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Privacy-Preservation Enhanced and Efficient
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Cloud-Assisted Internet of Things
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Abstract—The deep integration of Internet of Things (IoT)
and cloud computing promotes a wide deployment of body area
networks (BANs) for smart health services. The data security
raises new challenges when patients’ health records (HRs) are
uploaded into the cloud server by BAN. The attribute-based
encryption (ABE) primitive is a potential option to ensure
HRs security, which provides the data confidentiality guarantee
and fine-grained access control simultaneously via cryptographic
means. However, most ABE schemes are unsuitable to be
deployed in smart health application as access policies associated
with encrypted HRs reveal patient’s privacies. Though the
recently proposed ABE with partially hidden access policy based
on composite order can alleviate the privacy leakage by only
disclosing the attribute names and concealing the practical
attribute values, the exposed attribute names still leak individual
privacies. In this article, we put forward a privacy-enhanced and
efficient ABE construction with fully hidden access policy over
prime order group based on the prominent ABE construction
due to Bethencourt et al.. Our scheme hides the sensitive
attributes in the access structure by several nontrivial designs
without compromising the correctness and security. Moreover,
our scheme’s performance is far superior to the attribute
partially hidden schemes. Extensive experiments demonstrate the
conclusion.

Index Terms—Access control, attribute-based encryption
(ABE), cloud computing, Internet of Things (IoT), privacy
protection, smart health.

I. INTRODUCTION

THE DEEP integration of Internet of Things (IoT) and
cloud computing has driven the increasing usage and

deployment of body area networks (BANs), which plays
crucial role in modern smart health-care field. In the wireless
BAN, various wearable sensors are implanted into a patient’s
body to monitor and collect key vital signs (e.g., temperature,
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heart rate, etc.) periodically. Via an IoT gateway, these data
organized as the patient’s health records (HRs) are uploaded
to the cloud server for the promising and smart health-care
service application. Conveniently, an authorization doctor is
able to provide a seasonable, personalized, and optimizing
diagnosis by accessing the HRs from the cloud platform.
Despite being such a powerful technical integration serving
to modern smart health-care service, the data security raises
new challenges when patients’ HRs are uploaded into the
semi-trusted cloud server as HRs contain numerous individual
privacies. It is well known encrypting data before upload
is an effective measure to ensure data security against the
curious cloud server or even the malicious attacker. However,
traditional approaches, including the full-fledged public-key
(e.g., RSA) and private-key (e.g., AES) encryption always
work in the all-or-nothing way and lack of the fine-grained
access control of encrypted data. For example, as existed
sensitive information in HRs, a patient suffering from a
massive heart disease does not wish her encrypted HRs to be
decrypted by anyone except for a specified cardiologist. Here,
an encrypted HRs should possess some ability that can control
who has privilege to decrypt the ciphertext.

Attribute-based encryption (ABE) may be a prospective
cryptographic tool for building indestructible smart health-
care applications since it can provide the data confidentiality
guarantee and fine-grained access control simultaneously via
cryptographic instrumentation. For instance, a patient uses an
ABE scheme to encrypt his HRs gathered from BAN with
an access policy “(HEART HOSPITAL: CLEVELAND CLINIC)
AND (DEPARTMENT: MYOCARDITIS) AND (DOCTOR:
PROF. DAVID HILBERT),” which indicates that the encrypted
HRs can only be decrypted by Prof. David Hilbert from
the department of Myocarditis at Cleveland Clinic. Generally
speaking, ABE schemes can be categorized into two major
factions: 1) ciphertext-policy ABE (CP-ABE) [1] and 2) key-
policy ABE (KP-ABE) [2]. CP-ABE attaches the access
policy to the ciphertext and embeds a set of attributes into
the private key, but KP-ABE intentionally exchanges their
positions to construct the ciphertext and the private key. The
common functional aspects of these two systems are that
the private key can decrypt the ciphertext if and only if the
attribute set satisfies the access policy. As opposed to KP-
ABE, CP-ABE is more suitable for the smart health-care
application scenario since the HRs owner needs to establish
an access policy to specify the special decryptor. However,
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though the HRs themselves have been randomized, actually
most AEB ciphertexts are leaking patients’ privacy information
to the cloud server by the clear access policy containing
sensitive information. For example, from HRs ABE ciphertexts
with policy “(HEART HOSPITAL: CLEVELAND CLINIC) AND
(DEPARTMENT: MYOCARDITIS),” the cloud server can infer
that this is a myocarditis patient. This obviously violates
individual privacy.

To mitigate the privacy leakage from access policies,
Lai et al. [3] proposed the commonsense viewpoint that
attribute values are much more sensitive than attribute names
and realized an expressive CP-ABE construction with partially
hidden access structures such that the above policy can be
expressed as “(HEART HOSPITAL: ***) AND (DEPARTMENT:
***) AND (DOCTOR: ***).” Zhang et al. [4] improved
the decryption performance of this scheme by introducing a
decryption test and developed it to a large universe construc-
tion. Hiding the attribute values makes the apparent privacy
information “this is a myocarditis patient who is being treated
by the famous doctor Prof. David Hilbert at Cleveland Clinic”
invisible to the cloud server. The privacy leakage issue can
be indeed improved greatly, however, such a partially hidden
access structure still leaks the privacy “the patient is suffering
from a heart illness” through the attribute name “HEART

HOSPITAL.” Therefore, the first motivation of this article is
that if attribute names can also be hidden, the privacy issue
incurred by the access policy can be eliminated thoroughly.
On the other hand, both Lai et al.’s and Zhang et al.’s schemes
are constructed over the composite order group, in which the
computation complexity is prohibitively expensive to some
resource-constrained IoT devices. Though we can find several
ABE constructions over prime order with partially hidden
access structures [5], [6], [7], they support only AND-gate
policy leading to a limited expression in practice. The second
motivation is that if the expressive and policy-hiding ABE
can be constructed over the prime order group, the practical
performance requirements can be achieved.

In this article, we intend to answer the following ques-
tion: Can we construct an expressive CP-AEB scheme with
fully hidden access structure over prime order group that
achieves stronger privacy protection and the highly desirable
performance in practice?

Contribution: we make an affirmative response to the above
question and propose an expressive CP-ABE construction with
fully hidden access policy over prime order group based
on the prominent CP-ABE due to Bethencourt et al. [8].
Our scheme is with highly desirable features in practice
that simultaneously: 1) fully hides both attribute names and
attribute values in the access policy, such as “(*** AND
***) OR (*** AND ***)”; 2) is realized on the prime order
group; 3) supports any monotone access structure; and 4) puts
no restriction on size of attribute value set (large universe
construction).

In addition, In order to achieve the real deployment (exe-
cutable program) in smart health-care applications, we present
an effective algorithm to solve all authorized subset (�T)

for any given access policy T . In practice, without �T the
decryption algorithm cannot find an exact attribute set in

the private key satisfying the attribute-hiding access policy
T . We implement our scheme and several similar works,
and extensive experiments demonstrate our scheme is more
efficient. To the best of our knowledge, this is the first
expressive CP-ABE built on the prime order group with fully
hidden access policy, which can be deployed in the real cloud-
assisted IoT applications, such as the smart health-care service.

II. RELATED WORK

Recently, the ABE primitive has been sufficiently researched
due to the prominent ability of being able to enforce fine-
grained access control over encrypted data. It provides a
promising measure to realize secure data sharing and utiliza-
tion in the Internet of everything era.

By generalizing identities in the identity-based encryption as
attributes, Sahai and Waters [9] initiated the ABE construction,
whose ciphertext and private key components bind a set of
attributes, respectively; magically, if the cardinality of the
intersection of the those two sets is greater than or equal
to a preset threshold value, the private key can decrypt the
ciphertext. Owing to the limited expression of only threshold
access policies, Goyal et al. [2] and Bethencourt et al. [8]
designed more flexible and expressive ABE constructions that
support any monotone access formula consisting of AND, OR,
and threshold gates by introducing the access tree structure.
Ostrovsky et al. [10] further improved the expressivity of
the access policy and developed the new ABE construction
supporting any access formula over attributes, including non-
monotonic access structures, such that the important the NOT
gate (express certain attribute is not present) is added into the
ABE system.

Besides boolean formula and access tree, a more general
class called monotone span program (MSP) is regarded to be
more suitable to the design of ABE construction [1], [3]. An
MSP is described by a n × l matrix M with a function ρ

mapping each row of M to an attribute. In practice, (M, ρ) can
be instantiated using a linear secret sharing scheme (LSSS).

On the mathematical background side, modern ABE
schemes are generally constructed over the bilinear elliptic
curve group with either prime order or composite order.
The prime group-based schemes are computationally more
efficient but relatively weaker security, and composite order
schemes [3], [4], [11], [12], [13] are on the contrary. In ABE,
paring operations linear to the number of attributes are a key
reason to lead to the performance decline. Recent several
works [14], [15], [16] have made efforts to optimize the
decryption efficiency by greatly reducing the time-consuming
pairing operations and make ABE systems more practical.

According to the position that the access policy is attached
to, ABE schemes are classified into two categories: 1) CP-
ABE [1], [8], [17], [18] and 2) KP-ABE [2], [10], [19].
CP-ABE attaches the access policy on the ciphertext and
embeds a set of attributes into the private key, but KP-
ABE intentionally exchanges their positions to construct the
ciphertext and the private key. The common functional aspects
between these two systems are that the private key can decrypt
the ciphertext if and only if the attribute set satisfies the access
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policy. Based on the traditional ABE constructions above,
recently the researchers proposed a variety of functionally
enhanced ABE, such as the ABE with shared decryption [20],
the ABE with accountability [21], the revocable ABE [22],
etc.

Most existing ABE schemes reveal the clear attributes from
the access policy, which usually contain individual privacy
information. The privacy protection requirement leads us to
study the ABE construction where the attributes in the access
policy are hidden from the public. Lai et al. [3] proposed
the commonsense viewpoint that attribute values are much
more sensitive than attribute names and realized an expres-
sive CP-ABE construction with the partially hidden access
policy [3], where only generic attribute names are revealed.
Zhang et al. [4] improved their scheme’s decryption overhead
by introducing decryption test and developed it to a large
universe construction. Actually, we can use a predicate encryp-
tion [23], [24], [25] to construct an ABE scheme with the
fully hidden access policy. However, supporting only threshold
policies in predicate encryption limits the expressivity of
access structures. Moreover, since those policy-hiding ABE
schemes are built on the composite order group, the expensive
computation overhead may be unacceptable for some light-
weight applications. Several efficient and partially hidden ABE
schemes [5], [6], [7] were realized on the prime order group,
but they support only AND-gate policy leading to a limited
expression in practice.

III. PRELIMINARIES

A. Bilinear Map

Let G and GT be two cyclic multiplicative groups of
prime order q and g be a generator of group G. There
exists a map e : G × G → GT that is a bilinear map if
e is efficiently computable and satisfies the following two
properties: 1) ∀a, b ∈ G and x, y ∈ Zp, e(ax, by) = e(a, b)xy

and 2) e(g, g) �= 1, then we say e is a bilinear pairing map
over groups G and GT .

B. Access Structure

Let {P1, P2, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,P2,...,Pn} is monotone if ∀B, C: if B ∈ A and B ⊆ C then
C ∈ A. An access structure is a collection A of nonempty
subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The
sets in A are called the authorized sets, and the sets not in A are
called the unauthorized sets. In ABE, parties are represented
by attributes.

C. Linear Secret Sharing Scheme

A LSSS � over a set of parties P is called linear if 1) the
shares for each party form a vector over Zp and 2) there exists
an l × n matrix A. For all i = 1, . . . , l, the ith row of A is
labeled by a party ρ(i), where ρ is a function from {1, . . . , l}
to P . When we consider the column vector v = (s, r2, . . . , rn),
where the secret s ∈ Zp to be shared and r2, . . . , rn ∈ Zp are
randomly chosen, then Av is the vector of l shares of the secret
s according to �. The share (Av)i belongs to party ρ(i).

Fig. 1. System model.

In ABE, suppose that S ∈ A is an authorized set and we
define the subset I = {i : ρ(i) ∈ S} ⊆ {1, 2, . . . , l} to be
an authorized set satisfying (A, ρ). For any I, we can find
constants {wi ∈ Zp}i∈I such that

∑
i∈I wiλi = s holds, for any

valid shares {λi} of the secret s.
In this article, we first convert an access tree T into

the LSSS matrix (A, ρ) by the standard approach presented
in [18]. Then, we propose an effective algorithm to find out
all authorized sets I1, I2, . . . , from (A, ρ) and further write
notation �T to denote set {I1, I2, . . . , }.

IV. PROBLEM FORMULATIONS

A. System Model

Fig. 1 shows the system model which consists of five
entities, i.e., the data owner, the cloud server, the data user,
the authority, and the IoT gateway. The data owner, such as a
patient collects data by BAN, and encrypts them using an ABE
scheme. The encrypted data via IoT gateway is uploaded to
the cloud server. On the other hand, the authority is in charge
of the system key management and user authorization. When
a data user, such as a doctor joins in the system, the authority
issues to the data user a secret key associated with the data
user’s attribute set. The data user is able to use the secret key to
access the encrypted BAN data stored in the cloud server if his
attribute set satisfies the access policy in the ciphertext. In our
system, data confidentiality against the cloud server and data
access control against the illegal data user can be guaranteed
by ABE system, and privacy protection of data owner against
the cloud server can be achieved by the fully hidden access
policy.

B. Adversary Model

In essence, in this work we just hide the attribute
information (including attribute names and attribute values) in
the access structure by several nontrivial designs for privacy
protection without changing the basic algorithm framework
of [8]. Therefore, the selective security over generic bilinear
group model is still applicable to our scheme. Consequently,
the data security can be naturally guaranteed, and the collusion
attack does not occur due to the collusion-resistance property
proved in that work.
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Our goal is to fully hide the attribute information to prevent
the cloud server from inferring user’s privacy by peeping at
the access structure such that the cloud server is assumed to
be honest-but-curious, who would comply with the legitimate
data storage and computational commitments but may be
curious to infer as many user’s privacies as possible.

V. ADAPTED ACCESS TREE

In this section, we present an adapted access tree, where the
leaf nodes reveal nothing versus the partially hidden structures
in [3] and [4], where the attribute categories are exposed.

We first introduce serval notations describing the access
tree. The notation numx is used to denote the number of
children of a node x, and x’s threshold value is defined as
1 ≤ kx ≤ numx, which presents the type of gate, for example
the values 1 and numx denote the OR (∨) and AND (∧) gate,
respectively; in particular, if x is a leaf node, then kx = 1.
On the other hand, in order to ensure our scheme to be
structurally successful when revealing nothing, we redefine the
function index as follows. If x is a nonleaf node, index(x)
is identical to the original access tree in [8]; otherwise, we
define the other function index′(x) = π(ui) = i, where ui

denotes the underlying attribute category associated with the
x node and π is a function mapping an attribute category to
the corresponding subscript, which will be defined in the next
section. For example, if a leaf node x associates the attribute
(u3 : v), we have index′(x) = π(u3) = 3, where v is a
current attribute value corresponding to the attribute category
u3. Additional, we define index(x) = 0 if x is a leaf node
and index′(x) = 0 if x is a nonleaf node.

Note that given a leaf node and a nonleaf node with a
common parent, there exists a possible conflict that these
two nodes have a same index value due to existing two
functions index(·) and index′(·). If the conflict appears,
the decryption algorithm may fail determined by the type
of the gate of their parent node. For example, we assume
there is an AND-gate node that has one leaf node and two
nonleaf nodes denoted by x, y, z from left to right. Obviously
index(y) = 2,index(z) = 3 according to our definition,
if x’s index value is index′(x) = π(u3) = 3 exactly,
the conflict appears, which will lead to the decryption fail
as two points do not satisfy the AND-gate. We solve the
conflict by letting index values of other nodes increment
by 1 repeatedly until all index values are different. In this
example, when the conflict occurs index′(x) = 3 we compute
index(y) = 2 + 1 + 1 = 4,index(z) = 3 + 1 + 1 = 5.

Fig. 2 shows an example of an access tree of boolean
formula ((SS#:“123-45-6789” OR (AFFILIATION: “Park
Hospital” AND OCCUPATION:“Cardiologist”)), where ∨ and
∧ denote OR and AND gate, respectively, and the attribute
name universal set is {u1 = COUNTRY, u2 = SS#, u3 =
AFFILIATION, u4 = OCCUPATION}.

VI. CONSTRUCTION

Let G and GT be two cyclic multiplicative groups of prime
order p, equipped with the bilinear map e : G×G → GT . As
usual, g denotes a generator of group G. We write 
a,S(x) =

Fig. 2. (a) Access structure hiding the attribute values while exposing the
attribute categories. (b) Our access structure hiding both attribute values and
attribute categories.

∏
b∈S,a �=b ([x − b]/[a − b]) as the Lagrange coefficient so that


a,S(0) = ∏
b∈S,a �=b (−b/[a − b]), where a ∈ Zp and S ⊆ Zp.

Let U = {u1, . . . , un} be the attribute category universe. Define
an injective function π(·) mapping an attribute category to its
subscript, i.e., π(ui) : ui ∈ {u1, . . . , un} → i ∈ {1, . . . , n}. Our
construction consists of Setup, Encryption, Key Generation,
and Decryption 5 algorithms, which are described in detail as
follows.

A. Setup

The Setup algorithm first puts up the system running
environment (G,GT , e, p, g, π) under a security parameter
k. Next, it chooses two random elements α, β ∈ Zp and
computes ϕ = e(g, g)α, λ = gβ . Given a set of attribute
values V = {vπ(ui)|i ∈ I} corresponding to attribute names
U ′ = {ui|i ∈ I} ⊆ U where I ⊆ {1, 2, . . . , n}, define two
hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zp

mapping a string of arbitrary length to an element in G and
Zp, respectively. The system public key is (ϕ, λ, H1, H2) and
(α, β) is kept secret as the master key.

B. Encryption

The Encryption algorithm is responsible for encrypting a
message M ∈ GT under the public key and an access tree
T . For each node t in T , we first generate two polynomials
qt(x) = a0+a1x+· · ·+adt x

dt and q′
t(x) = a′

0+a′
1x+· · ·+a′

dt
xdt ,

where a1, . . . , adt and a′
1, . . . , a′

dt
are randomly chosen from

group G and the degree dt, d′
t are set to be dt = d′

t = kt −1. If
t is a leaf node, the corresponding polynomials are qt(x) = a0
and q′

t(x) = a′
0 due to kt = 1. Now, we determine a0 and a′

0
starting with the root node R of T as follows. The algorithm
chooses two random exponents μ and μ′ and sets

qt(0) = a0 =
⎧
⎨

⎩

μ t is the root node R
qparent(t)(index(t)) t is a non-leaf node
qparent(t)

(
index′(t)

)
t is a leaf node

q′
t(0) = a′

0 =
⎧
⎨

⎩

μ′ t is the root node R
q′
parent(t)(index(t)) t is a non-leaf node

q′
parent(t)

(
index′(t)

)
t is a leaf node.

Let V = {vπ(ui)|i ∈ I} be the underlying attribute value set of
leaf nodes in access tree T , where {ui}i∈I is the corresponding
attribute name set. For ease of description, we use the same
notation u as the attribute name to denote the node in access
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tree, and the algorithm uses the public key (ϕ, λ, H1, H2) to
encrypt message M as follows.

CT1 =
(

C1 = ϕμ = Me(g, g)αμ, C2 = λμ = gβμ

∀v ∈ V : Cπ(u) = gqu(0)

C′
π(u) = H1(vπ(u))

qu(0)H1(vπ(u))
qu(0)H2(vπ(u))

)

CT2 =
(

Ĉ1 = ϕμ′ = e(g, g)αμ′
, Ĉ2 = λμ′ = gβμ′

∀v ∈ V : Ĉπ(u) = gq′
u(0)

Ĉ′
π(u) = H1(vπ(u))

q′
u(0)H1(vπ(u))

q′
u(0)H2(vπ(u))

)

M′s ciphertexts consist of three components (T, CT1, CT2),
in which the actual attribute values are hidden in ciphertext
components C′

π(u) and Ĉ′
π(u) by binding a random exponent

tπ(u) for corresponding attribute name u. CT2 can be seen as
an encryption of 1 and is used in Decryption algorithm to
implicitly discovery an attribute set satisfying the access tree.

C. Key Generation

Given an attribute value set S = {sπ(ui)|i ∈ I}, where {ui}i∈I

is the corresponding attribute name set, the algorithm generates
the private key with the help of the master key (α, β). It first
chooses a random γ ∈ Zp and computes gα/βgγ /β . Then, for
each attribute sπ(u) ∈ S, the algorithm chooses a random γs and
computes gγ H1(sπ(u))

γs(1+H2(sπ(u)), gγs . The private key with
respect to S is denoted as

SK =
(

K = gα/βgγ /β

∀s ∈ S : Kπ(u) = gγ H1(sπ(u))
γs(1+H2(sπ(u))K̂π(u) = gγs

)

.

D. Decryption

If the attribute set in private key satisfies the access tree in
ciphertext, the decryption algorithm can recover message M
without having any knowledge of attribute information.

The most critical challenge is how to find an exact attribute
subset in private key satisfying the access tree without attribute
information. An obvious observation is that while the attribute
subset cannot be determined on the fly in the process of the
decryption, we know it is certainly in the set �T . Therefore,
the first problem necessary to solve is to compute �T from
an attribute-hiding access tree T . In this article, we propose
an effective algorithm to gain �T , which is described in
Algorithm 1. The main idea behind of this algorithm is to
first convert the access tree T into an equivalent LSSS matrix
A and then solve the general solution of the linear equation
system Au = b, where b� = (1, 0, . . . , 0) (lines 1–7 in
Algorithm 1). Obviously, the general solution summarizes all
constant sets that satisfy

∑
1≤i≤n Aiti = (1, 0, . . . , 0) in the

LSSS system, where Ai is the ith row of LSSS matrix A, ti
denotes the ith component of the general solution, and n is
the number of attributes in T . Next, we need to retain those
attributes corresponding to nonzero components to form a

Fig. 3. Example to convert an access tree to an LSSS matrix.

Algorithm 1 Solution of All Subset Satisfying an Access Tree
Input:

Access tree T .
Output:

The set �T of all attribute subset satisfying the access tree T .
1: Convert T into an LSSS matrix A.
2: Define a variable vector u = (u1, . . . , un)�.
3: Transpose matrix A to obtain A′s transposed matrix A�.
4: Solve system of linear homogeneous equations A�u = b, where

b is a zero vector (0, . . . , 0)� of dimension m.
5: Present the general solution of A�u = b as (u1, . . . , un)� =

(a1, . . . , an)� · t, where t is a constant integer.
6: Solve a particular solution (s1, . . . , sn) of system of linear

inhomogeneous equations A�u = b′, where b′ is the vector
(1, 0, . . . , 0)� of dimension n.

7: Write the general solution of A�u = b′ as (u1, . . . , un)� =
(a1, . . . , an)� · t + (s1, . . . , sn)� = (a1t + s1, . . . , ant + sn)�.

8: Write (a1t+s1, . . . , ant+sn) as (u1 = a1t+s1, . . . , un = ant+sn)
and set �T = ∅.

9: if exist some 0-components uj, . . . , uk(1 ≤ j < . . . < k ≤ n) in
(u1 = a1t + s1, . . . , un = ant + sn) then

10: Compute set I = {u1, . . . , un} − {uj, . . . , uk} and add I into
�T .

11: else
12: Add set I = {u1, . . . , un} into �T .
13: end if
14: repeat
15: Find a integer t such that making some components

uj, . . . , uk(1 ≤ j < . . . < k ≤ n) equal to 0.
16: Compute set I = {u1, . . . , un} − {uj, . . . , uk}.
17: Add I into �T .
18: until (such a integer t exists no longer)
19: return �T .

set when setting a proper constant t. All such sets make up
�T (lines 8–17 in Algorithm 1). Figs. 3 and 4 demonstrate
an example of Algorithm 1, where x, y, z, m denote four
attributes in an access tree. We can employ a standard
approach to convert an access tree into an LSSS matrix in
the literature [1]. Note that, in our scheme we let x, y, z, m be
symbolically equivalent to a leaf node as well as an attribute
name, respectively, the algorithm actually returns �T =
{{π(x), π(y), π(z), π(m)}, {π(x), π(m)}, {π(x), π(y), π(z)}}, in
which both attribute names and attribute values are invisible
to the cloud server.

With the help of �T , we can use the ciphertext CT1 to
determine an exact attribute subset in private key satisfying the
access tree (lines 2–18 in Algorithm 2), and further employ
the attribute subset to recover the message from ciphertext CT2
(lines 19–16 in Algorithm 2) in the attribute-hiding manner.
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Fig. 4. Example to solve �T .

VII. CORRECTNESS AND SECURITY ANALYSIS

A. Correctness Analysis

Given the ciphertexts (CT1, CT2) with the attribute-hiding
access tree T , we first run Algorithm 1 to calculate set �T .
We show that running codes lines 2–18 in Algorithm 2 can
find an exact attribute subset in private key satisfying T if the
subset exists in �T . Without loss of generality, we suppose
that I = {π(u)u∈U|U ⊆ U} ∈ �T is such one. For each leaf
node u, we compute

f̂u = e
(
Ĉπ(u), Kπ(s)

)

e
(

Ĉ′
π(u), K̂π(u)

)

=
e

(

gq′
u(0), gγ · gγ H1

(
sπ(u)

)γs(1+H2(sπ(u))
)

e
(

H1
(
vπ(u)

)q′
u(0)

H1
(
vπ(u)

)q′
u(0)H2(vπ(u)), gγs

)

=
e
(

gq′
u(0), gγ

)
e
(

gq′
u(0), H1

(
sπ(u)

)γs
)

e
(

H1
(
vπ(u)

)q′
u(0)

, gγs

)

e
(

gq′
u(0), H1

(
sπ(u)

)γsH2(sπ(u))
)

e
(

H1
(
vπ(u)

)q′
u(0)H2(vπ(u)), gγs

)

= e(g, g)q′
u(0)γ

(
impliedly sπ(u) = vπ(u)

)
. (1)

For each nonleaf node u (here, we also use the notation u to
label the nonleaf node for description uniformity), we result fu
by recursively calculating fz for u′s every child node z. Let Su

be an arbitrary ku-sized set of child nodes z such that fz �=⊥,
we classify the nodes in Su into two sets: 1) nonleaf node
set denoted by S′

u, and 2) leaf node set denoted by S′′
u , then

Su = S′
u ∪ S′′

u . We compute

f̂u =
∏

z∈S′
u∪S′′

u

f
�i,̂Su∪̃Su

(0)

z

=
∏

z∈S′
u∪S′′

u

(
e(g, g)γ ·q′

z(0)
)�i,̂Su∪̃Su

(0)

=
∏

z∈S′
u∪S′′

u

(
e(g, g)

γ ·q′
parent(z)(index(z)+index′(z))

)�i,̂Su∪̃Su
(0)

=
∏

z∈S′
u∪S′′

u

(
e(g, g)γ ·q′

x(i)
)�i,̂Su∪̃Su

(0)

= e(g, g)
γ ·∑i∈̂Su∪̃Su

q′
u(i)·

(
�i,̂Su∪̃Su

(0)
)

= e(g, g)γ ·q′
u(0) (2)

where i = index(z) + index′(z), Ŝu = {index(z) +
index′(z) : z ∈ S′

u,index
′(z) = 0} if z is the nonleaf node

and S̃u = {index′(z) + index(z) : z ∈ S′′
u,index(z) = 0}

if z is the leaf node.
Since I = {π(u)u∈U|U ⊆ U} ∈ �T implicitly satisfies the

access tree T , according to (1) and (2), we can get f̂R =
e(g, g)q′

R(0)γ = e(g, g)γμ′
by recursive computations until root

node R. The algorithm further verifies

e(Ĉ2, K)/̂fR =
e
(

gβμ′
, gα/βgγ /β

)

e(g, g)γμ′ =
e
(

gμ′
, gαgγ

)

e(g, g)γμ′

= e(g, g)αμ′ = Ĉ1.

With the set I = {π(u)u∈U|U ⊆ U}, similarly, we can
recursively compute fR = e(g, g)qR(0)γ = e(g, g)γμ and
decrypt the ciperhtext CT1 as C1 · (e(C2, K)/fR)−1 = M.

Example: We give a concrete example to help to understand
how (2) work, as shown in Fig. 5. The access tree contains
three leaf nodes A, B, and C corresponding the underlying
attribute values x, y, and z, respectively, where [ · ] represents
our hidden structure of an attribute value, which includes two
cryptographic hash functions and an exponentiation operation
over group G. Here, we only demonstrate the computation
process of fu of the slightly complex case that u is a nonleaf
node and u′s children contain both nonleaf and leaf nodes. In
this example, the root node R is such a node whose children
contain a nonleaf node F and a leaf node C. According to the
encryption algorithm, we set the polynomial associated with
the root node R to be qR(x) = μ + a1x due to R′s threshold
value being kR = 2 such that the degree of the corresponding
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Algorithm 2 Decryption
Input:

Ciphertext CT = (T, CT1, CT2), Key SK
Output:

Message M
1: Run Algorithm 1 to calculate set �T on input the access

tree T.
2: i : = 1, find : = 0, obj : = null
3: repeat
4: Let Ii = {π(u)u∈U} ∈ �T , U ⊆ U ;
5: for each leaf node u ∈ U do
6: Calculate

f̂u = e(Ĉπ(u), Kπ(u))

e(Ĉ‘π(u), K̂π(u))

7: end for
8: Similarly, let notation u be a nonleaf node and Su denote

its child node set.
9: Recursively calculate f̂u = ∏

z∈S′
u∪S′′

u
f
�i,̂Su∪̃Su

(0)

z until
root node R, where i = index(z) + index′(z), Ŝu =
{index(z) + index′(z) : z ∈ S′

u,index
′(z) = 0}

if z is the nonleaf node and S̃u = {index′(z) +
index(z) : z ∈ S′′

u,index(z) = 0} if z is the leaf node.
10: if e(Ĉ2, K)/̂fR == Ĉ1 then
11: find : =1;
12: obj : = (Ii = {π(u)u∈U}, U ⊆ U)

13: end if
14: i + +;
15: until ((i > |�T |)||(find == 1))

16: if obj == null then
17: return ⊥
18: end if
19: Use set obj to recovery message M as follows.
20: for each leaf node u ∈ U do
21: Calculate

fu = e(Cπ(u), Kπ(u))

e(C′
π(u), K′

π(u))

22: end for
23: Let u be a nonleaf node and Su denote its child node set.
24: Recursively calculate fz = ∏

z∈S′
u∪S′′

u
f
�i,̂Su∪̃Su

(0)

z until
root node R,where i = index(z) + index′(z), Ŝu =
{index(z) + index′(z) : z ∈ S′

u,index
′(z) = 0} if z is

the nonleaf node and S̃u = {index′(z) + index(z) : z ∈
S′′

u,index(z) = 0} if z is the leaf node.
25: Compute

C1 · (e(C2, K)/fR)−1 = M

26: return M.

polynomial is dR = kR − 1 = 1. Since F is a nonleaf node
and C is a leaf node, we have index(F) = 1,index′(F) = 0
and index′(C) = π(u3) = 3,index(C) = 0 such that
qF(0) = qparent(F)(index(F)+index′(F)) = qR(1) = μ+a1
and qC(0) = qparent(C)(index′(C) + index(C)) = qR(3) =
μ + 3a1. We define the complete polynomials for F and C
as qF(x) = μ + a1 + rx and qC(x) = μ + 3a1, where r is a
random value. Let fF = e(g, g)qF(0)γ [calculating from nodes

Fig. 5. Example of the decryption computation.

A and B by (2)] and fC = e(g, g)qC(0)γ [calculating by (1)].
We compute

fR =
∏

z∈{F}∪{C}
f
�i,{index(F)+index′(F)}∪{index(C)+index′(C)}(0)

z

=
∏

z∈{F,C}

(
e(g, g)γ ·qz(0)

)�i,{index(F),index′(C)}(0)

=
∏

z∈{F,C}

(
e(g, g)γ ·qR(index(z)+index′(z))

)�i,{1,3}(0)

=
∏

z∈{F,C}

(
e(g, g)γ ·qR(i)

)�i,{1,3}(0)

= e(g, g)γ ·(qR(1)·(−3)/(1−3)+qR(3)·(−1)/(3−1))

= e(g, g)γ ·((μ+a1)·3/2−(μ+3a1)·1/2)

= e(g, g)γ ·μ = e(g, g)γ ·qR(0). (3)

B. Security Analysis

Essentially, our scheme uses the same encryption framework
for a message as the original construction in [8] other than
a real attribute value is hidden in our special ciphertext
component. The security guarantee is that the attacker has
no capacity to recover the indispensable decryption element
e(g, g)γμ even in the collusion attack environment. Therefore
intuitively, our scheme is sucre under the generic bilinear
group model, where the hash function H1 is modeled as the
random oracle.

To achieve the protection of attributes and ensure the
correctness of ABE scheme, we derive a special ciphertext
component mentioned above, for example, which can be
written as Cu = H1(v)qu(0)H1(v)qu(0)H2(v), where u is a leaf
node in an access policy T and v is the attribute value
hidden in u. As a result, we must answer the following
question: Can a polynomial-time adversary recover attribute
information v from the ciphertext component Cu? We give the
formal security proof to demonstrate that any polynomial-time
adversary cannot obtain v from the ciphertext construction Cu

if decisional Diffie-Hellman (DDH) assumption holds.
Theorem 1: Our proposed ciphertext component Cu hiding

the attribute information v is semantically secure against
chosen-plaintext keyword attack (CPA) if DDH assumption
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holds, where H1 is modeled as the random oracle and H2 is a
one-way hash function.

Proof: Assuming a PPT adversary can break Cu to
recover the underlying attribute information v with a nonneg-
ligible advantage ε, we can construct a simulator B who can
solve the DDH problem with a nonnegligible advantage (ε/2).

The challenger C first flips a binary coin μ. If ξ = 0, C sets
tuple t0 : (g, A = ga, B = gb, C = gab); if ξ = 1, he sets tuple
t1 : (g, A = ga, B = gb, C = gc), where a, b, c, are chosen
from Zq at random uniformly. Tuple tμ is sent to simulator B.
The simulator B plays the following game with adversary A
on behalf of challenger C.

Setup: B sends the public parameter (G,GT , g, q, e, H1, H2)

to A.
Phase 1: A accesses the encryption construction Cu many

times using arbitrary attribute values to ask corresponding
ciphertext. When A calls for the evaluation of H1 on any
attribute value v, a new random value v′ is chosen (unless
it has already been used), and a value gv′

as the response
to H1(v) [8]. Finally, he outputs two values v1 and v2
corresponding to attribute name u1 and u2 and sends them
to B.

Challenge: B flips a binary coin γ and encrypts vγ as Cuγ =
(C)H2(vγ ).

If μ = 0, C = gab. According to the polynomial definition
in the encryption, for each node t in the subtree of the root
node R, qt(0) must contain the term μ for each node, including
any leaf node. Recall that since μ is chosen in random at
the rood node R, qt(0) is also random. We use notation
q′

uγ
(0) to denote the random value for quγ (0). As q′

uγ
(0) is

random, the value ([q′
uγ

(0)]/[H2(vγ )])+q′
uγ

(0) is also random.
Since a, b are chosen from Zq at random uniformly, we let
([q′

uγ
(0)]/[H2(vγ )]) + q′

uγ
(0) = ab, Thus, we have

Cuγ = (C)H2(vγ ) =
(

g
q′
uγ (0)

H2(vγ )
+q′

uγ
(0)

)H2(vγ )

= gq′
uγ

(0)gq′
uγ

(0)H2(vγ )
.

As both q′
uγ

(0) and quγ (0) is random, let q′
uγ

(0) =
v′
γ quγ (0). Recall that when accessing the random oracle H1

for vr, the simulation outputs gv′
γ as response of H1(vγ ).

Therefore, we have Cuγ = H1(vγ )quγ (0)H1(vγ )quγ (0)H2(vγ ),
which is a valid ciphertext for attribute value vγ .

If μ = 1, C = gc. Then we have Cuγ = gcH2(vγ ). Since c
is a random element, therefore Cuγ is a random element in G

from A’s perspective and contains no information about vγ .
Phase 2: Repeat Phase 1.
Guess: A outputs a guess γ ′ of γ . If γ ′ = γ , then B outputs

the guess ξ ′ = 0 of ξ . This means C sent the valid encryption
tuple t0 : (g, A = ga, B = gb, C = gab) to B. Since A has
advantage ε to break Cu, therefore, the probability A outputs
guess γ ′ of γ satisfying γ ′ = γ is (1/2)+ε. Correspondingly,
the probability that B outputs guess ξ ′ of ξ satisfying ξ ′ =
ξ = 0 is (1/2)+ε. If γ ′ �= γ , then B outputs the guess ξ ′ = 1
of ξ . This means random tuple t1 was sent to B. Therefore,
the probability A outputs guess γ ′ of γ satisfying γ ′ = γ is

(a) (b)

Fig. 6. (a) Key generation time and (b) encryption time when varying the
number of attributes.

(1/2). Correspondingly, the probability that B outputs guess
ξ ′ of ξ satisfying ξ ′ = ξ = 1 is (1/2).

Hence, the overall advantage that B solves the DDH
problem can be computed:

∣
∣
∣
∣
1

2
Pr[ξ = ξ ′|ξ = 0] + 1

2
Pr[ξ = ξ ′|ξ = 1] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣

[
1

2

(
1

2
+ ε

)

+ 1

2
· 1

2

]

− 1

2

∣
∣
∣
∣ = ε

2

Since ε is nonnegligible, therefore (ε/2) is also nonnegli-
gible. This conclusion means B is able to solve the DDH
problem with a nonnegligible advantage, which contradicts
DDH problem assumption.

VIII. EXPERIMENTAL EVALUATION

We implement our construction as well as the similar
schemes in [3] and [4] for the convictive performance com-
pares. All programs are implemented in Java environment
relying on the Java pairing-based cryptography library1 in
which Type A pairing is used for our scheme and Type A1
for the other two schemes. All experiments are tested at a
Windows 10 System with 3.30-GHZ Inter Core i7-11370H
CPU and 16-GB memory.

Fig. 6(a) and (b) illustrates the experimental evaluate results
of Key Generation algorithm and Encryption algorithm. we
can see that time cost of both of them linearly increases with
the number of attributes. However, our scheme requires far
less time in the same experiment parameters than other two
works. For example, when we set the number of attributes to
be 20, the key generation and encryption time of our scheme
is about 0.74 and 1.79 s, while Lai et al.’s scheme needs about
4.45 and 16.8 s, and Zhang et al.’s scheme needs 4.52 and
14.2 s. Fig. 7(a) and (d) presents the time cost of running
the decryption algorithm in the three schemes when varying
the number of attributes in the authorized subset under the
different size of the authorized subset set. The experimental
results reveal that the time cost on decryption of all of the
three schemes is closely related to those two parameters. Given
an access policy T , the more the number of T’s authorized
subsets and the number of attributes in one authorized subset
are, the more time cost is consumed on running decryption
algorithm. However, our scheme is more suitable to deploy in
the real smart health application due to the highly desirable
performance cost.

1http://gas.dia.unisa.it/projects/jpbc/index.html
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(a) (b) (c) (d)

Fig. 7. Decryption time when varying the number of attributes in the authorized subset and setting different size of authorized subset set of the access policy
T as (a) |�T | = 1, (b) |�T | = 2, (c) |�T | = 3, and (d) |�T | = 4.

(a) (b) (c) (d)

Fig. 8. HRs access time when varying the number of HR ciphertexts and setting different number of attributes in access policies I as (a) |I| = 5, (b) |I| = 10,
(c) |I| = 15, and (d) |I| = 20.

We put our implementations on the real HR dataset to run
experiment cases, where each symmetric key (using to encrypt
HRs) is encrypted under a policy T of form “attr1 AND attr2
AND · · · AND attrn” such that we have |�T | = 1. The
experiment results in Fig. 8 demonstrate that the ciphertext
access time cost of all of the three schemes is closely affected
by the complexity of the access policy. Moreover, the more the
number of attributes in access policies is, the less the number
of HRs can be accessed. For instance, when the number of
HR ciphertexts is 25 and the number of attributes in access
policies is set as 5, 10, 15, and 20, respectively, the number of
the ciphertexts can be accessed (decrypted) is 6, 5, 5, and 4, as
shown in Fig. 8(a)–(d). As a comparison, our proposed scheme
has more practical access performance in the real application.
For example, when the number of RH ciphertexts achieves 25
and setting the number of attributes in the access policy to
be 15, the access time of our scheme is 4.96 s, and Lai et.’s
and Zhang et.’s schemes are 33.37 and 18.72 s, respectively,
as shown in Fig. 8(c), where five RH ciphertexts are accessed
under this experiment parameter.

IX. CONCLUSION

In this article, we propose an expressive, policy fully
hiding, and efficient CP-ABE construction. Compared to the
existing related works, our CP-ABE scheme bears three
critical advantages that simultaneously: 1) does not leak any
attribute information, including both attribute categories and
attribute values; 2) is based on the faster prime order pairing
group; and 3) supports any monotone access structure. We
implement our construction, which can be deployed the real
smart health-care application scenario for privacy-preserving
and fine-grained access control on the encrypted patient HR.
However, similar to the existing related works, our scheme

needs also a relatively expensive test to find an exact attribute
set in the private key satisfying the current access policy
from all authorized subsets (�T) of the access policy by a
redundant ciphertext. How to eliminate the test computation
and the redundant ciphertext making it more practical will be
our future work.
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