishability of inserted elements.
We give the formal security proof as follows.

Theorem 1. If prf is a pseudo-random function, then our con-
structed verification object is semantically secure and achieves
indistinguishability in the random oracle model.

Proof. Suppose the adversary A has a non-negligible
advantage � ð� < 1Þ to win dGame, we can use A to con-
struct a distinguisher D who can distinguish the output
of the pseudo-random function from the output of a real
random function with a non-negligible advantage.

According to the Algorithm 1 denoted as f0, we con-
struct another algorithm Algorithm 1� denoted as f1. The
only difference between them is that Algorithm 1� uses a
random function rrf : f0; 1g� ! f0; 1gs to replace the
pseudo-random function prfk used in f0. Essentially,
prfk and rrf are modeled the random oracles that D has
access to. D accepts the algorithm fx; x 2 f0; 1g and its
goal is to determine whether x ¼ 0 or whether x ¼ 1. To
do this, D emulates the game dGame for A, and observes
whether A succeeds or not. If A succeeds then D deter-
mines x ¼ 0; otherwise, x ¼ 1.

D is given the algorithm fx and A chooses two file sets
Cw1

and Cw2
. D randomly chooses a bit b 2 f0; 1g with

probability 1
2 and invokes fxðCwb

Þ to output VOwb
and

then sends VOwb
to A. A outputs a bit b0 and D outputs a

guess x0 for x. SinceA has a non-negligible advantage � to
succeed in the game dGame (i.e., the output b0 satisfies
b0 ¼ b), correspondingly, D also has advantage � to deter-
mine the guess x0 ¼ x ¼ 0. That is, D can distinguish the
output VOwb

of f0ðCwb
Þ (using the pseudo-random func-

tion prfk under the key k) from f1ðCwb
Þ (using the real ran-

dom function rrf) with the non-negligible advantage �.
Since VOwb

contains jCwjmax (let jCwjmax ¼ a) elements
after padding, for each element c, assume that the advan-
tage thatD distinguishes prfkðcÞ from rrfðcÞ is �0, we have

�0 	 �0 . . . 	 �0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a

¼ � ) �0 ¼ ffiffi
�a

p
:

Since � is non-negligible, the advantage
ffiffi
�a

p
is also non-

negligible. Therefore, if A wins the game dGame with a

YIN ET AL.: ACHIEVING SECURE, UNIVERSAL, AND FINE-GRAINED QUERY RESULTS VERIFICATION FOR SECURE SEARCH SCHEME... 35



non-negligible advantage �, then D distinguishes the out-
put of the pseudo-random function prfk from the output
of the real random function rrf with the non-negligible
advantage

ffiffi
�a

p
, which contradicts the Definition 2. tu

8.2 Unforgeability of Verification Object Signature

To guarantee the authenticity of the verification objects
themselves, a short signature scheme is proposed based on
[34] and [36]. We follow the threat model and security defi-
nition of certificateless signature scheme by [36] and omit
the unforgeability proof of our scheme due to space limita-
tions. Please refer to [36] for detail security proofs.

8.3 Security of Verification Object Request

We design a secure verification object requesting technique
by adopting Paillier encryption. During the whole verifica-
tion object request process, the cloud server knows nothing
about which verification object is requested and which veri-
fication object is actually returned since the Paillier encryp-
tion is a probabilistic public-key encryption scheme.

9 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the performance of our
scheme from four aspects: verification object construction
and query results verification, verification object signature
and authentication, verification information request genera-
tion, and verification accuracy.

9.1 Experiment Setup

To evaluate the verification object construction time and
query results verification time, we generate 5 text file sets
Fhardware and jFhardwarej ¼ 200, Fmachine and jFmathinej ¼ 400,
Fsubject and jFsubjectj ¼ 600, Fprotocal and jFprotocalj ¼ 800,
Fnetwork and jFnetworkj ¼ 1; 000, respectively. For example,
Fhardware denotes a set of text files containing the keyword
hardware with the cardinality 200. All these text files are ran-
domly picked up from the real data set RFC (Request
For Comments Database) [41]. We encrypt the 5 file sets
using AES to get their corresponding ciphertext set
Chardware; Cmachine; Csubject; Cprotocal; Cnetwork. Obviously, jCnetwork

jmax¼jCnetworkj¼1;000.
Recall that each verification object is composed of a

Counting Bloom Filter and a random elements pad region,
if we set the number of hash functions to be l ¼ log 1

20:01
¼ 7

and the number of counters in Counting Bloom Filter to be
m ¼ 1; 000log 0:61850:01 ¼ 1; 000� 9:585 ¼ 9; 585, then the
false positive is less than 0.01. We expand the Counting
Bloom Filter from m ¼ 9; 585 to n ¼ 12; 085, the last 2,500
counters are regarded as pad region. Thus, the size of each
verification object is about 6 KB (12; 085� 4 ¼ 48; 340 bits).
In addition, we use HMAC-MD5 with a 128 bits key to
instantiate the pseudo random hash function prfkðÞ.

We implement our verification object signature and
authentication scheme based on Java library of the Pairing-
Based Cryptography Library (JPBC) [42] and choose
Type A elliptic curve group with 160-bit prime order,
which can achieve 1,024-bit discrete log security. To
implement secure verification object request, we use Pai-
lier Encryption for request information encryption, the
secret key is set to be 512 bits.

In our experiments, we use Java language to implement
all programs. The client side is an Inter Core i5-6200U
2.3 GHz computer with 4 GB RAM running windows 7. The
cloud environment is simulated by using the Dell blade
M610 running Linux Centos5.8 OS, which has 4 processor
cores and supports 8 parallel threads.

9.2 Performance of Verification Object Construction
and Query Results Verification

Fig. 4a shows the time cost of verification object generation
for different data files set with different number of data
files, we can observe that the size of different data files set
has little influence on the time cost of verification object gen-
eration. For example, the time cost of generating VOhardware

(94 ms) and the time cost of generating VOnetwork (99 ms) is
almost equal, though the size of Cnetwork is five times as large
as that of Chardware. The reason is that, in our scheme, gener-
ating a verification object is mainly determined by HMAC-
MD5 operations, which are involved in both data file inser-
tions and pads. For each data files set, the less the number
of data files in the set is, the more random elements is
needed to pad for constructing its verification object. Thus
the total number of HAMC-MD5 operations will keep the
same for each set of data files containing a certain keyword.
In addition, the execution time is almost zero of 7 hash func-
tions in H when hashing a small string of length 128 bits. In
experiments, the random pad elements are also picked up
from RFC randomly for each verification object.

Fig. 4b shows the time cost of query results correctness
and completeness verification. In experiment, due to without
considering the secure query scheme, we artificially formu-
late 9 different query results sets Rnetworks with increasing
number of data files and step length 100 and use the con-
structed verification object VOnetwork to verify their correct-
ness and completeness. We can observe that the time cost of
correctness and completeness verification is linearly increas-
ing with the increase of the number of data files in the query
results set and the completeness verification needs to con-
sume a little more time than correctness verification due to
deletion operations of elements in Bloom Filter.

9.3 Performance of Verification Object Signature
and Authentication

In this section, we estimate the time cost of the verification
object authentication. The time cost of all operations used

Fig. 4. (a) The time cost of verification object generation with different set
of data files containing a certain keyword. (b) The time cost of correct-
ness and completeness verification with different number of data files in
a query results set.

36 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021



for running the experiments based on the JPBC library and
our software/hardware setting is shown in Table 3.

Table 4 shows the time cost of signature and authentica-
tion for verification object. We can see that a data owner
needs to consume about 53 ms to perform a signature on
each verification object and a data user needs about 145 ms
to finish the verification object authentication.

9.4 Performance of Verification Object Request

Recall that a data user securely obtains the desired verifica-
tion object by three steps, during the whole process, the
Paillier encryption is used. First, the data user encrypts
request information according to the requested keyword
and keywords dictionary W . Second, the cloud server
generates encrypted desired verification object according
to submitted request information and the outsourced
verification objects set fðsjjVOÞwgw2W . Third, the data
user decrypts the encrypted desired verification object
returned by the cloud server. Table 5 shows the time
cost of all encryption/decryption operations used for
implementing our scheme, where E;D denotes a Paillier
encryption and a Paillier decryption, respectively, and x
denotes a verification object.

Fig. 5a shows the time cost of verification object request
information generation for the data user, which is linearly
increasing with the increase of the number of keywords in
W . In this process, jW j � 1 operations of Eð0Þ and one Eð1Þ
operation are involved, when varying the size of the dictio-
nary from 10 to 100 with step length 10, the time cost
changes from about 70 ms to about 700 ms, correspond-
ingly. Fig. 5b shows the time cost of decrypting a desired
verification object for data user. The process only includes
one DðxÞ operation, which generally consumes 15 ms in our
experiments. We can observe that the size of keyword

dictionary W has no influence on time cost of the desired
verification object decryption.

Fig. 6 shows the time cost of generating encrypted
desired verification object for the cloud server, which is line-
arly increasing with the increase of the dictionary size
(Fig. 6a) and is not affected by the number of data files con-
tained in the verification object when fixing the dictionary
size (Fig. 6b). In the encryption process, jW j � 1 operations
of Eð0Þx, one Eð1Þx operation, and jW j � 1 operations of
EðxÞ 	 EðxÞ are involved in the cloud server side. When set-
ting the number of threads to be 1 and varying the size of
the dictionary from 10 to 100 with step length 10, the time
cost changes from about 122 ms to about 1.25 s. We also
observe that the time cost can be reduced remarkably by
increasing the number of threads when the programs are
run in a parallel computing environment.

9.5 Verification Accuracy

Essentially, the constructed verification object is the Bloom
Filter, which can incur the false positive. This means that
our scheme may cause incorrect query results to pass the
correctness verifications. To numerically evaluate the verifi-
cation accuracy, we first define several verification Events
in Table 6.

TABLE 3
Time Cost of Operation

Notations Descriptions Time Cost (ms)

EG1
exponentiation operation in G1 � 42

MG1
multiplication operation in G1 < 1

AZq addition operation in Zq < 1
H2 hash function f0; 1g� � G1 ! Z�

q � 11
P pairing operation � 46

TABLE 4
Time Cost for Each Verification Object

Cost time (ms)

Signature H2 þAZq þ EG1
53

Authentication H2 þ EG1
þMG1

þ 2P 145

TABLE 5
Time Cost of Operation

Notations Descriptions Cost (ms)

Eð1Þ; Eð0Þ Paillier encryption of plaintext 1 and 0 � 7
Eð1Þx; Eð0Þx exponentiation operation of ciphertext � 12
EðxÞ 	 EðxÞ multiplication operation of ciphertext < 1
DðxÞ Paillier decryption � 16

Fig. 5. (a) The time cost of verification object request information genera-
tion with different number of keywords in the keyword dictionary W .
(b) The time cost of the desired verification object decryption with differ-
ent number of keywords in the keyword dictionaryW .

Fig. 6. The time cost of generating encrypted desired verification object
for cloud server: (a) for different number of keywords in the keyword
dictionary W , and (b) for different number of data files in Cw with the
fixed dictionary, jW j ¼ 70.

TABLE 6
Events of Result Verification

Event Description

tp (True Positive) The correct query result pass verification.
fp (False Positive) The incorrect query result pass verification.
fn (False Negative) The correct result does not pass verification.
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Given a returned query results set Rw of the query key-
word w and corresponding verification object VOw, for each
result c 2 Rw, if a verification Event occurs, then the Event is
set as 1; obviously, for each result, these events are indepen-

dent each other. We define the two metrics correct radio ¼P
tpP

tpþ
P

fn
and precision ¼

P
tpP

tpþ
P

fp
to evaluate the verifi-

cation accuracy, where
P

denotes the total number of
occurrences of an event when using VOw to verify Rw. We
artificially formulate the query results set Rnetwork based on
the data files set Cnetwork as the experiment data set. Corre-
spondingly, the verification object is VOnetwork. Fig. 7 shows
the verification accuracy of our scheme.

Figs. 7a and 7b show the correct radio always keeps
100 percent. This is because that Bloom Filter does not intro-
duce false negatives which means that our scheme can guar-
antee all correct results in Rnetwork to be able to correctly pass
verifications (

P
fn ¼ 0 and

P
tp ¼ 300). On the other hand,

from the Fig. 7a, we can see that, when the number of the
hash functions of Bloom Filter is set as 1, our scheme causes
about 420 incorrect results to pass verifications (

P
fp ¼ 420)

and thus leads to a very low verification precision ¼P
tpP

tpþ
P

fp
¼ 300

300þ420 ¼ 41:7%; precision gradually increases

with the increasing number of hash functions and approxi-
matively achieves 300

300þ4 � 98:7% when the number of hash
functions is set to the optimal value l ¼ 7. Fig. 7b demon-
strates that though the precision has the trend of decrease
with the increases of the number of incorrect query results
in Rnetwork, it is not less than 98 percent when the number of
hash function is set to the optimal value l ¼ 7 even Rnetwork

contains the large number of incorrect results. For the very
few incorrect query results that pass verifications, the data
user can delete them after decrypting.

10 CONCLUSION

In this paper, we propose a secure, easily integrated, and
fine-grained query results verification scheme for secure
search over encrypted cloud data. Different from previous
works, our scheme can verify the correctness of each
encrypted query result or further accurately find out how
many or which qualified data files are returned by the
dishonest cloud server. A short signature technique is
designed to guarantee the authenticity of verification object

itself. Moreover, we design a secure verification object
request technique, by which the cloud server knows noth-
ing about which verification object is requested by the data
user and actually returned by the cloud server. Performance
and accuracy experiments demonstrate the validity and effi-
ciency of our proposed scheme.
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