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Federated Deep Reinforcement Learning for
Task Offloading in MEC-Enabled

Heterogeneous Networks
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Abstract—The integration of mobile edge computing (MEC)
and heterogeneous networks enables network operators to pro-
vide task offloading services to a large number of user devices
(UDs) for low-latency task processing by equipping macro base
stations and densely deployed small base stations with edge
servers. Federated deep reinforcement learning allows each UD
to collaboratively learn useful knowledge from the interaction
with the environment in a privacy-preserving and high-efficiency
way and thus has been applied to solve the task offloading
problem in recent studies. However, very few of these studies
have considered the energy and time costs incurred by the
federated learning process. In this article, the goal is to minimize
the total UDs’ energy consumption while guaranteeing deadline
constraints considering both the task offloading process and
the federated learning process in MEC-enabled heterogeneous
networks. Toward this end, we propose a federated deep Q-
network (DQN) method where each UD optimizes the offloading
decision for the offloading process and the participation decision
and training volume for the learning process based on its local
DQN model. The simulation results demonstrate the proposed
method is superior to several existing methods in terms of energy
efficiency and Quality of Service (QoS).

Index Terms—Deep reinforcement learning (DRL), federated
learning, mobile edge computing (MEC), task offloading.

I. INTRODUCTION

W ITH the rapid growth in intelligent applications and the
exponential increase in data, user devices (UDs) must

handle numerous latency-critical and computation-intensive
tasks, such as real-time gaming and face recognition [1].
Despite advancements in UDs, it remains challenging for them
to complete all tasks locally under strict delay requirements
due to their limited battery life and computational capacity.
One viable solution to enable efficient task execution is to
leverage the mobile edge computing (MEC) paradigm, which
brings communication and computation closer to UDs [2]. In
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current fifth-generation (5G) networks, the dense deployment
of small base stations (SBSs) facilitates the integration of MEC
into the radio access network (RAN) [3]. MEC offers a highly
virtualized platform, providing edge servers with a flexible
application environment capable of meeting the real-time
interaction demands of multiple UDs. Benefiting from MEC,
each UD can decide whether to transfer its computational
tasks to edge servers to either accelerate task execution or
conserve energy [4], [5]. However, the limited radio spectrum
cannot accommodate a large number of UDs simultaneously
uploading task data to a single SBS [6]. Moreover, excessive
task offloading may overload edge servers, creating computa-
tional bottlenecks [7]. Consequently, blind offloading decision
making can lead to suboptimal Quality of Service (QoS) due
to high transmission and processing delays. Therefore, it is
crucial to consider various factors, such as resource capacity
and task requirements, in task offloading decision making to
ensure optimal energy consumption and latency for UDs.

Several existing works have focused on the aforemen-
tioned factors and proposed various computation offloading
methods based on mathematical programming [8] (e.g.,
dynamic programming and convex programming) and heuristic
rules [9] (e.g., genetic algorithms and ant colony optimization).
Compared with mathematical programming, which can handle
multiple variables and constraints to capture the problem
and achieve optimal solutions, heuristic methods offer the
advantage of lower computational complexity, particularly in
large-scale systems [10]. However, both approaches require
accurate prior resource information and incur significant run-
ning time, making them inadequate for real-time decision
making under uncertain resource availability, high UD mobil-
ity, and dynamic task requirements. To address this limitation,
recent research on computation offloading has adopted rein-
forcement learning (RL) techniques, which can make real-time
optimal decisions through knowledge gained from interactions
with the environment, without requiring prior information
on the system dynamics and modeling [11]. To overcome
the curse of dimensionality inherent in RL, an alternative
technique, deep RL (DRL) [12], has been introduced to the
field of task offloading. DRL utilizes deep neural networks to
assist agents in learning complex policies, thereby accelerating
the training process. Traditional centralized RL/DRL methods
require a central server to collect data from agents for train-
ing [13]. While this approach results in considerable network
overhead and raises privacy concerns for UDs, insufficient data
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sharing among UDs, such as independent training on each
UD, can lead to isolated information islands and poor learning
performance.

To balance personal privacy protection and learning
performance, researchers have adopted the federated learning
framework, which enables collaborative training without shar-
ing personal data [14]. Specifically, each UD can selectively
participate in training rounds, using its local dataset to train
the model independently and transmitting the model updates to
a centralized entity [15]. The centralized node then aggregates
these updates to generate new global model parameters, which
are subsequently distributed to UDs. Consequently, each train-
ing round requires computation and communication resources
for both local model training and model update transmis-
sion [16]. When applying federated learning to address task
offloading in resource-constrained MEC scenarios, there exists
a complex interaction between the offloading and learning
processes, which has often been overlooked in previous
studies. On one hand, model training may compete with
task processing for limited resources and time. On the other
hand, efficient model training allows UDs to derive valuable
information from their local datasets, leading to high-quality
offloading solutions. Thus, achieving a balanced allocation
of time and resources between task offloading and model
training is critical [17], as it reduces energy consumption
incurred by task processing and model training under specified
latency constraints. Moreover, studies [18], [19] have shown
that the number of UD agents participating in each federated
learning round significantly impacts the cost, accuracy, and
convergence of model training. Consequently, designating the
edge server co-located with the SBS as the central entity
may limit federated learning performance due to the restricted
coverage of the SBS. To address this limitation, heteroge-
neous networks that employ a macro base station (MBS) to
overlay multiple SBSs can be utilized to enhance network
capacity [20]. In such a heterogeneous network, the MBS
offers broader coverage and more extensive communication
and computation resources, making it an ideal central entity
for the federated learning process.

In this work, we propose a federated learning-inspired
offloading mechanism for an MEC-aided heterogeneous
network, which consists of three layers: 1) UDs; 2) SBSs;
and 3) MBSs. SBSs provide task offloading services to UDs
within their coverage areas, while each UD learns from its
experiences to make informed offloading decisions in a dis-
tributed manner. MBSs act as centralized nodes, aggregating
information from UDs. In task offloading, UDs transmit raw
data to the edge server, with the uplink data volume signifi-
cantly larger than the processed results returned via downlink,
as indicated in [21], [30], and [38]. Additionally, uplink trans-
mission rates are typically slower than downlink rates in MEC
environments, making uplink transmissions dominant in terms
of energy and time consumption, while the impact of down-
link transmission is negligible [21], [30], [38]. In federated
learning, UDs upload model updates that are similar in size to
the global model returned after aggregation. However, despite
comparable data sizes, the slower uplink rates and concurrent
transmissions from multiple UDs increase energy and time

consumption, as noted in [39], [40], and [41]. Conversely, the
faster downlink rates and lower energy requirements make the
impact of downlink transmission negligible [39], [40], [41].
Therefore, we disregard the time and energy consumed by
downlink transmission in both task offloading and feder-
ated learning. In line with [13], [21], and [22], our goal is
to minimize energy consumption for UDs while ensuring
maximum delay constraints, considering the limited battery
capacity and desired QoS levels for UDs. We exclude the
energy cost of edge nodes (SBSs and MBSs), which benefit
from more stable and abundant energy resources. We focus
on the energy consumed by the task execution process and
the federated learning process, formulating an energy cost
minimization problem where offloading decisions, training
participation decisions, and training dataset sizes are jointly
optimized. This problem is addressed by each UD using
federated DRL models. The main contributions of this work
include as follows.

1) We propose a federated learning-based framework
in MEC-aided heterogeneous networks to achieve
real-time, privacy-preserving offloading decisions for
delay-sensitive and nonpartitionable tasks. In this frame-
work, each UD functions as a distributed client that
learns to determine an optimal location for task pro-
cessing. MBSs serve as central nodes that facilitate the
learning process for distributed clients, while SBSs are
responsible for processing tasks offloaded by UDs.

2) We formulate a total energy cost minimization problem
for UDs, incorporating constraints of latency and train-
ing volume by modeling the joint task offloading
and federated learning processes. The objective is to
optimize participation decisions and training dataset
sizes in each training round to balance training costs
and model accuracy, given that the accuracy of feder-
ated models directly influences the performance of the
offloading decisions they generate.

3) To address the joint offloading and learning optimization
problem, we develop a federated deep Q-network
(DQN)-based approach that enables each UD to
independently make offloading and learning-related
decisions based on its local DQN model. Each UD esti-
mates the long-term cost of its actions based on locally
observed state information, including task requirements
and historical training volume, to guide decision making.

4) Simulation results demonstrate that the proposed method
significantly reduces the energy consumption of UDs
and the ratio of tasks that violate deadlines by selecting
appropriate offloading destinations and adjusting model
training intensity.

II. RELATED WORK

In the recent years, researchers have investigated the MEC-
enabled computation offloading problem with focus on various
optimization objectives, such as energy cost, resource utiliza-
tion and task completion time, and proposed various task
offloading methods based on different optimization techniques.
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Zhang et al. [8], Tang and Hu [23], Li et al. [24], Van
Huynh et al. [25], and Su et al. [26] proposed computation
offloading methods based on mathematical programming, e.g.,
convex relaxation and dynamic programming. Zhang et al. [8]
studied the QoS-aware computation offloading by minimizing
the total task execution time, and designed a branch and
bound-based method and a generalized benders decomposition
(GBD)-based method, respectively. Tang and Hu [23] aimed
to minimize the total weighted task delay under battery capac-
ity constraints and utilized successive convex approximation
(SCA) to achieve a near-optimal offloading policy and resource
distribution. Li et al. [24] developed a task offloading approach
enabled by the difference of convex function to minimize the
energy expended by UDs while satisfying deadline constraints.
Van Huynh et al. [25] integrated multi-UDs with a digital
twin MEC network and presented a computation offloading
method combining the inner approximation and alternating
optimization for minimizing latency. Su et al. [26] studied
the sum energy minimization problem for the collaborative
cloud–edge computation offloading by exploiting integer linear
programming (ILP) and designed a primal-dual-based compu-
tation offloading method to tackle the formulated ILP problem.

Another extensively adopted optimization technique is the
heuristic rule, e.g., the greedy algorithm and the meta-
heuristic algorithm. Guo et al. [27] presented a two-tier
task offloading framework in ultradense networks considering
different task types and designed a greedy task offloading
method which determines the offloading position based on
task processing delay. Patel et al. [9] designed a distributed
stable matching-inspired method for balancing the energy
consumption and monetary cost caused by task offloading.
Chen et al. [28] considered dependent tasks under two
collaboration scenarios and proposed two heuristic greedy
offloading methods to minimize the application completion
time, respectively. Chen et al. [29] targeted at the minimization
of energy consumption incurred from executing deep neural
network-enabled applications for all devices and servers and
developed an energy-efficient offloading approach by adopting
self-adaptive particle swarm optimization. Focusing on the
vehicular scenarios, de Souza et al. [30] modeled the task
offloading process as a multiconstraint NP-hard optimization
problem with the aim of minimizing application latency
and presented a bee colony-based heuristic solution for this
problem.

As the task requirements and network conditions are
increasingly complex and dynamic, both mathematical pro-
gramming techniques and heuristic rules need a large amount
of iterations to converge to a satisfactory local optimum,
and therefore fail to make real-time offloading decisions.
Recently, there has been interesting research demonstrating
the superior performance of RL and DRL in solving various
complex RAN-related decision problems (e.g., task offload-
ing and resource provision) under sophisticated and volatile
task demands [31]. Dai et al. [32] developed an cloud-
edge-end orchestrated offloading framework where the joint
task offloading and resource assignment problem aiming at
minimizing system energy cost is expressed as a Markov
decision process (MDP) model and tackled by a DRL-based

algorithm. Considering the uncertain workload dynamics at
the edge servers, Li et al. [33] developed a DQN-enabled
offloading method to minimize the cost integrating energy
consumption and delay. Tang and Wong [34] designed a
distributed offloading method by incorporating DQN and
long short-term memory for enabling each UD to make
offloading decisions without requiring the information of
other UDs. Zhou et al. [35] investigated the system energy
minimization problem with delay constraints and proposed two
energy-efficient offloading approaches by adopting Q-Learning
and double DQN, respectively. To enhance the offload-
ing performance measured by the latency and energy cost,
Zhang et al. [36] developed an intelligent offloading method
which adopts meta RL for improving the model training speed
and DRL for decision making.

However, these works are based on centralized or distributed
computation models which ignore the tradeoff between
model training performance and personal privacy protec-
tion in dynamic network environments. Motivated by this,
researchers have proposed federated learning-enabled offload-
ing approaches to enhance the model accuracy performance
on the premise of guarding data privacy. Guo et al. [22]
investigated the minimization of system cost and designed a
federated DRL-based method where each UD acts as a DRL
agent to tackle the problem. Prathiba et al. [37] designed a
task scheduling and resource management framework enabled
by federated Q-Learning to achieve the minimum offloading
latency and resource cost. Pan et al. [38] presented a federated
DQN-based computation offloading approach for maximiz-
ing the system throughput and designed an asynchronous
learning policy to improve the learning efficiency. Generally,
the performance of federated learning can be enhanced by
increasing the update rounds and engaging more UDs in
the updating process, which however leads to significant
computation and communication costs. Luo et al. [39] modeled
the accuracy performance of federated learning deployed in
MEC systems and deduce an upper bound of accuracy loss to
guide the joint minimization of learning costs and accuracy
loss. To enhance the performance of federated learning at
a limited cost, Zhang et al. [40] proposed a relay-assisted
federated scheduling strategy where each federated node can
choose to assist other nodes in data transmission based on the
evaluation of revenue and energy consumption. Salh et al. [41]
investigated the joint resource scheduling and user selection to
minimize the energy cost incurred from the federated learning
process while guaranteeing a desired level of training delay.

The significant cost of the federated learning process
underscores the importance of balancing model accuracy and
learning overhead when designing federated learning-based
solutions for resource-limited UDs and wireless networks.
However, this aspect has often been overlooked by exist-
ing federated offloading mechanisms. Shinde et al. [17]
investigated the joint optimization of federated learning and
offloading policies, aiming to reduce energy consumption
under delay constraints, and proposed a genetic algorithm-
inspired method to determine the optimal number of federated
learning iterations for improved task offloading performance.
Nonetheless, the meta-heuristic approach employed in their
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TABLE I
DIFFERENCE BETWEEN OUR APPROACH AND THE MOST RELEVANT APPROACHES

Fig. 1. Architecture of MEC-enabled heterogeneous network.

work is not adaptable to workload dynamics and can only
achieve a suboptimal solution. Therefore, the objective of our
work is to jointly optimize offloading and learning decisions
within a federated MEC-enabled task offloading framework in
real-time, aiming to minimize total UD energy consumption
while meeting desired latency levels.

To highlight the key features and distinctions of our con-
tributions, we present a qualitative comparison between our
proposed approach and the most relevant methods, includ-
ing [17], [22], [34], [35], [36], [37], [38] in Table I. In
the table, “GA” denotes the genetic algorithm and “FL”
denotes federated learning. As shown in Table I, our approach
advances the field by introducing a joint optimization frame-
work for task offloading and federated learning, addressing
privacy concerns while ensuring energy efficiency and QoS
guarantees. By employing a DRL-based solution mechanism,
our approach adapts effectively to dynamic workloads in
MEC-enabled heterogeneous networks.

III. SYSTEM MODEL

Fig. 1 illustrates an MEC-enabled heterogeneous network
architecture composed of one MBS, M SBSs represented by
M = {1, . . . ,M}, and N UDs represented by N = {1, . . . ,N}.
The MBS and SBSs are all associated with an edge server with
computational and storage capabilities, where the MBS server
is designated as the federated learning platform and the SBS
servers provide computation offloading services to UDs. We
focus on one time period that is divided into a set of discrete
time slots T = {1, . . . ,T}, each of which has a time interval

of � seconds. Without loss of generality, each UD is assumed
to generate a computational task at the beginning of each
time slot according to [9], [21], and [34]. The computational
task of UD i at time slot t can be characterized by the tuple
Task(t)i = (D(t)i ,C(t)i ,T(t)i,max), where D(t)i represents the size

of task input, C(t)i is the amount of CPU cycles needed to
complete the task, and T(t)i,max denotes the task completion
deadline.

The processing capability can vary enormously among UDs,
SBSs, and the MBS. We accordingly denote cu

i , cs
j , and cm

as the CPU frequency of UD i ∈ N , SBS j ∈ M, and the
MBS, respectively. Each UD can establish connection with
SBS j on a bandwidth Bs

ij when entering SBS j’s coverage
area with radius Os

j . All UDs are covered by the MBS and
can communicate with the MBS on a bandwidth Bm

i . In the
following, we focus on making time-slot decisions of task
offloading and federated learning in each time slot t ∈ T .

A. Task Offloading Model

The UDs can determine to transfer their newly arrived
tasks to their associated SBSs or process the tasks locally.
Here, we consider the practical scenario where tasks are
nondivisible according to [9] and [13]. Represent the potential
task execution locations by a new set M′ = {0, 1, . . . ,M},
where index 0 means that the task is performed locally without
offloading. Then, a binary offloading variable u(t)ij ∈ {0, 1}, j ∈
M′ is defined for the task produced by UD i at time slot t,
where u(t)ij = 1, j �= 0 denotes that UD i selects SBS j for task

execution, and u(t)i0 = 1 indicates that UD i performs its task
locally.

1) Task Uploading Process: When UD i selects SBS j
as the offloading destination, the task input data needs to
be uploaded to the selected SBS. Here, the result return is
neglected due to the high downlink transmission rate and
small result data size according to [21], [30], and [38]. For the
communication between the UD and the SBS, we calculate the
transmission rate from UD i to SBS j based on the Shannon
capacity formula [42] as

rs
ij(t) = Bs

ij log2

(
1+ Pu

i �
s
ij(t)

Bs
ijN0

)
∀i ∈ N , j ∈M, t ∈ T (1)

where Pu
i denotes the transmission power of UD i, N0 denotes

the power spectral density of noise, and �s
ij(t) denotes the

channel gain between UD i and SBS j.
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Then, the transmission time and energy consumed by
uploading Task(t)i of UD i to SBS j is given by

Tou
ij (t) =

D(t)i

rs
ij(t)
∀i ∈ N , j ∈M, t ∈ T (2)

Eou
ij (t) = Pu

i Tou
ij (t) ∀i ∈ N , j ∈M, t ∈ T . (3)

2) Task Computation Process: Depending on different
offloading decisions, task computation incurs varying degrees
of task processing delay and energy cost. For local execution,
the computation delay and energy consumption at UD i can
be calculated as

Toc
i0 (t) =

C(t)i

cu
i
∀i ∈ N , t ∈ T , (4)

Eoc
i0 (t) = κ

(
cu

i

)2
C(t)i ∀i ∈ N , t ∈ T (5)

respectively, where κ represents the effective switched
capacitance [9].

The computation delay for UD i to process its task on SBS
j can be given as

Toc
ij (t) =

C(t)i

cs
j
∀i ∈ N , j ∈M, t ∈ T . (6)

Here, we ignore the energy consumed by task execution on
SBS servers due to the sufficient power supply to the SBSs
from grids [13], [21], [22].

3) Task Offloading Problem Formulation: Owing to the
constrained battery capacity of UDs and the significance of
service quality, we aim to optimize the offloading decision
variables u(t)ij to minimize the energy consumed by the UDs
while respecting the delay deadlines. The total delay and
energy consumption for UD i to complete the task in time slot
t ∈ T can be detailed as

To
i (t) = u(t)i0 Toc

i0 (t)+
∑
j∈M

u(t)ij

(
Tou

ij (t)+ Toc
ij (t)

)
(7)

Eo
i (t) = u(t)i0 Eoc

i0 (t)+
∑
j∈M

u(t)ij Eou
ij (t) (8)

respectively. Then, we have the energy-aware and latency-
constrained task offloading optimization problem as follows:

min
u

∑
t∈T

∑
i∈N

Eo
i (t) (9a)

s.t. To
i (t) ≤ T(t)i,max ∀i ∈ N , t ∈ T (9b)

u(t)ij d(t)ij ≤ Os
j ∀i ∈ N , t ∈ T (9c)∑

j∈M′
u(t)ij = 1 ∀i ∈ N , t ∈ T (9d)

u(t)ij ∈ {0, 1} ∀i ∈ N , j ∈M′, t ∈ T (9e)

where u = {u(t)ij ∀i ∈ N , j ∈ M′, t ∈ T }, (9b) requires
the tasks should be completed within the deadline, (9c) states
that each SBS can only provide offloading services to UDs in
its coverage area, and (9d) and (9e) ensure that each task is
processed on either the local device or one unique SBS.

To remove the effect of stochastic environment behaviors on
offloading performance, we introduce the DRL algorithm for
making the offloading decision according to the observation
of current system state. Furthermore, we propose to adopt an
federated learning-inspired framework to enhance the privacy
of UDs and reduce the communication overhead during model
training. The federated learning process consumes a certain
amount of energy and time and hence may compete with task
processing for time and resource.

B. Federated Learning Model

In time slot t, the learning process can be divided into
three phases, including the distribution of global model from
the MBS to UDs, the local model training at UDs, and
the federated averaging at the MBS. Here, the global model
distribution is neglected due to the high rate of downlink
communication [39].

1) Local Model Training: Each UD i ∈ N is able to update
their local model based on its own dataset �i. Specifically, we
define z(t)i as a training participation indicator, where z(t)i = 1
if UD i is involved in the training process in time slot t and
z(t)i = 0 otherwise. For the model training at UD i ∈ N in each
time slot t ∈ T , we randomly sample a mini-batch �̃(t)i with
h(t)i data elements from the local dataset �i of UD i. Generally,
the computational complexity of a DRL model is measured
based on its requirement of CPU cycles [17]. Accordingly, the
delay and energy consumed by the local model training at UD
i in time slot t are calculated as

T fc
i (t) =

z(t)i ϕih
(t)
i

cu
i
∀i ∈ N , t ∈ T (10)

Efc
i (t) = z(t)i κ

(
cu

i

)2
ϕih

(t)
i ∀i ∈ N , t ∈ T (11)

respectively, where ϕi is the total amount of CPU cycles
needed for training a data sample at UD i.

2) Federated Averaging: After completing the local model
training on mini-batch �̃(t)i , UD i needs to transmit its updated
model θ

(t)
i to the centralized server associated with the MBS

for federated averaging. The uplink transmission rate from UD
i to the MBS is defined as

rm
i = Bm

i log2

(
1+ Pu

i �
m
i (t)

Bm
i N0

)
∀i ∈ N , t ∈ T (12)

where �m
i (t) denotes the channel gain between UD i and the

MBS. Then, the time and energy consumed by the uplink
transmission of UD i’s model parameters in time slot t can be
computed as

T fu
i (t) =

z(t)i |θ (t)i |
rm

i
∀i ∈ N , t ∈ T (13)

Efu
i (t) = z(t)i Pu

i T fu
i (t) ∀i ∈ N , t ∈ T (14)

where |θ (t)i | denotes the data size of the model parameters.
Here, the delay resulting from aggregating the received model
parameters on the MBS server is omitted due to the superior
computation capabilities of the MBS server. Accordingly, the
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Fig. 2. Temporal relations between task offloading and federated learning
on the UDs.

overall time and energy consumed by UD i for model training
in time slot t can be given by

T f
i (t) = T fc

i (t)+ T fu
i (t) ∀i ∈ N , t ∈ T (15)

Ef
i (t) = Efc

i (t)+ Efu
i (t) ∀i ∈ N , t ∈ T . (16)

C. Joint Task Offloading and Federated Learning
Optimization

In this article, we assume a sequential order of the task
offloading process and the federated learning process in each
time slot; that is, each UD first executes its task based on
the offloading decision and then proceeds with model training
if it is identified for the learning process. In this scenario,
computation or communication resources on UDs are allocated
to the learning process only when they are not required for task
processing. Fig. 2 illustrates three different cases of temporal
relations between task offloading and federated learning. For
instance, for UD 1, which opts for local task execution, local
model training can only commence after task completion. In
contrast, for UDs 2 and 3, which choose to offload tasks,
local model training is not restricted by task computation;
however, the updated local model can only be uploaded after
the task data has been fully uploaded. Depending on the
offloading decisions, the total time required to complete both
task execution and model training is calculated as

T total
i (t) = u(t)i0

(
Toc

i0 (t)+ T f
i (t)

)
+

∑
j∈M

u(t)ij

(
max

(
Tou

ij (t), T fc
i (t)

)
+ T fu

i (t)
)
. (17)

The energy consumed for accomplishing both task execution
and model training is

Etotal
i (t) = Eo

i (t)+ Ef
i (t). (18)

Research [19] has demonstrated the great relationship
between the training dataset size and the model performance,
that is, the model performance increases with the training
data volume until arriving at a specific point. Besides, some
clients’ long absence from model aggregation will result
in incomplete information collection and cause a degraded
performance of the aggregated global model. Hence, we

specify the minimum training data amount hmin and Hmin from
the local and global perspectives, respectively, to optimize the
model accuracy more effectively and efficiently. Accordingly,
we build the joint task offloading and federated learning
optimization problem as follows:

min
u,z,h

∑
t∈T

∑
i∈N

Etotal
i (t) (19a)

s.t. T total
i (t) ≤ � ∀i ∈ N , t ∈ T (19b)

t∑
k=t−φ+1

z(k)i h(k)i ≥ hmin ∀i ∈ N , t ∈ T (19c)

∑
i∈N

z(t)i h(t)i ≥ Hmin ∀i ∈ N , t ∈ T (19d)

z(t)i ∈ {0, 1} ∀i ∈ N , t ∈ T (19e)

(9b)−(9e) (19f)

where z = {z(t)i ∀i ∈ N , t ∈ T } and h = {h(t)i ∀i ∈
N , t ∈ T }, (19b) requires both offloading process and learning
process should be accomplished before the end of the current
time slot, (19c) indicates the minimum amount of local
training data during the final φ time slots for each UD,
and (19d) denotes the minimum amount of global training
data in each time slot to guarantee the global model accuracy.
With (19c) and (19d), the training volume of each UD can
be adjusted according to the change of task requirements in a
real-time manner, which in turn facilitates high model accuracy
and low energy cost.

Complexity Analysis: The formulated (19) is a mixed-integer
nonlinear programming (MINLP) problem involving decision
variables u, z, and h. Solving this problem is challenging
due to its exponentially large combinatorial search space.
Furthermore, the optimization variables are interdependent:
task offloading decisions u influence both the federated learn-
ing participation z and local training data amounts h, while
the outcomes of federated learning, in turn, impact the optimal
task offloading strategy. This mutual dependence among the
variables significantly increases the complexity of the problem.

Theorem 1: The joint task offloading and federated learning
optimization problem in (19) is NP-hard.

Proof: Problem (19) can be shown to be NP-hard by
extending the classical 0-1 Knapsack Problem with additional
constraints. A formal proof is provided in Appendix A,
demonstrating the reduction from the Knapsack Problem and
establishing the NP-hardness of (19).

Based on Theorem 1, (19) is NP-hard, meaning that finding
an optimal solution in polynomial time is infeasible unless
P equals NP. To efficiently achieve near-optimal solutions
within a reasonable time frame, we propose a DRL-based
approach.

IV. PROPOSED SOLUTIONS

Leveraging the federated framework, each UD functions as
a decision-making agent that interacts with the MEC envi-
ronment. By defining the state space, action space, and cost
function for each UD, we can formulate the joint offloading
and federated learning problem for each UD as an MDP.
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To handle the scalability problem of large-scale systems and
the lack of prior information, we adopt DQN, a DRL-based
method, which uses a deep neural network to explore the
optimal state-action value (i.e., Q-value) for the formulated
MDP problem [13]. Each UD trains its own DQN model
parameters individually on its local data set and learns the data
characteristics of other UDs via the parameter aggregation on
the MBS server.

A. State, Action, and Cost

1) State Space: Each UD i ∈ N can observe its own
state information, including the task characteristics and history
record of effective training volume at the beginning of each
time slot. As required in (19b), each UD i participating
in the model training with z(t)i = 1 should complete the
predetermined training volume and model uploading within
time slot t. Otherwise, the training effort is futile since the
local model can not be uploaded in time for aggregation.
Accordingly, we denote the effective training sample size of
UD i in time slot t as h̄(t)i = h(t)i 1(T total

i (t) ≤ �). Define the
set of available SBSs for UD i in time slot t as M(t)

i = {j ∈
M|d(t)ij ≤ Os

j }. Each UD i is able to observe the resource

information of SBSs in M(t)
i and the MBS. Consequently, the

state for observation by UD i in time slot t is described as

s(t)i =
(

Task(t)i , h̄
φ−1
i (t),R(t)i

)
(20)

where h̄
φ−1
i (t) = {h̄(t−φ+1)

i , . . . , h̄(t−1)
i } denotes the history

of UD i’s effective training volume over the previous φ − 1
time slots and R(t)i = (cu

i , {cs
j ,Bs

ij}j∈M(t)
i
,Bm

i ) encapsulates the
available resource information in time slot t.

2) Action Space: Based on the observed state, each UD
i chooses where to execute Task(t)i from the set of available
places M′(t)

i = 0 ∪M(t)
i . For each j ∈M′ \M′(t)

i , we have
u(t)ij = 0. Meanwhile, each UD should also decide whether to

participate in the learning process in time slot t, i.e., z(t)i , and
further determine the corresponding training batch size, i.e.,
h(t)i . Here, we set the training batch size h(t)i to be chosen from
a discrete set H � {0, h1, h2, . . . , ho} with |H| optional values
to reduce the complexity of action space. Specifically, h(t)i = 0
indicates UD i is pointedly absent from the model training in
time slot t, i.e., z(t)i = 0; otherwise, h(t)i > 0. Then, the action
vector of UD i in time slot t is given by

a(t)i =
(

u(t)i , h(t)i

)
. (21)

The action space available to UD i can be obtained as A(t)
i =

{0, 1}|M′(t)
i | × |H|.

3) Cost Function: Recall that our main objective is to
minimize the energy cost incurred from task processing and
model training, as shown in (19). Furthermore, the constraints
in (19) need to be guaranteed. Among these constraints,
the satisfaction of (9c)–(9e) and (19e) can be ensured by
restricting the action space for each UD. Unfortunately, each
UD is not accessible to the states and actions of other UDs
whereas the performance of its task processing and model
training can be affected by the other UDs’ actions.

According to the history value record h̄
φ−1
i (t) and the

current value h̄(t)i in time slot t, Each UD i can calculate
the total effective training volume during the past φ time
slots as h̄φi (t) =

∑t
k=t−φ+1 h̄(k)i . Let N̄ (t) = {i ∈ N |zi(t) =

1,T total
i (t) ≤ �} denote the UDs participating in the training

process and completing the local model training and uploading
within time slot t. Each UD in N̄ (t) sends its value of hi(t)
along with its updated model to the MBS.The MBS calculates
the effective global training volume in time slot t as H̄(t) =∑

i∈N̄ (t) h(t)i and signals each UD a failure if the volume
fails to meet the requirement. Besides, each UD receives a
failure response from its tasks that cannot be completed by the
offloading SBS within the deadline. In case of a violation of
the constraints with respect to latency or training volume, we
define a personalized cost function for each UD i as follows:

F(t)i = Etotal
i (t)+ Eo

i (t)
(
ξd

i 1
(

To
i (t) > T(t)i,max

)
+ ξH

i 1
(

H̄(t) < Hmin
)
+ ξh

i 1
(

h̄φi (t) < hmin
))

(22)

where ξd
i , ξ

H
i , and ξh

i > 0 are the three weight factors.
Here, we adopt UD i’s TO energy consumption Eo

i (t) as the
benchmark value of penalty terms since the violation should
be punished more severely for causing higher energy con-
sumption. Specifically, ξd

i represents the task failure penalty
imposed when the task of UD i encounters a timeout; ξH

i and
ξh

i describe the penalties for UD i failing to meet the minimum
requirements of global and local training volume.

B. Markovian Decision Process Formulation

The joint task offloading and federated learning optimization
problem can be approximated as an individual MDP for
each UD. The goal of this formulation is to capture the
decision-making process for each UD, where decisions on task
offloading and participation in federated learning are made
at each time step, and the system evolves based on these
decisions. In the MDP, the state at time t, denoted as s(t)i ,
represents the current system state observed by UD i. The
action taken by UD i at time t, denoted as a(t)i , is selected
from the action space A(t)

i . The state transition probability
ps(t)i s(t+1)

i
(a(t)i ) governs the transition to the next state s(t+1)

i

after executing action a(t)i . Given the state space, action space,
the transition model, and cost function, the goal is to find
the optimal policy π∗i that minimize the cumulative cost. The
objective function for each UD is

π∗i = arg min
πi

E

[∑
t∈T

γF
(

s(t)i , a(t)i

)]
(23)

where γ ∈ [0, 1) is the discount factor that balances immediate
and future rewards.

In this study, we adopt the DQN approach to achieve
the optimization goals in (23). The decision to use DQN
stems from its ability to efficiently handle discrete action
spaces, which aligns with the decision-making process for
UDs. As demonstrated in [38], DQN performs exceptionally
well in high-dimensional environments similar to our study.
Additionally, compared to policy-based methods like proximal
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policy optimization (PPO) or actor–critic methods, DQN’s off-
policy training and experience replay allow for efficiently reuse
of past experiences, thus reducing the number of required
training episodes and, by extension, the computational and
energy costs [43]. This makes DQN well-suited to our goal
of optimizing both performance and energy efficiency. We
recognize DQN’s limitation of overestimation bias in Q-value
estimation. While Double DQN can mitigate this issue, we
prioritize DQN for its computational simplicity and favorable
tradeoff between performance and efficiency, particularly with
our emphasis on energy reduction. As noted in [43], DQN
consistently delivers high performance while consuming less
energy compared to more complex methods.

C. DQN-Based Solution

Each UD i ∈ N maintains an experience replay buffer �i

with capacity ζi to store the observed transition experience
ψ
(t)
i = (s(t)i , a(t)i ,F(t)i , s(t+1)

i ) in each time slot t ∈ T . Note
the experience replay buffer here is actually equivalent to
the local dataset mentioned in Section III-B1. Thus, we use
the same notation here to facilitate reading. Each UD i ∈
N adopts two neural networks consisting of an evaluation
network EvaNeti and a target network TarNeti. These two
networks own the identical network structure but individual
network parameter vector which we denote by θ i and θ ′i
for EvaNeti and TarNeti, respectively. In DQN, EvaNeti is
utilized to choose actions, while TarNeti is for generating a
target Q-value which estimates the expected long-term cost of
selecting a state-action pair.

Let Qi(s
(t)
i , a(t)i ; θ (t)i ) and Qi(s

(t)
i , a(t)i ; θ ′i) denote the Q-value

of EvaNeti and TarNeti under state-action pair (s(t)i , a(t)i ),
respectively. According to the observed current state s(t)i , UD i
will select its action according to the following ε-greedy rule:

a(t)i =
{

a random chosen action, with probab. ε,

arg min
a′∈Ai

Qi

(
s(t)i , a′; θ (t)i

)
, with probab. 1− ε (24)

where ε indicates the probability to explore a random solu-
tion instead of greedy exploitation. At the beginning of the
next time slot, UD i can observe the cost F(t)i and next
state s(t+1)

i . Then, UD i stores this corresponding experience
(s(t)i , a(t)i ,F(t)i , s(t+1)

i ) in its replay buffer.
1) Distributed Training at User Device i ∈ N : In each

time slot t, each UD i ∈ N chooses whether or not
to participate in the federated training. Given an experi-
ence (s(t)i , a(t)i ,F(t)i , s(t+1)

i ) from the sampled mini-batch �̃(t)i ,
the parameter vector θ i of EvaNeti are updated to mini-
mize the difference between the Q-value predicted by EvaNeti
and the target Q-value obtained by TarNeti. Precisely, UD i
trains its EvaNeti via iteratively updating the parameter vector
θ i to minimize the loss function as follows:

Li

(
θ
(t)
i

)
= E

[(
Qi

(
s(t)i , a(t)i ; θ (t)i

)
− Q̂Target

i,t

)2
]

(25)

where Q̂Target
i,t = F(t)i + γ mina′∈A(t)

i
Qi(s

(t+1)
i , a′; θ ′i) denotes

the estimated long-term cost of action a(t)i under state s(t)i , i.e.,
the target Q-value.

Algorithm 1 Proposed JOFO Algorithm
Require: si(t)
Ensure: ui(t), hi(t)

1: Initialize �i, θ
(t)
i , θ

′
i, θ

(t), θ ′;
2: for t ∈ T do
3: Download θ (t) and θ ′ from the MBS server, and set

θ
(t)
i ← θ (t) and θ ′i ← θ ′;

4: Choose an action a(t)i =
(

u(t)i , h(t)i

)
according to (24)

for the observed state s(t)i ;
5: Offload the task according to u(t)i ;
6: if h(t)i > 0 then
7: Sample a mini-batch �̃(t)i of h(t)i data elements from

�i;
8: Calculate Li

(
θ
(t)
i

)
as (25), and update θ

(t+1)
i as (26).

9: if UD i completes the training data amount hi(t)
within time slot t then

10: Upload the updated θ i to the MBS server;
11: end if
12: end if
13: Observe the cost F(t)i and the next state s(t+1)

i ;

14: Save experience
(

s(t)i , a(t)i ,F(t)i , s(t+1)
i

)
in �i;

15: Update θ (t+1) via federated averaging as (27).
16: if t mod τ = 0 then
17: Update the global target network θ ′ ← θ (t)

18: end if
19: end for

In this work, we exploit the stochastic gradient descent
(SGD) method for local model training aiming at empirical
risk minimization [44]. The corresponding update results of
EvaNeti of UD i after the model training on mini-batch �̃(t)i
can be defined as

θ
(t+1)
i = θ

(t)
i − ηg(t)i (26)

where η is the learning rate and g(t)i = ∇Li(θ
(t)
i ; �̃(t)i ) is the

stochastic gradient.
2) Model Aggregation and Distribution at the MBS Server:

In the end of each time slot t, the MBS server receives the
parameter update results from the UDs in set N̄ (t). Then, the
MBS updates the global model based on aggregated update
�(t) considering batch size ratios w(t)i as follows:

θ (t+1) = θ (t) − η�(t) (27)

where �(t) = ∑
i∈N̄ (t) w(t)i g(t)i with w(t)i =

[(h(t)i )/(
∑

k∈N̄ (t) h(t)k )]. Every τ time slots, the parameter
vector θ (t) of the global evaluation network is duplicated to
replace the parameter vector θ ′ of the global target network.

The proposed joint offloading decision and federated learn-
ing optimization (JOFO) algorithm is depicted in Algorithm 1.
Fig. 3 presents an intuitive view of the scheme designed
for solving the formulated joint offloading and learning
optimization problem. In detail, each UD, acting as a federated
optimizer, maintains a local DQN model where a target
Q-network is used to assist a main Q-network in learning
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Fig. 3. Scheme for the joint task offloading and federated learning
optimization.

from historical data stored in the experience memory. At the
beginning of the t-th time slot, each UD acquires the global
evaluation network θ (t) and the global target network θ ′ from
the MBS server to replace its local corresponding network
parameters θ

(t)
i and θ ′i. Based on the collected current state

information s(t)i , including task demands and training records,
the local model draws an action a(t)i = (u(t)i , h(t)i ) for the joint
offloading and training decision. Then, the task is executed
locally or offloaded to the SBS following the offloading
decision u(t)i . The local model training later starts if the local
computation resources are not occupied by the corresponding
task processing process. Only when the model training on the
mini-batch with h(t)i data elements is accomplished within the
given time slot can the updated local model be transmitted
to the MBS for federated averaging. At the end of each time
slot, the MBS server conducts the aggregation on the models
which are successfully uploaded in time. At the beginning of
time slot t+ 1, each UD can receive the cost F(t)i and observe
the next state information s(t+1)

i , which are saved in a new
experience (s(t)i , a(t)i ,F(t)i , s(t+1)

i ) for later training.

D. Convergence Analysis

JOFO is a federated DQN-based algorithm that enables UDs
to act as federated clients, collaboratively learning optimal
policies. We recognize that handling nonindependent and iden-
tically distributed (non-IID) data across UDs poses significant
challenges in federated DQN, affecting both convergence
speed and stability. In this work, we implement strategies
to balance client contributions during model aggregation,
mitigating the impact of data heterogeneity. Specifically, we
enforce constraints on minimum global training data volume
as in (19d) and minimum local training data volume as
in (19c) to ensure balanced data distribution and sufficient
client participation in each round. Additionally, we adjust
aggregation weights based on clients’ batch sizes during global
model updates, as shown in (27). In this section, we provide
a rigorous convergence proof of JOFO which explicitly con-
siders data heterogeneity by introducing a deterministic bound
on client drift, denoted by δ, as follows.

Proposition 1: Under the assumptions specified in
Appendix B, the sequence {θ(t)} generated by JOFO satisfies

TABLE II
SIMULATION PARAMETERS

lim sup
t→∞

‖∇L
(
θ(t)

)
‖ ≤ δ

where ∇L(θ(t)) = ∑N
i=1 pi∇Li(θ

(t)) is the gradient of the
global loss function at iteration t, pi are the weights (e.g.,
based on data sizes) satisfying

∑N
i=1 pi = 1, and δ ≥ 0 is the

deterministic bound on client drift defined in Assumption 6 in
Appendix B.

Proof: See Appendix B.
This analysis implies that JOFO converges to a neighbor-

hood of a stationary point, with the size of the neighborhood
bounded by δ. The size of this neighborhood is determined
by the client drift δ, which encapsulates the effect of partial
participation and data heterogeneity among UDs.

V. PERFORMANCE EVALUATION

In this section, we conduct numerical simulations based
on Python-PyTorch simulator to evaluate the performance of
our proposed method JOFO for joint offloading and learning
optimization. We consider a scenario where 50 UDs are
randomly scattered in the coverage region of five SBSs. The
parameters are set according to [17], [21], and [34] and are
listed in Table II. We consider a fully connected deep neural
network with one input layer, one output layer, and three
hidden layers, where the three hidden layers consist of 64,
128, and 64 hidden neurons, respectively. Additionally, we set
the discount factor γ = 0.9 and employ the Adam optimizer
with a learning rate η = 0.001. The probability of random
exploration ε gradually decreases from 1 to 0.01.

Fig. 4 depicts the convergence behavior of JOFO given
different training intensity requirements, i.e., the amount of
time slots φ assigned to each UD for completing the minimum
local training volume. Here, the x-axis represents the time slot
and the y-axis denotes the average cost among the UDs in
each time slot. In Fig. 4, the average cost obtained by JOFO at
the beginning is relatively high since we set the first 100 time
slots only for collecting experiences without model training.
Once the model training is initiated, the cost starts to gradually
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Fig. 4. Convergence behavior of JOFO under different requirements of
training intensity.

TABLE III
PERFORMANCE EVALUATION OF PENALTY WEIGHTS

decrease and flattens out over time. Setting an appropriate
value of φ can help the UDs effectively control the training
cost while ensuring the training performance. When φ = 5,
the convergence speed of JOFO is the slowest due to the
low training intensity for DRL models. Although the energy
consumed by model training is saved, the under-trained models
may lead to offloading decisions with poor performance in
energy saving and QoS guarantee. When φ = 2, the high
training intensity enables a fast convergence speed of JOFO,
which however consumes excessive energy for model training.
The training cost and model performance can be well balanced
when φ = 3, since JOFO can converge to the lowest average
cost at a fast and stable speed.

To evaluate the effect of the penalty weights, i.e., ξd
i , ξ

H
i

and ξh
i in (22), we evaluate the performance of JOFO given

different values of these penalty weights. Table III displays the
average value of total energy consumption (Total EC), offload-
ing energy consumption (Offloading EC), learning energy
consumption (Learning EC) and task failure rate among the
UDs and time slots under different penalty weights ξd

i , ξH
i ,

and ξh
i . From the results, we can observe that the enforcement

of the task latency constraints by setting ξd
i > 0 leads to

a reduced ratio of overdue tasks but an increased offloading
energy cost. Without the limitation of latency constraints, all

Fig. 5. Average total EC of different methods under different number of UDs.

UDs tend to transfer the task to the SBS instead of performing
the task locally to save energy. In such case, the limited
computation capacity of SBS servers is unable to complete
such huge amount of tasks simultaneously and therefore causes
lots of failed tasks. Besides, imposing the training volume
constraints by setting ξH

i > 0 or ξh
i > 0 ensures the models get

adequate training for achieving a reduced level of Offloading
EC at the expense of an increased learning energy cost, as
demonstrated in Table III. Although the average Total EC is
the lowest when ξd

i , ξ
H
i , ξ

h
i = 0, the task failure rate is too

high to guarantee a desired QoS level. It can be seen that JOFO
can explore a reasonable tradeoff between the energy con-
sumption and the task failure rate when ξd

i , ξ
H
i , ξ

h
i = 2, 1, 1.

Therefore, we follow this ratio to conduct the subsequent
evaluation.

We compare the performance of our presented method
JOFO with several methods, including task offloading based on
random federated learning scheduling (denoted by TO-RFL),
AF-DQN in [38], and GA-PC in [17]. TO-RFL is a benchmark
method where each UD makes the offloading decision based
on the local DQN model and samples a random amount of
data elements to train its local model. AF-DQN is a federated
DQN-based task offloading algorithm that sets a fixed time
interval for federated clients to asynchronously upload local
models to the centralized server. GA-PC is a genetic algorithm-
based method to optimize the energy consumption and latency
of the joint learning and offloading process. Both AF-DQN and
GA-PC employ a federated mechanism to make task offloading
decision and consider the optimization of the model training
process. However, AF-DQN ignored the training cost while
GA-PC neglected the dynamic interaction between offloading
decision and model training. We evaluate the impact of a
variable number of UDs (ranging from 10 to 90) on the energy
consumption, the ratio of failed tasks, and the ratio of under-
trained local and global training times.

Fig. 5 demonstrates the average Total EC among the UDs
and the time slots given different number of UDs. As shown
in Fig. 5, as the amount of UDs increases, the average
total energy consumed by all the methods except AF-DQN
gradually grows. In contrast, the average Total EC of AF-DQN
decreases as the number of UDs increases from 10 to 30 and
then ascends slightly with a rising number of UDs. Despite
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Fig. 6. Average task offloading EC of different methods under different
number of UDs.

Fig. 7. Average federated learning EC of different methods under different
number of UDs.

the minimum increasing rate among all the methods, AF-DQN
always consumes the largest amount of energy except when the
number of UDs increases to 90. On the contrary, JOFO keeps
yielding the lowest Total EC, which proves JOFO’s remarkable
efficiency at conserving energy. When the number of UDs is
50, JOFO reduces the average Total EC by 12.34%–28.92%
compared with the other methods. As stated in (18), the Total
EC results from two processes, i.e., the task processing and the
federated learning. To further prove that JOFO can effectively
juggle the energy-saving improvements of the offloading and
learning processes, we further evaluate the energy performance
of all the methods in these two processes, respectively, as
shown in Figs. 6 and 7.

From Fig. 6, it can be noticed that the average Offloading
EC of all the methods rises with a growing number of UDs.
This is because heavier task workload strains the limited band-
width resources, resulting in an increase in data transmission
time and task uploading energy. Moreover, confronted with
the expanding strain on SBSs’ bandwidth and computation
resources, more UDs have to choose to conduct the task
locally to satisfy their task delay requirements. Among all
the methods, AF-DQN consumes the least amount of energy
for task offloading, while GA-PC uses the greatest. Besides,
the average Offloading EC of JOFO approaches that of AF-
DQN. The offloading energy cost depends on the quality of the

Fig. 8. Ratio of failed tasks of different methods under different number of
UDs.

offloading decision made by the local DRL models and thus
reflects the accuracy performance of DRL models. Therefore,
it can be derived that both AF-DQN and JOFO can effectively
train accurate DRL models for making high-quality offloading
solutions.

Fig. 7 depicts the average Learning EC of all the methods
under a variable number of UDs. AF-DQN adopts a greedy
training mechanism without the capacity of training volume
regulation and sets each UD to train its local DRL model when
the local computing resources are available. Over-committing
local computing resources can result in high computation
energy cost, which accounts for the high Learning EC of
AF-DQN. Conversely, GA-PC generates the lowest Learning
EC, which implies GA-PC’s low-volume training manner.
However, combining the high Offloading EC of GA-PC in
Fig. 6, we can infer that the GA-based solution to learning
process time leads to under-trained DRL models in GA-
PC which result in low-quality offloading decisions. The
proposed JOFO achieves a reasonable tradeoff between the
model accuracy and the training cost, and thus obtains a low-
energy solution of offloading decision at a low learning energy
cost.

Fig. 8 demonstrates the ratio of tasks which are not com-
pleted within the required task latency under different amount
of UDs. As shown in Fig. 8, both AF-DQN and JOFO obtain a
slightly increased ratio of failed tasks with a growing number
of UDs. This is primarily due to the informed offloading
decision making enabled by well-trained models in AF-DQN
and JOFO. As the number of UDs increases from 10 to 90,
the ratio of failed tasks of JOFO keeps less than 7%, while
that of TO-RFL rises to more than 15%. This emphasizes the
significance of training volume adjustment for guaranteeing
the QoS requirements of UDs especially under a heavy and
unknown dynamic system workload.

Figs. 9 and 10 plot the ratio of time slots in which the local
and global training volume constraints are violated, respec-
tively. Among all the methods, AF-DQN and JOFO maintain
a low ratio of under-trained local and global training times
as shown in Figs. 9 and 10 respectively. This demonstrates
that the models in AF-DQN and JOFO get adequate training
and thus are well equipped to make wise joint offloading and
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Fig. 9. Ratio of under-trained local training times of different methods under
different number of UDs.

Fig. 10. Ratio of under-trained global training times of different methods
under different number of UDs.

learning decisions. While AF-DQN ensures the effective train-
ing volume by its greedy training principle, JOFO adaptively
adjusts the size of training dataset according to the dynamic
workload to achieve effective and efficient model training.
Notably, the ratio of under-trained times obtained in TO-RFL
increases dramatically when the number of UDs exceeds 50.
This is because the limited MBS bandwidth cannot support
a large number of UDs to upload the trained model to the
MBS in time. The ineffective local training not only wastes
a lot of energy but also degrades the training performance,
leading the DRL model on a downward spiral with more
irrational joint offloading and learning decisions being made.
In conjunction with the performance results given above, we
can infer that rational decision making for the joint offloading
and learning processes helps the DRL models reach a greater
energy-related and QoS-related performance, which is exactly
the key strength of our proposed method JOFO. Considering
the cost of task processing and model training, JOFO leverages
DRL models to adaptively make high-quality joint offloading
and learning decisions based on the task information and
training history record, which in turn facilitate efficient model
training and improve the quality of the DRL models’ decision
making.

VI. CONCLUSION

In this work, we studied the energy-aware federated task
offloading mechanism, where the UDs’ energy consumption
incurred by task processing and federated learning is taken
into consideration. We focused on the resource sharing on
time and energy between the task offloading process and
the federated learning process as well as the significant
effect of model training on the performance of offloading
decision. We adopted the DQN algorithm in a federated
framework to enable each UD to make a high-quality joint
offloading and model training decision without requiring the
prior information of task requirements and network conditions.
Simulation results demonstrated that the proposed method out-
performs other existing methods in terms of reducing the UDs’
energy consumption by balancing the model performance
and training cost. For future work, we will incorporate the
energy consumed by edge servers into the energy-efficiency
optimization to further improve the energy-saving performance
of the whole MEC-based network architecture. In addition,
future work will explore communication-efficient strategies,
like model update compression, to reduce communication
costs and enhance JOFO’s adaptability in resource-constrained
MEC networks. We will also address non-IID data distribution
by integrating advanced model aggregation methods, such
as personalized federated learning, to improve convergence
stability in dynamic MEC environments.

APPENDIX A
PROOF OF THEOREM 1

To demonstrate the NP-hardness of Problem (19), we
consider a simplified version that focuses solely on federated
learning optimization in a single time slot (T = 1). We assume
that time constraints are satisfied for all UDs and set hmin = 0
for simplification. Let vi represent the training data amount
available at UD i. We set the training amount for each UD
as h(1)i = vi. Let α and β denote the energy consumed per
data sample during local training and the energy consumed
for uploading the model, respectively. The simplified federated
learning optimization problem can be formulated as

min
z(1)

∑
i∈N

z(1)i (αvi + β) (28a)

s.t.
∑
i∈N

z(1)i vi ≥ Hmin, (28b)

z(1)i ∈ {0, 1} ∀i ∈ N . (28c)

Let W ′ be the minimal Total EC achievable while satisfying
the training data requirement Hmin. That is

W ′ = min
z(1)

{ ∑
i∈N

z(1)i (αvi + β)
∣∣∣∣ ∑

i∈N
z(1)i vi ≥ Hmin

z(1)i ∈ {0, 1}
}
. (29)
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Problem (28) can be transformed into the following equiv-
alent training data maximization problem under the energy
constraint W ′ [45]:

max
z(1)

∑
i∈N

z(1)i vi (30a)

s.t.
∑
i∈N

z(1)i vi ≥ Hmin (30b)

∑
i∈N

z(1)i (αvi + β) ≤ W ′ (30c)

z(1)i ∈ {0, 1}. (30d)

Problem (30) is equivalent to the 0-1 Knapsack Problem
with an additional minimum value requirement, which remains
NP-hard [46]. Specifically, we can regard the N UDs as
the items, training data amounts vi as the values, energy
consumptions αvi+β as the weights, and total energy budget
W ′ as the knapsack capacity. Therefore, (30) is NP-hard, and
consequently, (28) is NP-hard. Since (28) is a simplified case
of (19), we conclude that (19) is NP-hard.

APPENDIX B
PROOF OF PROPOSITION 1

In JOFO, SGD is employed to update the local models as
in (26), while the global model is updated based on batch size
ratios as in (27). Following the frameworks in [47] and [48],
we make the following assumptions.

1) Each local loss function Li(θ) is L-smooth and lower
bounded

‖∇Li(θ)−∇Li
(
θ ′

)‖ ≤ L‖θ − θ ′‖, Li(θ) ≥ Linf.

2) The stochastic gradients g(t)i are unbiased estimators of
the true gradients with bounded variance

E

[
g(t)i

]
= ∇Li

(
θ(t)

)
, E

[
‖g(t)i −∇Li

(
θ(t)

)
‖2

]
≤ σ 2

i

h(t)i

.

3) The gradient norms are bounded

‖∇Li(θ)‖ ≤ G.

4) There exist lower bounds on batch sizes for clients
participating in the training process

h(t)i ≥ χ > 0 ∀i ∈ N̄ (t).

5) The learning rate η is sufficiently small and may dimin-
ish over time.

6) There exists a deterministic bound on client drift∥∥∥∥∥∥∇L
(
θ(t)

)
−

∑
i∈N̄ (t)

w(t)i ∇Li

(
θ(t)

)∥∥∥∥∥∥ ≤ δ, δ ≥ 0.

Using Assumption 1 and the standard result for smooth
functions from [49], we derive

L
(
θ(t+1)

)
≤ L

(
θ(t)

)
− η∇L

(
θ(t)

)�
�(t) + Lη2

2
‖�(t)‖2.

Taking expectations over the stochastic gradients, we get

E�̃(t)

[
L
(
θ(t+1)

)]
≤ L

(
θ(t)

)
− η∇L

(
θ(t)

)�
ḡ(t)

+Lη2

2
E�̃(t)

[
‖�(t)‖2

]
where �̃(t) = {�̃(t)i }i∈N̄ (t) is the collection of random variables
representing the stochasticity in the gradients at iteration t, and
ḡ(t) =∑

i∈N̄ (t) w(t)i ∇Li(θ
(t)) is the aggregated true gradients.

To bound the term ∇L(θ(t))�ḡ(t), we have

∇L
(
θ(t)

)�
ḡ(t) = ‖∇L

(
θ(t)

)
‖2 − ∇L

(
θ(t)

)�(
∇L

(
θ(t)

)
− ḡ(t)

)
.

By using Assumption 6∥∥∥∇L
(
θ(t)

)
− ḡ(t)

∥∥∥ ≤ δ
and applying the Cauchy–Schwarz inequality∣∣∣∣∇L

(
θ(t)

)�(
∇L

(
θ(t)

)
− ḡ(t)

)∣∣∣∣ ≤ ‖∇L
(
θ(t)

)
‖δ

we obtain

∇L
(
θ(t)

)�
ḡ(t) ≥ ‖∇L

(
θ(t)

)
‖2 − ‖∇L

(
θ(t)

)
‖δ.

Using the bounded variance of stochastic gradients
(Assumption 2) and the fact that batch sizes are lower
bounded (Assumption 4), we can bound the expected squared
norm E�̃(t)[‖�(t)‖2] according to standard results in [47] as
follows:

E�̃(t)

[
‖�(t)‖2

]
≤ (G+ δ)2 + σ

2
max

χ

where σ 2
max = maxi σ

2
i and G is the bound on gradient norms

(Assumption 3).
Combining the bounds, we obtain

E�̃(t)

[
L
(
θ(t+1)

)]
≤ L

(
θ(t)

)
− η

(
‖∇L

(
θ(t)

)
‖2 − ‖∇L

(
θ(t)

)
‖δ

)
+Lη2

2

(
(G+ δ)2 + σ

2
max

χ

)
.

Summing both sides over t = 0 to T − 1 and using the
telescoping sum, we have

η

T−1∑
t=0

(
‖∇L

(
θ(t)

)
‖2 − ‖∇L

(
θ(t)

)
‖δ

)
≤ L

(
θ(0)

)

− E

[
L
(
θ(T)

)]
+ T

Lη2

2

(
(G+ δ)2 + σ

2
max

χ

)
.

Since L(θ(T)) ≥ Linf, the term L(θ(0)) − E[L(θ(T))] is
bounded by �L = L(θ(0)) − Linf. Dividing both sides by Tη
and taking T →∞, we find

lim sup
t→∞

‖∇L
(
θ(t)

)
‖ ≤ δ + Lη

2

(
(G+ δ)2 + σ

2
max

χ

)
.

As η is sufficiently small (Assumption 5), the second term
becomes negligible, leading to

lim sup
t→∞

‖∇L
(
θ(t)

)
‖ ≤ δ.
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