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Abstract—In modern virtual computing environment, the 2D/3D rendering performance and parallel computing potential of GPU

(graphics processing unit) must be fully exploited for multiple virtual machines (VMs). Existing GPU virtualization techniques are

unable to take full advantage of a GPU’s powerful 2D/3D hardware-accelerated graphics rendering performance or parallel computing

potential, or it has not been considered that the internal resources of a GPU domain are fairly allocated between VMs with different

performance requirements. Therefore, we propose a multi-channel GPU virtualization architecture (VMCG), model the corresponding

credit allocating and transferring mechanisms, and redesign the virtual multi-channel GPU fair-scheduling algorithm. VMCG provides a

separate V-Channel for each guest VM (DomU) that competes with other VMs for the same physical GPU resources, and each DomU

submits command request blocks to its respective V-Channel according to the corresponding DomU ID. Through the virtual multi-

channel GPU fair-scheduling algorithm, not only do multiple DomUs make full use of native GPU hardware acceleration, but the

fairness of GPU resource allocation is significantly improved during GPU-intensive workloads from multiple DomUs running on the

same host. Experimental results show that, for 2D/3D graphics applications, performance is close to 96 percent of that of the native

GPU, performance is improved by approximately 500 percent for parallel computing applications, and GPU resource-allocation fairness

is improved by approximately 60-80 percent.

Index Terms—Credit modeling, fair scheduling, GPU virtualization, hybrid application workloads, virtual multi-channel

Ç

1 INTRODUCTION

IN general, GPU is used to accelerate graphics displays.
With GPU virtualization techniques, not only can

DomUs1 on personal computers (PCs) or servers share a
physical GPU adapter that has multiple display ports, but
each DomU can also independently output graphics by
binding each display port, such as in multi-screen indepen-
dent display technology [6]. However, each DomU’s 2D/3D
graphical performance is low due to bypassing the
hardware-accelerated resources of a physical GPU. To meet
the requirements of virtual office environments and virtual-
ization application scenarios that need high graphic proc-
essing power [1], high-performance GPU virtualization is
urgent [2]. On the other hand, a GPU plays the same role as
a CPU in high-performance parallel computing [16]. For
promoting computing performance, some parallel tasks
from multiple DomUs are deployed to GPU subsystems,

leading to competition for GPU resources. It is also common
that hybrid GPU-intensive application workloads (e.g., 2D/
3D graphic rendering, parallel computing, and GPU hard-
ware encoding/decoding) from multiple DomUs exclu-
sively share the same physical GPU. Therefore, in the case
of hardware-accelerating conditions, fair and stable GPU
resource allocation between multiple DomUs has significant
implications for VMs.

Optimally managing and fairly allocating GPU resources
amongnumerousDomUs is an effective technique to improve
the performance of GPU-intensive applications. Research
efforts have been directed toward exploiting physical GPU
performance in virtualized environments. We can generally
divide such efforts into the following two categories: (1)
enhancing graphic performance under virtualization, and (2)
facilitating parallel computing under VMs. For the first cate-
gory, 3D rendering is achieved by using a modular driver
framework in guest DomUs [5]. Since the native GPU is not
fully exploited, this modular method brings low 2D/3D ren-
dering performance. The literature [7] compares GPU virtual-
ization with emulation and native GPU, but fair GPU
resource allocation is not considered. Furthermore, GViM [8]
is designed for virtualizing and managing the resources of a
general-purpose system accelerated by graphics processors,
but fails to consider parallel computing and hybrid applica-
tion workloads. To avoid emulating rendering in the guest
OS, DomUs share only one RequestQueue for graphics proc-
essing by exploiting GPU hardware rendering [3]; however,
they share the same RequestQueue into which DomUs issue
their GPU command request blocks, thus causing interference
between DomUs. An “Agent” owned by each DomU and a
scheduling controller shared by all VMs are designed in

1. A DomU is an unprivileged domain which is the counterpart to
Dom0, and Dom0 is an abbrevation of ”Domain 0” in Xen which is the
premier domain initiated by the hypervisor on boot
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VGRIS [6]. The scheduling controller manages the agent to
access GPU for achieving 3D game rendering, which only
focuses on the GPU scheduling sequence when multiple
DomUs concurrently generate respective workloads to the
same physical GPU. Unfortunately, the fairness of GPU
resource allocation is ignored, and hybrid GPU workloads
between DomUs have not been considered. Moreover, the
rCUDA [25], [28], [29] is organized as a client-server distrib-
uted architecture inwhich the sockets API is used for commu-
nication between clients and servers, and it is the first solution
that is VMM-independent and production-ready for CUDA
virtualization [30]. But for TCP/IP with a low-bandwidth
interconnect, GPU access rate is reduced when clients send
GPU command request blocks to the server to access physical
GPU [31]. Then, the literature [32] proposes a framework
which uses InfiniBand(IB) FDR to afford higher effective
bandwidth and significantly reduce the overhead. It is the
sole ready-to-manufacture framework aiming at HPC cluster
environments in comparison with other virtualization solu-
tions. But it also neglects the GPU resource allocation’s fair-
ness. GPUvm [4] provides a GPU shadow channel for each
DomU. Each DomU owns two types of indexes (physical
indexes and virtual indexes). These indexes occupy too much
address space and make the system more complex. The
BAND scheduling algorithm is designed to extend the
CREDIT scheduling in GPUvm. However, a virtual machine
with low prioritymight never access GPUwhen GPUvmuses
the prioritization policy between DomUs, and it only inserts
waiting time in the GPU context to meet the fairness required
by similar workloads. In addition, the BAND scheduling does
not consider the number of consumption credits for DomUs
too. Thus, it is necessary to remodel CREDIT. For the second
category, Shi [14] and Vu [11] only focus on achieving high-
performance computing in VMs, while graphics processing
and hybrid workloads are excluded, and the fairness of GPU
resource allocation is not considered.

The gVirt makes breakthrough progress in full GPU virtu-
alization [2] by proposing an architecture that concurrently
shares GPU using a mediator pass-through. In gVirt, a virtual
full-fledged GPU is presented to each VM which can directly
access performance-critical resources with no hypervisor’s
intervention in many situations. So it minimizes the cost of
privileged operations from guest through trap-and-emulate.
The performance of GPU for DomUs can achieve up to
95 percent native performance. However, since VMs are
required to serve different workloads from multiple DomUs
simultaneously, GPU command request blocks of all work-
loads are aggregated to a uniform queue, i.e., the command
request block queue in Dom0 is shared by all DomUs’ virtual
GPU. In this case, a request block is scheduled in its arrival
sequence. GPU performance experienced by some DomUs
suffers from the interference of the command request blocks
of other DomUs. It is obvious that a shared FCFS (first come
first serve) queue in Dom0 cannot meet the requirement of
fairness. For example,wedeployed three sameGPU-intensive
applications (PassMark 3D [22]) to three DomUs, and set the
same weight (i.e., 1:1:1) for each DomU in gVirt. They obtain
81-122 FPS (frames per second), 109-284 FPS, and 30-46 FPS
respectively, which is clearly unfair and unstable in GPU
resource allocation among DomUs. In summary, existing
GPU virtualization solutions cannot restrict the amount of

GPU resources consumed by individual DomUs (each DomU
may issue asmanyGPU command request blocks as itwants),
and also does not consider the mutual interference between
DomUs and the fairness of GPU resource allocation.

In this paper, we propose a virtual multi-channel GPU
virtualization architecture (VMCG) that not only provides a
fully functional virtual GPU for each DomU but also fairly
assigns GPU resources to each DomU according to the
requirements of GPU application workloads. Moreover, a
V-Channel, directly using a DomU ID to eliminate index
transferring overhead and save memory space, is provided
for each DomU. We model the corresponding credit allocat-
ing and transferring mechanisms, and design a virtual
multi-channel GPU fair-scheduling algorithm. Furthermore,
VMCG is completely based on a software-level design, and
does not require any additional special hardware support.
Finally, we verify the effectiveness of VMCG through a
series of experiments, including 2D/3D graphics processing
applications, parallel computing, and even hybrid GPU-
intensive workloads.

The main contributions of our work are as follows.
We propose VMCG, a virtual multi-channel GPU virtual-

ization architecture that provides a fully functional virtual
GPU for each DomU. The architecture also allows GPU
resources to be fairly assigned to each V-Channel. Addition-
ally, VMCG separates the unified management of all run-
ning DomUs in Dom0, and builds an independent V-
Channel mapping in the GPU for each DomU.

We model the credit allocation and transferring mecha-
nisms between virtual GPUs (vGPUs), and design a vGPU
fair-scheduling algorithm that allocates GPU resources
according to the actual demands of each DomU.

VMCG is implemented by extending and revising gVirt
in Xen. A series of experiments, including 2D/3D graphics-
processing applications, parallel computing, and even hybrid
GPU-intensive workloads, are evaluated. Experimental resu-
lts demonstrate that VMCG clearly improves the fairness and
stability of GPU resource allocation.

The rest of this paper is organized as follows. Section 2
describes the background and motivation. Section 3 proposes
the VMCG architecture based on gVirt. Section 4 illustrates
the credit model. The VMCG fair-scheduling algorithm is
described in detail in Section 5. Evaluations are provided in
Section 6, and related works are discussed in Section 7.
Finally, Section 8 concludes the paper and Section 9 is the
acknowledgments.

2 BACKGROUND AND MOTIVATION

2.1 Background

At present, there are three types of GPU virtualization tech-
nologies in Xen hypervisor [12]: Device Emulation, API For-
warding, and Direct Pass-Through. To provide graphics
output for virtual machines, Device Emulation consumes
much CPU and memory resource because the CPU emu-
lates a GPU’s functionalities, leading to lower host perfor-
mance and slow graphic rendering speed. API Forwarding
intercepts API calls in the application layer and achieves
corresponding functions with forwarding or simulation.
But this scheme is difficult to be promoted, because the par-
tial functions (such as virtual machines) are not considered
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at the beginning of the design and their internal structure is
also unknown. Direct Pass-Through manages the system by
bypassing the virtual machine. However, it has a poor com-
patibility and the hardware cost is too high.

A full GPU virtualization based on Xen hypervisor,
namely gVirt, has been designed [2]. gVirt also chooses the
Dom0 kernel as the privileged domain to manage multiple
unprivileged VMs (i.e., DomUs). In the meanwhile, unlike
classical Xen supporting simply the whole I/O resource’s
pass-through or trap, the memory virtualization module
(vMMU) of Xen hypervisor is extended to achieve the poli-
cies of trap and pass-through in gVirt, which contains EPT
(extended page tables) for DomUs and PVMMU (para-
virtualized memory management unit) for Dom0. The
performance-critical resources of the GPU can be accessed
directly by each DomU running a native graphics driver. To
protect privileged resources, GPU command request blocks
from graphics driver in DomUs and Dom0 are trapped to
the mediator driver in Dom0 for emulation. For accessing
the physical GPU and sharing it among DomUs, a hypercall
and an independent GPU scheduler, which is separated
from the exsiting CPU scheduler but runs concurrently, are
implemented in the mediator. Thus all of the submitted
DomU commands can be executed directly by the physical
GPU so that the simulation of the most complex compo-
nent in the GPU (i.e., the rendering engine) is avoided. The
performance of a GPU within DomUs can achieve up to
95 percent of native performance. Therefore, we design
VMCG based on gVirt to implement the fair allocating and
scheduling of a GPU.

2.2 Motivation

Neither gVirt nor Native Xen can achieve fair GPU resource
allocation with multiple DomUs. Furthermore, some other
virtualization solutions, such as VMware and NVIDIA GRID,
also show unstable states among DomUs, according to our
analysis. Fig. 1 represents part of experimental results by run-
ning the Heaven 3D workload with these virtualization tech-
nologies in three DomUs. From the figure, it can be seen that
the performance of all the three solutions fluctuate over time
(more details will be disscussed in Section 6). So there is a
necessity to implement a virtualization architecture that guar-
antees the GPU resources to be assigned fairly. According to
our observation, there are three key factors that have

implications on credit allocation. First, on Intel platform, sys-
tem memory is used as graphic memory [2], so we analyze
the graphicmemory utilizationwith the increasing number of
DomUs and data size in Rodinia [24]. Since the total graphic
memory is limited, then the greater the number of DomUs,
the bigger the amount of data size, the less graphic memory
each DomU could be assigned. From these experiments, we
conclude that graphic memory is an important factor restrict-
ing the performance ofGPU computing, therefore the number
of credits distributed toDomUi is related to the size of graphic
memory consumed by DomUi. Second, different PCI-E band-
width occupancy between VMs also affects the number of
credits because it controls the rate of data transmission
between CPU and GPU domains. Finally, if a GPU command
request block in a V-Channel is handed out, then a credit will
be consumed. Based on the above observations, we extend
the credit scheduling in VMCG so that it can achieve fair GPU
resource allocation as proposed in this paper and the fairness
of GPU resource allocation will be affected by the mechanism
of credit distribution.

3 VMCG ARCHITECTURE

Fig. 2 shows the overall architecture of VMCG, which is
based on gVirt [2] to achieve the native GPU performance
in VMs. Dom0 is still treated as the privileged VM and other
DomUs are used as guest VMs. The mediator module of
gVirt is extended in VMCG to reduce mutual interference
between DomUs and improve the fairness of GPU resource
allocation. It maintains an independent V-Channel that can
be bound to a display port for each DomU in Dom0. The
command request blocks from transit which belong to
DomUs are forwarded to respective V-Channels according
to the corresponding DomU ID. Furthermore, because a
GPU domain is essentially a parallel computing system that
owns inherent stream processors, video RAM, and an I/O
bus similar to a CPU domain, for achieving fair GPU
resource allocation, a similar vGPU (vGPU structure) with a
virtual central processing unit (vCPU structure) is imple-
mented in the mediator module. Thus, the command
request blocks in V-Channels are distributed to the native
graphics driver in Dom0 through vGPU scheduling.

Fig. 1. The performance of heaven 3D.

Fig. 2. VMCG architecture.
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Inspired by the idea of credit-based scheduling that is
used to guarantee CPU resource scheduling fairness in Xen
hypervisor, GPU resources are abstracted as credits in the
VMCG. GPU resource allocation means that a certain num-
ber of credits are allocated to each DomU. The vGPU sched-
uler executes context switching between vGPUs, and the
time slice to switch is given by the vGPU fair-scheduling
algorithm, which can be measured through the credit allo-
cating and transferring mechanisms. The number of credits
for each DomU is closely related to the GPU resources
needed by the DomU.

4 CREDIT MODEL

4.1 Mapping from Resources of GPU Domain to
Credit

VMCG maintains an independent V-Channel for each
DomU in Dom0. GPU command request blocks of DomUs
are first inserted into the corresponding queue according to
DomU ID; then, they are distributed to the native graphics
driver in Dom0 through vGPU scheduling. Credit is the
abstraction of GPU resources. VMCG fairly allocates credits
for each DomU according to the command request block
quantity, graphic memory size, and PCI-E bandwidth.
Table 1 displays the parameters we denote. BW is the total
PCI-E bandwidth, and MSIZE is the total graphic memory
size. PCI-E traffic can be monitored by an experimental tool,
such as Intel Performance Counter Monitor (PCM), which is
called pcm-pcie. According to Pharr et al. [13], Kun et al.
[2], and Zheng et al. [6], the GPU resource TIMEi of DomUi

shows an exponential function distribution, i.e.,

TIMEi ¼ eBWi�MSIZEi þNUMi

eBW�MSIZE þPN
j¼1 NUMj

� TIME; (1)

where N is the number of DomUs that generate GPU com-
mand request blocks and TIME is the GPU time require-
ments of all DomUs for a period. Thus, the credit CREDITi,
which represents abstract GPU resource requirements for
DomUi, can be obtained by Eq. (2)

CREDITi ¼ eBWi�MSIZEi þNUMi

eBW�MSIZE þPN
j¼1 NUMj

� CREDIT; (2)

where CREDIT is the total number of credits.

4.2 Credit Allocation

Fig. 3 shows the procedure of the credit allocation. Credit
allocation causes GPU resources to be fairly exploited by all
DomUs, effectively alleviating GPU resource competition

between multiple DomUs. Actually, in an interval TIMEG

(period between two consecutive replenishment event
which aims to trigger the credit reallocation strategy) of
credit allocation, we find that the PCI-E bandwidth occu-
pancy and graphic memory size of DomUi are essentially
unchanged. The real consumption of credit is related to the
change of GPU command request blocks in the pending
queue. Therefore, we treat BWi and MSIZEi as a constant,
and the credits consumed are only related to distributing
command request blocks.

We quantify the number of credits transferring by moni-
toring the whole credit allocating process, which is respon-
sible for providing all information needed by the VMCG.
There are four metrics collected from the channels of all
DomUs: FLAG (the sparseness status of current GPU
usage), GPUCRBi (the number of GPU command request
blocks of DomUi), RMNCi (the number of remaining credits
of DomUi), and RALCi (the number of reallocated credits of
DomUi). These metrics are used as indicators by the sched-
uler when dispatching GPU command request blocks, and
can be calculated according to the following methods.

1) FLAG: This value is utilized to indicate GPU sparse-
ness status; ’0’ means that the GPU is in an idle state,
and ’1’ indicates that the GPU is in a busy state.

2) GPUCRBi: We use an array, req[n], to record
GPUCRBi. The number of GPU command request
blocks of DomUi is written into array req[n] corre-
spondingly. During scheduling, when a GPU com-
mand request block of DomUi enters the pending

TABLE 1
List of Parameters

Parameter Name Description

TIMEi the amount of time that DomU i is entitled
for execution

NUMi the number of command request blocks
from DomU i’s pending queue

BWi the PCI-E bandwidth occupancy of DomU i

MSIZEi the graphic memory size of DomU i

Fig. 3. Credit allocation process.
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queue in Dom0, the value of req[i] is increased by 1.
When a request block of DomUi is dispatched from
the pending queue, the value of req[i] is decreased by
1. Thus, we have GPUCRBi ¼ req½i�.

3) RMNCi is stored in another array, credit1[n]. credit1
[i] is the number of remaining credits of DomUi.
When the current interval ends, credit1[i] is decr-
eased; if credit1[i] = 0, it is updated by credit2[i].

4) RALCi: We also use an array, credit2[n], to record
RALCi. The value of credit2[i] is the number of real-
located credits for DomUi when the value of credit1[i]
is 0. Thus, credit2[i] = credit1½i� ¼ CREDITi.

GPU command request blocks of DomUi are dispatched
out when FLAG = 0, and the number of remaining credits
for DomUi will be reduced, i.e., the value of credit1[i] is
decreased. However, before reducing the value of credit1[i],
it is necessary to check whether the value of credit1[i] equals
0; if yes, credit1[i] and credit2[i]must be updated.

Credit allocation also contains the credit reallocation strat-
egy, which aims to increase the utilization of GPU resources
through credit reallocation. In the VMCG, the replenishment
event is triggered in the following two circumstances. First,
an interval has elapsed. The period TIMEG is dynamically
adjusted, TIMEG is updated when the GPU command
request blocks in the queue have been changed. We can
calculate the time slice for each DomU, and then treat the
time slice as a value of the TIMEG. Second, all credits of a
DomU’s pending queue are dispatched out, and there are
new command request blocks incoming, and spare GPU
resources exist.

5 VMCG FAIR SCHEDULING

The VMCG uses a vGPU structure to bind the mapping from
DomU to physical GPU resources. The most important
resource bound in the vGPU is the ring buffer. Fig. 4 illustrates
the process of fairly allocating time slice for each DomU. As
shown in themiddle of Fig. 4, the VMCGprovides a separated
ring buffer for each DomU, namely the virtual ring buffer,

which is allocated in the local memory of the DomU. Each
DomU appears to monopolize the ring buffer; but in fact, the
GPU’s physical ring buffer is shared by all DomUs. For exam-
ple, the command request blocks of DomU1 in the virtual ring
buffer are initially packaged into the physical ring buffer
when the GPU engine is occupied by DomU1. When
DomU1’s command request blocks are consumed in the ring
buffer, and the physical ring buffer is in the idle state, the
GPU engine switches to DomU2, i.e., the next DomU owns
the physical ring buffer because the command ring buffer has
a producer-consumer work mode. The vGPU fair-scheduling
primarily involves the following two aspects.

5.1 Fairly Allocating Scheduling Time Slices for
Each DomU

In the process of vGPU scheduling, each DomU sends its
request blocks from the corresponding pending queue into
its virtual ring buffer. Then, the GPU fetches request blocks
from the virtual ring buffer, as shown in the left side of
Fig. 4. To approach the performance of a native GPU,
VMCG directly uses the physical GPU engine to handle
most command request blocks from DomUs. We must con-
sider when the GPU engine switches between DomUs. Due
to different GPU demands for different priority of DomUs,
the weight of GPU resources is not the same among DomUs.
Thus, to better serve the fair-scheduling of GPU, we initially
measure the GPU occupancy weights of different DomUs.
GPU commands are derived from the command ring buffer,
and the more commands a DomU application sends, the
longer the time slice the DomU will receive. Therefore, the
DomU has a higher weight. Moreover, GPU commands are
submitted through the host CPU domain. Thus, for a certain
DomU, its CPU processing time and GPU processing time
are proportional. Considering this relationship, we allocate
the corresponding time slice for DomUs by exploiting the
time of the CPU domain for addressing the command ring
buffer. Actually, we can acquire the CPU scheduling time
through CPU context switching, and VMCG updates the
values when the switch occurs.

Fig. 4. Allocating time slice for DomUs.
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5.2 Virtual Multi-Channel Fair Scheduling Algorithm

Algorithm 1 shows the procedure of vGPU scheduling time
slices for each DomU allocation which is illustrated from Step
1 to 13, and the rest steps represent the process of the GPU
command request blocks dispatch. The array cpu_scheduler_
time[n] is used to record the CPU scheduling time of each
DomU, and VMCG updates the value of the array when CPU
context switching occurs, and then sorts the array in desc-
ending order (Step 3 and 4). In addition, the value of array
DomID_Num[n], which saves the corresponding DomU ID, is
also exchanged (Step 5). The specific steps are as follows. First,
we allocate 16 ms to the maximum value of DomU in array
cpu_scheduler_time[n]; since 16 ms is less than the transforma-
tion time perceptible for humans for graphics and images [2],
we choose this value as the largest vGPU time slice. That is,
the first DomU is allocated 16 ms after sorting the cpu_
scheduler_time[n] (Step 9), and other DomUs’ time slices are
ti ¼ ðcpu scheduler time½i�Þ=ðcpu scheduler time½1�Þ � 16 ms,
where ti is the time slice of DomUi (Step 10 to 13). Second,
the GPU engine is switched to another DomU whose time
slice is the second largest value in array cpu_scheduler_time[n].
Finally, the values in the array are cleared when all DomUs
complete polling. Then, the next polling period starts.

In a round of scheduling, array credit[n] records the value
of credits that VMCG assigns to each DomU. We check the
value of credit1[i], and then allocate credit for credit[i] accord-
ing to Eq. (2) (Step 14). When a GPU command request block
in the queue is dispatched, the corresponding value of credits
is decremented by 1. Each vGPU has only 2 states: 1 or 0,
where 1 indicates that the queue has credits while 0 denotes
that the queue has run out of credits. Array status[n] is used to
record the states (Step 15 to 23). First, if credit value is positive,
i.e., the corresponding status equals 1, VMCG finds the corre-
sponding DomU ID from arrayDomID_Num[n], where n rep-
resents the number of running DomUs (Step 26). Then, for
improving the performance of disk I/O, we reserve the strat-
egy of CFQ in which four requests are dispatched each time
[10]. So the first four GPU command request blocks in the
pending queue are sent to vGPU scheduler according to the
DomU ID (Step 27). Finally, the corresponding credit value is
decreased by 1 (Step 28). Otherwise, the corresponding status
value is 0, and the GPU command request blocks in the pend-
ing queue have to wait for the redistribution of credits (Step
30 and 31). VMCG reallocates credits for a queue that has no
credits after polling before continuing the next round of
scheduling.

6 EXPERIMENTAL EVALUATION

In this section, we run a set of experiments to evaluate the
performance of VMCG on an Xen-hosted platform by using
multiple types of GPU workloads, which demonstrates that
VMCG has several advantages in resource allocation com-
pared with other approaches. The workloads include real
graphic applications based on OpenGL and DirectX, and
real parallel computing applications.

6.1 Experimental Setup

The experimental platform is an Intel i5-4590 4-core pro-
cessor running at 3.2 GHz, with 16 GB of RAM, 1T hard
disk, and an Intel HD4600 with graphics driver version

win32_153618 (since gVirt only works with Intel graphics,
our VMCG currently focuses on Intel graphics). We install
Ubuntu 14.04 based on Linux kernel 3.18.0 in Host, and
Windows 7 in each DomU. The Xen version is 4.5.0. Each
DomU has an installed graphics driver. We allocate 1
vCPU and 2 GB of system memory for each DomU. A
wide variety of application workloads or testing tools are
utilized, such as 2D/3D real graphic applications based
on OpenGL, parallel computing applications based on
OpenCL, and DirectX application (e.g., 3DMark and
Heaven3D).

Algorithm 1. Virtual Multi-channel Fair-scheduling

Data: Initialize the array:
cpu_scheduler_time[n](cpu_sched_t[j], for short)

1 for i = 1 to n do
2 for j = i + 1 to n do
3 if cpu_sched_t[j] > cpu_sched_t[j-1]then
4 Exchange cpu_sched_t[j] and cpu_sched_t[j-1];
5 Exchange DomID_Num[j] and DomID_Num[j-1];
6 end
7 end
8 end
9 Allocate 16 ms rendering engine usage time for
DomID_Num[1];

10 for k = 1 to n do
11 Allocate time slice for DomID_Num[k];
12 tk ¼ ðcpu sched t½k�Þ=ðcpu sched t½1�Þ � 16ms;
13 end
14 Allocate credits after checking the value of credit1[i] accord-

ing to Eq. (2);
15 for i = 1 to n do
16 if credit[i] > 0 then
17 /*1 indicates that GPU resources can be allocated for

the queue */;
18 status[i] = 1;
19 else
20 /*0 indicates that GPU resources cannot be allocated

for the queue */;
21 status[i] = 0;
22 end
23 end
24 for i = 1 to n do
25 if status[i] == 1 then
26 Find the DomU ID from DomID_Num[i];
27 Send out the first 4 GPU command request blocks to

vGPU scheduler according to the DomU ID;
28 Decrease the corresponding credit values by 1;
29 else
30 Continue the next round;
31 Check the value of the next status;
32 end
33 end
34 Clear the array and continue to next round scheduling;

In Section 6.4, we have a comparison with the rCUDA
middleware [26], [27]. Therefore, an NVIDIA GTX 750Ti has
been installed in the above testbed which is as the server
side of rCUDA. For the client side, three desktops with Intel
Pentium G630 2-core processor running at 2.7 GHz, 4 GB of
RAM, 1T hard disk are used. Ubuntu 14.04 is installed along
with CUDA 8.0 (NVIDIA driver 390.67) and rCUDA
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v16.11.04.02. The network between the server and client is
an Ethernet with TCP/IP over 10 Gbps.

6.2 Graphics Rendering Performance

For evaluating graphic rendering performance, we run 3D
teapot and 3D gear (an OpenGL demo application [19]) in
VMware (including VMware VDI),2 Native Xen, gVirt, and
VMCG, respectively; the number of DomUs increases from
1 to 3 (the same priority for each DomU). Then, we replace
the 3D teapot and 3D gear with DirectX workloads to redo
the experiment.

The experimental results are shown in Figs. 5 and 6. From
the figures, we can observe that the performance of gVirt and
VMCG is significantly higher than that of VMware and
Native Xen. Comparing with VMware and Native Xen, the
graphic rendering performance of VMCG is increased by
approximately 2159 and 815 percent, respectively. This is
because VMware and Native Xen do not enable GPU hard-
ware acceleration, while VMCG and gVirt do. Compared
with gVirt, VMCG almost achieves the same performance
with gVirt for the 3D gear workload, but VMCG improves
performance by 10 percent on average for the 3D teapot work-
load. The main reason for this is that VMCG has a better bal-
ance on different demands of GPU resources between
DomUs, and 3D surface rendering and texture for the 3D tea-
pot is much more GPU intensive than 3D gear. Moreover, we
also run three processes of 3D teapot in the Native Domain;
the total frames per second (FPS) is approximately 744 with
GPU acceleration, which means that the performance (714
FPS) of VMCG is approximately 96 percent of that of the
nativeGPUwith gVirt’s pass-through.

The experimental results for 3DMark (DirectX applica-
tions) [20] in three DomUs (the same priority for each DomU)
are shown in Fig. 7. The frame rate of each DomU in gVirt
and VMCG is not significantly different, but the performance
curve of VMCG is smoother than that of gVirt. This is beca-
use VMCG relieves mutual interference between GPU com-
mand request blocks of DomUs by introducing a separated
V-Channel and GPU command request queue for each
DomU, and because the GPU fair-scheduling algorithm in the
VMCG can efficiently balance the demands of GPU resources
between multiple DomUs. We replace 3DMark with Heav-
en3D [21] and PassMark Simple [22] to redo the experiment.
First, we run PassMark or Heaven3D workloads in one
DomU, respectively. As shown in Fig. 8, the average perfor-
mance for VMCG is 312 FPS (325 FPS in native windows
7) and 15 FPS (17 FPS in nativewindows 7). In themeanwhile,
the performance varies between 309 FPS and 314 FPS for Pass-
Mark and between 14 FPS and 15 FPS for Heaven3D, but for
gVirt, the performances vibrate in 258-315 FPS and 8-16 FPS.
Then, we run three PassMark workloads in three DomUs (the
same priority for eachDomU), respectively. The experimental
results are presented in Fig. 9. For gVirt, three DomUs obtain
81-122 FPS, 109-284 FPS, and 30-46 FPS, respectively. For
VMCG, they obtain 110-115 FPS, 109-113 FPS, and 109-110
FPS, respectively. It can be observed that VMCG improves
the fairness of GPU resource allocation. Nonetheless, VMCG
enhances the fairness and stability of GPU resource allocation
between multiple DomUs. We describe the situation in the
following sections.

6.3 Fairness

Similar with the definition of fairness in [15] and [9], we
use � to denote the fairness metric of GPU resource allo-
cation for multiple DomUs, which indicates the difference
between the actually acquired throughputs (the GPU

Fig. 5. Frame rate of 3D teapot.

Fig. 6. Frame rate of 3D gear.

2. VMware also claims relatively high performance VDI implemen-
tations. So we compare the graphic rendering performance with
VMware VDI in this section.
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command request blocks capacity processed by the vGPU)
and fairly allocated throughputs for each DomU. Let
DomUi obtain a throughput Gi over an interval [t1, t2]. The

total throughput is G ¼ Pn
i¼1 Gi, and the measured weight

of DomUi is w0
i ¼ Gi=G. The fairness metric is defined as

� ¼ Pn
i¼1 jwi � w0

ij during all time intervals [t1, t2]. A larger
value of � means worse fairness, since it means that the
ratio of the DomU’s throughputs have a bad match with
the weights.

Taking Fig. 5c running OpenGL workloads in gVirt and
VMCG as an example, let the desired weights be in the ratio
1:1:1, then, the vector of specified weights (expected from a
fair schedule) is W ¼ ½w1; w2; w3� ¼ ½1=3; 1=3; 1=3�. The mea-
sured throughputs for the three DomUs using gVirt and
VMCG are (199.0, 227.0, 248.0) and (240.6, 237.1, 237.0),
respectively. The vector of measured weights is W 0 ¼
½w0

1; w
0
2; w

0
3� ¼ ½199=674; 227=674; 248=674� ¼ ½0:29; 0:34; 0:37�

for gVirt, and W 0 ¼ ½w0
1; w

0
2; w

0
3� ¼ ½240:6=714:7; 237:1=714:4;

237=714:1� ¼ ½0:34; 0:33; 0:33� for VMCG. Hence the fairness
metric is � ¼ 0:09 for gVirt, and � ¼ 0:01 for VMCG.
Regarding the running 3DMark workloads in gVirt and
VMCG (Fig. 7), the fairness metric is 0.41 and 0.15, respec-
tively. Both OpenGL and DirectX workloads indicate that
the fairness of VMCG is better than that of gVirt.

In order to further evaluate the effectiveness of VMCG
for fairness, we extend the number of DomUs to 4, 5,
and 6. Experimental results for gVirt and VMCG are
shown in Figs. 10 and 11. When the same workloads are
deployed to all DomUs, e.g., 3D teapot or 3D gear (another
OpenGL demo application), the obtained frame rate for
each DomU in gVirt differs greatly; however, it remains
almost equal across DomUs in VMCG. Then, we run
hybrid OpenGL workloads, for example, a 3D teapot in 1
or 2 of DomUs and other DomUs running 3D gear. From
this experiment, we observe that those DomUs running

Fig. 7. Performance of 3DMark.

Fig. 8. Performance of Heaven3D and PassMark in 1 DomU.

Fig. 9. Performance of PassMark in 3 DomUs.
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the same workloads have an obvious difference for gVirt,
but obtain almost the same frame rate under VMCG. The
main reason for this is that the VMCG dispatches GPU
command request blocks from the corresponding DomUs
according to a fair-scheduling algorithm. Moreover, the
rendering performance of a 3D teapot is better than that of
3D gear because longer time slices are assigned for the
DomUs running the 3D teapot.

To better understand this fairness, we here elaborate the
internals of the VMCG framework, such as transferring
credits and GPU command request block percentages per
DomU. Taking three DomUs which own the same priorities
(the desired weight ratio is 1:1:1) as an example, when one
DomU runs a 3D teapot and the other two DomUs run 3D
gear, the percentage of GPU command request block in
both DomU2 and DomU3 is 33 percent, and is 34 percent in
DomU1. According to Eq. (2), VMCG allocates 34, 33, and
33 credits to DomU1, DomU2, and DomU3 respectively, i.e.,
credit1 [1] = 34, credit1 [2] = 33, and credit1 [3] = 33. After
GPU command request blocks of DomUi are dispatched out
from the corresponding pending queue, its credits is
decreased. The number of decreasing credits is determined
by the number of dispatching GPU command request
blocks. Lastly, the VMCG allocates 16 ms, 15 ms, and 15 ms
to DomU1, DomU2, and DomU3, respectively, for GPU
rendering.

The fairness metric is shown in Fig. 12. It can be seen
that the fairness metric of VMCG is significantly lower
than that of gVirt. Furthermore, the VMCG improves
fairness by approximately 72.5, 77.8, 79.1, 80.7, and
82.6 percent compared to gVirt under 2, 3, 4, 5, and
6 DomUs, respectively. This is because the VMCG miti-
gates mutual interference between DomUs during comp-
etition for GPU resources through exploiting multiple V-
Channels and the fair-scheduling algorithm. Moreover,

with an increasing number of DomUs, the fairness metric
of VMCG tends to be smooth and steady, while it beco-
mes sharper in gVirt.

Finally we compare the fairness between NVIDIA GRID
[23] and VMCG. GRID is a virtualization solution which is
based on NVIDIA vGPU to share the power of NVIDIA
GPUs across VMs. We run Heaven3D workload in three
DomUs for GRID and VMCG respectively and a Tesla M60
GPU graphics card is used to support the GRID’s experi-
ment. The evaluation results are presented in Fig. 13. From
the graph, it is apparent that the performance of GRID is
better than that of VMCG, this is due to the powerful
graphics processing capability of the Tesla GPUs. But our
focus here is the fairness between two methods. Obviously,
the performance curve of VMCG in Fig. 13b is smoother
than that of gVirt in Fig. 13a. Then we calculate the fairness
metric of GRID and VMCG according to Fig. 13. The
average fairness index is � = 0.088 for GRID and � = 0.057
for VMCG respectively which is improved by nearly
35.2 percent, it can be seen that the fairness metric of VMCG
is better than that of GRID.

Fig. 10. Performance of gVirt.

Fig. 11. Performance of VMCG.

Fig. 12. Fairness for VMCG and gVirt.
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6.4 Real Parallel Computing for VMCG

For evaluating real parallel computing applications, the
first application case we consider is real-time high defini-
tion (HD, the resolution is 1920x1080) video dehazing. By
exploiting the parallel computing capacity of GPU, we
designed a parallel optimization method [33] (denoted by
OpenCL_dehazing) for the real-time dehazing of HD hazing
videos based on a single image haze removal algorithm [34],
[35]. We deploy one DomU, and test OpenCL_dehazing
under Original Xen, gVirt, and the VMCG. Original Xen
only obtains about 5 FPS because it exploits vCPU for

computing instead of GPU; meanwhile, the gVirt and
VMCG achieve 22 FPS and 25 FPS, respectively, indicating
that the parallel computing performance with GPU acceler-
ation in the virtualization computing environment can be
improved by about 500 percent. To dehaze three hazing
videos at the same time, three OpenCL_dehazing work-
loads are deployed to three DomUs; the results are shown
in Fig. 14. Although the same dehazing effect for gVirt
and the VMCG is acquired, the VMCG obtains more fair
and stable performance (the fairness metric for gVirt and
VMCG is 0.13 and 0.025, respectively, corresponding to an
improvement of 81 percent). This indicates that the VMCG
is adaptable to parallel computing workloads.

The second application case utilizes Rodinia [36], [37],
which is used widely by academia. From all the 21 bench-
marks in the suite, we selected 14 typical parallel computing
benchmarks of different work-group sizes which are broadly
applied to all kinds of applications. The performance for these
parallel computing workloads is measured by the time con-
sumption of the same data processing concurrently in each
DomU. We set three DomUs to evaluate the benchmarks
under gVirt and the VMCG. The results are shown in Table 2.
Here, the time consumption of three DomUs is almost uni-
form under the VMCG and is also less than that of gVirt in
average. This is because the VMCG ensures fair GPU resource
allocation among DomUs so that it reduces the cost of useless
time (such as blocking time). Meanwhile, according to the
evaluation method in Section 5.2, the average fairness of the
VMCG in Table 2 increases by approximately 76 percent than
that of gVirt. Then we compare the fairness between rCUDA
and VMCG. The experimental results of rCUDA are also
presented in Table 2. Because of the different platforms, we
just focus on the fairness metrics which are improved by
71.6 percent on average compared to rCUDA, respectively.
The reason is that the VMCG fairly allocates GPU resources
for DomUs running parallel computingworkloads.

6.5 Stability of VMCG

The stability of GPU resource allocation is also tested in this
section. We obtain the experimental results by running the

Fig. 13. Performance of Heaven3D in 3 DomUs.

TABLE 2
Experimental Results of Rodinia for gVirt, VMCG and rCUDA

Bench. gVirt VMCG rCUDA

Time(s) Fairness (�) Time(s) Fairness(�) Time(s) Fairness(�)

DomU1 DomU2 DomU3 DomU1 DomU2 DomU3 DomU1 DomU2 DomU3

Srad 1.78 1.506 1.466 0.078 1.448 1.412 1.4 0.013 0.325 0.462 0.309 0.156
Backprop 0.256 0.19 0.253 0.135 0.206 0.216 0.212 0.017 0.319 0.371 0.294 0.083
Hotspot3D 0.436 0.683 0.347 0.232 0.373 0.345 0.365 0.03 0.354 0.346 0.239 0.179
Nw 0.403 0.316 0.393 0.106 0.377 0.393 0.384 0.014 0.568 0.76 0.777 0.14
Bfs 1.978 2.052 1.726 0.07 1.658 1.694 1.596 0.02 2.736 2.828 2.247 0.098
LavaMD 3.063 3.065 2.066 0.185 2.239 2.124 2.102 0.026 0.853 0.636 0.981 0.169
Leukocyte 4.858 5.292 4.876 0.037 4.803 4.956 4.911 0.012 1.125 1.07 0.981 0.051
Particlefilter 0.202 0.24 0.195 0.083 0.202 0.204 0.189 0.032 0.187 0.218 0.219 0.069
Nn 0.132 0.171 0.153 0.093 0.162 0.139 0.158 0.063 0.184 0.208 0.158 0.097
B+tree 0.207 0.168 0.165 0.093 0.164 0.171 0.168 0.015 0.285 0.224 0.334 0.147
Dwt2d 0.451 0.418 0.369 0.074 0.458 0.434 0.44 0.021 0.251 0.271 0.23 0.057
Hotspot 1.172 1.127 1.172 0.018 1.144 1.13 1.123 0.007 0.442 0.437 0.421 0.019
Pathfinder 0.302 0.284 0.338 0.062 0.296 0.287 0.295 0.013 0.376 0.39 0.399 0.021
Gaussian 0.287 0.199 0.197 0.154 0.194 0.193 0.199 0.012 0.15 0.108 0.193 0.211
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same 2D/3D application workload in three DomUs. Fig. 15
shows the relationship between them.

As seen from the figure, the stability of VMCG is better
than Native Xen and gVirt. Taking 3D teapot as an exam-
ple, DomU1, DomU2, DomU3 all achieve almost the same
frame rate (approximately 238 FPS) for VMCG. For gVirt,
the frame rate fluctuates over time and ranges from 190
to 250 FPS. Compared with that of Native Xen and gVirt,
VMware also shows better stability, close to that of our
VMCG, but its overall performance is lower than that
of VMCG. In general, when DomUs run on the same phys-
ical host, VMCG can significantly improve the stability
of GPU resource allocation and the stability of VMCG
remains invariant when increasing the number of DomUs.
The reason is that VMCG relieves mutual interference
between GPU command request blocks of DomUs through
the V-Channel. We can conclude that VMCG can lower
the interference among multiple DomUs by introducing a
separated V-Channel and GPU command request queue
for each DomU.

6.6 Support for Hybrid Workloads

In this section, we evaluate VMCG’s support for hybrid
workloads using OpenGL 3D simulated flight application
[19] (OpenGL_flight), parallel computing application based
on OpenCL [33], [34], [35] (e.g., foggy video dehazing using
OpenCL, denoted by OpenCL_dehazing, the resolution is
1024x768), and DirectX application [20], [21] (e.g., 3DMark
and Heaven3D).

We build two sets of hybrid workloads in three DomUs,
and configure two sets of priorities for these DomUs, i.e.,
the same priorities (1:1:1) and different priorities (4:2:1).

Figs. 16 and 17 present the experimental results. Compared
with Figs. 16b and 17b, the performance of three DomUs
has a very obvious fluctuation in gVirt, but VMCG obtains
more stable performance distribution. The fairness of the
VMCG increases by approximately 75 and 78 percent than
that of gVirt for two sets of hybrid workloads and priorities.
The main reason for this is that the VMCG eliminates unfair
competition between DomUs, which ensures stable GPU
resource allocation. Thus, we conclude that the VMCG
also improves the fairness of GPU resource allocation in

Fig. 15. Stability of GPU resource allocation between multiple DomUs.

Fig. 14. Parallel computing for video dehazing.

Fig. 16. Hybrid workloads in 3 DomUs (with the same priorities).
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virtualization computing environments with hybrid appli-
cation workloads.

6.7 Overhead

In this part, we compare the overhead of the same applica-
tion workload with VM=1, VM=2, and VM=3, respectively
in gVirt and VMCG. Fig. 18 shows the utilization of host
CPU and memory. From the figure, when increasing the
number of VMs, the utilization of CPU and MEM becomes
greater, e.g., MEM utilization of VM=3 is twice than that of
VM=1 for both gVirt and VMCG. The reason is that the
GPU command request blocks from creating new VMs
must consume additional CPU and MEM for dispatching.
However, memory utilization is the same between gVirt
and VMCG when VM=1, 2, and 3, and CPU utilization of
VMCG is also mostly equal to that of gVirt. In other words,
VMCG does not add extra memory and CPU consumption;
i.e., the design of VMCG does not induce more overhead.

7 RELATED WORK

Our research aims at fair GPU resource allocation on the
premise of adapting common GPU application workloads
in VMs. This section presents the related work.

GPU Application Workload Support in VM. A GPU’s appli-
cation workload mainly includes graphic rendering and

parallel computing. To support graphic rendering in VM,
many studies [3], [5], [6], [7], and [8] proposed some
graphics processing methods for graphic application work-
loads in multiple DomUs. However, the parallel computing
potential and hardware accelerated power have not be con-
sidered in virtualization environments. It is also very
important for improving performance to have a fair GPU
allocation between DomUs. A GPU’s parallel computing
ability in VMs was researched [4], [11], [14], and it is com-
mon to operate multiple types of GPU workloads simulta-
neously in VMs, for example, in multi-screen independent
2D/3D graphic rendering and hybrid GPU-intensive appli-
cations. Our VMCG supports hybrid application workloads
(2D/3D graphic rendering, real parallel computing, and
hybrid workloads) that are distributed to multiple DomUs
hosted in the same physical GPU.

GPU Resource Allocation. The BAND scheduling algo-
rithm [17], [18] was designed by extending CREDIT sched-
uling in GPUvm [4]; however, a DomU with a low priority
never obtains GPU, and inserting waiting time does not
achieve real fairness when each DomU needs different
GPU resources according to its respective requirement. In
our VMCG, GPU resources are dynamically allocated and
adjusted by the credit allocating and transferring mec-
hanisms. A credit allocation approach was provided by

Fig. 17. Hybrid workloads in 3 DomUs (with different priorities).

Fig. 18. Overhead for running 1-3 DomUs.
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Suzuki et al. [4] and Kato et al. [17], but they ignored the
number of credits allocated in each round of scheduling.
Therefore, we remodel credit, including credit transferring
and allocating. In addition, the overhead of memory and
CPU in the work by [4] was much higher because of the use
of physic and virtual indexes.

GPU Scheduling. GPU scheduling based on fairness can
generally be divided into two categories. The first type is the
scheduling based on API. An API structure framework is
porposed which all types of scheduling algorithms can be
integrated into [6] and [7]. Thus, which scheduling algorithm
ismore suitable for DomUs in a time periodmight be flexibly
determined. This hybrid scheduling has global monitoring,
which obtains information whenever DomUs must lever-
age GPU. The algorithm belongs to fair-scheduling from a
macro point of view. However, it requires the support of
many specific algorithms, such as some scheduling algo-
rithms mentioned above, which makes the system particu-
larly complex.

Then the second category is the scheduling based on
vGPU. The application of 3D rendering is achieved through
a GPU rendering engine, which becomes a very complex
part of a GPU. Blindly virtualizing a rendering engine is
almost unrealistic. A vGPU structure is designed by which
each DomU could access the physical GPU [2], [4], [6]. The
vGPU was a software simulation of GPU, and the vGPU
scheduling algorithm served as a bridge connecting the
DomU and physical GPU. In our VMCG, we redesign a fair-
scheduling algorithm based on the actual demands of GPU
resources after remodeling credit allocating and transfer-
ring. This redesigned algorithm is aimed at fairly allocating
GPU resources across multiple DomUs to approximate
native GPU performance.

8 CONCLUSION

In this paper, we have presented a design and impleme-
ntation of a VMCG for fairly allocating GPU resources in
a virtualization computing environment. Our VMCG can
effectively mitigate mutual interference between DomUs,
fairly allocate GPU resources, and improve performance.
When multiple DomUs concurrently contend for GPU
resources, the GPU command request blocks from multiple
DomUs are aggregated into a unified queue in Dom0, which
cannot ensure independence and fairness. However, the
VMCG provides a separate V-Channel for each DomU in
Dom0; thus, the GPU command request blocks are sent into
corresponding V-Channels according to their own DomU
ID. To fairly allocate GPU resources for each DomU, we
remodel the credit allocating and transferring mechanisms,
and redesign the GPU fair-scheduling algorithm. Finally,
we evaluate the fairness of GPU resource allocation for the
VMCG with a series of experiments. Experimental results
show the effectiveness of VMCG. Furthermore, the VMCG
is dependent upon software implementation and has strong
portability.
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