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ABSTRACT With the large-scale deployment of cloud datacenters, high energy consumption and serious
service level agreement (SLA) violations in datacenters have become an increasingly urgent problem to be
addressed. Implementing an effective virtual machine (VM) consolidation methods is of great significance
to reduce energy consumption and SLA violations. The VM consolidation problem is a well-known
NP-hard problem. Meanwhile, efficient VM consolidation should consider multiple factors synthetically,
including quality of service, energy consumption, and migration overhead, which is a multi-objective
optimization problem. To solve the problem above, we propose a new multi-objective VM consolidation
approach based on double thresholds and ant colony system (ACS). The proposed approach leverages double
thresholds of CPU utilization to identify the host load status, VM consolidation is triggered when the host
is overloaded or underloaded. During consolidation, the approach selects migration VMs and destination
hosts simultaneously based on ACS, utilizing diverse selection policies according to the host load status. The
extensive experiment is conducted to compare our proposed approach with the state-of-art VM consolidation
approaches. The experimental results demonstrate that the proposed approach remarkably reduces energy
consumption and optimizes SLA violation rates thus achieving better comprehensive performance.

INDEX TERMS Ant colony system, double thresholds, energy consumption, quality of service, VM con-
solidation.

I. INTRODUCTION
Cloud computing provides access to virtualized cloud
resources as a service to users over Internet in an on-demand
and pay-per-use style [1]. With the maturity of cloud com-
puting business models and technology architectures, the
number of cloud users has increased significantly. New dat-
acenters, servers, and cooling equipment have been added to
meet the increasing needs, generating high operational costs
and carbon dioxide emissions. The minimization of datacen-
ter energy consumption has become a critical challenge [2].
At the same time, taking into account the users’ require-
ments for cloud service performance, the quality of service
(QoS) [3] defined in service level agreement (SLA) needs to
be met to avoid bringing unpredictable losses to users. There-
fore, it is an urgent problem to be solved for the development
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of cloud computing to provide users with the desired QoS
while reducing the energy consumption of datacenters.

The implementation of virtualization technology [4] in
cloud computing enables hosts to share physical resources
and offer users services flexibly by creating multiple VMs.
Dynamic VM consolidation [5] periodically adjusts the cur-
rent mapping relation between VMs and hosts accord-
ing to time-varying resource requirements by migrating
VMs between hosts to fully and evenly utilize comput-
ing resources. For example, migrating some VMs from an
overloaded host targets at reducing SLA violation, and for
an underloaded host, all VMs on it should be migrated
away, then it is switched into sleep state to avoid energy
waste. Obtaining the optimal mapping relation is beneficial
to optimize the resource utilization, improve QoS, and reduce
energy consumption.

The techniques addressing the VM consolidation problem
primarily include heuristic greedy algorithms, constrained
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programming, and meta-heuristic algorithms. Greedy algo-
rithms are widely used for dynamic VM consolidation
because of the low time complexity and simplicity to imple-
ment. However, traditional greedy approaches are easy to
fall into local optimal solutions and miss the optimal solu-
tion. Constrained programming techniques can achieve the
optimal solution, but they cannot be well extended to large
datacenters with the limitation of the problem size. In recent
years, researchers have proposed many bio-inspired meta-
heuristic consolidation algorithms, such as Ant Colony Opti-
mization (ACO) algorithm, Genetic Algorithm, Artificial Bee
Colony (ABC) algorithm, which are effective in solving
large-scale problems and avoiding local optimal solutions.
Ant Colony System (ACS) [6]–[8], a kind of ACO algo-
rithm, finds the near-optimal solution in polynomial time
complexity through probabilistic search in the solution space,
which has attracted more and more attention for the excellent
performance in solving NP-hard problems and combinatorial
optimization problems.

As far as we are concerned, most of the existing VM con-
solidation approaches only focus on saving energy consump-
tion of cloud datacenters. However, SLA violation should
also be considered to satisfy the QoS delivered by the cloud
system. Noteworthily, VM consolidation can decrease energy
consumption by consolidating VMs into a reduced number
of hosts, but excessive consolidation might degrade system
performance and lead to SLA violations [9]. Therefore, the
optimal VM consolidation approach should strike a balance
between energy consumption and QoS. In addition, the VM
migration incurs additional workload and increases energy
consumption. The service downtime caused by migration
likely affects QoS. Hence, VM consolidation should trigger
as fewVMmigrations as possible to minimize the consequent
negative influence.

In this paper, we propose a multi-objective VM con-
solidation approach based on double CPU utilization
thresholds [10] andACS, called DA-VMC. In ACS, a number
of artificial ants build solutions to the related optimization
problem in parallel. They exchange quality information of
these solutions via pheromone to find the optimal solu-
tion. Taking advantage of these characteristics of ACS, our
approach exploits artificial ant colony to seek the optimal
mapping relation between VMs and hosts by assuming that
a mapping relation between VMs and hosts is a food source.
The main contributions of this paper are summarized as
follows.
• First, we abstract the VM consolidation problem as
a multi-objective combinatorial optimization problem
optimizing three conflicting objectives, including reduc-
ing energy consumption, ensuring QoS requirements,
and reducing the number of migrations.

• Then, we employ double thresholds of CPU utiliza-
tion to determine migration time. Based on double
thresholds, the host load status is judged as overloaded,
normal-loaded, or underloaded. In order to optimize
QoS and energy consumption of datacenters, overloaded

hosts and underloaded hosts will perform VM consoli-
dation successively.

• Next, we apply ACS in a multi-stage VM consolidation,
in which several selection policies corresponding to dif-
ferent host status are used to select migration VM and
destination host. The problem of migration VM selec-
tion and destination host selection for VM consolidation
is globally studied and optimized.

• At last, we evaluate the proposed DA-VMC approach by
using CloudSim platform on real workload. The exper-
imental results demonstrate that DA-VMC possesses
an obvious advantage in the aspect of reducing energy
consumption, SLA violations, and VM migrations.

The rest of the paper is organized as follows. Section 2
introduces the related work of VM consolidation. In Section
3, we introduce how to build the VM consolidation problem
into a multi-objective combinatorial optimization problem.
Section 4 proposes our VM consolidation approach based on
double thresholds and ACS. Section 5 presents experiments
results and performance evaluation; Section 6 concludes the
paper and discusses our future work.

II. RELATED WORK
There are three main problems to be solved in VM
consolidation [11]–[13]. First, VM consolidation time selec-
tion, to determinewhenVMs should be consolidated. Second,
there is a need to select which VMs should be migrated, that
is, migration VM selection. Third, VM deployment, to deploy
those selected migration VMs. Depending on specific prob-
lems of VM consolidation, researchers have proposed a vari-
ety of different approaches.

A. CONSOLIDATION TIME SELECTION
The workload in the datacenter fluctuates in real time,
which affects the resource utilization and energy efficiency
of hosts [14]. Most of the existing studies determined the
consolidation time on the basis of host resource utilization.
VM consolidation is usually carried out for overloaded hosts
and underloaded hosts to reduce energy consumption and
improve QoS [15], [16].

Chen et al. [17] presented a method based on the sliding
window concept to perform consolidation operation when
host resource utilization, sampled at regular intervals and
recorded in windows, exceeds the pre-defined high resource
utilization threshold continuously. The consolidation action
is also triggered if the host CPU utilization is lower than
the underload threshold. Minarolli et al. [18] proposed a
long-term forecast of VM resource demands based on Gaus-
sian processes to detect when a host is overloaded or under-
loaded. A decision-theoretic approach using utility function
was applied to execute migration decision considering live
migration overheads.

To adapt to the dynamic variation of the workload in
the datacenter, some approaches dynamically adjust the
thresholds of CPU utilization to guide VM consolidation.
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Masoumzadeh and Hlavacs [19] presented an adaptive
threshold based approach using fuzzy Q-learning for host
overloading detection. The fuzzy Q-learning technique learns
the historical data of overload thresholds in different datacen-
ter states, and yields the appropriate threshold for workload
data input from hosts according to the online decision model.
Zhou et al. [20] proposed an adaptive three-threshold frame-
work based on K-means clustering algorithm. The hosts in
the datacenter are divided into four categories: less loaded
hosts, little loaded hosts, normal-loaded hosts, and over-
loaded hosts. Salimian et al. [21] proposed an adaptive algo-
rithm based on fuzzy threshold to detect overloaded and
underloaded hosts. The information of host resource usage is
applied to the fuzzy inference engine to estimate the numeri-
cal value of the CPU utilization thresholds.

Unlike traditional CPU utilization threshold frameworks,
Fard et al. [22] employed the temperature threshold metric
to conduct a thermal-aware consolidation. The temperature
threshold is set as the temperature of the optimum host at
90% CPU utilization. For the other host, if its tempera-
ture exceeds the temperature threshold, it is identified as
overloaded. For underloaded hosts, the consolidation is pre-
ferred to the host with most energy consumption but lowest
operation per second. Abdelsamea et al. [23] proposed a
multivariate regression method employing hybrid resource
parameters including CPU, RAM, and bandwidth utilization
to predict host resource utilization and detect overloaded
hosts. However, the coefficients of the regression model
are trained once per host, which adds complexity to the
prediction.

B. MIGRATION VM SELECTION
VM consolidation adopts different selection strategies to
select VMs for migration from hosts of undesirable work-
load status, aiming at different targets, such as optimiz-
ing resource utilization, improving QoS or reducing energy
consumption.

Focused on the VM selection problem,
Beloglazov et al. [10] presented three VM selection poli-
cies. The minimization of migrations (MM) policy selects
the minimum number of VMs to migrate for overloaded
hosts to decrease the CPU utilization. The highest potential
growth (HPG) policy migrates the VM with the lowest usage
of the CPU resource each time to minimize the potential
enhancement of hosts’ CPU utilization and prevent sec-
ondary SLA violations. The Random Selection (RC) policy
randomly selects VMs for migration based on a uniformly
distributed discrete random variable until the overload status
of the host is eliminated. Further, Beloglazov and Buyya [24]
presented two other VM selection policies. The minimum
migration time (MMT) policy selects VMs requiring the
shortest migration time for migration. The idea of the Maxi-
mum Correlation (MC) policy is that the higher the resource
utilization correlation between VMs on the same host, the
more likely the host overload, hence the VM having the
highest correlation of CPU utilization with other VMs is

selected for migration to reduce the risk of host overload.
Cao and Dong [25] proposed the minimum utilization(MU)
policy to select the VM with the lowest CPU utilization
for migration. Masoumzadeh and Hlavacs [26] proposed a
maximum utilization (MaxU) policy which selects the VM
with the highest CPU utilization to migrate. In contrast to
the MU policy, the MaxU policy eliminates the host overload
as quickly as possible, whereas greatly increasing migration
overheads.

Different from the aboveworks which select migrationVM
based mainly on CPU utilization, Shidik et al. [27] proposed
a VM selection policy based on RAM and CPU utilization.
Fuzzy logic is employed to categorize both resource attributes
of VM candidates and the Markov normal algorithm is used
to select the migration VM according to the categorical
attributes. Li et al. [28] selected VMs to migrate by utilizing
the content similarity among the VM memory. The migra-
tion VM selection favors the VMs with the highest memory
content similarity from different overloaded hosts to reduce
the amount and time of data transfer during VM migration.
Laili et al. [29] presented an iterative budget algorithm tak-
ing into account various resources including CPU, memory,
disk and network. The algorithm builds a reverse selection
mechanism that finds the most suitable VM from candidate
VM sets for each randomly selected target host.

C. VM DEPLOYMENT
VM consolidation deploys the migrated VMs on a more
suitable destination host to dynamically optimize the
mapping relation between VMs and hosts in the cloud
datacenter.

Mishra and Sahoo [30] studied how to use heuristic greedy
algorithms, such as BFD (Best Fit Deceasing) and FFD (First
Fit Deceasing), to obtain a quasi-optimal VM deployment
solution. Murtazaev and Oh [31] proposed the Sercon algo-
rithm which inherits some properties of FF (First Fit) and BF
(Best Fit) to minimize the number of hosts and migrations.
Farahnakian et al. [32] abstracted theVMconsolidation prob-
lem into a multi-objective vector packing problem, aiming to
reduce energy consumption, minimize migrations and avoid
SLA violation. The target host is selected according to the
current and future resource utilization of hosts and VMs.
The correlation-based strategy of VMconsolidation [33] con-
solidates VMs with inter-traffic as closely as possible to
minimize the network traffic and alleviate network pres-
sure, but it also increases the traffic load of the virtual
switches on hosts. To address this problem, Li et al. [34] pro-
posed virtual-switching-aware BFD(VSA-BFD) and virtual-
switching-aware FFD(VSA-FFD) with comprehensive con-
sideration of the traffic between VMs and the CPU overhead
generated by virtual switches.

The greedy algorithm has low complexity, but it cannot
guarantee to find the optimal solution. Chen et al. [17]
formulated the VM deployment problem as a multi-criteria
decision-making problem. The TOPSIS solution is applied to
choose appropriate destination hosts. Huang and Tsang [35]

VOLUME 7, 2019 53443



H. Xiao et al.: Multi-Objective VM Consolidation Based on Thresholds and ACS in Cloud Computing

developed non-linear programming and proposed a dis-
tributed framework to automate VM consolidation. Based
on the m-convex optimization theorem, the optimal
VM deployment solution is obtained in an incremental man-
ner. However, limited by the size and complexity of the
problem, non-linear programming is incapable to scale well
to big datacenters.

With the ability to handle the large-scale problems effi-
ciently and avoid suboptimal solutions, the meta-heuristic
algorithm is helpful to make up for the deficiency
of the greedy algorithm and constrained programming.
Li et al. [36] constructed the VM consolidation problem as a
multi-objective optimization problem with multiple resource
constraints, and simulated the artificial bee colony foraging
behavior to search for the optimal mapping relation between
VMs and hosts. Mosa and Paton [37] adopted the utility
function considering income, energy cost, and violation costs
to calculate the profit of VM deployment solutions. The
genetic algorithm is used to search candidate deployments
to maximize the utility function. Li et al. [38] proposed an
VM reallocation algorithm based on the adaptive particle
swarm optimization to achieve minimal energy consumption,
where QoS is ensured by applying multi-resource utilization
thresholds.

Focused on balancing the usage of various resources in
hosts, Ferdaus et al. [39] proposed a vector algebra-based
ACO algorithm for searching the optimal VM deploy-
ment. However, the algorithm reallocates all VMs during
each VM consolidation, leading to high time complexity.
Farahnakian et al. [40] proposed a VM consolidation method
leveraging ACS to deploy VMs into the minimal amount
of running hosts, based on the objective function defined
with the number of sleep hosts and VM migrations. How-
ever, the energy consumption generated by VM migrations
is not considered. Aryania et al. [41] extended the work of
Farahnakian et al. [40] by considering the energy consump-
tion of both running hosts and VMmigrations, which obtains
a better energy saving effect.

It can be known from above studies that most of them con-
duct research on VM consolidation from various optimiza-
tion perspectives such as energy efficiency, resource usage
balance, VM migration overhead. Accordingly, we construct
the VM consolidation problem as a multi-objective combi-
natorial optimization problem taking into account multiple
influential factors of VM consolidation. To figure out the
problem, we propose a dynamic VM consolidation approach
DA-VMC. Static double thresholds of CPU utilization are
applied in the decision-making process of the consolidation
time to reduce computational overhead and avoid the system
instability. Assuming the mapping relation between VMs and
hosts as a food source, we employ ACS which simulates
the artificial ant colony foraging behavior to simultaneously
select the migration VM and the destination host based
on the specified objective function. After several rounds of
searches and information exchanges, the ant colony acquires
the near-optimal solution.

III. DYNAMIC VM CONSOLIDATION BASED ON
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
A. DATACENTER MODEL
There exist many hosts with different configurations in the
datacenter. VMs are deployed to the appropriate hosts accord-
ing to their respective resource requirements. Assume that the
host set in the datacenter is H =

{
h1, h2, . . . , hj, . . . , hm

}
,

where m is the number of hosts; The VM set is denoted
as H = {v1, v2, . . . , vi, . . . , vn}, where n is defined as the
number of VMs. The variable xij ∈ {0, 1} indicates whether
the VM vi is assigned to the host hj. xij = 1 if assigned;
otherwise xij = 0. The matrix X =

[
xi,j
]
n×m describes

the mapping relation between the VMs and hosts. The host
deploying vi is denoted as h (vi), and V

(
hj
)
is the set of VMs

deployed on the host hj. VRi is the demand of the VM vi for
the CPU resource. PRj is the total CPU resource demands of
the host hj, which is expressed as

PRj =
N∑
i=1

(
xij · VRi

)
. (1)

CRj is the CPU resource capacity of the host hj. The actual
utilization of CPU resource in the host hj, denoted as Uj,
is calculated with

Uj =
PRj
CRj

. (2)

B. ENERGY CONSUMPTION MODEL
In general, the host has three states, i.e., running state, sleep
state, and shutdown state. Chou et al. [42] suggested that
different states of the host result in different power consump-
tion levels. The energy consumption of hosts in the running
state, denoted asHPonj , is highly positively correlated with the
CPU utilization [43]. Compared to the running state, the host
consumes only a small amount of energy in the sleep state,
denoted as HPspj , and consumes no energy in the shutdown
state. Besides, switching back and forth between different
states consumes energy and time. It takes a long time to restart
the host from the shutdown state to the running state, which
may cause degradation of service quality. Therefore, in this
paper, VM consolidation is only considered in hosts that are
running or sleeping.

Based on the above analysis and assumption, the fol-
lowing energy consumption model for VM consolidation is
established with comprehensive consideration of the energy
consumption generated by both host operation and state
switching:

ECj =
∫
t

[
sonj · HP

on
j +

(
1− sonj

)
· HPspj

]
dt

+ sgsj · ES
gs
j + s

wa
j · ES

wa
j , (3)

where sonj ∈ {0, 1} represents the status of the host, s
on
j = 1

denotes that the host is running, sonj = 0 denotes that the
host is in the sleep state. sgsj ∈ {0, 1}, s

gs
j is set to 1 when

switching the host hj from the running state to the sleep state,
otherwise sgsj = 0. swaj ∈ {0, 1}, s

wa
j is set to 1 when hj is
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waked up from sleep, otherwise swaj = 0. ESgsj indicates the
energy consumption of state switching from running to sleep,
and ESwaj indicates that from sleep to running.
The total energy consumption of the datacenter can be

calculated as

EC =
m∑
j=1

ECj. (4)

C. MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
An efficient VM consolidation approach needs to develop
corresponding strategies of resource management and
scheduling for multiples goals of reducing energy consump-
tion, improving QoS, and facilitating load balancing, so that
the VM migration can be triggered under specific conditions
to optimize the mapping relation between VMs and hosts.
Accordingly, we take into account multiple factors affecting
VMconsolidation and define the followingVMconsolidation
optimization objectives.

In order to reduce energy consumption and save energy,
the total power consumption of the datacenter EC should be
minimized, i.e., min (EC).
There exists resource competition between VMs on the

same host. When the resource competition becomes more
intense, especially when the resource utilization approaches
or exceeds a certain threshold, the performance of the host
turns worse, and the QoS level is more likely to decline [44].
Apparently, the QoS level of the host has a great relationship
with the resource utilization. Hence, for purpose of optimiz-
ing the QoS more conveniently and effectively, we ensure the
host QoS by limiting the host CPU resource utilization below
the overload threshold Thro, as shown below:

Uj < Thro, ∀j ∈ {1, 2, . . . ,m} . (5)

Moreover, VM migrations due to consolidating VMs con-
sume energy and computing resources, incurring perfor-
mance interference and cost on both source and destination
hosts [45]. Data transferred during migration burden network
traffic, which inevitably interferes with the other VMs in
the same datacenter. Thus minimizing the number of VM
migrations, denoted asMG, is very necessary, i.e., min (MG).

Finally, the above objectives are integrated as a minimum
combinatorial optimization problem with the resource con-
straint via a linear weighting method:

min (F) = min
(
EC + ωmg ·MG

)
s.t. Uj < Thro,∀j ∈ {1, 2, . . . ,m} , (6)

where ωmg represents the weight of migrations with respect
to the total energy consumption.

The optimization problem defined in (6) is studied and
solved in Section IV.

IV. DA-VMC CONSOLIDATION APPROACH
The dynamic VM consolidation enables VMs to be dynami-
cally migrated between hosts to accommodate the changeable

workload in the datacenter. In VM consolidation, there are
several key problems that must be addressed. For example,
what kind of condition will trigger VM consolidation (con-
solidation time selection); which VMs should be migrated
to achieve the best energy consumption and QoS (migration
VM selection); Which destination hosts should be choosed
to redeploy the selected migration VMs (destination host
selection).

In order to solve the above problems, we propose a VM
consolidation approach based on double thresholds and ACS.
Based on the strategy of static double thresholds, the pro-
posed DA-VMC approach sets the host CPU utilization upper
threshold Thro and lower threshold Thru (0 ≤ Thru <

Thro ≤ 1) to decide the consolidation time. The defined
static thresholds are used to identify the load status of hosts,
dividing all hosts into three sets: the overloaded host set Ho,
the normal-loaded host set Hn, the underloaded host set Hu.
For the host hj, the host is overloaded if its CPU utilization
Thro ≤ Uj < 1; the host is normal-loaded if Thru ≤
Uj < Thro; the host is underloaded if 0 < Uj < Thru.
VM consolidation is triggered when the host is overloaded or
underloaded. According to the study by Beloglazov et al. [10]
and experimental verification, the algorithm can obtain excel-
lent performance when the upper threshold is set to 80% and
the lower threshold is 40%.

In the datacenter, each host deploys one or more VMs.
In this paper, we assume that all the VMs deployed on a host
may be selected for migration, in which case the host is the
source host of the migrated VMs. Likewise, a migrated VM
may be redeployed to any other host, namely all hosts except
the source host are its potential destination hosts. Accord-
ingly, a tuple set of mapping relations T is defined as T =
{(vm, hd )}, where each tuple consists of two elements: theVM
to be migrated vm and the destination host hd . By treating the
tuples in T as the ant food, the DA-VMC approach leverages
ACS to search tuples in T to update the mapping relation
between VMs and hosts.

The complexity of the consolidation approach depends
primarily on the number of tuples in T . To reduce the time
complexity of the approach, we apply a multi-stage consoli-
dation which limits the number of tuples in T at each stage.
On the one hand, VM consolidation is firstly performed for
overloaded hosts, and then for underloaded hosts. On the
other hand, when selecting the destination host, in order
to minimize the number of underloaded hosts to reduce
power consumption, the first choice is made in the set of
normal-loaded hosts. If it fails, the range of choice turns to
the set of underloaded hosts. Hosts in the sleep mode are
activated only if the VM cannot be redeployed on an already
active PM. In this way can restrict the solution space for each
search and improve the efficiency of the ant’s search, which
helps greatly reduce the computation time of the approach
without affecting the quality of the solution. Fig. 1 shows the
multi-stage consolidation framework.

During the process of VM consolidation, the DA-VMC
approach creates the pheromone information matrix [τi,j]n×m
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FIGURE 1. Multi-stage consolidation framework.

to save the experience in past searches of ants, where τi,j
denotes the favorability of selecting the mapping relation
tuple

(
vi, hj

)
, namely redeploying the VM vi on the host hj.

Two rules of local pheromone update and global pheromone
update are applied to update the pheromone level of tuples.
The heuristic factor is defined to guide the ant colony to
select the optimal tuple for minimum power consumption and
migration number based on the pseudo-random-proportional
rule [6]. In the following, the detailed definition of these
factors will be given.

A. PHEROMONE INFORMATION
The ant deposits pheromone on the path to finding food
source, and when other ants smell the deposited pheromone,
they tend to choose paths with a higher pheromone concen-
tration. The quality of the solution found by ants depends
greatly on the definition of the pheromone. Thus, choosing a
rational definition of pheromone is very critical. In the initial-
ization phase of the pheromone matrix [τi,j]n×m, we employ
the solution quality assessment method used by Dorigo and
Gambardella [6] to calculate the initial pheromone amount as
follows:

τ0 =
1

EC0 ·MG
, (7)

where EC0 is the total power consumption of the datacenter
in the initial state. MG is the approximate optimal number
of migrations, which can be estimated by using the nearest
neighborhood heuristic algorithm [6].

For the pheromone update in ACS algorithm, we present
the local pheromone update rule and the global pheromone
update rule to increase the pheromone amounts correspond-
ing to high quality solutions or decrease those correspond-
ing to the low quality ones. After selecting a new mapping
relation tuple (vi, hj), the ant updates the pheromone level
of this traversed mapping relation using the following local
pheromone update rule:

τij = (1− ρl) · τij + ρl · τ0, (8)

where ρl ∈ [0, 1] is the local pheromone evaporating param-
eter. The local pheromone update rule applied to a traversed
tuple decreases the tuple’s pheromone concentration by a cer-
tain level and weakens its attraction to other ants. Hence, the
local pheromone update rule can avoid a premature conver-
gence of the ACS algorithm towards a suboptimal solution.

After all the ants complete building solutions, the quality
of all current built solutions is evaluated according to the
objective function. The following global pheromone update
rule is performed to preserve the experience of the global
optimal solution:

τij = (1− ρg) · τij + ρg ·1τ

1τ =


1

F(X+)
, if xij = 1 in X+

0, otherwise,

(9)

where 1τ is the amount of additional pheromone increment.
ρg ∈ [0, 1] is the global pheromone evaporation parameter.
X+ is the global best solution.

B. HEURISTIC FACTOR
In ACS, the heuristic factor is used in combination with
the pheromone to guide the solution construction of ants.
The heuristic factor is expressed as ηi,j, indicating the
desirability of selecting the tuple

(
vi, hj

)
. Calculated in a

problem-specific style, the heuristic factor reduces the blind-
ness of ant searches, which is an important factor affecting
the efficiency of ACS.

In order to fully utilize host resources while minimizing
degradation of service quality due to resource competition,
the proposed approach defines different calculation criterions
of the heuristic factor according to different consolidation
stages, considering two partial contribution of migration VM
selection and destination host selection. The calculation cri-
terion of the heuristic factor ηi,j for selecting the tuple

(
vi, hj

)
is defined as

ηi,j = η
v (h(vi),−vi) · ηh

(
hj,+vi

)
, (10)

where ηv (h(vi),−vi) is the heuristic factor that selects
the VM vi for migration from its source host h(vi), and
ηh
(
hj,+vi

)
is the heuristic factor that redeploys vi to the

destination host hj. A hybrid heuristic factor is defined with
consideration of both migration VM selection and destination
host selection.

1) MIGRATION VM SELECTION
Based on the predefined double thresholds, the main idea
of VM selection is to control the CPU utilization of hosts
between the double thresholds. Inappropriate selection crite-
ria may increase VM migrations, aggravate power consump-
tion, or affect QoS due to long service downtime inmigration.
Hence, selection criteria for migration VM should be rea-
sonably defined. In the following, we discuss the proposed
VM selection policies with corresponding heuristic factor
calculation rules.

53446 VOLUME 7, 2019



H. Xiao et al.: Multi-Objective VM Consolidation Based on Thresholds and ACS in Cloud Computing

If the host CPU utilization exceeds the upper threshold,
some VMs have to be migrated from the host to reduce the
utilization, preserving some free resources to prevent SLA
violations. Accordingly, we introduce three VM selection
policies for overloaded hosts as follows.

First, the Highest CPU Priority Selection policy (HCPS).
The HCPS policy defines that the higher the CPU utilization
of a VM, the higher the priority that the VM is selected for
migration. For the overloaded host hj ∈ Ho, the heuristic
factor of selecting the VM vi for migration is calculated as

ηv
(
hj,−vi

)
=
VRi
PRj

. (11)

Second, the Minimum CPU Priority Selection policy
(LCPS). When the upper threshold is violated by the host hj,
the idea of the LCPS policy is that a VM vi with lower CPU
utilization are selected with higher priority as the migration
VM. The heuristic factor is defined as

ηv
(
hj,−vi

)
= 1−

VRi
PRj

. (12)

Third, the Random CPU selection policy (RCS).For the
overloaded host hj ∈ Ho, the RCS Policy randomly selects
the VM vi for migration. All VMs are selected with the same
priority, and the corresponding heuristic factor is defined as

ηv
(
hj,−vi

)
=

1∣∣VMj
∣∣ , (13)

where
∣∣VMj

∣∣ represents the number of VMs deployed on the
host hj.

For a underloaded host, all VMs on this host should be
migrated and the host should be switched to the sleep state
to avoid the idle power consumption. Thus, with the aim
of minimizing invalid migrations and underloaded hosts, the
underloaded host should prefer to migrate the VM that signif-
icantly reduces its resource utilization after migration. The
heuristic factor for selecting the VM vi to migrate in the
underloaded host hj ∈ Hu is defined as

ηv
(
hj,−vi

)
= 1− Uj (−vi) , (14)

where Uj (−vi) represents the CPU utilization of the host hj
after migrating the VM vi.

2) DESTINATION HOST SELECTION
A new destination host should be selected to deploy the
selected migration VM. When the host CPU utilization gets
closer to the overload threshold, the system QoS drops more
rapidly. Therefore, when selecting the destination host in
the normal-loaded host set Hn, choosing the host with low
resource utilization rate after VM redeployment is advanta-
geous for avoiding the QoS degradation due to the excessive
CPU utilization of hosts. The heuristic factor definition of
selecting the destination host hj ∈ Hn for the VM vi is
computed as

ηh
(
hj,+vi

)
=

{
1− Uj(+vi), if Uj(+vi) < Thro
0, otherwise,

(15)

where Uj(+vi) is the CPU utilization of the host hj after
deploying the VM vi. Besides, the CPU resource utilization
constraint in the heuristic factor is to prevent migrations that
cause the overload of destination hosts.

Underloaded hosts have low resource utilization and weak
resource competition, which guarantee QoS but waste energy.
Hence, when selecting the destination host hj in the under-
loaded host set Hu, a host with higher resource utilization
after VM deployment is more preferable, which contributes
to the minimization of underloaded hosts. The corresponding
heuristic factor is defined as

ηh
(
hj,+vi

)
=

{
Uj(+vi), if Uj(+vi) < Thro
0, otherwise.

(16)

C. PSEUDO-RANDOM-PROPORTION RULE
Based on the heuristic factor and pheromone information,
the ant selects the next tuple for traversal according to the
following pseudo-random proportion rule:

(vm, hd ) =

{
argmax(vi,hj)∈�k {τ

α
ij · η

β
ij }, if q ≤ q0(

vs, hg
)
, otherwise,

(17)

where α and β are parameters that control the influence of the
pheromone and the heuristic factor respectively.�k is the set
of tuples currently allowed to be traversed by the ant antk . q is
a random number uniformly distributed in [0, 1], q0 ∈ [0, 1]
is a fixed parameter that determines the relative importance
of cumulative experience with random selection. (vs, hg) is a
random tuple variable selected according to the probability
distribution given below:

pkmd =


ταmd · η

β
md∑

(vi,hj)∈�k

(
ταij · η

β
ij

) , if
(
vi, hj

)
∈ �k

0, otherwise,
(18)

where pkmd denotes the probability that the ant antk chooses
to traverse the tuple (vm, hd ) in the next step.

The pseudo-random proportional rule favors the tuple(
vi, hj

)
with large heuristic value ηij and high pheromone

level τij. In each iterative step, if the generated random num-
ber q is not greater than q0, the tuple

(
vi, hj

)
with maximum

value of ταij · η
β
ij in �k is selected according to (17), which

helps ants quickly converge to a high quality solution. Oth-
erwise, the tuple is randomly selected in �k in accordance
with the probability distribution pkmd in (18), at which time
ants conduct a broader search to avoid premature stagnation.
Combining multiple heuristic factor calculation criteria and
pseudo-random-proportional rule defined above, we propose
the MTS (Mapping Relation Tuple Selection) algorithm. The
algorithm selects the next tuple of mapping relation (vm, hd )
based on the load status identifier heuP of the source host and
destination host. TheMTS algorithm pseudocode is as shown
in Algorithm 1.
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Algorithm 1 Mapping Relation Tuple Selection (MTS)
Input: T , heuP
Output: (vm, hd )
1: switch (heuP)
2: // VM from overloaded hosts to normal-loaded hosts.
3: case ‘‘ON’’:
4: Choose a VM selection policy SP from (11), (12), (13)

5: Compute ηmd , ∀ (vm, hd ) ∈ T with SP, (15), (10)
6: Break
7: // VM from overloaded hosts to underloaded hosts.
8: case ‘‘OU’’:
9: Choose a VM selection policy SP from (11), (12), (13)

10: Compute ηmd , ∀ (vm, hd ) ∈ T with SP, (16), (10)
11: Break
12: // VM from underloaded hosts to normal-loaded hosts.
13: case ‘‘UN’’:
14: Compute ηmd , ∀ (vm, hd ) ∈ T with (14), (15), (10)
15: Break
16: // VM from underloaded hosts to underloaded hosts.
17: case ‘‘UU’’:
18: Compute ηmd , ∀ (vm, hd ) ∈ T with (14), (16), (10)
19: Break
20: Compute pmd , ∀ (vm, hd ) ∈ T with (18)
21: Choose (vm, hd ) ∈ T with (17)

The pseudocode of the proposed VM consolidation algo-
rithm DA-VMC is shown in Algorithm 2. In the initializa-
tion phase, the pheromone matrix is set as τ0 (line 2).The
algorithm iterates over nI times (line 3). In each iteration,
nA ants build new mapping relation between VMs and hosts
in parallel by sequentially performing VM consolidation for
overloaded hosts and underloaded hosts (line 5-31). The ant
firstly selects the VM in the overloaded hosts for redeploy-
ment (line 5-17). Under the premise of ensuring service
performance, VMs in the underloaded hosts are redeployed
to achieve energy saving (line 18-30). The local pheromone
update rule is applied to each traversed mapping relation
(line 16 and 29). After all ants have constructed their solu-
tions, all ant-specific solutions are added to the solution set
S (line 31). The global optimal solution X+ is selected by
using the objective function in (6) to evaluate each solution in
S (line 33). The global pheromone update rule is performed
consequently with X+ (line 34). Finally, when all the ants
have iterated through nI rounds, the algorithm outputs the
global optimal solution of the mapping relation X+.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
In this section, we conduct the simulations to evaluate the
performance of our proposed approach using CloudSim [46]
as the simulation platform. CloudSim is a discrete event sim-
ulator that enables virtual environment modeling and virtual
resource management. The simulated cloud datacenter in the

Algorithm 2 DA-VMC
Input: X
Output: X+

1: S ← φ, X+← φ, X k ← φ, t ← φ

2: Initialize all pheromone values τ0 with (7)
3: for i ∈ [1, nI ] do
4: for k ∈ [1, nA] do
5: while overloaded hosts exist do
6: Ton←{(vm, hd ) |h(vm) ∈ Ho ∧ hd ∈ Hn }
7: t ← MTS (Ton, ‘‘ON ")
8: if t is null then
9: Tou←{(vm, hd ) |h(vm) ∈ Ho ∧ hd ∈ Hu }
10: t ← MTS (Tou, ‘‘OU")
11: if t is null then
12: Break
13: end if
14: end if
15: Update mapping relation matrix X
16: Apply local update rule with (8)
17: end while
18: while underloaded hosts exist do
19: Tun←{(vm, hd ) |h(vm) ∈ Hu ∧ hd ∈ Hn }
20: t ← MTS (Tun, ‘‘UN ")
21: if t is null then
22: Tuu←{(vm, hd ) |h(vm) ∈ Hu ∧ hd ∈ Hu }
23: t ← MTS (Tuu, ‘‘UU")
24: if t is null then
25: Break
26: end if
27: end if
28: Update mapping relation matrix X
29: Apply local update rule with (8)
30: end while
31: S ← S ∪ {X k}
32: end for
33: X+← argmaxX k∈S

{
F
(
X k
)}

34: Apply global update rule on X+ using (9)
35: end for

experiment consists of 800 physical hosts, half of which is
HP ProLiant G4 and the other half is HP ProLiant G5. The
host configuration details are listed in Table 1. In addition,
four kinds of Amazon EC2 VMs [47] are used in this exper-
iment, whose corresponding characteristics are depicted in
Table 2. After creating host instances and VM instances on
the CloudSim platform, the VMs are deployed on different
hosts through the PABFD method [24]. During each VM
consolidation cycle, VM consolidation is performed based
on the new workload and resource requirements of hosts and
VMs.

The workload employed in the experiment came from the
CoMon project, which is responsible for monitoring the oper-
ation of the infrastructure in PlanetLab [48]. The data used
in the experiment came from more than 1,000 VMs at more
than 500 places around the world. The statistical properties
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TABLE 1. Host configuration.

TABLE 2. VM types.

TABLE 3. The properties of PlanetLab data.

TABLE 4. DA-VMC parameters.

of the data are shown in Table 3. Since the actual workload
of the real datacenter is periodic and regular, we extract
one-day workload from the workload datasets to conduct
experiments. The algorithm related parameter settings are
shown in Table 4.

B. EVALUATION INDICES
In cloud datacenter, SLA is used to specify the QoS require-
ments of the user and the consequences of violation, enabling
service providers and users to reach an agreement on the ser-
vices, priorities and responsibilities. Once an SLA violation
happens, the user’s interests may not be guaranteed, for which
the provider may pay an expensive penalty to the user as com-
pensation. For the better optimization of QoS, Beloglazov
and Buyya [24] proposed several methods to measure SLA
violations.

When the resource utilization of the host reaches 100%,
host overload occurs and the available resources are less than
the total resource demand of the VMs, which may result in
an SLA violation. SLAVO is defined as the proportion of time
when the host resource utilization reaches 100% to measure
the SLA violation caused by the host overload, as shown

below:

SLAVO =
1
m

m∑
j=1

T oj
T aj
, (19)

where m indicates the number of hosts, T oj is the total time
that the resource utilization of the host hj experiences 100%,
and T aj is the total running time of the host hj.
VM migrations cause overall performance degradation.

SLAVM represents the SLA violation due to VM migrations,
which is defined as

SLAVM =
1
n

n∑
i=1

Cd
i

Cr
i
, (20)

where n represents the number of VMs. Cd
i denotes the

unsatisfied requirement for CPU resources of the VM vi due
to the migration. Cr

i is the total CPU resource requirement
during the lifetime of the VM vi. According to the previous
research [24], the overhead Cd

i caused by VM migration is
set to 10% of the VM’s CPU utilization.
SLAV is employed to assess the overall QoS level of the

cloud datacenter, which comprehensively reflects the total
performance degradation caused by host overload and VM
migrations, as shown in

SLAV = SLAVO× SLAVM . (21)

The smaller value of the variable SLAV indicates less SLA
violations and higher QoS level.

VM consolidation should optimize the energy consump-
tion and SLA violation of the datacenter in a balanced man-
ner. The comprehensive evaluation index ESV is obtained by
combining the energy consumption index EC and the SLA
violation index SLAV , as shown in

ESV = EC × SLAV , (22)

where EC represents the total energy consumption of the data
center. A lower value of EC denotes higher energy efficiency
of the datacenter. And a low ESV value demonstrates that
the datacenter has excellent performance in both energy con-
sumption and QoS.

Dynamic migration of VMs generates certain overhead,
such as the occupation of computing resources and energy
consumption. Further, the service suspension due to the VM
migration may degrade QoS. Therefore, reducing the number
of VM migrationsMG facilitates saving resource and energy
consumption, as well as improving QoS, which helps VM
consolidation achieve the desired performance.

VI. RESULTS ANALYSIS
In this section, we firstly evaluate three types of VM selection
policies proposed for overloaded hosts, which are the HCPS
policy, the LCPS policy, and the RCS policy. The evaluation
results of the three VM selection policies in energy consump-
tion and SLA violation rates are shown in Table 5. From
the results, we can see that among the three VM selection
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TABLE 5. Performance evaluation of VM selection policies.

policies, the RCS policy has the lowest energy consump-
tion, followed by the LCPS policy and the HCPS policy.
With respect to SLAV , the RCS policy achieves the lowest
value, followed by the HCPS policy and the LCPS policy.
Obviously, the RCS policy achieves better performance of
energy consumption and SLA violation rate. This is due to
that the RCS policy attains better randomness and thus ants
have more access to different solutions. In the HCPS policy,
VMs with larger CPU utilization have a higher probability
of being selected for migration, resulting in higher energy
consumption, but at the same time, the risk of host overload
is easier to be mitigated, leading to a lower SLAV . The LCPS
policy prefers to migrate out VMs with low CPU utiliza-
tion, which saves energy whereas increasing the overload
risk of the host, resulting in the highest SLAV . According
to the experimental results, the RCS policy has the best
comprehensive performance to select migration VM for the
overloaded host. Therefore, we choose the RCS policy as the
VM selection policy for overloaded hosts in the subsequent
experiments.

To evaluate the performance of the DA-VMC algorithm,
we compare the proposed algorithm DA-VMC with two
heuristic VM allocation algorithms (i.e., ST [10], DT [10])
and twoACO-based VM consolidation algorithms (i.e., ACS-
VMC [40], EVMCACS [41]). Fig. 2 shows the compari-
son of energy consumption using real workload among the
approaches. The value after the algorithm name is the current
parameter value of this algorithm. Compared with ST, DT,
ACS-VMC, and EVMCACS, DA-VMC saves 38.3%, 34.1%,
17.7%, and 15.1% of energy consumption respectively. Since
DA-VMC prioritizes VM migration to a normal-loaded host,
many underloaded hosts are enabled to be switched to sleep
mode, thus reducing the number of active hosts in the data-
center and saving a lot of energy.

Regarding SLAV of the approaches as shown in Fig. 3,
the proposed DA-VMC algorithm achieves the lowest value
of SLAV . In order to prevent SLA violations, DA-VMC
ensures to keep the CPU utilization of hosts below the
overload threshold by moving VMs from overloaded hosts.
Besides, the heuristic criteria guarantee that the destination
host does not exceed the overload threshold after deploying
the migrated VM. Therefore, DA-VMC obtains better SLAV
performance than other algorithms.

Since SLAV is a comprehensive index obtained from
SLAVO and SLAVM , SLAVO and SLAVM of the approaches
are evaluated respectively as follows. Fig. 4 depicts the com-
parison of SLAVO, which clearly reveals that DA-VMC has
a lower SLAVO compared with other approaches. This is

FIGURE 2. Comparison of energy consumption.

FIGURE 3. Comparison of SLAV.

FIGURE 4. Comparison of SLAVO.

primarily due to that DA-VMC limits the resource utilization
of the host under the overload threshold and reduces the risk
of host resource overload, thus guaranteeing the QoS of the
running host. In addition, when redeploying the migrated
VM, the DA-VMC algorithm preferentially selects the host
with lower resource utilization in the normal-loaded hosts,
which guarantees the QoS of running hosts from another per-
spective. Fig. 5 shows the comparison of SLAVM among the
approaches. As observed from Fig. 5, DA-VMC has the opti-
mal performance in terms of SLAVM among the approaches.
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FIGURE 5. Comparison of SLAVM.

FIGURE 6. Comparison of the number of VM migrations.

DA-VMC reduces the impact of migration on service quality
mainly because that DA-VMC effectively reduces the number
of triggered VM migrations as shown in Fig. 6. The combin-
ing evaluation of SLAVO and SLAVM proves that DA-VMC’s
capability of ensuring QoS is preferable to that of the other
approaches.

As shown in Fig. 6, DA-VMC improves the efficiency of
migration and obtains the minimum number of migrations.
The DA-VMC approach efficiently ensures remarkable QoS
of the active hosts and reduces the risk of host overload, lead-
ing to a reduction in the number of VM migrations triggered
by host overload. For another, the objective function defined
in the DA-VMC approach tends to minimize the number of
VM migrations.

Fig. 7 depicts the comprehensive performance of the
approaches evaluated by employing the ESV index. From
Fig. 7, we can see that DA-VMC has the best overall per-
formance. According to the experimental results, the ESV
index obtained by DA-VMC is only 36.1% of that of DT,
and the ESV index of ST is the worst, which is up to 3.3
times that of DA-VMC. The main reason is that DA-VMC
effectively reduces the risk of host overload and the number of
VM migrations by precisely identifying the host load status.

The above experiment results employing the PlanetLab
workload prove that DA-VMC achieves the goal of reducing

FIGURE 7. Comparison of ESV.

FIGURE 8. Comparison of execution time.

datacenter energy consumption, ensuring QoS and making
more rational VM migration decisions.

In order to deeply analyze the efficiency of DA-VMC, the
execution time of the five approaches is analyzed and com-
pared, as shown in Fig. 8. The heuristic algorithms ST andDT
have shorter execution time than other three meta-heuristic
algorithms based onACS because of the low time complexity.
Among the three ACS-based approaches, DA-VMC is supe-
rior to ACS-VMC and EVMCACS in terms of execution time
performance, because it consolidates in stages and limits the
size of candidate sets of migration VMs and destination hosts
at each consolidation stage. Furthermore, we observed that
the execution time of DA-VMC is relatively close to that of
the two heuristic algorithms (i.e., ST and DT).

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a VM consolidation approach
(DA-VMC) based on double thresholds andACS. It addresses
the problems of high PM power consumption and QoS
degradation in datacenters by consolidating VMs into appro-
priate hosts. The VM consolidation problem is built as a
multi-objective optimization problem. The double thresholds
are used to make decision of the consolidation conditions that
trigger VM consolidation. By treating the mapping relation
between VMs and hosts as the food source, the mapping
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relation is optimized through a multi-stage consolidation
based on ACS. The optimal mapping relation between VMs
and hosts is acquired globally through the distributed search
and cooperation of the artificial ants. The performance of the
proposed approach is evaluated using real workload. The sim-
ulation results indicate that compared with other approaches,
our approach effectively reduce energy consumption and
guarantee excellent QoS of the datacenter.

In the future work, we plan to conduct a further study of
employing adaptive thresholds aiming at variable workload
to make reasonable decisions of VMmigration. Furthermore,
we intend to conduct more simulations to evaluate the pro-
posed approach on the real workload.
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