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Abstract—Collaborative cloud-edge-end computing is a
promising solution to support computation-intensive and latency-
sensitive tasks by utilizing rich computing resources of cloud
datacenters and low access delay of mobile edge computing
(MEC) servers. Compared with traditional cloud computing and
MEC, the cloud-edge environment has a stronger heterogene-
ity of servers and networks, resulting in significant differences
between servers in the computation speed and access delay.
However, few studies on cloud-edge-end task offloading focused
on the characteristic of 5G heterogeneous networks in the cloud-
edge environment. In this paper, we study the task offloading
problem for collaborative cloud-edge-end computing in MEC-
enabled small cell networks with low-cost distributed wireless
backhaul. We aim to minimize the energy consumption of all
user devices (UDs) via jointly optimizing the offloading deci-
sion, UDs’ transmission power, and the allocation of spectrum
and computation resources. To solve the non-convex problem, we
decouple the original problem into three subproblems, and design
an efficient method with solving these three subproblems itera-
tively to obtain a high-quality solution. The simulation results
indicate that our proposed method can lead to significant reduc-
tion in the energy consumption of all UDs compared with other
conventional methods.

Index Terms—Collaborative task offloading, mobile edge com-
puting, distributed wireless backhaul.

I. INTRODUCTION

W ITH the explosive proliferation of intelligent user
devices (UDs), various kinds of computation-intensive

and latency-intensive applications (e.g., virtual reality, object
detection) have emerged in our daily life [1]. However, due
to the limited computation capacity and energy supply, it
is a great challenge for UDs to execute complex appli-
cations within certain deadlines. One popular paradigm to
overcome the computation bottleneck is cloud computing

Manuscript received 4 September 2022; revised 15 February 2023; accepted
5 April 2023. Date of publication 11 April 2023; date of current version
12 December 2023. This work was supported in part by the Natural Science
Foundation of China under Grant 62172442, and in part by the Youth Science
Foundation of Natural Science Foundation of Hunan Province under Grant
2020JJ5775. The associate editor coordinating the review of this article
and approving it for publication was K. Shiomoto. (Corresponding author:
Zhigang Hu.)

Hui Xiao, Jiawei Huang, Zhigang Hu, and Meiguang Zheng are
with the School of Computer Science and Engineering, Central South
University, Changsha 410083, China (e-mail: huixiao@csu.edu.cn;
jiaweihuang@csu.edu.cn; zghu@csu.edu.cn; zhengmeiguang@csu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TNSM.2023.3266238

(CC) [2], [3], which enables UDs to transfer the tasks to the
remote cloud datacenter (CDC) owning powerful computing
power. Nevertheless, the transmission delay during the offload-
ing process can be too high to meet the stringent latency
constraints for some latency-intensive tasks because of the
long distance between UDs and the CDC [4]. Recently, mobile
edge computing (MEC) has emerged as a promising paradigm
that pushes computation and storage resources to the network
edge by deploying servers at the edge of the radio access
network (RAN) (e.g., cells) [5]. With the idea of transfer-
ring resource-intensive tasks from the UDs to the edge servers
(ESs), task offloading enables application tasks to be executed
at a lower time and energy cost than local execution [6]. Due
to resource limitation such as CPU, bandwidth, and storage,
the optimization of resource utilization [7], service manage-
ment [8], and quality of service (QoS) provisioning [9] are the
main concerns in the research of MEC. Unfortunately, the lim-
ited resource capacity still leads to considerable performance
bottlenecks for task offloading in MEC.

Inspired by the above characteristics, the collaboration of
CC and MEC has been introduced to exploit the benefits
of these two paradigms [10], [11], [12], i.e., using CC to
guarantee adequate supply and high availability of resources
and using MEC to support mobility and low latency require-
ment of UDs. Recently, some researchers have investigated
the performance of collaborative cloud-edge-end computing
architecture from the perspective of energy consumption and
QoS. Many works aimed to minimize the energy consump-
tion [13], [14] or task execution time [15], [16] by optimizing
the offloading strategy and utilization of computation and
communication resources. Nevertheless, as the network envi-
ronment and task demands become increasingly complex and
dynamic, traditional offloading approaches based on heuristic
rules [17] and mathematical programming [15] may not be
incapable of making real-time decisions in large-scale edge-
cloud computing systems. Recently, there has been interesting
research [18], [19] that adopts artificial intelligence meth-
ods (e.g., reinforcement learning, deep learning) to design
real-time offloading schemes with prompt responses to incom-
ing environment change. Since UDs directly communicate
with their associated cells via RAN, all the communication
between UDs and the CDC needs to be transferred by the
cells. Therefore, the network configuration between cells and
the CDC will exert great influence on the transmission delay
and offloading performance [20]. However, the above studies
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only considered a simple cross-tier communication mecha-
nism between cells and the CDC, i.e., each cell has direct
one-hop access to the CDC, and thus are not applicable for
more complex 5G network situations.

In the current fifth-generation (5G) networks, a huge num-
ber of small cells (SCs) are densely deployed to meet the
exponential growth of wireless data traffic [21], making the
construction of traditional fiber-optic backhaul network costly
and difficult. As the millimeter-wave (mm-wave) technologies
develop rapidly, the distributed wireless backhaul (DWB) is
emerging as a desiring solution for interconnecting SCs due
to its high flexibility and cost-effectiveness [22]. By deploying
the DWB, some SCs serve as gateways that gain access to the
core network through fiber-optic cables. Other SCs transmit
their data to their respective gateways via DWB links, and
then the gateways forward the aggregated backhaul traffic to
the core network. Note that the CDC is normally deployed
in remote areas far from the city center [23]. Therefore, the
gateway acts as a bridge between the densely-deployed small
cells and the cloud and the deployment of DWB helps build
communication links between a huge number of SCs and the
CDC in a low-cost and high-efficiency manner. In such case,
the allocation of wireless backhaul spectrum and wired band-
width can exert a great influence on the transmission speed of
the tasks offloaded to the CDC, and therefore deserves serious
consideration during making offloading decision. Furthermore,
the offloading decision can affect the allocation of computa-
tion and communication resources [12]. Therefore, the flexible
offloading destinations (including the UD, ES, and CDC) and
heterogeneous network environments in the cloud-edge com-
puting system make it more complex and challenging to design
a joint offloading decision and resource allocation scheme
for achieving low energy consumption and high QoS level
compared with the MEC system.

In this paper, we consider a heterogeneous cloud-edge-end
cooperative network supported by densely deployed SCs with
DWB, where each SC is attached with an ES for serving the
UDs in its coverage area. Each task can be executed locally, or
offloaded to the ES or the CDC, which typically corresponds to
the scenario of serving non-partitionable tasks [24], [25], [26].
SCs are divided into two categories: the gateway connected to
the CDC via fiber-optic links, and normal SCs connected to
the gateway via DWB. Considering the different communica-
tion links between different categories of SCs and the CDC,
we present a novel network communication model for calcu-
lating the task transmission delay under different offloading
decisions. We focus on optimizing the energy consumption of
UDs for the benefit of UDs due to the convenient and stable
energy supply at the edge nodes and the limited battery capac-
ity of UDs according to [7], [27], [28]. According to previous
studies [7], [16], [29], the return of the result can be omitted
since the downlink rate is normally much larger than the uplink
rate and the result data size is much smaller than the input data
size. Besides, it is also essential to meet the latency require-
ments of UDs and ensure a desired QoS level. Therefore, we
formulate an energy-efficient task offloading problem where
the energy consumption of all UDs incurred from local task
execution and local task uploading is minimized under the

requirements of latency deadline. The main contributions of
this paper are summarized as follows:

• We present a DWB-interconnected small cell network
architecture where each SC is associated with the gateway
via DWB and the gateway with the CDC via fiber-
optic links. Furthermore, each UD can either perform its
task on the local device or offload its task to the ES
or CDC. A sum UD energy consumption minimization
problem with delay constraints is formulated which opti-
mizes the offloading decision, transmission power, and
joint spectrum and computation resource allocation.

• To solve the non-convex optimization problem, we decou-
ple the original problem into three subproblems and
design an efficient method to obtain the joint solution by
solving these three subproblems iteratively. The offload-
ing decision is obtained via sub-gradient based primal-
dual method. The RAN spectrum allocation problem is
solved in closed form based on Lagrangian multiplier
method. The combination of interior-point method and
Newton’s method is used to reach the solution of the
joint DWB spectrum and computation capacity allocation
problem. We also analyze the complexity of the proposed
method theoretically.

• We present some numerical results by comparing the
proposed method with four other methods including
the exhaustive search method, the random offload-
ing method, an edge-end offloading method (JTORAA)
and a cloud-edge-end offloading method (ISA-COO).
Numerical results demonstrate that our proposed method
can outperform other methods in reducing energy con-
sumption of UDs and therefore evaluate the efficiency of
the proposed method.

II. RELATED WORK

Recently, the computation offloading mechanism has
attracted significant attention in industry and academia and
has gained extensive investigation. The related studies in the
literature can be roughly reviewed from two aspects: edge-end
offloading and cloud-edge-end offloading.

In the edge-end offloading case, each UD can choose
to transfer its task to the ES deployed in its associated
SC. Most related works considered minimizing latency or
energy consumption as their optimization objective. For exam-
ple, [9], [30], [31] studied the mobile edge computation
offloading scheme in wireless cellular networks with the
goal of minimizing the latency. Tang and Hu [9] developed
a distributed successive convex approximation (SCA)-based
algorithm to joint optimize the allocation of computation
and communication resources under the limitation of battery
capacity and inter-user interference. Wu et al. [30] inte-
grated the nonorthogonal multiple access (NOMA) with MEC
and designed a multi-UD task offloading scheme where the
offloading ratios, the uploading duration and the download-
ing duration are jointly optimized. Fang et al. [31] focused on
the partial computation offloading and proposed a bisection
search-based iterative approach to optimize the tasks partition
ratios and offloading transmit power.
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References [7], [32], [33] have studied on computation
offloading mechanisms for MEC to minimize the sum energy
consumption of all UDs. El Haber et al. [32] developed a
partial task offloading scheme in MEC-enabled heterogeneous
networks based on successive convex approximation methods.
Xu et al. [7] jointly optimized binary task offloading decision,
UD transmission power, the allocation of local CPU frequency,
ES computation capacity and subchannel resource consider-
ing a NOMA-based communication model. Bi et al. [33]
developed a hybrid metaheuristic method which optimizes the
offloading ratio, allocated bandwidth, CPU utilization, and UD
transmission power. Tong et al. [34] designed a Lyapunov-
based task offloading approach which optimizes the local
calculation rate and the task offloading ratio to balance the
incurred energy cost and virtual queue backlog. For some
application scenarios that have strict requirements on both
latency and energy consumption, it is necessary to comprehen-
sively optimize the incurred latency and energy consumption
during task offloading. For instance, Li et al. [35] developed a
DRL-based task offloading algorithm to maximize the system
reward considering the utility and energy consumption gen-
erated from task processing and the penalty caused by task
dropping. To minimize the total system cost integrating energy
consumption and delay, Lu et al. [36] designed a strategy of
resource scheduling, task offloading, and selection of base sta-
tions and channels, while Liu et al. [37] developed a heuristic
algorithm involving mobility prediction and CPU frequency
control.

However, the above studies only focus on the task offloading
between UDs and ESs in the MEC-enabled network archi-
tecture, where the finite computation capacities can be the
main bottleneck. Therefore, a number of studies on collabora-
tive offloading mechanisms in cloud-edge-end networks have
been carried out to utilize the powerful computation capa-
bility of CDCs. For example, Ren et al. [15] presented a
convex optimization-based task offloading method in a col-
laborative cloud-edge computing network for minimizing the
weighted-sum communication latency of UDs without con-
sidering local computation. In [17], Li et al. designed a
two-level task scheduling framework by using the artificial
fish swarm optimization in an edge cloud environment to
achieve load balancing. Gao et al. [19] modelled the offload-
ing decision process as a Markov decision process (MDP)
and developed a Q-learning-based approach for achieving the
optimal offloading strategy.

In order to model the communication between ESs and the
CDC more accurately, [13], [14], [38] considered a hybrid
fiber-wireless network comprising of wireless access network
and optic-fiber backhaul network. Guo and Liu [13] designed
two collaborative computation offloading mechanisms based
on greedy strategy and game theory respectively for mini-
mizing the overall UDs’ energy consumption. He et al. [14]
designed an iterative searching method to optimize the offload-
ing strategy, CPU frequency, and UDs’ transmission power
for various type of task requests. Chowdhury and Maier [38]
presented a dynamical collaborative offloading approach tak-
ing the characteristics of tasks into account to minimize task
completion time. Ebrahimzadeh and Maier [39] characterized

Fig. 1. The architecture of collaborative cloud-edge-end network.

the trade-off between the UDs’ energy consumption and
task execution latency by Pareto front analysis to study
the offloading decision and computation capacity allocation.
Different from the above works, Kai et al. [16] proposed
a cloud-edge-end network architecture where UDs are con-
nected to their associated edge nodes via wireless access
links and the edge nodes communicate with the CDC via
wireless fronthaul links. They expressed the task offloading
problem as a sum latency minimization problem and developed
a SCA-based method to reach the optimal solution of the
problem.

Related works that considered collaborative cloud-edge-end
computing paradigm assumed each ES is directly connected
to the CDC via a one-hop backhaul/fronthaul link, which is
much more costly and cumbersome in practice. As far as we
are concerned, our work is the first to study the collaborative
cloud-edge-end task offloading optimization problem in the
small cell network with DWB. We build a heterogenous cloud-
edge-end computing network where one designated gateway
is connected to the CDC via optic-fiber links while other SCs
communicate with the gateway via wireless backhaul links.
Taking the heterogeneous nature of the cloud-edge network
into account and for obtaining a high system energy effi-
ciency, we aim to minimize the total energy consumption of
UDs by optimizing the offloading decision, UDs’ transmission
power, wireless spectrum and computation capacity. Compared
with the work [7] with the same comprehensive optimization
parameters, including offloading decision and communica-
tion and computation resource allocation, this paper considers
taking full advantage of the rich computation resources of
the CDC. Although the work [14] integrated the centralized
cloud and distributed ESs to enable collaborative task offload-
ing, the impact of bandwidth resource allocation on the task
transmission rate was neglected.

III. SYSTEM MODEL

We consider a collaborative cloud-edge-end network where
the coverage area is separated into many SCs as shown in
Fig. 1. One of these SCs is designated as the gateway, which
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is connected to a CDC via high-capacity optic-fiber links.
The remaining SCs are associated with the gateway via DWB
links. We denote the gateway by index 0, and the set of
remaining SCs by N = {1, . . . ,N }. The set of all SCs is
indexed by M = {0∪N}. Each SC j ∈M is equipped with
an ES to serve a set of UDs in its coverage area, denoted
by Uj = {1, . . . ,Uj }. The set of all UDs is denoted as
U = ∪j∈MUj . Here, the index of the SC is also used to
denote its corresponding ES, and unless specified otherwise,
|·| is used to denote the number of elements in the set.

Each UD i ∈ N has a computational task to be executed,
which can be denoted by the tuple (Di ,Fi ,Ti ), where Di rep-
resents the task input size, Fi describes the amount of CPU
cycles needed to accomplish the task, and Ti represents the
tolerable maximum delay. Here, the return of result is omit-
ted as the size of result data is so small compared with the
input data [29]. We define a binary offloading decision vari-
able xijk ∈ [0, 1](k ∈ K = {0, 1, 2}) for UD i in the range
of SC j, where xij0 = 1 indicates the task is executed locally,
xij1 = 1 indicates the task is offloaded to the associated ES j,
and xij2 = 1 denotes the task is offloaded to the CDC.

A. Wireless Communication Model

In this subsection, we mainly concentrate on the uplink
transmission and present the wireless communication models
between UDs and their associated SCs, the normal SCs and the
gateway, the gateway and the CDC. For saving space, the com-
munication process via the optic-fiber network is introduced
in (10) when calculating the total task execution latency in the
CDC in Section III-B. To avoid the cross-tier interference, we
consider a spectrum-splitted system [40] where the total radio
spectrum is divided into two parts: Sa ∈ (0, 1) for the wire-
less access communication between UDs and SCs (including
the gateway), and S b = 1 − Sa for the backhaul transmis-
sion between the normal SCs and the gateway. Furthermore,
we consider the wireless access communication with each SC
and backhaul communication with the gateway to be based on
the frequency division channel access (FDMA) method, and
therefore the intra-cell interference can be ignored [41]. We
also assume the inter-cell interference due to spectrum reuse
between different SCs is negligibly small due to beamforming
and the fact that wireless signals (e.g., mm-wave) are sensitive
to blockage [42].

Whether the UD chooses to execute its task on the ES or
in the CDC, the task needs to be uploaded to its associated
SC first. We define saijk and pijk , k ∈ {1, 2} as the fraction of
radio spectrum and power assigned for the transmission from
UD i to SC j when UD i offloads its task to ES j (k = 1) or the
CDC (k = 2), respectively. The achievable uplink transmission
rate of UD i associated to SC j can be calculated as

raijk = saijkB log2

(
1 +

pijkgij

saijkBN0

)
, ∀j ∈M, i ∈ Uj , (1)

where B is the total bandwidth of radio spectrum, N0 is the
spectral density of noise, gij = |g0|2d−ν

ij represents the chan-
nel gain between UD i and SC j. g0, dij , and ν here denote
the Rayleigh fading channel coefficient with Gaussian nature,

the distance between UD i and SC j and path loss exponent,
respectively [43]. Here, we assume a constant value of gij
due to the low mobility of UDs during the short offloading
duration [32].

When UDs offload tasks to the CDC, the tasks uploaded to
their associated SCs need to be first forwarded to the gate-
way via DWB and then transmitted to the CDC via optic-fiber
links. Let sbij indicate the fraction of spectrum assigned to SC
j for forwarding the task of UD i to the gateway. The data
forwarding rate from SC j to the gateway for UD i is given by

rbij = sbijB log2

(
1 +

Pj g j

sbijBN0

)
, ∀j ∈ N , i ∈ Uj (2)

where Pj denotes the transmission power of SC j, and g j is
the channel gain from SC j to the gateway, similar to gij .

B. Computation Model

In the following, we present the computation models with
respect to delay and energy consumption for tasks processed
locally, on the ES, and in the CDC in this subsection.

In general, the CPU frequency is fixed at each UD and can
vary over UDs. The resulting processing delay and energy
consumption of local computation for UD i in SC j can be
expressed as

T l
ij =

Fi

f li
, ∀j ∈M, i ∈ Uj , (3)

and

E lc
ij = κ

(
f li

)2
Fi , ∀j ∈M, i ∈ Uj , (4)

respectively, where f li is the computation capability in
cycles/second of UD i, and κ denotes the effective switched
capacitance related to the UD’s chip architecture [44].

Based on the uplink data rate model described in (1), the
transmission time and energy consumption for UD i to upload
its task to SC j are given by

T at
ijk =

Di

raijk
, ∀j ∈M, i ∈ Uj , k ∈ {1, 2}, (5)

Eat
ijk = pijkT

at
ijk , ∀j ∈M, i ∈ Uj , k ∈ {1, 2}, (6)

respectively. Denote f ei as the computation capacity assigned
to UD i by SC j. The resulting computation delay of the
corresponding task on SC j can be computed as

T ec
ij =

Fi

f eij
, ∀j ∈M, i ∈ Uj , (7)

Accordingly, the total delay of UD i for remote task processing
on the corresponding ES can be given as

T e
ij = T at

ij1 + T ec
ij , ∀j ∈M, i ∈ Uj . (8)

All the normal SCs have to forward their tasks to the gate-
way via DBW to offload their tasks to the CDC. According
to (2), the backhaul transmission delay of forwarding the task
of UD i from SC j to the gateway can be calculated as

T bt
ij =

{
Di

rbij
, ∀j ∈ N , i ∈ Uj ,

0, ∀i ∈ U0.
(9)
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Furthermore, due to the long transmission distance from the
gateway to the CDC, we take into account the transmission
delay and propagation delay for the uplink transmission from
the gateway to the CDC [13]. Therefore, denoting f cij as the
computation capacity assigned to UD i by the CDC, the total
delay of UD i for remote task processing in the CDC can be
calculated as

T c
ij = T at

ij2 + T bt
ij +

Di

C
+ χ+

Fi

f cij
, ∀j ∈M, i ∈ Uj , (10)

where C is the bandwidth of the optic-fiber network, and χ
denotes the propagation delay.

C. Problem Formulation

Our objective is to minimize the total energy consump-
tion of all UDs by jointly considering the offloading decision
x = {xijk , ∀j ∈ M, i ∈ Uj , k ∈ K}, power control p =
{pijk , ∀j ∈M, i ∈ Uj , k ∈ {1, 2}}, the resource allocation of
radio spectrum sa = {saijk , ∀j ∈ M, i ∈ Uj , k ∈ {1, 2}}
and sb = {sbij , ∀j ∈ N , i ∈ Uj }, computation capacity
f e = {f eij , ∀j ∈M, i ∈ Uj } and f c = {f cij , ∀j ∈M, i ∈ Uj }.
The energy consumption resulting from accomplishing the task
of UD i in the range of SC j can be given by

Eij = xij0E
lc
ij + xij1E

at
ij1 + xij2E

at
ij2, (11)

and we can formulate the sum energy minimization problem as

min
x ,p,sa ,sb ,f e ,f c

∑

j∈M

∑

i∈Uj

Eij (12a)

s. t. xij0T
l
i + xij1T

e
i + xij2T

c
i ≤ Ti ,∀j ∈ M, i ∈ Uj ,

(12b)
∑

i∈Uj

∑

k∈{1,2}
xijk s

a
ijk ≤ Sa ,∀j ∈ M, (12c)

∑

j∈N

∑

i∈Uj

xij2s
b
ij ≤ Sb , (12d)

∑

k∈{1,2}
xijkpijk ≤ pmax

i ,∀j ∈ M, i ∈ Uj , (12e)

∑

i∈Uj

xij1f
e
ij ≤ fmax

j ,∀j ∈ M, (12f)

∑

j∈M

∑

i∈Uj

xij2f
c
ij ≤ fmax

c , (12g)

∑

k∈K
xijk = 1, ∀j ∈ M, i ∈ Uj , (12h)

xijk ∈ {0, 1},∀j ∈ M, i ∈ Uj , k ∈ K. (12i)

Constraints (12b) represent the maximum delay requirements
of the task completion time for all UDs. Constraints (12c)
and (12d) ensure that radio spectrum allocation in each
SC’s RAN and in DWB is separate and non-overlapping.
Constraints (12e) are the maximum power budget for each
UD. Constraints (12f) and (12g) are to respect the computation
capacity of each ES and the CDC. Constraints (12h) represent
that each UD can only choose one place to perform its task.
It can be observed that Problem (12) is a non-convex mixed-
integer non-linear programming (MINLP) problem which is
NP-hard and thus we cannot reach its optimal solution by
using polynomial-time algorithms.

IV. PROPOSED ALGORITHM

In order to solve the proposed non-convex problem, we
focus on the structural properties of Problem (12) to remove
the strong coupling among different variables in the problem.
We decouple the original problem into three subproblems,
i.e., the offloading decision subproblem, the RAN spectrum
allocation subproblem, and the joint DWB spectrum and
computation capacity allocation subproblem, and present an
efficient iterative method to obtain a high-quality sub-optimal
solution. Specifically, we first solve the offloading decision
problem considering the discrete nature of offloading deci-
sion variables. The optimal transmission power of offloading
UDs can be achieved as a function of the remaining vari-
ables according to the fixed offloading decision. Based on the
obtained optimal power, we give the solutions to the RAN
spectrum allocation subproblem and the joint DWB spectrum
and computation capacity allocation subproblem, respectively.

A. Offloading Decision

With fixed {p, sa , sb , f e , f c} and relaxing the integer
constraints (12i), Problem (12) which optimizes x can be
reformulated as

min
x

∑
j∈M

∑
i∈Uj

Eij (13a)

s. t. 0 ≤ xijk ≤ 1, ∀j ∈M, i ∈ Uj , k ∈ K, (13b)

(12b)− (12h). (13c)

Obviously, Problem (13) is convex and therefore we can
effectively solved it via the dual method [45]. Define α =
{αij ≥ 0, ∀j ∈ M, i ∈ Uj },β = {βj ≥ 0, ∀j ∈ M},
γ ≥ 0, ε = {εij , ∀j ∈ M, i ∈ Uj }, ζ = {ζj ≥ 0, ∀j ∈
M}, and ϕ ≥ 0 as the dual variables associated with
Constraints (12b)-(12g), respectively. We have the following
theorem to reach the optimal solution of Problem (13).

Theorem 1: The optimal offloading decision x∗ of
Problem (13) can be expressed as

x∗ijk =

{
1, if k = argmink∈K eijk ,
0, otherwise,

(14)

where

eijk

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E lc
ij + αijT

l
i , ∀j ∈M, i ∈ Uj , k = 0,

Eat
ij1 + αijT

e
i + βj s

a
ij1 + εij pij1 + ζj f

e
ij ,

∀j ∈M, i ∈ Uj , k = 1,

Eat
ij2 + αijT

c
i + βj s

a
ij2 + γsbij + εij pij2 + ϕf cij ,

∀j ∈M, i ∈ Uj , k = 2.

(15)

If there exists more than one value of k that generates the
minimum value of eijk , we will select any of these values of
k and make the corresponding offloading decision.

Proof: See Appendix A.
Theorem 1 provides the optimal solution to the primal vari-

ables x with respect to the dual variables. We accordingly
develop a primal-dual algorithm where the primal and dual
variables are iteratively updated until their values converge.
The optimal primal solution depicted in Theorem 1 is utilized
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Algorithm 1 Primal-Dual Offloading Decision Algorithm

Input: p, sa , sb , f e , f c

Output: x∗
1: repeat
2: Initialize the dual variables α,β, γ, ε, ζ , ϕ;
3: Obtain the optimal offloading decision x according

to (14);
4: Update dual variables α,β, γ, ε, ζ , ϕ according

to (16a)-(16f);
5: until the dual function converges with ρ;
6: return the optimal offloading decision x∗.

to formulate the dual function (50). Problem (13) then is con-
verted into maximizing its corresponding dual function (50)
with respect to the dual variables. Here, the sub-gradient
method [46] is used to update the value of α,β, γ, ε, ζ , ϕ based
on their subgradients as follows, respectively.

αij =
[
αij + δ

(
xij0T

l
i + xij1T

e
i + xij2T

c
i − Ti

)]+
, (16a)

βj =

⎡
⎣βj + δ

⎛
⎝∑

i∈Uj

∑
k∈{1,2}

xijk s
a
ijk − Sa

⎞
⎠
⎤
⎦
+

, (16b)

γ =

⎡
⎣γ + δ

⎛
⎝∑

j∈N

∑
i∈Uj

xij2s
b
ij − S b

⎞
⎠
⎤
⎦
+

, (16c)

εij =

⎡
⎣εij + δ

⎛
⎝ ∑

k∈{1,2}
xijkpijk − pmax

i

⎞
⎠
⎤
⎦
+

, (16d)

ζj =

⎡
⎣ζj + δ

⎛
⎝∑

i∈Uj

xij1f
e
ij − f max

j

⎞
⎠
⎤
⎦
+

, (16e)

ϕ =

⎡
⎣ϕ+ δ

⎛
⎝∑

j∈M

∑
i∈Uj

xij2f
c
ij − f max

c

⎞
⎠
⎤
⎦
+

, (16f)

where [y ]+ = max{y , 0}, and δ is a sequence of step sizes
which are dynamically chosen according to the self-adaptive
scheme proposed in [46].

Accordingly, the primal-dual method for solving
Problem (13) is introduced in Algorithm 1. For our imple-
mentation, at each iteration, the values of variables x and dual
function (50) are updated based on the current value of dual
variables. Then we calculate the values of the dual variables
based on (16a)-(16f). The primal-dual iteration is continued until
reaching the stopping criterion of desired accuracy level ρ. The
convergence of Algorithm 1 is guaranteed since Problem (13)
is a convex problem. With the convergence of the values of
dual variables, the optimal solution of the primal variables can
also be obtained by strong duality.

B. Power Control Optimization

The optimal power control with given offloading decision x
can be obtained according to the following lemma.

Lemma 1: Given fixed offloading decision x, the optimal
power p∗ijk can be expressed as

p∗ijk =
saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
, ∀i ∈ Ujk , k ∈ {1, 2}, (17)

where T ′
ij1 = Ti − T ec

ij , T ′
ij2 = Ti − T bt

ij − Di
C − χ − Fi

f cij
,

Uj1 and Uj2 represent the set of UDs in SC j that offload the
task to the ES and the CDC, respectively.

Proof: See Appendix B.
According to Lemma 1, the optimal power p∗ijk can be

expressed a function of variables {sa , sb , f e , f c}. Therefore,
we replace pijk in Problem (12) by p∗ijk in (17), and solve
the Problem (12) with fixed offloading decision by optimizing
{sa , sb , f e , f c}.

C. Spectrum and Computation Resource Allocation

With fixed offloading decision x, and substituting the
optimal power p∗ijk given in (17) into Problem (12), the spec-
trum and computation resource allocation problem can be
formulated as

min
sa ,sb ,f e ,f c

∑
j∈M

∑
k∈{1,2}

∑
i∈Ujk

saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
T ′
ijk

(18a)

s. t.
∑

k∈{1,2}

∑
i∈Ujk

saijk ≤ Sa , ∀j ∈M, (18b)

∑
j∈N

∑
i∈Uj2

sbij ≤ S b , (18c)

saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
≤ pmax

i ,

∀j ∈M, k ∈ {1, 2}, i ∈ Ujk , (18d)∑
i∈Uj1

f eij ≤ f max
j , ∀j ∈M, (18e)

∑
j∈M

∑
i∈Uj2

f cij ≤ f max
c . (18f)

Note that the non-convexity of objective function (18a) results
from the strong coupling of different variables in the term
saijkT

′
ijk . Thus, Problem (18) is a non-convex problem, which

is complex and difficult to resolve. According to the coupling
relationship between variables sa and variables {sb , f e , f c},
Problem (18) is decoupled into two subproblems, i.e., a RAN
spectrum allocation subproblem optimizing sa and a joint
resource allocation subproblem optimizing {sb , f e , f c} with
respect to T ′

ijk . In the following subsections, we detail the
solutions to these two subproblems.

D. RAN Spectrum Allocation

Given fixed {sb , f e , f c}, the RAN spectrum allocation
problem for the UDs associated with the same SC can be
solved independently. The objective function (18a) is a mono-
tonically decreasing and convex function of saijk . To show this,

Authorized licensed use limited to: Central South University. Downloaded on December 14,2023 at 02:21:03 UTC from IEEE Xplore.  Restrictions apply. 



4548 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

we define function q3(y) = y(e
1
y − 1), y > 0, and we have

q ′3(y) = e
1
y

(
1− 1

y
− 1

y2

)
− 1, (19a)

q ′′3 (y) = e
1
y

(
1

y4
+

3

y3

)
> 0, ∀y > 0, (19b)

the latter of which proves that q3(y) is a convex function. We
can further observe that limy→+∞ q ′3(y) = 0, which indicates
q ′3(y) ≤ 0, ∀y > 0, i.e., the function q3(y) monotonically
decreases with y. Since the objective function (18a) monoton-
ically decreases with saijk , the optimal saijk

∗ should be achieved
at the boundary of Constraints (18b) for energy saving pur-
pose. Hence, for each SC j ∈M, we can reduce the constraint
in (18b) to ∑

k∈{1,2}

∑
i∈Ujk

saijk = Sa . (20)

Furthermore, for each SC j ∈ M, the constraint in (18d)
can be equivalently transformed to

saijk ≥ s
a,min
ijk , ∀k ∈ {1, 2}, i ∈ Ujk , (21)

where

s
a,min
ijk =

(
−
BT ′

ijkW0
(
Oijk

)
Di ln 2

− BN0

gij p
max
i

)−1

, (22)

and

Oijk = − DiN0 ln 2

T ′
ijkgij p

max
i

2
− DiN0

T ′
ijk

gij p
max
i . (23)

The reason is that the inequalities in Constraints (18d) can be
expressed as the following form

2aijkyijk ≤ cij yijk + 1, (24)

where yijk = 1
saijk

, cij =
gij p

max
i

BN0
, and aijk = Di

BT ′
ijk

. For the

function of the form 2ay = cy + 1, its inverse can be proved
to be derived based on the principal branch of the Lambert W
function W0 [47] as

y = −
W0

(
−a ln 2

c 2−
a
c

)
a ln 2

− 1

c
. (25)

Further, since the left term in (18d) decreases with the increase
of saijk , we obtain (21).

Accordingly, for each SC j ∈ M, the RAN spec-
trum allocation problem with given {sb , f e , f c} can be
rewritten as

min
saj

∑
k∈{1,2}

∑
i∈Ujk

saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
T ′
ijk (26a)

s. t. (20), (21). (26b)

Due to the convexity of objective function (26a) and all con-
straints, Problem (26) is a convex problem, which can be
effectively solved via the Lagrangian multiplier method [45].
Defining ηj as the Lagrange multiplier vector associated with
Constraint (20), the following theorem is given to obtain the
optimal RAN spectrum allocation.

Theorem 2: The optimal RAN spectrum allocation of
Problem (26) is

saijk = h−1
ijk

(−ηj )|sa,min
ijk

, ∀k ∈ {1, 2}, i ∈ Ujk (27)

where y1|y2 = max{y1, y2}, h−1
ijk (s

a
ijk ) is the inverse function

of hijk (s
a
ijk ),

hijk

(
saijk

)
=

BN0T
′
ijk

gij

(
2

Di
BT ′

ijk
sa
ijk

(
1− Di ln 2

BT ′
ijk s

a
ijk

)
− 1

)
,

(28)

and ηj is the solution of∑
k∈{1,2}

∑
i∈Ujk

h−1
ijk

(−ηj )|sa,min
ijk

= Sa . (29)

Proof: See Appendix C.
In fact, hij (saij ) is a monotonically increasing function of saij

since

h ′ij
(
saij

)
=

N0Di ln
2 2

gij

(
saijk

)3 2
Di

BT ′
ijk

sa
ijk > 0, ∀saij > 0. (30)

Accordingly, its inverse function h−1
ij (saij ), and further the left

term of function (29) are monotonically increasing with saij .
Hence, we can effectively reach the unique solution to ηj for
equation (29) based on the bisection method [48].

E. Joint DWB Spectrum and Computation Capacity
Allocation

In this subsection, we focus on the optimization of DWB
spectrum and computation capacity for Problem (18) with
fixed RAN spectrum. In such case, there exists a high
degree of decoupling in the objective function and constraints.
Specifically, Problem (18) can be decoupled into |M|+1 sub-
problems, i.e., |M| subproblems each of which optimizes the
computation capacity f ej = {f eij , i ∈ Uj1} of a SC j ∈ M,

and one subproblem jointly optimizing {sb , f c} for UDs that
offload the task to the CDC.

For each SC j ∈M, the ES computation capacity allocation
problem is expressed as

min
f e
j

∑
i∈Uj1

saij1BN0

gij

(
2

Di
sa
ij1

BT ′
ij1 − 1

)
T ′
ij1 (31a)

s. t.
∑
i∈Uj1

f eij ≤ f max
j , (31b)

f eij ≥ f
e,min
ij , ∀i ∈ Uj1, (31c)

where f
e,min
ij = Fi

Ti−Tmin
ij1

and we have the subproblem jointly

optimizing σ = {sb , f c} as

min
σ

∑
j∈M

∑
i∈Uj2

saij2BN0

gij

(
2

Di
sa
ij2

BT ′
ij2 − 1

)
T ′
ij2 (32a)

s. t. T ′
ij2 ≥ Tmin

ij2 , ∀j ∈M, i ∈ Uj2, (32b)

(18c), (18f). (32c)
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Constraints (31c) and (32b) are derived from (18d), where

Tmin
ijk =

Di

saijkB log2

(
1 +

(
gij p

max
i

)/(
saijkBN0

)) . (33)

Theorem 3: Problem (31) and (32) are convex optimization
problems.

Proof: See Appendix D.
To solve these problems, we employ the interior

method [45] and define the logarithmic barrier functions of
Problems (31) and (32) as

zj

(
f ej

)
=
∑
i∈Uj1

saij1BN0

gij

(
2

Di
sa
ij1

T ′
ij1 − 1

)
T ′
ij1

− μ log

⎛
⎝f max

j −
∑
i∈Uj1

f eij

⎞
⎠

− μ
∑
i∈Uj1

log

(
f eij −

Fi

Ti − Tmin
ij1

)
, (34)

c(σ ) =
∑
j∈M

∑
i∈Uj2

saij2BN0

gij

(
2

Di
sa
ijk

BT ′
ij2 − 1

)
T ′
ij2

− μ log

⎛
⎝S b −

∑
j∈N

∑
i∈Uj2

sbij

⎞
⎠

− μ log

⎛
⎝f max

c −
∑
j∈M

∑
i∈Uj2

f cij

⎞
⎠

− μ
∑
j∈M

∑
i∈Uj

log
(
T ′
ij2 − Tmin

ij2

)
, (35)

respectively, where μ is a barrier parameter. Then,
Problem (31) and (32) can be transformed into the following
unconstrained convex optimization problems

min
f e
j

zj , (36)

min
σ

c, (37)

respectively. According to Newton’s method, the following
iterative functions are provided to obtain the optimal solutions
to f ej and σ , respectively:

f ej
(k+1) = f ej

(k) −
∇z
(
f ej

(k)
)

H
(
f ej

(k)
) , (38)

σ (k+1) = σ (k) −
∇z
(
σ (k)

)
H
(
σ (k)

) , (39)

where ∇(·) denotes the gradient matrix, H (·) denotes the
Hessian matrix, and k is the loop index in Newton’s method.
The joint DWB spectrum and computation capacity allocation
approach is detailed in Algorithm 2.

F. Algorithm Implementation and Analysis

The Iterative Offloading decision and Resource alloca-
tion (IOR) method for solving Problem (12) is presented in

Algorithm 2 Joint DWB Spectrum and Computation Capacity
Allocation
Input: x , sa

Output: f e∗, f c∗, sb∗

1: Set accuracy of the interior point method ρ > 0;
2: for j ∈M do
3: Initialize barrier parameter μ(1) > 0, iteration index

t = 0, and generate an arbitrary feasible solution f ej
(0);

4: repeat
5: t ← t + 1;
6: Generate barrier function z (f ej ) with given μ(t);

7: Obtain the extreme point f ej
∗
(
μ(t)

)
with initial point

f ej
(t−1) according to (38);

8: f ej
(t) ← f ej

∗
(
μ(t)

)
, μ(t+1) ← Qμ(t);

9: until
∥∥∥f ej (t) − f ej

(t−1)
∥∥∥ ≤ ρ;

10: end for
11: Initialize barrier parameter μ(1) > 0, iteration index t = 0,

and generate an arbitrary feasible solution σ (0);
12: repeat
13: t ← t + 1;
14: Generate barrier function c(σ ) with given μ(t);

15: Obtain the extreme point σ ∗
(
μ(t)

)
with initial point

σ (t−1) according to (39);
16: σ (t) ← σ ∗

(
μ(t)

)
, μ(t+1) ← Qμ(t);

17: until
∥∥∥σ (t) − σ (t−1)

∥∥∥ ≤ ρ;
18: return the optimal allocation of DWB spectrum and com-

putation capacity f e∗ = {f ej ∗}j∈M, σ ∗ = {f c∗, sb∗}.

Algorithm 3. Fig. 2 illustrates the layered structure of the
proposed IOR algorithm. Starting with an initialized feasible
solution, we iteratively optimize the offloading decision, RAN
spectrum allocation, and joint DWB spectrum and computation
capacity allocation. The obtained values of the above vari-
ables can uniquely determine the transmission power of UDs.
In detail, at each τ -th iteration, we first obtain the offload-
ing decision via sub-gradient based primal-dual method as
shown in Algorithm 1. Second, the RAN spectrum allocation
is optimized based on Lagrangian multiplier method and KKT
conditions. Then, we employ the combination of interior-point
method and Newton’s method to solve the joint DWB spec-
trum and computation capacity allocation problem. Finally,
the transmission power of UDs is uniquely obtained based
on the offloading decision, RAN and DWB spectrum, and
computation capacity.

1) Optimality Analysis: The optimal offloading decision can
be obtained via the primal-dual method as shown in Algorithm 1.
The optimal RAN spectrum allocation problem can be achieved
according to (27). The combination of interior-point method and
Newton’s method as shown in Algorithm 2 can reach the optimal
solution of the joint DWB spectrum and computation capacity
allocation problem. The optimal transmission power can be
calculated according to (17). Hence, Algorithm 3 achieves a
sub-optimal solution to the original problem (12). Besides,
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Algorithm 3 Iterative Offloading Decision and Resource
Allocation (IOR)
Input: The set of UDs’ tasks
Output: The optimal offloading decision and resource allo-

cation
{
x∗,p∗, sa∗, sb∗, f e∗, f c∗

}
1: Set the iteration number τ = 0, the maximal iteration

number τmax, the tolerance ρ
2: Obtain the initial solution as(

x (0),p(0), sa (0), sb
(0)

, f e (0), f c(0)
)

;

3: Calculate the objective function value V (0) based on(
x (0),p(0), sa (0), sb

(0)
, f e (0), f c(0)

)
;

4: repeat
5: τ ← τ + 1;
6: Obtain the optimal x (τ) of Problem (13) given(

sa (τ−1), sb
(τ−1)

, f e (τ−1), f c(τ−1)
)

;

7: Obtain the optimal sa (τ) of Problem (26) given(
x (τ), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)
;

8: Obtain the optimal f e (τ) of Problem (31) and(
sb

(τ)
, f c(τ)

)
of Problem (32) given

(
x (τ), sa (τ)

)
;

9: Obtain the optimal p(τ) according to (17) given(
x (τ), sa (τ), sb

(τ)
, f e (τ), f c(τ)

)
;

10: Calculate the objective function value V (τ) based on(
x (τ),p(τ), sa (τ), sb

(τ)
, f e (τ), f c(τ)

)
;

11: until |V (τ) − V (τ−1)| ≤ ρ or τ > τmax.

Fig. 2. Layered structure of the proposed algorithm IOR.

simulations are conducted to demonstrate the near-optimal
performance of the proposed method.

2) Convergence Analysis: To demonstrate the convergence
of the proposed method, a theoretical proof is presented in
Theorem 4.

Theorem 4: Algorithm 3 can converge to a solution within
a finite number of steps.

Proof: See Appendix E.
3) Complexity Analysis: The complexity of Algorithm 3

is primarily related to the complexity of solving the three
subproblems of x, sa , and {sb , f e , f c} respectively.

The process of solving offloading decision x for
Problem (13) is presented in Algorithm 1. The complexity of
solving offloading decision x is O(3|U|) according to (14).
The complexity of updating the corresponding dual vari-
ables {α,β, γ, ε, ζ , ϕ} is O(2|U| + 2|M| + 2) according to
(16a)-(16f). Supposing that Algorithm 1 needs I1 iterations
to converge, the total complexity of solving x is O(C1) =
O(I1(5|U|+ 2|M|+ 2)).

The complexity of solving saj for SC j in Problem (26) is
O((|Uj1| + |Uj2|) log(1/θ1) log(1/θ2)), where O(log(1/θ1))
is the complexity of deriving the inverse function h−1

ijk (·),
and O(log(1/θ2)) is the complexity of using the bisec-
tion method to solve (29). Thus, the complexity of obtain-
ing the solution to sa is O(C2) = O(∑j∈M((|Uj1| +
|Uj2|) log(1/θ1) log(1/θ2))).

Algorithm 2 optimizes f e and {sb , f c} separately. By
using the interior method and Newton’s method, the complex-
ity of optimizing f e and {sb , f c} is O(∑j∈M |Uj1|3.5) and
O((2∑j∈M |Uj2|)3.5) respectively. Consequently, the com-
plexity of obtaining the solution to {sb , f e , f c} is O(C3) =
O(∑j∈M |Uj1|3.5 + (2

∑
j∈M |Uj2|)3.5).

Supposing that Algorithm 3 needs I2 iterations to converge,
the total complexity of Algorithm 3 is O(I2(C1+C2+C3)).

G. Priority-Based Initialization Algorithm

It is challenging to use standard methods to reach an ini-
tial feasible solution of Problem (12) due to the non-convex
feasible set caused by the strong coupling and mixed-integer
nature of the offloading decision variables and resource alloca-
tion variables. In this subsection, we propose a priority-based
algorithm to approach an initial solution of Problem (12), as
shown in Algorithm 4.

In detail, for each SC j ∈ M, we first filter the set of its
associated UDs that can locally accomplish the task under the
maximal latency constraint, i.e., U lj = {i ∈ Uj |Fi

f li
≤ Ti}.

Then, the set of UDs that need the help of the ES or CDC to
meet the task latency requirements can be denoted by Uoj =

Uj \U lj . To effectively reach a feasible solution, it is preferred
to consider the different requirements of these UDs’ tasks and
fully utilize the communication and computation resources for
task execution to reduce transmission and computation latency.
Due to the different magnitude orders of the task requirements
in terms of (Di ,Fi ,Ti ), we normalize the task requirements
to remove their related units as follows:

D̃i =
Di

Dmax , F̃i =
Fi

Fmax , T̃i =
Ti

Tmax (40)

where Dmax,Fmax and Tmax indicate the maximum value of
input size, computation cycles, and deadline among all tasks,
respectively.

Since each UD i ∈ Uoj has to first upload its task to SC
j whether for task execution in the ES or the CDC, we first
define the weight for the spectrum allocation as

W s
i =

D̃i

T̃i
, (41)
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Algorithm 4 Priority-Based Initialization Algorithm
1: Initialize CR ← 0,ERj ← 0,Uj1,Uj2,Ucj ← φ, ∀j ∈M
2: for j ∈M do
3: Resort set Uoj in descending order of the priority PRij

as Ūoj ;
4: for i ∈ Ūoj do
5: Calculate the value of saij according to (42);
6: Set the value of pij according to (43);
7: Calculate the value of f eij according to (44);
8: if f eij + ERj ≤ f max

j then
9: xij1 ← 1, saij1 ← saij , pij1 ← pij ,ERj ← ERj +

f eij ,Uj1 ← Uj1 ∪ {i};
10: else
11: Ucj ← Ucj ∪ i
12: end if
13: end for
14: end for
15: for j ∈M do
16: for i ∈ Ucj do
17: Calculate the value of sbij according to (46);
18: Calculate the value of f cij according to (47);
19: end for
20: if f cij + CR ≤ f max

c then
21: xij2 ← 1, saij2 ← saij , pij2 ← pij ,CR ← CR +

f cij ,Uj2 ← Uj2 ∪ {i};
22: end if
23: end for

and assign the RAN spectrum to UD i ∈ Uoj according to

saij =
W s

i∑
k∈Uo

j
W s

k

Sa , ∀i ∈ Uoj , (42)

which implies the task with lager input size and tighter dead-
line is assigned more RAN spectrum resources. Each UD
i ∈ Uoj uses its maximum transmission power to upload its
task as

pij = pmax
i . (43)

Note that we do not distinguish between saij1 and saij2, pij1
and pij2 here as the task offloading destination remains
undetermined.

Then, a available ES computation capacity allocation for
UD i ∈ Uoj is given by

f eij = f e,min
ij , ∀j ∈M, k ∈ {1, 2}, i ∈ Ujk , (44)

based on (31c). However, the UD can only offload its task to its
associated ES if the maximum computation capacity constraint
of this ES can be guaranteed. Therefore, we define a priority
for selecting the UD to offload the task to the corresponding
ES among the UDs served by SC j:

PRij =
D̃i

T̃i F̃i
, ∀i ∈ Uoj . (45)

Considering the ES’s proximity to UDs and limited computa-
tion capacity, the task with lager input size, lower computation

workload, and tighter deadline is assigned a higher prior-
ity to be offloaded to the ES. When the total amount of
required computation capacity ERj exceeds the maximum
computation capacity f max

j of the ES, each remaining UD
i ∈ Ucj = Uoj \ Uj1 have to offload its task to the CDC. For
these UDs, we assign the DWB spectrum according to

sbij =
W s

i∑
j∈N

∑
k∈Uc

j
W s

k

S b , ∀j ∈ N , i ∈ Ucj . (46)

which is similar to the RAN spectrum allocation.
Then, a available CDC computation capacity allocation for

UD i ∈ Ucj is given by

f cij = f
c,min
ij , ∀j ∈M, i ∈ Ucj , (47)

where f c,min
ij can be obtained by solving T ′

ij2 = Tmin
ij2 derived

from (32b).
Due to the necessity of satisfying the latency con-

straints (12b), we have the feasibility condition for
Problem (12) as ∑

j∈M

∑
i∈Uc

j

f
c,min
ij ≤ f max

c . (48)

According to (48), each UD i ∈ Ucj , ∀j ∈ M can only
offload its task to the CDC on the premise of guaranteeing
the computation capacity constraint of the CDC, i.e., the total
amount of required computation capacity CR is no bigger than
f max
c . When the feasibility condition in (48) can not be satis-

fied, it is infeasible to find a solution that satisfies each UD’s
task latency requirements. In this paper, we assume that with
the assistance of the CDC, the computation capacity of each
SC can satisfy the requirements of its serving UDs [7], [16].
Therefore, the decision rules in Algorithm 4 guarantee the
obtained initial solution is a feasible solution to Problem (12).

After analyzing Algorithm 4, we can obtain that the
computational complexity of achieving a initial solution
of joint offloading decision and resource allocation is
O(∑j∈M(|Uj |+|Uoj | log |Uoj |+|Uoj |+|Ucj |)), where the term
|Uoj | log |Uoj | is the complexity of reordering set Uoj based on
the rapid sorting method, and the other three terms |Uj |, |Uoj |
and |Ucj | denote the complexity of determining the tasks to be
processed by the UD, the ES and the CDC, respectively.

V. NUMERICAL RESULTS

In this section, we present numerical results obtained from
various simulations implemented in MATLAB software on a
server with Intel i7 processor. The network topology consists
of 5 SCs, one of which is served as the gateway which is con-
nected to a CDC, and 20 UDs randomly distributed among
these SCs. The channel gain follows an exponential distribu-
tion with mean 1 and the default values of all remaining system
parameters are summarized in Table I, and they are set based
on the works in [7], [16].

Depending on different task characteristics, we consider
two types of tasks, i.e., latency-sensitive and latency-tolerant
tasks. The parameters of these two type of tasks are listed
in Table II. As shown in Table II, compared with latency-
sensitive tasks, latency-tolerant tasks have heavier computation
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TABLE I
SIMULATION PARAMETERS

TABLE II
TASK SETTINGS

loads and looser latency requirements. Unless specified other-
wise, the ratio of latency-sensitive to latency-tolerant tasks is
always 5:5.

In our simulations, the performance of the proposed method
IOR is compared with the other four offloading methods as
follows:

EXH: Due to the high complexity of obtaining the optimal
offloading decision and resource allocation via exhaustive
search, this method employs the exhaustive search to reach
the optimal offloading decision and uses the proposed method
to optimize the joint communication and computation resource
allocation.

Random: Each UD chooses to execute its task on the local
device, the ES or in the CDC randomly.

JTORAA [7]: A joint task offloading and resource allocation
method where each task is processed on the UD or the ES.

ISA-CCO [14]: A collaborative cloud-edge-end task offload-
ing scheme with fixed spectrum resources.

Fig. 3 illustrates the convergence behavior of the proposed
method IOR with different number of UDs |U|. Here, the
horizontal axis denotes the number of iterations τ given in
Algorithm 3. The UD energy consumption at the beginning
is relatively high since the initial solution forces each UD
to conduct the task locally if the task deadline can be met
and incurs high local computation energy consumption. After
iterative optimization of offloading decision, spectrum, and
computation resources, the number of tasks conducted locally
can be reduced and thus the UD energy can be saved. It
can be seen that the convergence speed of IOR method gets
slightly slower with the increase of |U| as two iterations are
required to converge when |U| = 10 and four iterations when
|U| = 30. During the offloading decision process, each UD
is only provided three choices for executing the task, i.e.,

Fig. 3. Convergence behavior of the proposed method with different number
of UDs.

Fig. 4. Total UD energy consumption versus the number of UDs considering
different task ratios.

the local device, the associated ES, and the CDC, which
can significantly restrict the solution space and improve the
efficiency of achieving a high-quality solution. In addition,
the proposed IOR method can reach the optimal solution
for each subproblem in terms of optimizing the allocation
of transmission power, RAN Spectrum, DWB spectrum, and
computation resources, and thus can improve the convergence
speed. Therefore, the proposed method converges rapidly in
general as shown in Fig. 3, which implies the effectiveness of
the proposed method.

In Fig. 4, we depict the total UD energy consumption versus
the number of UDs with different ratios of latency-sensitive
to latency-tolerant tasks. It is seen that increasing the num-
ber of UDs leads to a higher UDs’ energy consumption. That
is expected due to growing UDs generates a larger number
of computation tasks that need to be processed simultane-
ously. Furthermore, the UDs’ energy consumption rises as the
ratio of latency-sensitive to latency-tolerant tasks increases.
Specifically, the energy consumption with task ratio = 0:10 is
the lowest and with task ratio = 10:0 is the highest. Latency-
sensitive tasks with stringent low-latency requirements impose
strict limits on the task transmission time. Therefore, due to
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Fig. 5. Number of tasks processed at each layer versus the number of UDs
considering different task ratios.

the long transmission distance to the CDC, latency-sensitive
tasks are preferentially executed locally or on ESs rather than
in the CDC, which can be shown in Fig. 5. However, local task
execution can incur high computational energy and offloading
latency-sensitive tasks to ESs consumes high upload energy
since UDs have to increase the transmission power to satisfy
the latency bound.

Fig. 5 plots the detailed number of tasks processed on each
layer including UDs, ESs, and the CDC. We can observe
that increasing the ratio of latency-sensitive to latency-tolerant
tasks reduces the proportion of tasks to be offloaded to the
CDC (e.g., from 5/10 with ratio=0:10 to 0/10 with ratio=10:0
when there are 10 UDs). This is because the long transmis-
sion latency to the CDC can violate the low-latency bound
of latency-sensitive tasks. Moreover, as the number of UDs
increases, the rising resource demands intensify the compe-
tition for the limited spectrum and computation resources of
ESs, causing some UDs have to execute their task locally (e.g.,
2 tasks are processed locally with task ratio = 10:0 when there
are 30 UDs). The proportion of tasks processed in the CDC can
be noticeable with the increasing number of latency-tolerant
tasks, which indicates the advantage of utilizing the CDC with
powerful computing power.

To further verify the necessity and the performance of our
proposed method, we compare the total energy consumption
achieved by our proposed method with the other four methods
as outlined above. The total UD energy consumption of differ-
ent methods versus the number of UDs is depicted in Fig. 6.
From this figure, one can easily observe that IOR can achieve
lower energy consumption than the others except the EXH
method. Both IOR and ISA-CCO outperform the JTORAA
method, since the CDC can help handle the increasing compu-
tational requests and thus relieve computation stress for UDs.
Moreover, we can notice a wider gap of energy consumption
between IOR and ISA-CCO as the number of UDs rises, which
indicates the importance of optimizing the spectrum resources,
especially for heavy task workload. The energy consumption
of IOR keeps close to that of EXH especially for small num-
ber of UDs, which demonstrates that the proposed IOR method
can reach the near-optimal solution.

Fig. 6. Total UD energy consumption versus the number of UDs considering
different methods.

Fig. 7. Total UD energy consumption versus the ratio of tasks considering
different methods.

Fig. 7 provides the energy consumption of different meth-
ods versus the ratio of latency-sensitive to latency-tolerant
tasks. Random method randomly chooses tasks to be processed
locally, making the local computation the leading cause of
energy consumption. Note that compared with latency-tolerant
tasks, latency-sensitive tasks require less computation and
quicker transmission, where the computation energy is always
of a higher magnitude. Therefore, the energy consumption of
Random approach decreases slightly with the ratio of latency-
sensitive to latency-tolerant tasks as shown in Fig. 7. Different
from Random method, the other four methods offload as many
tasks as possible to external servers to save local computation
energy, which means their energy consumption comes mainly
from task data uploading. Hence, the energy consumption of
these four methods increases with the ratio of latency-sensitive
to latency-tolerant tasks in Fig. 7. Despite the different trend
among these methods, IOR always has advantageously lower
energy consumption than the others except EXH, especially
when the proportion of latency-tolerant tasks is high.

Fig. 8 plots the total UD energy consumption of different
methods versus the number of SCs. As depicted in Fig. 8, the
total energy consumption decreases gradually as the number
of SCs increases. This is because the increase of SCs means
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Fig. 8. Total UD energy consumption versus the number of SCs considering
different methods.

Fig. 9. Total UD energy consumption versus the maximal computation
capacity of ESs of different methods.

more available ESs and weaker competition for RAN spectrum
and computation resources among UDs, and thus allows more
tasks to be offloaded with a lower transmission power. We
can also conclude that the energy advantage of leveraging the
CDC becomes less obvious with the increase of the number
of SCs as the gap between JTORAA method and ISA-COO
and IOR methods is narrowing in Fig. 8. The reason is that
the computation resources at the edge tend to be saturated and
sufficient to serve the computation requests from UDs.

Fig. 9 reveals the energy consumption of different meth-
ods versus the maximal computation capacity of SCs. We can
observe that increasing the computation capacity of SCs leads
to lower UDs’ energy consumption, which can be explained
by the reason similar to Fig. 8. In addition, from the com-
parison of Fig. 8 and Fig. 9, it can be shown that the total
energy consumption when |M| = 3, f max

j = 9 × 1010 is
higher than when |M| = 5, f max

j = 5 × 1010, even the
total amount of computation capacity is larger in the former
case. Compared with increasing the ESs’ computation capac-
ity, deploying more SCs can weaken the competition of RAN
spectrum resources between UDs due to the spectrum reuse of

each SC, thereby reducing the energy consumption during task
uploading.

VI. CONCLUSION

In this paper, we investigated the energy-aware collabora-
tive computation offloading combining MEC and CC, where
tasks can be processed locally, on the ES, or in the CDC.
We designed a cloud-edge-end architecture for collaborative
computation offloading over small cell networks with DWB.
To minimize the total energy consumption of the delay-
constrained UDs, we jointly optimized the offloading decision,
transmission power, spectrum and computation resources. The
formulated optimization problem is decoupled into three sub-
problems to remove the tight coupling between different
variables. Depending on the structure characteristics of these
subproblems, we applied a few different convex optimization
techniques to obtain the optimal solution to each sub-
problem and proposed an iterative method to reach the
high-quality solution to the original problem. Numerical
results demonstrated that the proposed method achieves better
performance than existing methods in terms of the total UDs’
energy consumption. For future work, the energy consumption
optimization for the whole network architecture, which con-
siders the energy consumed by the UDs, ESs and the CDC, is
a practical and urgent problem.

APPENDIX A
PROOF OF THEOREM 1

We can derive the partial Lagrangian function of
Problem (13) as

L1(x ,α,β, γ, ε, ζ , ϕ) =
∑
j∈M

∑
i∈Uj

Eij

+
∑
j∈M

∑
i∈Uj

αij

(
xij0T

l
i + xij1T

e
i + xij2T

c
i − Ti

)

+
∑
j∈M

βj

⎛
⎝∑

i∈Uj

∑
k∈{1,2}

xijk s
a
ijk − Sa

⎞
⎠

+ γ

⎛
⎝∑

j∈N

∑
i∈Uj

xij2s
b
ij − S b

⎞
⎠

+
∑
j∈M

∑
i∈Uj

εij

⎛
⎝ ∑

k∈{1,2}
xijkpijk − pmax

i

⎞
⎠

+
∑
j∈M

ζj

⎛
⎝∑

i∈Uj

xij1f
e
ij − f max

j

⎞
⎠

+ ϕ

⎛
⎝∑

j∈M

∑
i∈Uj

xij2f
c
ij − f max

c

⎞
⎠. (49)

Then, the dual function of Problem (13) can be given as

g(α,β, γ, ε, ζ , ϕ)

=

⎧⎨
⎩

min
x
L1(x ,α,β, γ, ε, ζ , ϕ)

s. t.
∑

k∈K xijk = 1, ∀j ∈M, i ∈ Uj ,
0 ≤ xijk ≤ 1, ∀j ∈M, i ∈ Uj , k ∈ K,

(50)
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and the dual problem of Problem (13) can be derived as

max
α,β,γ,ε,ζ ,ϕ

g(α,β, γ, ε, ζ , ϕ)

s. t. αij , βj , γ, εij , ζj , ϕ ≥ 0, ∀j ∈M, i ∈ Uj (51)

Given any fixed {α,β, γ, ε, ζ , ϕ}, we can obtain
g(α,β, γ, δ, ε, ζ , ϕ) by solving Problem (50). In fact,
objective function (50) is a linear combination of xijk .
Therefore, the optimal task assignment decision x∗ can
be expressed as (14), i.e., the offloading decision variable
corresponding to the smallest eijk is set to 1 for each UD.

APPENDIX B
PROOF OF LEMMA 1

According to Constraints (12b), we have

pijk ≥
saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
, ∀i ∈ Ujk , k ∈ {1, 2}. (52)

Notice that the term with respect to pijk in objective func-
tion (12a) is function Eat

ijk . Recall

Eat
ijk =

pijkDi

saijkB log2

(
1 +

(
pijkgij

)/(
saijkBN0

)) , (53)

which is an increasing function of pijk . To prove this, we
define function q1(y) =

y
ln(1+y)

, y > 0, and we have

q ′1(y) =
1

ln(1 + y)
− y

(1 + y) ln2(1 + y)
, (54a)

q ′′1 (y) =
2y − (y + 2) ln(1 + y)

(1 + y)2 ln3(1 + y)
. (54b)

Define q2(y) = 2y − (y + 2) ln(1 + y), and we have

q ′2(y) = 1− ln(1 + y)− 1

1 + y
, (55a)

q ′′2 (y) = −
y

(y + 1)2
< 0, ∀y > 0. (55b)

Since q ′2(0) = 0, we can obtain q ′2(y) < 0, ∀y > 0. Then
based on q2(0) = 0, we can deduce q2(y) < 0, ∀y > 0. Hence,
we have q ′′1 (y) < 0, ∀y > 0. Since limy→+∞ q ′1(y) = 0,
we have q ′1(y) > 0, ∀y > 0, which indicates q1(y) is
monotonically increasing when y > 0. Analogically, objec-
tive function (12a) monotonically increases with pijk . Thus,
the equality of the power constraint holds for (52) to save the
UD energy, i.e., the optimal p∗ijk can be calculated as (17).

APPENDIX C
PROOF OF THEOREM 2

The Lagrangian dual of Problem (26) can be formulated as

L2 =
∑

k∈{1,2}

∑
i∈Ujk

saijkBN0

gij

(
2

Di
sa
ijk

BT ′
ijk − 1

)
T ′
ijk

+ ηj

⎛
⎝ ∑

k∈{1,2}

∑
i∈Ujk

saijk − Sa

⎞
⎠. (56)

The Karush-Kuhn-Tucker (KKT) conditions of Problem (26)
are as follows:

∇saijk
L2 = hijk

(
saijk

)
+ ηj , ∀k ∈ {1, 2}, i ∈ Ujk , (57a)∑

k∈{1,2}

∑
i∈Ujk

saijk = Sa , (57b)

saijk ≥ sa,min
ijk , ∀k ∈ {1, 2}, i ∈ Ujk , (57c)

where hijk (s
a
ijk ) is given in (28). Setting ∇saijk

L2 = 0 yields

saijk = h−1
ijk

(−ηj ), ∀k ∈ {1, 2}, i ∈ Ujk . (58)

Due to the existence of (57c), we derive (27). Then, we
derive (29) by combining (57b) and (27).

APPENDIX D
PROOF OF THEOREM 3

The objective functions (31a) and (32a) can be expressed
as a sum of composite functions of the following form:

lijk

(
T ′
ijk

)
, k ∈ {1, 2}, (59)

where

lijk (y) = saijkN0

(
2

Di
sa
ijk

y − 1

)
y , (60a)

T ′
ij1

(
f eij

)
= Ti − Fi

f eij
, (60b)

T ′
ij2

(
f cij , s

b
ij

)

=

⎧⎪⎪⎨
⎪⎪⎩

Ti − Di
C − χ− Fi

f cij
, if j = 0,

Ti − Di

sbij log2

(
1+

Pj

sb
ij
N0

) − Di
C − χ− Fi

f cij
, if j 	= 0.

(60c)

As proved in the beginning of Section IV-D, lijk (y) is a
convex and monotonically decreasing function of y when
y > 0. Since T ′

ij1 is a concave function of f eij and T ′
ij2 is

also a concave function of {f cij , sbij }, the composite function
lijk (T

′
ijk ), k ∈ {1, 2} is a convex function according to [45].

Besides, Constraints (31b)-(31c) and (32b)-(32c) are convex.
Therefore, Problem (31) and (32) are convex.

APPENDIX E
PROOF OF THEOREM 4

Denote the objective value of Problem (12) under the solu-
tion (x ,p, sa , sb , f e , f c) by E (x ,p, sa , sb , f e , f c). At the
t-th iteration, we first obtain x (τ) by solving Problem (13) with

fixed (p(τ−1), sa (τ−1), sb
(τ−1)

, f e (τ−1), f c(τ−1)), and thus
we have

E

(
x (τ−1),p(τ−1), sa (τ−1), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)

≥ E

(
x (τ),p(τ−1), sa (τ−1), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)
.
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Secondly, given (x (τ), sb
(τ−1)

, f e (τ−1), f c(τ−1)), the sa (τ)

can be obtained by solving Problem (26), which guarantees the
following equation

E

(
x (τ),p(τ−1), sa (τ−1), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)

≥ E

(
x (τ),p(τ−1), sa (τ), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)
.

Then, with fixed (x (τ), sa (τ)), we approach the solu-
tions of Problem (31) and Problem (32), i.e., f e (τ) and

{sb (τ), f c(τ)}. Therefore, we have

E

(
x (τ),p(τ−1), sa (τ), sb

(τ−1)
, f e (τ−1), f c(τ−1)

)

≥ E

(
x (τ),p(τ−1), sa (τ), sb

(τ)
, f e (τ), f c(τ)

)
.

Finally, p(τ) can be uniquely determined based on

(x (τ), sa (τ), sb
(τ)

, f e (τ), f c(τ)), which does not change the
objective value, i.e.,

E

(
x (τ),p(τ−1), sa (τ), sb

(τ)
, f e (τ), f c(τ)

)

= E

(
x (τ),p(τ), sa (τ), sb

(τ)
, f e (τ), f c(τ)

)
.

The above equations demonstrate that the value of objec-
tive function (12a) is non-increasing when sequence
(x ,p, sa , sb , f e , f c) is updated after each iteration.
Furthermore, the value of objective function in (12a) always
keeps positive. Hence, Algorithm 3 can converge in a finite
number of iterations.
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