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Robust Hashing With Bilinear Drift for
Image-Text Retrieval
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Abstract— Supervised hashing models for image-text retrieval
are fundamental and versatile in social media analysis and
cross-lingual web search. Among them, supervised bilinear drift
hashing is one of the most popular approaches. However, it still
faces several challenges. For instance, how to leverage the power
of bilinear drift hashing to distinguish similar and dissimilar data
samples effectively; how to strengthen the semantic relationship
between similar data and supervision. To solve these problems,
we propose Robust Hashing with Bilinear Drift (RHBD) to
improve the accuracy and robustness of the supervised model.
The key idea of this work is to generate effective hash codes
between image-text feature representations by combining robust
data distributions and multiple supervision information. The
benefits of bilinear drift with robust hashing, which enhance the
discrimination of hash binary, are manifested mainly in two ways:
(1) RHBD employs a semantic autoencoder with a linear drift
to get a discriminative common feature representation between
image and text modalities; (2) RHBD explores iteration quanti-
zation with a linear drift to well generate similarity-preserving
hash codes. Moreover, we introduce multiple supervision learn-
ing to promote the consistency between data information and
supervision knowledge for semantic complementarity. Results
on three public datasets show that RHBD is effective in
image-text retrieval, consistently outperforming other state-of-
the-art models with comparable training efficiency to competitive
baselines.

Index Terms— Bilinear drift, image-text retrieval, robust hash-
ing, supervised hashing.

I. INTRODUCTION

WITH the continuous exponential growth of data on
social networks, matching the similarity between orig-

inal instances in high-dimensional space is impractical for
image-text retrieval research [4], [19], [20], [25], [29], [45].
To achieve efficient retrieval, many well-designed hashing
methods [10], [11], [12], [21], [33] have been explored
and successfully applied in various fields, including online
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recommendation [3], multimedia analysis [38], web query
representation [44], etc.

Hashing-based methods improve the retrieval efficiency
and reduce the storage requirements by transforming the
high-dimensional data into low-dimensional compact binary
codes [48], [49], [60]. Based on this binary representation,
such approaches rapidly construct the hashing models by pro-
ducing the hash codes or hash functions for similarity search.
In retrieval process, similarity search is simply achieved by
computing the Hamming distance between the hash code of
the original data and that of the query sample. Sine the
Hamming distance can be quickly calculated by leveraging
bitwise XOR operations, the whole retrieval process can
be conducted efficiently. Numerous studies have shown that
supervised methods can yield better results than unsuper-
vised ones, which have become the main research hotspot
in image-text retrieval. Specifically, supervised hashing-based
image-text retrieval approaches [1], [8], [13], [35], [37],
[41], [52] can be categorized into two types: traditional super-
vision and deep supervised ones. The former optimizes the
hash codes via semantic supervision knowledge as additional
information, while the latter adopts distinct network branches
to correlate the image-text instances. Although yielding great
success, deep supervised hashing methods are limited by
complex optimization objectives and inefficiency. Thus, our
work concentrates on traditional supervised hashing for image-
text retrieval.

Generally, most excellent traditional supervised meth-
ods [6], [30], [36], [40], [57] effectively utilize the data dis-
tributions and supervised knowledge to generate high-quality
hash codes for image-text retrieval. Despite great achievements
in this learning paradigm, there are still two challenges that
need further consideration. (1) Ineffective representation
of original data. Most supervised hashing methods [30],
[41], [42], [57] always strive to explore a wider variety
of supervised knowledge, as well as common and unique
attributes of data, and the strong correlation between common
and unique data to design the optimal hashing framework.
However, the noise and outliers mixed in the data collec-
tion stage have been rarely addressed in the literature yet.
Furthermore, such inherent noise and outliers from instances
tend to disrupt the distribution of image-text data, bringing
in inefficient data representations and a subsequent decline
in accuracy. (2) The weak correlation between similar
data and supervision. After delivering similar data instances,
the common way is to correlate the similar data features
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Fig. 1. The graphical descriptions between the conventional and our methods
over the drift. (a) is the negative effect without drift, which fails to effectively
separate the sample data. (b) shows the positive effect achieving a better
separation effect due to the drift.

and supervision. For example, one type of method [32],
[36], [51] combines single supervision and data descriptor for
image-text retrieval. Another type of method [7], [28], [59]
employs the original data characteristics and nonlinear multi-
ple supervised knowledge to provide the hash codes. However,
these two approaches either lack abundant supervised informa-
tion, or generate multiple supervision with high complexity,
leading to an imbalance between supervision and data, and
ultimately resulting in inaccurate hash code representations.

To address these two problems, we propose a novel super-
vised hashing model called Robust Hashing with Bilinear Drift
(RHBD) for image-text retrieval. Specifically, the RHBD con-
structs a cross-modal semantic autoencoder with linear drift
to obtain a common feature representation. Then, it exploits
multiple supervision learning to formulate the hash code.
Next, we introduce the iteration quantization optimization with
linear drift to establish the relationship between the hash code
and common feature representation. These two linear drift
constitute our proposed robust hashing with bilinear drift.
Figure 1 illustrates a description of the positive effect of
drift. Figure 1 (a) shows the separation effect of samples
from different classes without drift, while Figure 1 (b) is the
separation effect with drift. Drift can be equivalent to the
intercept of an equation with one variable. By adding drift,
the proposed RHBD effectively separates data samples using
different classification functions generated by this intercept.
This learning paradigm not only optimizes the generation
quality of hash codes, but also eliminates the mismatching
information and further enhances the robustness of hash codes,
thereby achieving the accuracy of model. RHBD includes
robust hashing with bilinear drift part (semantic autoencoder
with linear drift and iteration quantization with linear drift),
and multiple supervision learning part. The framework of
RHBD is shown in Figure 2. To sum up, this paper contributes
in the following aspects:

• We propose a novel supervised hashing learning frame-
work dubbed RHBD by integrating multiple supervised
knowledge and efficient data descriptors to achieve shared
hash representations for image-text instances.

• The introduced robust hashing with bilinear drift learning
strategy effectively separates the similar and dissimilar
samples, thereby improving the discrimination of hash
codes during training.

• Extensive experiments on three public cross-modal
datasets demonstrate that the proposed RHBD outper-
forms several state-of-the-art hashing methods in retrieval
performance.

The resting is arranged: Section II reviews the hashing.
Section III presents our proposed RHBD. Section IV illustrates
the experiments and Section V concludes the paper.

II. RELATED WORK

This section divides the related work into three categories:
unsupervised hashing, supervised hashing, and hashing with
linear drift. The unsupervised one implements the search tasks
within the original feature distributions. Typical examples
are CMFH [5], FSH [23], JIMFH [37], and DRMFH [52],
which primarily obtain the query hash code matrix through
collective matrix factorization or by common and individual
feature characteristics. Our research also incorporates these
paradigms, representing the image and text feature matrices
while improving the accuracy in cross-modal applications.

In supervised hashing, numerous excellent methods leverage
various supervision knowledge for image-text retrieval such
as SMFH [32], SePH [22], LCMFH [36], SRLCH [30],
LFMH [58], RDMH [56], SDMSA [57], ALECH [17],
ESGEH [53], and IMADS [43]. Compared with these
approaches, we find an interesting point that the above
approaches conduct the training models jointly taking into
account distinct feature distributions and multiple supervision
information. Another notable aspect is that such methods adopt
multiple collective matrix factorization and mapping learning
strategies to enhance the effectiveness of hashing models.
However, this strategy does not consider the problem of imbal-
anced data distribution caused by similar samples. To handle
this, a few hashing models [24], [33], [40] have attempted to
improve the search accuracy by leveraging linear projection
with drift to obtain the high-quality hash codes. For instance,
FDCH [24], ACQH [40], WASH [55], ROHLSE [18], and
FADCH [33] mainly explore the relevance of similar samples
by classify the original data with a linear drift or an auxiliary
matrix variable to construct the hashing models. However,
these hashing models do not fully a good correlation between
feature information, hash learning, and multiple supervised
knowledge, which obtain limited retrieval performance. Hence,
our bilinear model can be viewed as a generalization of
hashing with linear drift approach, utilizing the feature, dual
supervision, and separate linear drift information with appli-
cation to image-text search.

Unlike the aforementioned ones, deep hashing methods have
taken central in image-text retrieval [16], [26], [34]. Although
these methods generally outperform the shallow methods,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 18,2025 at 14:25:12 UTC from IEEE Xplore.  Restrictions apply. 



7644 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 8, AUGUST 2025

Fig. 2. The pipeline of RHBD contains two learning modules: robust hashing with bilinear drift (red arrows) to obtain common representation V and multiple
supervision learning (blue arrows) to produce the hash code H. RHBD takes the image-text features X1, X2 as the model input, and then achieves a unified
supervised hashing model by connecting the relationship between the matrices V and H. And this model during training stage produces the final hash code H,
hash functions P1, P2 for the querying stage as the model output.

their training is very time-consuming and requires heavy
storage cost of experimental equipment. After comprehensive
consideration and important development, this paper focuses
on the shallow image-text retrieval field.

III. METHODOLOGY

A. Notation and Problem Definition

Assuming there is a collection of n image-text sam-
ple pairs, represented by image feature matrix X1 =

{x (1)
1 , x (2)

1 , . . . , x (n)
1 } ∈ Rd1×n and text feature matrix X2 =

{x (1)
2 , x (2)

2 , . . . , x (n)
2 } ∈ Rd2×n , where d1 and d2 denote the

feature dimensions of images and texts (d1 ̸= d2). To clear
representation, we explain that ∥ ·∥F is the Frobenius norm of
a matrix, tr(·) is the trace of a matrix, and sgn(·) indicates
the sign function, namely sgn(x) = 1 when x > 0, and
sgn(x) = −1 when x ≤ 0. The frequently-used matrix
variables are defined in Table I.

In multiple supervision learning, we utilize two kinds of
supervised knowledge: label and semantic supervision. (1) For
label supervision, we express Y = {y1, y2, . . . , yn} ∈ Rc×n as
the label matrix, where c mean the number of classes. The fea-
ture vector of sample i is defined as yi = {yi1, yi2, . . . , yic} ∈

{0, 1}
c. If sample i belongs to class j , yi j = 1; otherwise,

yi j = 0. (2) For semantic supervision, most methods [7],
[33], [41], [49] leverage a pairwise similarity matrix S (size
n×n) achieved by the label matrix Y to compare the similarity
between samples. When samples i and j are similar, Si j = 1;
otherwise, Si j = −1. However, these approaches have negative
effects on computational complexity because S requires a
large amount of computational space. To address this, cosine
similarity is employed to quantify the similarity between two
samples:

S̃i j =
yi · y j

∥yi∥2
∥∥y j

∥∥
2

. (1)

TABLE I
THE MAIN SYMBOLS USED IN RHBD

Here, the label is normalized as:

Ỹ = {
Y·1

∥Y·1∥2
,

Y·2

∥Y·2∥2
, . . . ,

Y·n

∥Y·n∥2
}, (2)

where Y·i is label vector of sample xi . To well optimize
time consumption, the final similarity matrix is defined by
S = 2Ỹ⊤Ỹ − 1⊤

n 1n .
In the domain of image-text retrieval, kernelization pos-

sesses a crucial role in facilitating nonlinear relationships by
converting their respective data into feature representations
that exhibit similar properties [30], [41], [57]. The Radial Basis
Function (RBF) is adopted as the kernel function in this paper,
which is defined as:

φ(x)=

[
exp

(
− ∥x − α1∥

2σ 2

)
, . . . , exp

(
− ∥x − αm∥

2σ 2

)]⊤

, (3)

where {αi }
m
i=1 represents a set of randomly chosen anchor

points, and σ =
1

nm
∑n

i=1
∑m

j=1(xi − α j ) denotes the kernel
width. For enhance readability, the transformed feature rep-
resentations of X1 and X2 are denoted as X1 = φ(X1) and
X2 = φ(X2), respectively.

The core of this work is to get the hash code matrix
H ∈ {−1, 1}

k×n to characterize image-text data pairs when
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given binary length k. Matrix H is obtained by the learned
optimal common feature representation and multiple supervi-
sion knowledge.

B. Robust Hashing With Bilinear Drift

The main contribution of the proposed RHBD lies in the
formulation of robust hashing with bilinear drift, as opposed to
the traditional signal linear drift learning. The learning module
includes a semantic autoencoder with linear drift and iterative
quantization with linear drift.

1) Semantic Autoencoder With Linear Drift: To incorporate
potential information from original data, we use collective
matrix factorization technique accepted by most methods [5],
[30], [36], to obtain common representation V. However, V
may introduce redundant information from data collection.
To tackle this, we extend the encoder module from the orig-
inal decoder component to construct a semantic autoencoder.
Further study [39], [46], [50] shows that the encoder mapping
learning brings in irrelevant information such as noise from
data pairs. Thus, we elaborately design a novel semantic
autoencoder with linear drift term to handle this. The concrete
formula is defined:

min
V

2∑
t=1

λt

∥∥∥Xt −U⊤
t V

∥∥∥2

F︸ ︷︷ ︸
Decode

+α

2∑
t=1

∥∥∥V−Ut Xt +lt 1⊤
n

∥∥∥2

F︸ ︷︷ ︸
Encode

, (4)

where Ut is projection matrix, and lt acts as an intercept to
impact the relative importance of encoder, and 1n is one vector
with n × 1. Generally,

∑2
t=1 λt = 1.

2) Iterative Quantization With Linear Drift: Many con-
ventional methods [9], [30], [41] utilize rotary quantization
learning to directly obtain the hash codes. However, this linear
mapping is essentially a classification strategy to differentiate
between similar and dissimilar samples, which can lead to
substantial quantization errors. To further eliminate redundant
information in common representation V, we optimize this
strategy by proposing an iterative quantization with linear drift
constraint term to obtain a high quality hash code H with
discriminative power via:

min
H,G

η ∥H − GV − men∥
2
F , s.t. H ∈ {−1, 1}

k×n , (5)

where G is projection matrix, en denotes identity vector with
1 × n, and drift m discriminates the samples in a stable way.

To summarize, the bilinear drift module consisting of
semantic autoencoder and iterative optimization shows two
positive benefits: (1) it removes irrelevant information from
the instances to maximize common representation V; and
(2) strengthens the association constraints between the hash
code H and common representation V.

C. Multiple Supervision Learning

After obtaining common the representation V and H in an
unsupervised way, we further improve hash code generation
utilizing supervisory knowledge. Previous methods [7], [30],
[36], [59] typically rely on label supervision to guide hash

code learning or construct a pairwise similarity matrix S to
deliver the hash code H:

min
H

∥kS − H⊤H∥
2
F , s.t. H ∈ {−1, 1}

k×n , (6)

which compares the similarity measurements between samples
with the inner products of the hash codes. By minimizing this
discrepancy, it ensures that similar samples have smaller inner
products between hash codes.

However, constructing the matrix S has both temporal and
spatial complexities of O(n2), which adversely affects the
performance of the model. To mitigate this, we propose a
multiple supervision learning module utilizing a latent rep-
resentation space QY to replace one hash code H in Eq. (6).
This linear strategy not only reduces the temporal complexity
from O(n2) to O(n), but also degrades the information loss
of hash codes through relaxation. We then get the hash code
under the supervision of both QY and S:

min
Q, H

β

∥∥∥kS − H⊤QY
∥∥∥2

F
+ ϵ∥H − QY∥

2
F ,

s.t. H ∈ {−1, 1}
k×n . (7)

D. Overall Objective Function

By integrating the linear weight-based formulations from
Eqs. (4), (5), and (7), we derive a unified framework:

min
Ut,V,QY,G,lt ,m

J (Ut, V, QY, G, lt, m), (8)

where the overall objective function of RHBD is:

J =

2∑
t=1

λt

∥∥∥Xt −U⊤
t V

∥∥∥2

F
+α

2∑
t=1

∥∥∥V−Ut Xt +lt 1⊤
n

∥∥∥2

F

+ β

∥∥∥kS − H⊤QY
∥∥∥2

F
+ ϵ∥H− QY∥

2
F

+ η ∥H−GV−men∥
2
F +γ Reg (Ut , V, QY, G) ,

s.t.
2∑

t=1

λt = 1, H ∈ {−1, 1}
k×n , (9)

where λt , α, β, ϵ, and γ are parameters. Reg(·) = ∥·∥
2
F serves

as a regularization term to prevent model overfitting.

E. Optimization Algorithm

This part employs an alternating optimization strategy to
achieve the analytical solution of each matrix variable. The
solution procedure of our RHBD is shown as follows.

1) Updating Ut: By fixing H, Q, V, G, lt , and m, setting
the derivative of Eq. (9) with respect to Ut equal to zero and
we have:

2∑
t=1

(λt VV⊤
+ γ I)Ut +

2∑
t=1

αUt Xt X⊤
t

=

2∑
t=1

(λt V + αV + αlt 1⊤
n )X⊤

t , (10)

which is a Sylvester equation updated by the Bartels-Stewart
algorithm and Ut can be obtained.
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2) Updating V: By fixing Ut , H, Q, G, lt , and m, and then
taking the partial derivative of Eq. (9) over V equal to zero,
we get:

V=[

2∑
t=1

λt Ut U⊤
t + (α + γ )I + ηG⊤G]

−1
[

2∑
t=1

(λt + α)Ut Xt

− α

2∑
t=1

lt 1⊤
n + ηG⊤(H − men)]. (11)

3) Updating Q: By fixing Ut , H, V, G, lt , and m, and
letting the derivative of Eq. (9) for Q equal to zero, we obtain:

Q=[βHH⊤
+(ε+γ )I]−1

[kβHSY⊤
+εHY⊤

][YY⊤
]
−1. (12)

4) Updating G: Fixing Ut , H, V, Q, lt , and m and con-
ducting the partial derivative of Eq. (9) for G equal to zero,
an analytical solution of G is generated:

G = [η(HV⊤
− menV⊤)][ηVV⊤

+ γ I]−1. (13)

5) Updating m: With Ut , H, V, Q, lt , and G fixed, and
by achieving the derivative of Eq. (9) for m equal to zero,
we compute m by:

m = [(H − GV)e⊤
n ]/n. (14)

6) Updating lt: As m does, we get:

lt = [(Ut Xt − V)1n]/n. (15)

7) Updating H: Since H is a discrete value, we cannot
directly derive it. Here, we simplify the F-norm matrix as the
trace form and then Eq. (9) is reduced as:

min
H

(−2εtr(H⊤QY) − 2η(tr(H⊤GV) + tr(H⊤men))

− 2kβtr(H⊤QYS⊤
+ βtr(H⊤QY(QY)⊤H) + const),

(16)

in which const belongs to irrelevant term. Because the
term in Eq. (16) contains a hash matrix constraint
tr(H⊤QY(QY)⊤H), directly discarding this may reduce the
quality of H. Based on the setting in [41], we intro-
duce two auxiliary matrices A and B for solving. Because
the calculation process of these two matrices is simple
and linear, the training efficiency of the proposed RHBD
is evidently reduced. As m does, we can acquire A =

sgn
(
−λ1(QY)(QY)TH + ωH + B

)
, and B = B + ω (H − A).

Finally, we calculate H via:

H = sgn[2ϵQY + 2η(GV + men) + 2kβQYS⊤

− βQY(QY)⊤A + ωA − B]. (17)

F. Learning Hash Functions

It is very necessary to learn the hash functions of image and
text modalities for querying samples depending on matrix H.
When a new instance appears, we can utilize the obtained hash
functions to conduct the tasks of image-text retrieval. In this
paper, we employ a linear regression strategy that transforms

Algorithm 1 The RHBD Training Procedure
Input: Matrices X1, X2, Y, parameters α, β, ϵ, η, γ , ω.
Output: Hash codes H.

1: Randomly initialize U1, U2, V, Q, G, m.
2: repeat
3: Update U1 and U2 based on Eq. (10).
4: Update V based on Eq. (11).
5: Update Q based on Eq. (12).
6: Update G based on Eq. (13).
7: Update m based on Eq. (14).
8: Update lt based on Eq. (15).
9: until convergence.

10: Generate hash code H based on Eq. (17).
11: Learn projection matrices P1 and P2 by Eq. (19).

input instances into the hash code to produce the projection
matrix Pt by:

min
Pt

2∑
t=1

∥H − Pt Xt∥
2
F + γ ∥Pt∥

2
F , (18)

where γ is an equilibrium parameter. By minimizing Eq. (18)
and then taking the derivative as Pt equal as zero, we can get:

Pt = HX⊤
t (Xt X⊤

t + γ I)−1. (19)

Next, we use the sign function to binarize the product of the
obtained hash functions and the query samples to generate the
hash codes of the query samples by:

f (xt ) = sgn(Pt xt ). (20)

In training procedure, the proposed RHBD calculates the
Hamming distance between matrix H and f (xt ). Then the
similarity score of the hash code H (original data) and query-
ing hash code can be easily acquired in retrieval procedure.

IV. EXPERIMENTS AND RESULTS

A. Datasets

1) Wiki [22]: It is a collection of 2,866 image-text
pairs sourced from Wikipedia. These pairs are classified
into 10 semantic categories. Each image is reduced as a
128-dimensional SIFT feature vector, while the text is a
10-dimensional LDA feature vector. As [36] does, Wiki is
divided into a query set, comprising 693 randomly selected
pairs, and a retrieval and training set including the remaining
2,173 pairs.

2) Flickr25K [42]: It possesses 25,000 image-text pairs
sourced from Flickr, containing 24 distinct classes. The images
are derived as a 512-dimensional GIST feature vector and the
texts are depicted a 1,386-dimensional BoW vector. As done
in [15], Flickr25K randomly assigns 2,000 instances as the
query set, and the resting 18,015 for training and retrieval.

3) NU S-W I DE [41]: It includes 269,684 image-text pairs,
encompassing 81 distinct semantic concepts. The images and
texts are respectively reduced as a 500-dimensional SIFT
vector and a 1,000-dimensional vector in the 10 most frequent
categories. Analogous to [15], 2,000 instances are randomly
designated as the query set, 184,577 for retrieval, and 10,000
for training purpose.
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TABLE II
THE mAP RESULTS OF ALL COUNTERPARTS ON THE SELECTED THREE BENCHMARK DATASETS (B MEANS BITS)

B. Evaluation Metric
We utilize four widely-used metrics [15]: mean Aver-

age Precision (mAP), normalized discounted cumulative
gain(NDCG), topN-Precision curve, and Precision-Recall
curve to assess the performance of RHBD. For mAP and
NDCG, we both set the search point to 100. A higher
value or coverage area illustrates better model performance.
We conduct comparative experiments on both 32-bit and
64-bit lengths over topN-Precision and Precision-Recall
owing to limited space.

C. Baselines and Study Details
This work completes two kinds of tasks: ItoT (images

search similar texts) and TtoI (texts search similar images).
We finish three main comparative experiments of RHBD
and eight state-of-the-art baselines, namely unsupervised
ones CMFH [5], JIMFH [37], DRMFH [52] and supervised
ones SePH [22], FDCH [24], SRLCH [30], LFMH [58],
SDMSA [57], FADCH [33], and IMADS [43]. The source
codes of baselines can be found in their publication papers.
For fairness, we follow the same parameters of their papers on
identical datasets while performing tuning on distinct datasets.
The whole experiment scores are 25 randomly repeated oper-
ations and output the averaged results.

We set the parameters {α = 10−6, β = 10−4, ϵ = 102, η =

101, γ = 10−2, ω = 10−7
} on Wiki, {α = 10−3, β =

10−1, ϵ = 104, η = 10−1, γ = 10−2, ω = 10−1
} on Flickr25K

and {α = 10−3, β = 10−5, ϵ = 101, η = 10−3, γ =

10−2, ω = 10−2
} on NUS-WIDE. Our work is conducted

on platform (Intel(R) CPU @ 3.3 GHz, 10 cores, 128 GB
memory) and MATLAB 2021a software.

D. Results and Discussion

1) Search Per f ormance on m AP Metric : Table II
reports the mAP results of RHBD and ten baseline methods

across two image-text retrieval tasks on three datasets, where
we select representative 16-bit, 32-bit, 64-bit, and 128-bit
code lengths. It is evident from Table II that RHBD out-
performs all counterparts across three datasets on both ItoT
and TtoI retrieval tasks. Specifically, taking the mAP results
on Flickr25K as an example, compared to the latest IMADS
method, RHBD has achieved a great improvement in the aver-
age mAP values for ItoT and TtoI by up to 8.24% and 2.49%,
respectively. Compared to the SDMSA, the average mAP val-
ues of RHBD can be improved to 4.94% on ItoT and 2.68% on
TtoI tasks. Compared to the top-performing SRLCH method
on Flickr25K and NUS-WIDE, RHBD achieved an average
improvement of 5.83% (ItoT) and 5.24% (TtoI) on Flickr25K,
and an average improvement of 2.08% (ItoT) and 3.19% (TtoI)
on NUS-WIDE. These results strongly demonstrate the supe-
rior performance of the proposed RHBD in terms of retrieval
accuracy.

2) Search Per f ormance on N DCG Metric : Table III
depicts the NDCG comparisons of all baselines on all datasets.
It is observed that our RHBD possesses the best NDCG
scores than almost all other baselines about two tasks on
three selected datasets. Specifically, it has the best NDCG
scores in 11 out of 12 cases for ItoT retrieval task and 9 out
of 12 cases for TtoI retrieval task. Using Flickr25K as an
example, compared to the latest IMADS, RHBD outperforms
IMADS with all code lengths on ItoT task, with an aver-
age improvement of 5.37%. Although RHBD falls behind
by 1.13% and 0.70% when using 64-bit and 128-bit hash
code lengths on TtoI task, there is a significant improvement
of 5.09% and 3.79% for 16-bit and 32-bit code lengths,
respectively. RHBD demonstrates an average improvement
of 4.06% on ItoT and 2.45% on TtoI tasks against the
supervised linear drift FADCH method. Compared to SDMSA,
RHBD possesses an average improvement of 7.17% on
ItoT and 4.60% on TtoI tasks. To summarize, the achieved
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TABLE III
THE NDCG RESULTS OF ALL COUNTERPARTS ON THE SELECTED THREE BENCHMARK DATASETS (B MEANS BITS)

Fig. 3. The Precision-Recall curves of all alternatives with 32 and 64 code lengths on the selected three datasets.

observations illustrate the effectiveness of our RHBD in
NDCG metric.

3) Search Per f ormance on Precision−Recall Metric :

Figure 3 represents the Precision-Recall curves of RHBD
and ten benchmark methods on Wiki, Flickr25K, and NUS-
WIDE. We observe that RHBD consistently conducts the best
precision than other ten baselines in 10 out of 22 cases for the

TtoI task on Flickr25K. This is mainly attributed to the fact
that RHBD effectively utilizes multiple supervisory knowledge
to generate high-quality hash codes. Besides, the reduced
redundant feature can decrease the errors in hash bits and
further enhance the robustness of hash codes.

4) Search Per f ormance on topN − Precision Metric :

Figure 4 shows the topN-Precision curves of RHBD along
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Fig. 4. The topN-Precision curves of all alternatives with 32 and 64 code lengths on the selected three datasets.

TABLE IV
THE mAP VALUES OF OUR RHBD AND RELATED VARIANTS ON THE SELECTED THREE BENCHMARK DATASETS

with ten baseline methods. It is clearly noticed that our RHBD
outperforms all comparison methods on all retrieval tasks.
Although the precision scores of RHBD over the ToI retrieval
task on Wiki are not outstanding as the retrieval points N
increases, the coverage area enclosed by the curve and the
axes remains still the largest. Therefore, the result of this
experiment on topN-Precision criterion further demonstrates
the effectiveness of our proposed model.

E. Ablation Work

To substantiate the efficacy of each module over RHBD,
we establish six variant types for comparisons. Concretely,
RHBD-1 eliminates the drift lt , RHBD-2 omits the drift m,

RHBD-3 removes both drifts concurrently. RHBD-4 is a type
that only utilizes label supervision (β = 0), while RHBD-5
solely employs semantic supervision (ϵ = 0), RHBD-6 does
not use any supervision (β = 0 and ϵ = 0). Table IV shows the
results of the ablation experiments on all datasets. Evidently,
we observe that the mAP scores of RHBD outperform other
types of tasks on the ItoT task (9 of 12), and it also performs
better than other types of tasks on the TtoI task (11 of 12).
Thus, these results show the efficacy of the RHBD modules.

F. Parameter Analysis

Among five important parameters in Eq. (9), α represents
the impact of the encoder part on the shared representation V,
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Fig. 5. Model parameters analysis of RHBD @ 64-bit. (a)-(e) are parameter variations on the selected three datasets.

β measures the influence of the label supervision in hash code
learning, ϵ indicates the quality of hash codes under semantic
supervision, η reflects the effects of hash function learning,
and γ is regularization to prevent overfitting. To understand
the effects of these parameters on the model performance
across different datasets, we conduct a sensitivity analysis
experiment. We set λ1 = λ2 = 0.5. The results in Figure 5,
consist of five smaller diagrams illustrating the mAP values
under different values of the five main parameters. We explore
the relationships between β and ϵ, as well as β and η for
64-bit code lengths. These experiments help refine the final
parameter settings of the model.

In addition, we observe that for Figure 5 (b), for the ϵ

parameter on Wiki, values within the range of [10−1, 10]

resulted in lower mAP values. This is possibly attributed to the
model’s tendency to overlook intermodal relationships when
the parameter approaches zero, particularly in a small dataset
like Wiki where the association between text and imagery
may not be effectively utilized, which can lead to reduced
mAP values. Additionally, from Figure 5 (e), we find that on
both Wiki and NUS-WIDE, when the value of η is greater
than 1, the mAP values are smaller. This may be due to
differences in dataset characteristics, distributions, and the
influence of scale and variability and the data distribution of
Flickr25K appears to be more suitable for model training and
optimization procedures.

G. Kernelization Research

To explore the influence of different kernel numbers on
performance, we conduct mAP results to evaluate changes
in kernel anchors, which is shown in Figure 8. The results

indicate that RHBD has better results when the anchors
number falls within the range of 1,000 to 2,000 on all datasets.
RHBD achieves superior performance when the anchors num-
ber is in the respective ranges of 2,500 to 3,500 and 2,000
to 3,000. To ensure the model have satisfactory and robust
accuracy, we respectively take 2,000, 3,000 and 2,000 as the
final kernel number on all datasets.

H. Visualization

To visually show the query results of RHBD, we conduct
a visualization experiment using 64-bit on Wiki. Figure 7
displays the top 10 results of RHBD about different classes
on two kinds of retrieval tasks, where a green box represents
a similar sample and a red box represents a dissimilar sample.
We observe from Figure 7 the following: 1) As for ItoT task,
the retrieval results achieve the majority of similar samples in
almost situations (9 of 10) except for two dissimilar biology
and royalty classes. 2) RHBD obtains similar samples in
almost all cases (29 of 30) on three distinct query classes while
music has a dissimilar sample. Despite the dissimilar query
samples, they often rank top 9 and 10 which are in the bot-
tom positions. These findings illustrate that RHBD efficiently
conduct the image-text retrieval task while maintaining high
querying accuracy.

I. Convergence Validation

Figure 9 displays the convergence curves of RHBD with
64-bit length on all datasets. The ordinate of this figure
is normalized, meaning that the objective function value is
divided by the maximum value. The convergence curves on
all datasets drop sharply and eventually reach stability as the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 18,2025 at 14:25:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: ROBUST HASHING WITH BILINEAR DRIFT FOR IMAGE-TEXT RETRIEVAL 7651

Fig. 6. The mAP scores of RHBD with varying parameters on the selected three datasets.

Fig. 7. The visualization results of RHBD against distinct query classes on Wiki.

iterations number increases. Notably, RHBD keep robust about
5 iterations on Wiki, and within the range of 15 iterations on
Flickr25K and NUS-WIDE. Thus, we have chosen 15 as the
optimal number of iterations for our RHBD.

J. Failure Case and Next Exploration

Although achieving good retrieval performance across four
main evaluation metrics and other ablation studies, our RHBD

has some limitations in large cross-modal applications. For
instance, our method consumes more training time than com-
peting SDMSA and FADCH methods in Figure 10. The
training efficiency of the RHBD model is mainly influenced
by the hyperparameters and the optimization process during
training. The main reasons are as follows: (1) Our overall
objective function composed of multiple constraint terms,
improves the retrieval accuracy but increases training time.
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Fig. 8. The kernelization curves of our RHBD on three datasets.

Fig. 9. The convergence curves of RHBD on public benchmark datasets.

Fig. 10. Training time results of RHBD and four competitors @ on larger
Flickr25K and NUS-WIDE datasets.

Specifically, Eq. (9) mainly includes four parameters
α, β, ϵ, η, γ . Thereinto, We set λ1 = λ2 = 0.5 for the
experiment validation, and γ has a wide parameter range
with minimal impact. ω is an auxiliary parameter with a
small weight. (2) We mitigate the redundancy of supervi-
sory information by introducing auxiliary matrices or linear
biases. Although reducing the matrix dimension of multiple
supervised knowledge, RHBD inevitably sacrifices training
efficiency.

To sum up, we struggle to reduce the impacts of multi-
source supervision and multiple hyperparameters to enhance
the performance of RHBD, while striving to maintain
comparable training efficiency to competitive alternatives.
Meanwhile, the convex optimization strategy will be a focus
of future work.

V. COMPARISON WITH DEEP HASHING METHODS

To further verify the superiority of RHBD in deep feature
application, eleven deep hashing baselines are selected to
compare with RHBD on Flickr25K. Concretely, we exact a
4096-dimensional image deep feature and 1386-dimensional
BoW text feature as the model input. For baselines, the

TABLE V
THE mAP COMPARISONS BETWEEN OUR RHBD AND DEEP

HASHING METHODS ON FLICKR25K

mAP scores are obtained by their original paper. For ease
of comparison, we set R as the size of the query set on
mAP metric. The completed deep variant is called RHBDcnn.
Figure (V) reports the mAP scores between RHBDcnn and
eleven deep hashing methods. We observe that RHBDcnn
get the best over others on ItoT task and the results of
RHBDcnn are slightly lower than that of MLSPH, DMFH,
and GCDH on TtoI task. The possible explanation is that
such three methods train image and text features online in
an end-to-end manner, while our variation extracts shallow
features offline. In addition, the training time of RHBDcnn
consumes about 23 seconds and baselines needs more than
3 hours on the training time. Thus, the deep variant RHBDcnn
has comparable accuracy to the deep baselines and the best
training efficiency, which shows the superiority of our RHBD
method in terms of deep framework.

VI. CONCLUSION

We present a novel supervised hashing model (RHBD)
for image-text retrieval, demonstrating its superiority over
several state-of-the-art baselines while achieving training effi-
ciency comparable to the competitive methods and validating
the effectiveness of the proposed learning modules across
various cross-modal datasets. Specifically, introducing the
well-designed bilinear drift hashing component to effec-
tively distinguish similar and dissimilar original image-text
instances, as well as multiple supervision component to obtain
abundant supervision knowledge. Then, RHBD has promoted
the representation ability of hash codes by fully integrating
beneficial features and supervision properties during training.
The future study will utilize discrete optimal transport theory
to design a supervised hashing algorithm for incomplete
image-text data pairs while eliminating redundant features.
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