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Abstract
The score profiles could be used to measure learners’ skills proficiency via cognitive diagnosis models (CDMs) for

predicting their performance in the future examination. The prediction results could provide important decision-making

supports for personalized e-learning instruction. However, facing the possible complexity of skills, the uncertainty of

learners’ skill proficiency and the large-scale volume of score profiles, the existing CDMs have limitations in the mea-

surement mechanisms and diagnostic efficiency. In this paper, we proposed an approach based on a fuzzy cloud cognitive

diagnosis framework (FC-CDF) to predicting examinees’ performance in e-learning environment. In this approach, the

normal cloud models (NCMs) are utilized innovatively to measure the expectation, degree of variation and variation

frequency of learners’ skill proficiency, and each NCM is transformed into an interval fuzzy number to characterize the

uncertainty of the skill proficiency for every learner. Combining the educational psychology hypothesis with the parameter

estimation method, we could obtain the learners’ skill proficiency level and the slip and guess factors relevant to each test

item, based on which the learners’ scores could be predicted in a future test. Finally, the experiments demonstrate that the

proposed approach provides good accuracy and significantly reduces execution time for predicting examinee performance,

compared with the existing methods.
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1 Introduction

1.1 Motivation

Recently, e-learning has become popular worldwide due to

the COVID-19 pandemic (Maatuk et al. 2022), and a

massive amount of educational data has been collected in

e-learning platforms. Assessing the learners’ cognitive

abilities based on such data has potentials to help instruc-

tors and learners to obtain a comprehensive view of a

learner’s learning progress (Mai et al. 2021). The score

profiles may be analyzed by cognitive diagnosis models

(CDMs) to evaluate the learners’ strengths and weaknesses

by identifying the presence or absence of multiple fine-

grained skills required for solving problems on a test (Torre
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2008). The measurements of learners’ skill proficiencies

are helpful in predicting examinee performance in a future

test (Ma et al. 2020; Song et al. 2022; Yao et al. 2019).

This insight enables the possibility of personalized rec-

ommendation (Wan and Niu 2020; Yang et al. 2023; Yun

et al. 2022), school precaution (Bernacki et al. 2020;

Niyogisubizo et al. 2022), examination paper generation

(Wu et al. 2020), collaborative learning team formation

(Ma et al. 2023, 2022) and learning path recommendation

(Jiang et al. 2022; Liu and Li 2020; Liu et al. 2019b).

Learners’ performance is usually predicted by cognitive

diagnosis in the existing research on educational psychol-

ogy (DiBello et al. 2006; Sessoms and Henson 2018).

Researchers and practitioners from both educational psy-

chology and data mining fields have devoted many efforts

to CDMs due to their outstanding advantages for analyzing

the learners’ cognitive status. Some classical CDMs, e.g.,

the item response theory (IRT) (Janssen et al. 2000) and the

Deterministic Input, Noisy And-gate (DINA) model (Torre

2008), have been applied widely. Among them, IRT

models a learner as a single proficiency variable, i.e., latent

trait, and the performance of a learner in a test item could

be predicted by combing it with some items attributes, e.g.,

degrees of difficulty and degree of distinction, and the

DINA model introduces a Q-matrix (Tatsuoka and Kikumi

1983) to measure learners’ proficiencies from the skill

level. The Q-matrix is a matrix to describe the relationship

between test items (i.e., questions) and the skills that are

usually relevant to the specified knowledge point. Aiming

at the shortcomings of classical CDMs, some improved

models have been developed, such as HO-DINA (Torre

and Douglas 2004), P-DINA (Tu et al. 2010), FuzzyCDF

(Liu et al. 2018), R-FuzzyCDF (Li et al. 2017).

However, the above CDMs still have much room to

improve the measurement mechanisms and diagnosis effi-

ciency: (1) The DINA model only uses a binary value to

measure one learner’s skill proficiency, while FuzzyCDF

and R-FuzzyCDF can improve the accuracy of predicting

examinee performance by introducing a fuzzy number-

based measurement method. However, an integer or a

fuzzy real number fails to address the uncertainty of lear-

ner’s skill proficiency. In reality, the real performance of

learners might be unstable due to the complexities of one

skill itself and the diversity of application scenarios. (2)

Although recent FuzzyCDF and R-FuzzyCDF significantly

improved the accuracy of performance prediction com-

pared with IRT and DINA model and worked well in a

small-scale data environment, their diagnosis efficiency is

dramatically reduced due to the slow convergence speed

and numerous estimated parameters. Particularly, more and

more education programs have been moved to online

channels due to the pandemic, and the massive amount of

educational data could be automatically collected and used

for the investigation and prediction of the learners’ learning

performance on e-learning platforms. Thus, two key issues

are still open for studying CDMs in an e-learning envi-

ronment: (1) How could we measure a learner’s skills

proficiency comprehensively and accurately according to

the relationship among learners, test items, and skills? (2)

How could we improve the execution efficiency of cogni-

tive diagnosis without a loss of the diagnosis accuracy for

supporting large-scale data processing scenarios involving

a great deal of learners, items and skills?

To address the above issues, we innovatively introduced

the normal cloud models (NCMs) (Peng et al. 2018; Zhang

et al. 2007) to model the learners’ skills proficiency. The

NCM (Wang et al. 2014; Yang et al. 2018) is an effective

tool to realize the conversion between qualitative concepts

and quantitative expressions and can be used to measure

the fuzziness, the randomness and the relevance of uncer-

tain concepts. At present, it has been applied to many

fields, such as intelligent control and information pro-

cessing (Wang et al. 2014; Yang et al. 2018), system

evaluation (Liu et al. 2019a; Ma et al. 2021), recommen-

dation system (Peng et al. 2018; Zhang et al. 2007) and

decision-making (Gong et al. 2021; Wang et al. 2021). One

NCM consisting of three numerical characteristics (i.e.,

expectation, entropy and hyper-entropy) is obtained via a

reverse cloud generator (RCG) (Li et al. 1995).

Based on the NCMs, an approach via fuzzy cloud-based

cognitive diagnosis framework (FC-CDF) is put forward to

predict learners’ performance for both subjective and

objective test items in an e-learning environment. In this

approach, a cognitive cloud is defined for measuring the

expectation, degree of variation and variation frequency of

learners’ skill proficiency, and each NCM is transformed

into an interval fuzzy number to characterize the fuzziness

and uncertainty of the skill proficiency for every learner.

Similar to FuzzyCDF (Liu et al. 2018), the learners’ cog-

nitive status on items is calculated by combining the edu-

cational hypotheses and fuzzy sets theory. The learners’

performance could be predicted in a future examination by

considering the slip and guess factors of each test item.

Finally, the experiments based on three real-world datasets,

a simulation dataset and three extended datasets are ana-

lyzed by comparing the other approaches, and the results

demonstrate that the proposed approach provides good

accuracy for predicting examinee performance and signif-

icantly reduces the execution time of cognitive diagnosis.

1.2 Our contributions

The main contributions of this paper are as follows:

(1) To measure the learners’ real skills proficiency more

objectively and comprehensively, the cloud model
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theory is introduced innovatively into FC-CDF.

Different from the existing approaches that measure

the learners’ skill proficiency with an integer or a

fuzzy real number, FC-CDF establishes an inter-

pretable fuzzy measurement mechanism to charac-

terize the uncertainty of learners’ skills proficiency

via two-parameter interval numbers transformed by

cognitive clouds. Based on this mechanism, this

proposed approach could predict the learners’ per-

formance accurately in future examinations.

(2) To provide an efficient cognitive diagnosis for

supporting the learners’ autonomic learning online

in their fragmented time, FC-CDF employs a reverse

cloud generation algorithm to calculate the learners’

skill proficiency. Based on it, the process of param-

eters estimation is simplified and the computation

speed of cognitive diagnosis is accelerated signifi-

cantly, in comparison to the existing approaches. The

proposed approach could be applied to a large-scale

data environment involving many learners, test items

and skills.

The remainder of the paper is organized as follows:

Sect. 2 reviews the related work. Section 3 gives the

problem statement. Section 4 introduces the preliminaries.

Section 5 proposes the framework of fuzzy cloud cognitive

diagnosis. Section 6 puts forward the examinee perfor-

mance prediction via FC-CDF. Section 7 analyzes the

experimental results. Finally, Sect. 8 concludes the paper.

2 Related work

2.1 Cognitive diagnosis model

In psychological and educational measurement, the cog-

nitive diagnosis is a diagnostic assessment of an individ-

ual’s cognitive process, skill or knowledge structure

(Nichols and Joldersma 2008). Researchers proposed the

psychometric models with cognitive diagnosis function

(i.e., CDMs) based on the cognitive psychology and psy-

chometrics theory. Generally, CDMs could be classified

into two categories, i.e., the continuous CDMs and the

discrete CDMs. The representative continuous CDM is IRT

(Janssen et al. 2000), and the DINA model (Torre 2008) is

a classical discrete CDM.

2.1.1 Item response theory

IRT assumes that each learner has a ‘‘unique latent trait.’’

Thus, it measures one learner via a one-dimensional con-

tinuous variable to predict her/his performance in test items

with different discrimination and difficulty features. The 2-

parameter logistic model (2PL) (Janssen et al. 2000) is

defined by

P Xij ¼ 1jh
� �

¼ 1

1þ expðD� aðh� bÞÞ ð1Þ

where P(Xij = 1|h) denotes the probability of learner

#i with the latent trait #h answering item #j correctly, a and

b are the discrimination and difficulty of test item,

respectively, h represents the latent trait of learner, and D is

an empirical scaling constant in logistic cognitive models,

which is set as–1.7 (Gregory and Camilli 1994). IRT is

built on a rigorous and complex mathematical model, and it

has been applied to examinations and traditional intelli-

gence tests. However, the unidimensionality assumption

used by IRT is too coarse-grained to accurately measure

learners’ proficiency, since learners’ proficiency is related

to different skills. To address this issue, the DINA model is

proposed to depict learner’s proficiency from the skill level

(Torre 2008).

2.1.2 DINA model

Different from IRT, the DINA model introduces a Q-ma-

trix (Tatsuoka and Kikumi 1983), which indicates whether

the skills are associated with items, and diagnoses the

learner’s cognitive status with a proficiency vector about

multi-dimensional skills. Each dimension of this profi-

ciency vector denotes whether a learner masters one

specific skill. In this case, the mastery of learner #i on item

#j is calculated as follows:

gij ¼
YK

k¼1

aqjkik ð2Þ

where aik is a binary value indicating whether the learner

#i master the skill #k, 1 denotes that #i masters #k; other-

wise, 0 is suggested; qjk denotes whether the skill #k is

required to correctly answer the item #j (1 means required

and 0 otherwise); and gij = 0 means that the learner

#i cannot master the item #j; otherwise, gij = 1.

Though the DINA model strives to overcome some

shortcomings of IRT, there are still some limitations in this

model, such as dichotomous description mechanism (Tu

et al. 2010); (Cai et al. 2017), underexplored cognitive

diagnosis on subjective items (Liu et al. 2018) and high

computational cost (Wang et al. 2018). Recently, many

efforts have been devoted to improving DINA models for

understanding the learner’s learning status comprehen-

sively and providing effectively personalized learning

guidance for learners.
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2.1.3 Improved DINA model

The improved DINA models could be divided into several

categories as follows:

(1) Improve the dichotomous 0–1 scoring mechanism

The DINA model only supports the dichotomous

0–1 scoring mechanism, in which a learner gets

either a full score or zero in a test item. Tu et al.

(2010) developed a P-DINA model to provide a

polychotomous scoring mechanism on a scale of zero

to a full score. However, the score values easily

focus on two extremes (i.e., 0 or a full score) when

the P-DINA model is used in data analysis. Thus, Cai

et al. (2017) presented an rP-DINA (revised

P-DINA) model by reconstructing learner’s ideal

score, and this model support all kinds of ideal scores

ranging from 0 to full score.

(2) Adopt the new diagnosis mechanism for subjective

test items

Considering that the traditional DINA model is

unable to support the cognitive diagnosis for the

subjective items, (Liu et al. 2018) proposed a fuzzy

cognitive diagnosis framework (FuzzyCDF). Fuz-

zyCDF measures the skill proficiency of a learner

with the degree of membership (i.e., a real number in

the range [0, 1]) and adopts the cognitive answer

mode via the fuzzy intersection and the fuzzy union

operations. In FuzzyCDF, the mastery of a learner on

objective items is of conjunctive type and the

mastery of a learner on subjective items is of

compensatory type. For an objective item, a learner

may answer it correctly if he/she possesses all the

skills required for it. As for a subjective item, the

more skills a learner possesses, the higher the score

that the learner gets from it. Based on FuzzyCDF, Li

et al. (2017) put forward a revised framework called

R-FuzzyCDF by taking into consideration the influ-

ence of the importance of every skill. Although

R-FuzzyCDF might provide a better accuracy of

performance prediction than FuzzyCDF, more

parameters being introduced makes the process of

cognitive diagnosis more time-consuming than

FuzzyCDF.

(3) Extend to High-order CDMs

The high-order CDMs are developed to describe

the possible structural relationship among multiple

latent traits in CDM. Considering that the proficiency

of a learner may be affected by one (or more) high-

order latent characteristics, De la Torre and Douglas

(2004) presented a high-order latent structure model

and combined it with the DINA model to design a

high-order DINA model (HO-DINA) for reducing

the number of estimated parameters. Considering

that the HO-DINA model only processes data with a

2-order latent structure, Zhan et al. (2019) put

forward a multi-order DINA model by combining a

multi-order latent structural model and the DINA

model for processing 3-order or higher order latent

structure data.

(4) Improve computational efficiency

The traditional CDMs usually work well when the

small-scale sample data are involved in. However, in

the large-scale e-learning scenario, the calculation of

traditional CDMs will be significantly time-consum-

ing due to their slow convergence speed. Aiming at

this issue, Wang et al. (2018) proposed an approach

by integrating Maximum Entropy DINA and Incre-

mental Maximum Entropy DINA to accelerate the

calculation speed of the DINA model.

2.1.4 Neural networks-based CDMs

The great success of neural networks in both computer

version and natural language processing domains attracts

researchers to apply it to the cognitive diagnosis field (Liu

2021).

Aiming at the problem of poor diagnosis performance of

IRT on sparse data, (Cheng et al. 2019) presented a general

deep item response theory (DIRT) to enhance the robust-

ness of traditional IRT. In DIRT, the neural networks are

used to mine the text information of each test item for

estimating the parameters in the traditional IRT formula.

Wang et al. (2020, 2022) proposed a general neural cog-

nitive diagnosis model (NeuralCDM) by applying the

neural networks into cognitive diagnosis. Based on the past

performance of learners, NeuralCDM used the neural net-

works to enhance the model’s learning ability for more

accurately modeling learners’ proficiency, items’ factors

(e.g., discrimination of the item and the difficulty of the

skill required by the item) and their interactions. Gao et al.

(2021) combined the graph neural networks with an

attention mechanism to model student-exercise-skill hier-

archical relations and improve the accuracy of cognitive

diagnosis.

However, there remain some limitations for the neural

networks-based CDMs due to the poor interpretability and

the overfitting problem when regarding to small sample

data.
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2.2 Predicting examinee performance

2.2.1 Matrix factorization-based methods

The matrix factorization (MF) is widely used in recom-

mendation systems and can also be used to predict exam-

inee performance. For example, the MF techniques could

measure the degree of learners’ performance in a low-di-

mensional space by mapping each learner and each item

into a low-dimensional vector. Tscher et al. (2010) mod-

eled learner by singular value decomposition. Thia-Nghe

et al. (2010) leveraged MF model to predict learners’

performance to improve the prediction accuracy. Thia-

Nghe et al. (2015) put forward a multi-relational factor

factorization approach for modeling learners in the intel-

ligent tutoring system and predicting the learners’ perfor-

mance. However, the traditional MF-based examinee

performance prediction methods usually lack a good

interpretability. For example, each dimension of a learners’

latent vector could not correspond to a specific skill. Thus,

it is hard to explain the relationship between skills and such

a latent vector.

2.2.2 Cognitive diagnosis model-based methods

The cognitive diagnosis models (CDMs) usually use

learners’ score profiles as input data to model their mastery

of skills. Based on the diagnosed skill proficiencies,

learners’ performance on the unfinished items could be

predicted. Additionally, the accuracy of predicted results

could be used to verify the effectiveness of CDMs. In the

DINA model (Torre 2008), the mastery of learners on the

item and the exception of slip and guess are incorporated to

model learners’ real performance in the item. Specifically,

the probability of learner #i with skill proficiency ai
answering item #j correctly could be modeled as:

Pj aið Þ ¼ P Xij ¼ 1jai
� �

¼ g
1�gij
j 1� sj

� �gij ;

Pj aið Þ ¼ P Xij ¼ 1jai
� �

¼ g
1�gij
j 1� sj

� �gij
ð3Þ

where sj and gj denote the slip and guess factors of item #j,

respectively; gij is the mastery of learner #i on item #j; and

Xij is the normalized score of learner #i on item #j.

To predict the learners’ performance on both objective

and subjective items, FuzzyCDF (Liu et al. 2018) employs

the following equation:

P Xij ¼ 1jgij; sj; gj
� �

¼ 1� sj
� �

gij þ gj 1� gij
� �

ð4Þ

where (1-sj)gij denotes the probability that learner #i with

all necessary skills answers item #j correctly; gj(1- gij) is
the probability that learner #i who does not master all the

skills required by item #j answers it correctly.

Different from the MF-based methods, the CDM-based

methods enhance the interpretability of predicted results by

measuring the learners’ cognitive status according to the

relationships among skills, items and score profiles. How-

ever, the diagnostic efficiency of the existing CDMs is

usually time-consuming since they need to spend consid-

erable time in the process of parameter estimation. More-

over, the existing CDMs ignore the uncertainty of learners’

skill proficiency. It might bring some errors to the cogni-

tive diagnosis, and consequently, these errors result in the

biases of predicted results.

3 Problem statement

Suppose there is a mobile learning platform for ‘‘Java

programming’’ course. After learners have completed a

learning task about one knowledge point (i.e., one skill),

this platform would provide them with some related exer-

cises (i.e., test items) to check whether they have mastered

the skill relevant to this knowledge point. Moreover, this

platform also allows learners to spend their fragmented

time on practicing or testing online freely and indepen-

dently. Once a learner completes a test, the platform should

recommend the new exercises for this learner’s next round

of practice according to his/her latest score profiles. In this

case, the platform is required to measure the skill profi-

ciency of learners via cognitive diagnosis quickly and

accurately.

Suppose two learners u1 and u2 learned three skills

k1 * k3, e.g., ‘‘Array Programming,’’ ‘‘Switch Program-

ming’’ and ‘‘Loop Programming,’’ and finished 12 related

exercises in three days. These exercises are designed with

different difficulties. For example, one exercise requires

learners to add codes to complete an algorithm or figure out

the execution result of a given code segment. Obviously, to

get high scores on these exercises, one learner should grasp

the skills’ essence. One learner should not only understand

the theoretical basis related to the skills, but also use them

flexibly to solve practical problems by programming. An

example of cognitive diagnosis is shown in Fig. 1.

In Fig. 1, the score profiles of u1 and u2 and the corre-

sponding Q-matrix are the input data. The Q-matrix given

by the experts describes the relationship between exercises

and skills. qjk representing the element on the jth row and

kth column of the matrix indicates whether skill #k is

required to correctly answer exercise #j. qjk = 1 means skill

#k is required; otherwise, qjk = 0. After the input data are

processed by one CDM (e.g., DINA model or FuzzyCDF),

the output, i.e., the diagnosis results describing learners’

mastery on every skill, is obtained. In this example, all

CDMs are implemented by Python 3.6 on a Linux server

with a 2.3 GHz Intel Xeon CPU and 16 GB memory.
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From Fig. 1, different CDMs generate different results

with different processing efficiency, and the following

analysis could be provided:

1) For u2, DINA measures u2’s proficiency on k3 with a

fixed integer 0; that is, u2 did not master k3 totally.

However, the score profiles show that u2 gave the

right responses to some exercises, i.e., e1, e2, e5 and

e7, related to k3.
2) For u1, DINA and FuzzyCDF measure u1’s profi-

ciency on k2 with the number 1, which means that u1
mastered k2 totally. Nevertheless, actually u1 gave the

wrong responses to some exercises, i.e., e5, e7 and

e11, related to k2.

3) DINA diagnoses two users’ skills proficiency on 3

skills with the expectation–maximization algorithm

and takes 0.001 s. However, when more skills are

involved in, the execution time of DINA would

increase dramatically since its time complexity is

exponential with the growing number of skills. Our

experiments show that DINA takes 72.83 s when a

real-world dataset Math2, including 16 skills, is used

as the input data. It is foreseen that the DINA’s

performance is bound to be unbearable when 30 or 40

skills from the ‘‘Java programming’’ course are used.

4) Although FuzzyCDF could model the learners’

cognitive status more precisely than DINA, it needs

more time to estimate the parameters than DINA

does. Based on the u1 and u2’s score profiles,

FuzzyCDF takes 21 s to diagnose their skills profi-

ciency. However, our experiments show that the

FuzzyCDF’s execution time increases to 9,729 s

when the Math2 dataset, including 16 skills, is used

as the input data. Obviously, it is unacceptable.

According to the above analysis, we could find two key

issues are still underexplored: (1) The existing CDMs, e.g.,

DINA and FuzzyCDF, are not able to measure the uncer-

tainty of skills proficiency for learners objectively. It

should be helpful to predict learners’ performance accu-

rately if a reasonable mechanism could be used to measure

the characteristic of fluctuation. (2) The execution effi-

ciency of the existing CDMs needs to be significantly

improved, especially when the input data cover many

skills. It is necessary to explore an efficient and concise

CDM to diagnose the learners’ skill proficiency with high

diagnosis accuracy.

In summary, a problem of cognitive diagnosis in an

e-learning environment could be defined as follows: Given

the learners’ score profiles and the Q-matrix, how could we

comprehensively measure the learners’ skill proficiency

Fig. 1 An example of cognitive diagnosis
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with the consideration of uncertainty, and how could we

conduct an efficient cognitive diagnosis to support the

large-scale data processing scenarios involving a great deal

of learners, exercises and skills?

In dealing with this problem, the following ideas are

proposed: (1) To describe the uncertain feature of learners’

skill proficiency, we represent learners’ skill proficiency in

the form of interval numbers, which is shown in Fig. 1. (2)

To improve the efficiency of cognitive diagnosis, we

introduce the cloud model theory to calculate learners’ skill

proficiency and its uncertainty, which could simplify the

parameter estimation process.

For easy reading, the key definitions used in the fol-

lowing sections are given in Table 1.

4 Preliminaries

4.1 Definition of the cognitive cloud

Definition 1. (Cognitive cloud). Define domain X = ‘‘score

profiles of learner Ui (i = 1, 2, …, I) on the item set

P = {P1, P2, …, PJ} which requires skill Vk (k = 1, 2, …,

K),’’ domain T = ‘‘mastery of learner Ui (i = 1, 2, …, I) on

skill Vk (k = 1, 2, …, K)’’ and lT xð Þ 2 0; 1½ � is the certainty
degree of x 2 X belonging to T (i.e., the value of lT xð Þ
represents the degree to which the score x is close to the

learner’s real skill proficiency). The cognitive cloud is

defined as the distribution of lT xð Þ on qualitative concept

X, and it can be characterized by the following three

numerical characteristics:

(1) Cognitive Expectation EC
x : it represents the expecta-

tion of a learner’s skill proficiency, which can be

regarded as the most representative and typical

sample of the qualitative concept.

(2) Cognitive Entropy EC
n : it represents the fluctuation

range of a learner’s skill proficiency, which reflects

the uncertainty of cognitive expectation.

(3) Cognitive Hyper-entropy HC
e : it denotes the change

frequency of a learner’s skill proficiency, which is

the uncertain degree of cognitive entropy.

Thus, a cognitive cloud is expressed as: CC = (EC
x , E

C
n ,

HC
e ). The cognitive cloud of learner #i on skill #k is defined

as CCik. To generate CCik, the related score profiles need to

be firstly extracted from X. The score profiles of learner #i

on the item set requiring skill #k are described as

X
0

ik ¼ x
0

ik1; x
0

ik2; . . .; x
0

ikN

��
, in which N is the number of the

test items requiring skill #k. The three numerical charac-

teristics of CCik are obtained via RCG (Li et al. 1995) as

follows.

ECik
x ¼ 1

N
�
XN

m¼1

x
0

ikm

ECik
n ¼

ffiffiffi
p
2

r
� 1

N

XN

m¼1

x
0

ikm � ECik
x

�� ��

HCik
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

m¼1

x
0

ikm � ECik
x

� 	2

� ECik
n

� �2
�����

�����

vuut

8
>>>>>>>>>><

>>>>>>>>>>:

ð5Þ

4.2 Case analysis of cognitive cloud

Suppose a learner’s performance is normalized to [0, 1],

where 0 means that the learner gives a totally wrong

response to the item, and 1 otherwise. Now, there are two

learners #a and #b. The performance of the former on skill

#k is [0.90, 0.80, 0.85, 0.90, 0.82], and the performance of

Table 1 Key definitions
Definitions Description

Xij The score of learner #i on item #j

aik The proficiency of learner #i on skill #k

I, J, K The number of learners, the number of test items, the number of skills

aLik The lower limit of proficiency of learner #i on skill #k

aLik The higher limit of proficiency of learner #i on skill #k

gij The mastery of learner #i on item #j

gLij The lower limit of mastery of learner #i on item #j

gHij The higher limit of mastery of learner #i on item #j

CCik The cognitive cloud of learner #i on skill #k

ECik
x

The cognitive expectation of cognitive cloud of learner #i on skill #k

ECik
n

The cognitive entropy of cognitive cloud of learner #i on skill #k

HCik
e

The cognitive hyper-entropy of cognitive cloud of learner #i on skill #k

sj, gj The slip and guess factor of item #j
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the latter on skill #k is [1.00, 0.00, 0.70, 0.60, 0.80].

According to Eq. (5), the cognitive clouds of learners

#a and #b on skill #k can be computed as CCak = (0.8540,

0.0461, 0.0069) and CCbk = (0.6200, 0.3208, 0.1976),

respectively. Taking the three numerical characteristics of

each cognitive cloud as the input, the scatter diagram with

1,500 cloud drops generated by the forward normal cloud

generator (Li et al. 2009) is displayed in Fig. 2, where the

abscissa denotes learner’s performance on skill #k, and the

ordinate represents the membership degree. Additionally,

considering the characteristics of cognitive diagnosis

analysis, the abscissa of cloud drops will be intercepted

within [0, 1] in practice since a learner’s performance is

normalized to [0, 1].

Figure 2a shows that the cloud drops are densely dis-

tributed. Most cloud drops are in a small interval abscissa

ranging around ECak
x and have higher membership degree

due to his good and stable performance on skill #k. For

learner #b, Fig. 2b shows that the cloud drop distribution is

scattered in the range of abscissa [0, 1] and with a higher

membership degree. The reason is that learner #b ever

obtained not only a full score but also a zero on skill

#k. Figure 2b clearly indicates the uncertainty and fluctua-

tion for the proficiency of learner #b on skill #k. Overall, the

cognitive cloud can comprehensively and objectively char-

acterize the learners’ real skill proficiency.

4.3 Fuzzy cognitive interval numbers

Definition 2. (Fuzzy cognitive interval numbers). Sup-

pose bL and bH are two real numbers, if B = [bL, bH],

0^bL^bH^1, B can be called fuzzy cognitive interval

numbers, where bL is the lower limit of the fuzzy

interval of learner’s cognitive status, and bH denotes the

higher limit of the fuzzy interval of learner’s cognitive

status (i.e., how much a learner masters a skill or an

item). The fuzzy cognitive interval number B is a real

number when bL = bH.

5 Fuzzy cloud cognitive diagnosis
framework

By incorporating the cognitive cloud and fuzzy cognitive

interval numbers, the fuzzy cloud cognitive diagnosis

framework (FC-CDF) measures the learners’ skill profi-

ciency objectively and comprehensively for predicting

learners’ performance, shown in Fig. 3.

The input data of FC-CDF include the learners’ score

matrix, i.e., X and a matrix that describes the relationship

between skills and test items, i.e., Q. The diagnosis process

of FC-CDF is mainly divided into 4 steps as follows:

(1) Employ cognitive clouds to model the proficiency of

each learner on each skill. For example, CCi1 ¼
ECi1
x ;ECi1

n ;HCi1
e

� �
represents the cognitive cloud of

learner #i on skill #1.

(2) Transform each cognitive cloud into the fuzzy

interval numbers of learners’ proficiency on the skill

level by incorporating the three numerical charac-

teristics of cognitive clouds. The transformation

results are affected by a parameter w, which is

introduced in Subsect. 6.1 and discussed in Sub-

sect. 7.2 in detail.

(3) Combine the ideas of ‘‘fuzzy intersection’’ and

‘‘fuzzy union’’ to measure learners’ mastery of the

items in the form of fuzzy interval numbers.

(4) Calculate the interval numbers of learners’ perfor-

mance in each item, and convert these interval

numbers into learners’ final performance prediction

results. The calculation results are affected by two

Fig. 2 Cognitive cloud scatter

diagram of learner #a and

learner #b on skill #k
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parameters, i.e., the slip factor s and the guess factor

g, which are discussed in Subsect. 6.3 in detail.

6 Examinee performance prediction via FC-
CDF

In this section, an approach via FC-CDF is proposed to

predict examinees’ performance in an e-learning environ-

ment by introducing the cloud model theory.

6.1 Diagnose learner’s skill proficiency

By introducing cognitive clouds, the learner’s skill profi-

ciency is depicted with three numerical characteristics.

Among these characteristics, the cognitive expectation

denotes the normal level of one learner’s skill proficiency,

and the cognitive entropy and the cognitive hyper-entropy

depict the uncertainty of one learner’s skill proficiency.

Therefore, the learner’s skill proficiency could be depicted

comprehensively if these numerical characteristics are

integrated into a measurement mechanism. In FC-CDF, the

fuzzy interval numbers are introduced. By transforming the

cognitive cloud’s three numerical characteristics into fuzzy

interval numbers, the measurement mechanism of FC-CDF

could not only consider the normal level of learners’ skill

proficiency, but also investigate the uncertainty of it. To be

specific, the learners’ skill proficiency level matrix is

defined as A ¼ aLik; a
H
ik


 �
 �
I�K

, where aLik and aHik denote the
lower and upper limits of the skill proficiency level of

learner #i on skill #k, respectively.aLik; a
H
ik 2 0; 1½ �. Refer-

ring to (Ma et al. 2016), aLik and aHik could be calculated as

follows: 1) If there are only two items in the item set

requiring skill #k, i.e., a learner’s score profiles on skill #k

obtain two values r1 and r2, then aLik ¼ r1, aHik ¼ r2, r1 B r2.

2) When more than two items require skill #k, aLik and aHik
are computed as follows:

aLik ¼ max 0;ECik
x � ECik

n � w� HCik
e

� �
ð6Þ

aHik ¼ min 1;ECik
x þ ECik

n þ w� HCik
e

� �
ð7Þ

In Eqs. (6) and (7), ECik
x , ECik

n and HCik
e denote the

cognitive expectation, the cognitive entropy and the cog-

nitive hyper-entropy of learner #i on skill #k, respectively,

and w is the influence coefficient of the hyper-entropy of

the cognitive cloud. The value of w is discussed in Sub-

sect. 7.2 in detail.

6.2 Diagnose learner’s mastery of item

As mentioned before, the learner’s proficiency on the skills

is measured in the form of fuzzy interval numbers since the

skill proficiency is fuzzy and uncertain. Similarly, the

learners’ mastery of the items is also fluctuating in practice.

Inspired by FuzzyCDF (Liu et al. 2018), FC-CDF also

assumes as follows: (1) The learners’ mastery of the

objective and subjective items is conjunctive; namely, one

learner could answer one objective item correctly only if

he/she masters all the skills required by the objective item;

(2) the learners’ mastery on the subjective items is com-

pensatory; namely, the more skills required by the sub-

jective items one learner has mastered, the higher score that

he/she would get for this subjective item. Then, the fuzzy

intersection and fuzzy union of fuzzy theory (Klir and

Yuan 1995) are introduced to transform the conjunctive

and compensatory assumptions into mathematical formu-

las. To be specific, one learner’s mastery of one subjective/

objective item is the fuzzy intersection/union of his/her

skills proficiency required by this item. Thus, the mastery

of learners on the items could be defined as follows:

. . .

. . .

Fig. 3 4-tiers fuzzy cognitive diagnosis framework
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gLij ¼
\

1� k�K;qjk¼1

aLk ið Þ; gHij ¼
\

1� k�K;qjk¼1

aHk ið Þ ð8Þ

gLij ¼
[

1� k�K;qjk¼1

aLk ið Þ; gHij ¼
[

1� k�K;qjk¼1

aHk ið Þ; ð9Þ

In the above equations, \ and [ represent the fuzzy

intersection and union operators of the fuzzy theory,

respectively. They are defined as follows:

A \ Bð Þ xð Þ ¼ min A xð Þ;B xð Þð Þ ð10Þ
A [ Bð Þ xð Þ ¼ max A xð Þ;B xð Þð Þ ð11Þ

Based on the fuzzy intersection/union operation, one

learner’s mastery of one objective/subjective item could be

the minimum/maximum of his/her skills proficiency

required by the item.

6.3 Estimate item parameters

Intuitively, the learners with good item mastery give a

correct response to the item and the ones with bad item

mastery give a wrong response with a high probability.

Nevertheless, it is possible that the learners with good item

mastery might give a wrong response to the item by

carelessness, and those with bad item mastery could cor-

rectly answer the item by a lucky guess. Thus, the existing

research, such as the DINA model and FuzzyCDF, intro-

duces the slip factor (s) and the guess factor (g) shown in

Eqs. (3) and (4), respectively. The expectation–maxi-

mization (EM) algorithm and the Markov chain Monte

Carlo (MCMC) algorithm (Chakraborty 2002) are often

used in CDMs for parameter estimation, and MCMC per-

forms better for multi-parameter estimation than EM does.

In this section, an effective training algorithm using

MCMC is proposed to estimate the slip and guess factors of

each test item and the variance of the normalized score of

learners on subjective test items for FC-CDF. By referring

to the parameter settings of HO-DINA (Torre and Douglas

2004), the prior distribution of the parameters in FC-CDF

is given as follows:

sj �Beta ms; ns;min
s
;max

s

� 	
;

gj �Beta mg; ng;min
g
;max

g

� 

;

1

r2
�C xr; yrð Þ;

ð12Þ

where Beta(m, n, min, max) is a four-parameter Beta dis-

tribution, which has two shape parameters m and n and is

supported on the range [min, max]; Cðxr; yrÞ is a Gamma

distribution which has shape parameter xr and scaling

parameter yr. Then, the joint posterior distribution of s, g

and r2 given the score matrix (i.e., X matrix) is as follows:

P s; g; r2jX
� �

/ L s; g; r2
� �

P sð ÞP gð ÞP r2
� �

ð13Þ

where L is the joint likelihood function of FC-CDF as

follows:

L s; g; r2
� �

¼ Lo s; g; r2
� �

Ls s; g; r2
� �

ð14Þ

where Lo and Ls denote the joint likelihood functions of

objective and subjective items, respectively. Based on

Eqs. (12)–(14), Lo and Ls are defined by

Lo s; g; r2
� �

¼
YI

i

YPo

j

Fij

� �Xij
1� Fij

� �1�Xij ð15Þ

Ls s; g; r2
� �

¼
YI

i

YPs

j

N XijjFij; r
2

� �
ð16Þ

In Eqs. (18) and (19), r2 is the variance of the nor-

malized score of learners on subjective test items, and

N �jl; r2ð Þ denotes the probability density function of a

Gaussian distribution with mean l and variance r2. The
full conditional distributions of each parameter are as

follows:

P s; gjX; r2
� �

/ L s; g; r2
� �

P sð ÞP gð Þ ð17Þ

P r2jX; s; g
� �

/ L s; g; r2
� �

P r2
� �

ð18Þ

Finally, a Metropolis–Hastings (M-H)-based MCMC

method for parameter estimation is proposed by Algorithm

1. First, each parameter is initialized according to the initial

distribution settings. For each iteration, a uniformly ran-

dom sample of each parameter is drawn within a predefined

interval specified by ds; dg and dr2 , and then, the full

conditional probability of item slip factor s, item guess

factor g and the variance of normalized scores of subjective

items r2 are computed. Next, the acceptance probability of

samples can also be calculated based on the M-H algo-

rithm. Each sample will accept the transfer if the accep-

tance probability is greater than the random number

generated from the uniform distribution U(0, 1); otherwise,

it will not accept the transfer. In this way, the parameters

could be estimated after W iterations of sampling. In

addition, to simplify the calculation, P sð Þ;P gð Þ and P r2ð Þ
are equal to the probability density functions of their cor-

responding distributions.
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6.4 Predict learner’s performance

Considering that learners’ mastery of the skills is fluctuant

and uncertain, the learners’ performance in the items

should be also fluctuant and uncertain. Inspired by Fuz-

zyCDF (Liu et al. 2018), the learners’ performance in both

objective and subjective test items can be predicted based

on fuzzy interval numbers by

FL
ij ¼ 1� sj

� �
gLij þ gj 1� gLij

� 	
ð19Þ

FH
ij ¼ 1� sj

� �
gHij þ gj 1� gHij

� 	
ð20Þ

Fij ¼
FL
ij þ FH

ij

2
ð21Þ

where FL
ij and FH

ij denote the lower limit and the upper

limits of learner #i’s performance on item #j, respectively;

Fij is the predicted score of learner #i on item #j.

6.5 Deal with data deficiency problem

In practice, when the learners just start to learn a course,

they have only completed a handful of test items. In this

case, only a small amount of data about learners’ score

profiles are available, which will lead to the limited accu-

racy of cognitive diagnosis and obviously influence the

performance of prediction. Some experiments have con-

firmed it. For example, in the real-world dataset Math2,

which is introduced in Sect. 7.1, skill #2 is only required by

item #2, i.e., there is only one score profile to depict

learner’s cognitive status on skill #2. Then, if one learner’s

response to item #2 is correct/wrong, his/her cognitive

cloud on skill #2 would be [1, 0, 0]/[0, 0, 0] in FC-CDF or

his skill proficiency on this skill would be 1/0 in other

CDMs. Obviously, the limited sample data increase diffi-

culty to cognitive diagnosis. Aiming at the possible data

deficiency problem, two strategies are proposed as follows:

1) If the number of learner #i’s score profiles on skill #k

is less than 4, i.e., 0\ X
0
ik

�� ��\ 4, the whole score

profiles of learner #i will be regarded as input data to

compute the cognitive cloud CCik.

2) If learner #i has not answered the item, which

requires skill #k, i.e., X
0
ik

�� ��= 0, aiming at the possible

data deficiency, FC-CDF would combine PMF to

guarantee the performance of examinee performance

prediction. PMF was proposed by Ruslan et al. (Mnih

and Salakhutdinov, 2007) to deal with the prediction

tasks in the large, sparse and imbalanced datasets. By

integrating the PMF method, the prediction result is

computed as follows:

F�
ij ¼ 1� kð Þ

FL
ij þ FH

ij

2
þ kFPMF

ij
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where FPMF
ij denotes the performance of learner #i on item

#j predicted via PMF; k is the adjustment coefficient. k = 1

when X
0

ik

�� ��= 0, otherwise = 0.

7 Experiments

To verify the effectiveness of our FC-CDF, we conduct

experiments to answer the following research questions

(RQs):

RQ1: What is an appropriate value of the coefficient

w when we diagnose learner’s skill proficiency via cogni-

tive clouds?

RQ2: How about the performance of FC-CDF on score

prediction compared with the existing research?

RQ3: How about the performance of FC-CDF on exe-

cution efficiency compared with the existing research?

All procedures were implemented by Python 3.6 on a

Linux server with a 2.3 GHz Intel Xeon CPU and 16 GB

memory.

7.1 Experimental setup

7.1.1 Experimental datasets

The experiments use three real-world datasets, a simulation

dataset and three extended datasets to verify the prediction

performance and execution efficiency of FC-CDF. These

datasets are introduced as follows:

(1) The real-world datasets: They are FrcSub (DeCarlo

2011), Math1 and Math2. FrcSub records the score

profiles committed by junior high school students

about fraction subtraction objective test items. Math1

and Math2 are actually two independent subsets of

Math2015,1 and widely used in existing research,

e.g., FuzzyCDF (Liu et al. 2018) and R-FuzzyCDF

(Li et al. 2017). Math1 and Math2 are collected from

two final mathematical examinations, including both

objective and subjective test items, for high school

students. Each dataset contains a normalized score

matrix X and a Q-matrix.

(2) The Simulation dataset: To verify the performance of

FC-CDF in large-scale data environment, Simulation

dataset2 is generated. In the dataset, there are 1,000

learners, 100 items including 80 objective items and

20 subjective items, and 10 skills. All the learners

answered all the items, and their score profiles obey

the standard norm distribution. Each objective item

requires 2 to 3 skills randomly, and each subjective

item requires 3 to 5 skills randomly. Every skill is

required by more than 8 items.

(3) Three extended datasets (i.e., Vir_FrcSub, Vir_-

Math1, Vir_Math2): The three extended datasets3 are

generated based on FrcSub, Math1 and Math2,

respectively, to analyze the FC-CDF’s performance

in a large-scale data environment. The data of every

extended dataset contain two parts, i.e., the original

real-world dataset and the simulated data. The

extended data are constructed prudently. Taking

Vir_Math1 as an example, the Q-matrix of Vir_-

Math1 is the same as Math1’s, and the size of the

simulated data part of Vir_Math1’s score matrix is

the same as that of Math1. In the simulated data part

of Vir_Math1’s score matrix, for the objective items,

the score profiles of each objective item are the same

as Math1’s. As for subjective items, suppose the

subjective item score matrix of Math1 and Vir_-

Math1 is defined as Rs ¼ rsij

h i

I�Js
and

VRs ¼ vrsij

h i

I�Js
, respectively, where Js denotes the

number of subjective test items, and rsij and vrsij are

the performance of learner #i on subjective test item

#j in Math1 and Vir_Math1, respectively,

vrsij �U rsij � 0:1; rsij þ 0:1
� 	

.

The preview of the Q-matrix and the brief summary of

all datasets are shown in Fig. 4 and Table 2, respectively.

Figure 4 demonstrates those test items related to every

skill. According to Fig. 4, these datasets fall into 2 cate-

gories, i.e., the symmetric datasets and asymmetric data-

sets. In the symmetric datasets (e.g., FrcSub, the simulation

dataset), every skill is required by more than 1 test item. In

the asymmetric datasets (e.g., Math1, Math2, Vir_Math1,

Vir_Math2), some skills might be required by only 1 test

items. For example, in Math1 and Vir_Math1, skill #4 is

required by only item #11.

7.1.2 Baseline approach and parameter settings

The baseline approaches and their corresponding parameter

settings are shown as follows:

(1) PMF (Mnih and Salakhutdinov 2007): It maps the

learners and items into low-dimensional latent vec-

tors for performance prediction. The dimension of

the latent vector is set as 10.

(2) DINA (Torre 2008; Torre and Douglas 2004): It is

one of the most representative CDMs which uses
1 http://staff.ustc.edu.cn/%7Eqiliuql/data/math2015.rar
2 The simulation dataset is available on https://pan.baidu.com/s/

1sPm6eQCkbKvZ3WDJ5uW4oQ Password: 4tb5.

3 The three extended datasets are available on https://pan.baidu.com/

s/1LcwTfQrzayPwDrYUI2uvBA Password: mdbp.
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binary vectors with multi-dimension to represent

learners’ skill proficiency. It could predict learners’

performance by combing the slip and guess factors of

items. In this paper, we use two methods to estimate

the parameters of the DINA model. The DINA model

using the MCMC method for parameter estimation is

denoted as MCMC-DINA, and the DINA model with

the EM method for parameter estimation is denoted

as EM-DINA.

(3) FuzzyCDF (Liu et al. 2018): It is the first approach

that applies fuzzy theory to cognitive diagnosis and

address the problem of conducting cognitive diag-

nosis on subject items. Its parameter setting follows

the original paper.

(4) R-FuzzyCDF (Li et al. 2017): It improves the

performance of FuzzyCDF by introducing the

importance of skills. The parameter setting of

R-FuzzyCDF follows its original paper.

(5) NeuralCDM (Wang et al. 2020) It is one of the most

representative CDMs that apply neural networks to

cognitive diagnosis. Its parameter setting follows the

original paper.

Fig. 4 Preview of Q-matrix of all datasets

Table 2 Summary of datasets information

Datasets Learners Skills Items

Objective Subjective

FrcSub 536 8 20 0

Math1 4209 11 15 5

Math2 3911 16 16 4

Vir_FrcSub 1072 8 20 0

Vir_Math1 8418 11 15 5

Vir_Math2 7822 16 16 4

Simulation 1000 10 80 20
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For our FC-CDF, the hyperparameters of Algorithm1

are set by referring to HO-DINA (Torre and Douglas 2004)

as follows:

ms ¼ 1; ns ¼ 2;min
s

¼ 0;max
s

¼ 0:6; mg ¼ 1; ng ¼ 2;min
g

¼ 0;max
g

¼ 0:6; xr ¼ 4; yr ¼ 6; w ¼ 0:1

Referring to FuzzyCDF (Liu et al. 2018), the number of

iterations of Algorithm 1 is set to 5000 and the parameters

are estimated based on the last 2,500 samples to guarantee

the convergence of the Markov chain. Moreover, the set-

ting of w will be discussed in Subsect. 7.2.

7.1.3 Evaluation metrics

The root-mean-square error (RMSE) and the mean absolute

error (MAE) are used as the metrics as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

FUi
� XUi

ð Þ2
vuut ð22Þ

MAE ¼ 1

N

XN

i¼1

FUi
� XUi

j j ð23Þ

where N is the number of learners in the testing dataset; FUi

denotes the predicted performance of learner Ui; and XUi

represents the real performance of learner Ui.

The learners’ performance in items is predicted by

Eqs. (14)–(18) after obtaining the slip and guess factors of

each item through the model training. Note that the pre-

dicted results are continuous, for objective items, they are

supposed to be discretized by

F�
ij ¼

1 if Fij 	THF

0 otherwise

�

where F�
ij is the discrete predicted score of learner #i on

objective item #j; THF is the threshold, which is usually set

as 0.5.

7.2 Value of w (RQ1)

In FC-CDF, w is a trade-off parameter to balance the

influence of the cognitive hyper-entropy on learners’ skill

Fig. 5 Prediction performance with different values of w
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proficiency. The experiments use FrcSub and simulation

dataset to find a reasonable value of w, which is set from

the range [0.0, 1.0], and the performance of FC-CDF with

different w is verified via a fivefold cross-validation

method. The results are shown in Fig. 5.

Fig. 6 Performance comparison on each item

Table 3 Performance

comparison
Approaches FrcSub Math1 Math2 Simulation

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

PMF 0.4320 0.1870 0.5130 0.2970 0.5170 0.2980 0.5361 0.3248

MCMC-DINA 0.4470 0.2000 0.5250 0.3100 0.5300 0.3100 0.5472 0.3386

EM-DINA 0.4400 0.1940 0.5270 0.3110 0.5300 0.3100 0.5484 0.3414

FuzzyCDF 0.4540 0.2060 0.5050 0.2910 0.5070 0.2860 0.5282 0.3189

R-FuzzyCDF 0.4650 0.2170 0.5080 0.2940 0.5090 0.2880 0.5291 0.3191

NeuralCDM 0.4630 0.2150 0.5310 0.3140 0.5260 0.3060 0.5296 0.3197

FC-CDF 0.4247 0.1815 0.5060 0.2904 0.5064 0.2861 0.5278 0.3185

p value 1.98e-2 4.71e-2 8.30e-1 7.77e-1 8.72e-1 9.38e-1 6.85e-1 5.91e-1

Predicting examinee performance based on a fuzzy cloud cognitive diagnosis framework in e-learning…

123

18963



As shown in Fig. 5, FC-CDF performs the best in

FrcSub and the simulation dataset when w is set as 0.1.

Moreover, with the increase of w, the performance of FC-

CDF decreases, especially in the small-scale dataset (i.e.,

FrcSub). The reason is that large w would amplify the

fuzziness and uncertainty of cognitive cloud, which leads

to inevitable errors in cognitive diagnosis. Based on the

above analysis, 0.1 is used as the suggested value of w.

7.3 Prediction performance analysis (RQ2)

7.3.1 Performance analysis in real-world and simulation
datasets

All approaches are verified by a fivefold cross-validation

method for a fair comparison, i.e., 80% of the score profiles

of each learner are selected randomly as the training set,

and the rest 20% for testing. Moreover, we also conduct a

one-sample t-test to compare our FC-CDF with the stron-

gest baseline approaches. The results are shown in Fig. 6

and Table 3. Considering that the performance of MCMC-

DINA is like that of EM-DINA, only EM-DINA is dis-

played in Fig. 6 for easy reading.

From Fig. 6 and Table 3, the analysis is given as

follows:

(1) Compared with the classic approaches, i.e., PMF and

DINA, FC-CDF performs optimally in all cases. By

introducing cognitive cloud and interval numbers,

FC-CDF could depict learners’ cognitive status

comprehensively and accurately predict their perfor-

mance on the items.

(2) Compared with the fuzzy theory-based approaches,

i.e., FuzzyCDF and R-FuzzyCDF, our FC-CDF

outperforms them in the symmetric datasets (i.e.,

FrcSub and simulation datasets). For the asymmetric

datasets (i.e., Math1 and Math2), the cognitive

clouds in FC-CDF suffer from data deficiency

problems on some items because some skills are

checked by only 1 test item. Thus, the performance

of FC-CDF is close to that of FuzzyCDF. However,

as mentioned before, since FuzzyCDF needs to

estimate more parameters than FC-CDF, the subse-

quent experiments confirm that the execution time of

FuzzyCDF is one hundred times more than that of

FC-CDF.

(3) Compared with the neural networks-based approach,

i.e., NeuralCDM, there is a gap between NeuralCDM

and FC-CDF in the real-world datasets. The perfor-

mance of NeuralCDM declines because that neural

networks need more training data, while the small

scale of a dataset (e.g., FrcSub) may cause the

overfitting for NeuralCDM. It should be noted that,

the cross-entropy was chosen as the loss function in

the original paper of NeuralCDM. Obviously, it is

not a perfect choice to train a model for performance

prediction tasks when dealing with the datasets

consisting of both objective and subjective items.

NeuralCDM might perform better if tailored loss

functions are adopted.

(4) In the FrcSub dataset, the p value\ 0.05 indicates

the improvement of our FC-CDF is statistically

significant. While in other datasets, the differences

between FC-CDF and FuzzyCDF are not statistically

significant. However, as mentioned before, Fuz-

zyCDF consuming a lot of time to estimate param-

eters sacrifices efficiency for performance

improvement. It is difficult to apply FuzzyCDF to

real e-learning applications, while our FC-CDF could

provide both competitive prediction accuracy and

satisfactory diagnosis efficiency. The efficiency

analysis is discussed in Subsect. 7.4 in detail.

7.3.2 Performance analysis in extended datasets

The following experiments use Vir_FrcSub, Vir_Math1

and Vir_Math2 datasets, and FC-CDF is compared with six

approaches including PMF, MCMC-DINA, EM-DINA,

FuzzyCDF, R-FuzzyCDF and NeuralCDM. Different per-

centages of the simulated data are mixed with the corre-

sponding real-world data. The performance of all the

approaches is verified by a fivefold cross-validation method

to guarantee the fairness of the comparison. The experi-

mental result is shown in Fig. 7, where the x-axis repre-

sents the percentage of simulated data, and the y-axis

denotes the average RMSE or MAE values of the predic-

tion performance in the test dataset.

Obviously, Fig. 7 demonstrates similar results to Fig. 6.

FC-CDF outperforms other approaches in the symmetric

datasets (i.e., Vir_FrcSub), while for the asymmetric

datasets (i.e., Vir_Math1 and Vir_Math2), the predicted

results of FuzzyCDF and R-FuzzyCDF are a bit better than

that of FC-CDF. However, FuzzyCDF and R-FuzzyCDF

need more training time than FC-CDF. For instance,

compared with FuzzyCDF and R-FuzzyCDF on Vir_-

Math1, when the percent of added simulation data reaches

90%, the RMSE value of FC-CDF declines by 1.14% and

0.79%, respectively, and the training time of FuzzyCDF

and R-FuzzyCDF are 144.29 and 223.99 times longer than

FC-CDF’s, and more analysis about the execution time will

be mentioned in the next section.
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7.4 Execution time analysis (RQ3)

To support the learners’ autonomic learning online in their

fragmented time, the e-learning platform is required to

diagnose the learners’ cognitive status quickly for recom-

mending suitable exercises to them. In this section, the

experiments are used to analyze the execution efficiency of

FC-CDF. The experiments are executed on a Linux server

with a 2.3 GHz Intel Xeon CPU and 16 GB memory. This

server only runs our experimental program.

7.4.1 Execution time in real-world and simulation datasets

FC-CDF is compared with the six approaches including

PMF, MCMC-DINA, EM-DINA, FuzzyCDF, R-Fuz-

zyCDF and NeuralCDM. The training time of every

approach in three real-world datasets and a simulation

dataset is recorded, and the number of iterations of MCMC

sampling is set to 5000. Moreover, we introduce a Tesla-T4

16G GPU to boost the training speed of NeuralCDM, the

number of iterations of the training process is set as 5 for

NeuralCDM. Table 4 shows the results.

From Table 4, the analysis is given as follows:

(1) FC-CDF outperforms the other MCMC-based base-

line approaches (e.g., R-FuzzyCDF, MCMC-DINA).

More importantly, FC-CDF performs much better

than FuzzyCDF. In the asymmetric datasets (i.e.,

Math1, Math2), the execution time of FuzzyCDF is

102.96 and 138.16 times as long as FC-CDF’s,

respectively, and in the symmetric datasets (i.e.,

FrcSub, Simulation), FC-CDF still beats FuzzyCDF.

The reason is that FC-CDF only uses the MCMC

algorithm to estimate the item parameters (i.e., the

slip and guess factors), while for other approaches,

MCMC is utilized to estimate more parameters. For

example, R-FuzzyCDF estimates the learners’ traits

and skills’ difficulties via MCMC, and MCMC-

Fig. 7 Performance comparison in extended datasets

Table 4 Execution time analysis in real-world and simulation datasets

(seconds)

Approaches FrcSub Math1 Math2 Simulation

PMF 10.80 83.88 74.94 91.14

MCMC-DINA 24.58 5,578.56 6,068.75 3,052.18

EM-DINA 0.11 5.83 72.83 1.15

FuzzyCDF 598.54 7,902.17 9,729.13 3,233.95

R-FuzzyCDF 763.44 12,583.80 15,442.89 4,379.25

NeuralCDM 234.36 1,560.53 1,384.33 1,844.08

FC-CDF 11.93 76.75 70.42 89.99
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DINA estimates the learners’ skills proficiency via

MCMC.

(2) Although we used a GPU to boost the training speed

for NeuralCDM, the execution time of NeuralCDM

is 20.33 and 19.65 times as long as FC-CDF’s in

Math1 and Math2 datasets, respectively.

(3) In terms of execution time, although the gap between

PMF and our FC-CDF is small, the lack of

interpretability and limited performance on score

prediction make PMF hard to compete with our FC-

CDF.

(4) EM-DINA is obviously better than FC-CDF in

FrcSub, Math1 and simulation datasets, while FC-

CDF outperforms EM-DINA in Math2 dataset. The

reason is that the EM-DINA’s complexity is expo-

nential with the number of skills. In the FrcSub,

Math1 and simulation datasets, the number of skills

is 8, 11 and 10, respectively. Among these datasets,

EM-DINA could enumerate at most 211 possible

patterns of skill proficiency for one learner and find

the most suitable skill proficiency for one learner.

However, the number of skills is 16 in the Math2

dataset. In this case, EM-DINA should enumerate 216

possible patterns of skill proficiency for each learner,

which is more time-consuming than the performance

on the former datasets.

Taking EM-DINA’s performance in Math1 and Math2

as an example, when the number of skills increases from 11

to 16, the execution time of EM-DINA in Math2 is 12.49

times as long as that in Math1. Even there are fewer

learners in Math2 than Math1. As for FC-CDF, its execu-

tion time does not grow fast with the increasing skill

numbers like EM-DINA. It could be foreseen that FC-CDF

would outperform EM-DINA in terms of efficiency when

the number of skills is more than a certain number. To

verify this, a series of simulation datasets are constructed.

In these datasets, the number of learners and items are set

as 1000 and 100, respectively; the number of skills is set

from the range [10, 22]; and the training time of FC-CDF

and EM-DINA in every simulation dataset is recorded.

Considering that the specific values of the score matrix and

Q-matrix make no difference to the training time, their

values are randomly generated in these datasets. The results

are shown in Table 5 and Fig. 8.

From Table 5 and Fig. 8, it could be observed that there

is a surge in EM-DINA when the number of skills increases

from 18 to 22, while our FC-CDF performs stably. In

practice, a course (e.g., ‘‘Java Programming’’) usually

covers more than 20 skills, even 30 skills. In this case, the

execution time of EM-DINA would be unacceptable.

Compared with the baseline approaches, FC-CDF is a

preferable cognitive diagnosis framework for practical

e-learning scenarios.

7.4.2 Execution time in extended datasets

In the following experiments, the extended datasets (i.e.,

Vir_FrcSub, Vir_Math1 and Vir_Math2) are used to verify

the execution efficiency of FC-CDF in larger-scale data.

Different percentages from 10 to 100% of the simulation

dataset are added. The execution time of training each

approach in each extended dataset is recorded, and the

number of iterations of MCMC sampling is set to 5000.

The results are shown in Table 6.

Obviously, compared with other MCMC-based approa-

ches (i.e., MCMC-DINA, FuzzyCDF and R-FuzzyCDF),

FC-CDF significantly improves the execution efficiency of

the training process. For example, in Vir_Math2, when the

percent of added simulation data reaches 100%, the exe-

cution time of MCMC-DINA, FuzzyCDF and R-Fuz-

zyCDF is 47.59, 144.25 and 229.90 times longer than that

of FC-CDF, respectively. More importantly, the gap

between FC-CDF and EM-DINA is getting smaller with

the increase in learners in the Vir_Math2 dataset. When the

percent of added extension data is more than 60%, FC-CDF

beats EM-DINA because the EM-DINA’s complexity is

exponential with the number of skills.

Table 5 Execution time

analysis in simulation datasets

(seconds)

Skill numbers 10 12 14 16 18 20 22

EM-DINA 1.29 3.81 8.31 38.97 62.33 222.47 931.36

FC-CDF 89.30 90.12 90.77 91.30 91.70 92.30 92.40

Fig. 8 Execution time comparison in simulation datasets
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7.5 Experimental summary

In experiments, the prediction performance and execution

efficiency of FC-CDF are compared with those of the other

six approaches. By introducing cognitive cloud and fuzzy

interval numbers, FC-CDF could improve the prediction

accuracy in the symmetric datasets (i.e., FrcSub and sim-

ulation dataset) and obtains satisfactory prediction accu-

racy in the asymmetric datasets (i.e., Math1, Math2,

Vir_Math1 and Vir_Math2). Most importantly, FC-CDF

greatly reduces the training time of the cognitive diagnosis

by employing an efficient RCG algorithm, which quickly

recommends suitable exercises to learners in a new round

of practice according to their latest score profiles. Although

all the real-world data used in the experiments are only

related to mathematics, it is worth mentioning that the

proposed approach is easily generalized to other subjects or

courses. In summary, FC-CDF provides good prediction

accuracy and decreases the execution time in a large-scale

data environment involving in many learners, test items

and skills, which strongly supports the learners’ autonomic

learning online in their fragmented time.

8 Conclusion and discussion

The current CDMs employ a simple measurement mecha-

nism to measure the learners’ skill proficiency with low

computational efficiency in a large-scale data environment.

This paper proposed a new cognitive diagnosis framework

FC-CDF, which takes advantage of both the cloud model

theory and the fuzzy interval number. The learners’ skills

proficiency is modeled as cognitive clouds via RCG, and

the learners’ skills proficiency is measured by transforming

each cognitive cloud into fuzzy interval numbers. Then, the

mastery of learners on the items is simulated by mapping

conjunctive and compensatory interactions into the fuzzy

set operations. Based on it, the learners’ performance could

be predicted by considering the slip and guess factors of

each item. Finally, aiming at the data deficiency problem,

PMF is integrated into FC-CDF to deal with the examinee

performance prediction task. The experimental results

demonstrate that the proposed approach via FC-CDF sig-

nificantly reduces the execution time of cognitive diagnosis

and provides good accuracy of learners’ performance

prediction.

Table 6 Execution time analysis in extended datasets (seconds)

Percent 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(a) Vir_FrcSub

PMF 13.09 11.93 13.74 14.79 15.60 15.83 19.33 18.62 19.49 19.78

MCMC-DINA 26.20 28.46 30.13 32.40 34.09 36.02 37.86 39.69 41.78 43.69

EM-DINA 0.12 0.20 0.25 0.34 0.31 0.32 0.33 0.33 0.33 0.34

NeuralCDM 237.08 240.49 249.37 259.14 277.09 303.45 326.56 341.21 372.47 377.62

FuzzyCDF 664.12 699.67 755.41 813.14 849.78 910.92 971.32 1,043.18 1,099.23 1,133.44

R-FuzzyCDF 815.24 920.32 940.24 1,035.15 1,104.92 1,174.75 1,260.56 1,307.55 1,389.67 1,462.13

FC-CDF 13.21 13.87 15.04 15.27 16.29 17.09 17.78 19.09 19.34 19.98

(b) Vir_Math1

PMF 87.04 94.34 101.11 109.08 116.38 126.07 134.25 145.35 150.98 160.86

MCMC-DINA 5,610.23 5,648.21 5,759.16 5,820.00 5,908.04 5,945.24 6,032.65 6,287.09 6,393.37 6,452.42

EM-DINA 6.08 6.73 7.19 7.91 8.16 9.03 9.87 10.89 11.21 12.51

NeuralCDM 1778.23 1826.44 2172.09 2383.69 2520.75 2689.18 2776.05 2889.14 2916.09 3013.36

FuzzyCDF 8,433.56 9,129.17 9,963.76 10,722.78 11,509.29 12,225.45 13,000.66 13,544.20 14,231.62 14,967.56

R-FuzzyCDF 13,584.67 14,785.93 16,078.49 17,235.10 18,635.56 19,426.89 20,844.10 21,747.14 22,836.09 24,110.45

FC-CDF 82.87 89.28 96.15 104.08 110.90 122.01 131.18 137.00 142.41 153.65

(c) Vir_Math2

PMF 83.92 92.06 99.27 106.41 115.22 120.53 132.50 137.07 143.15 151.10

MCMC-DINA 6,168.56 6,189.65 6,239.09 6,303.54 6,379.24 6,409.43 6,448.27 6,517.89 6,613.67 6,720.90

EM-DINA 76.19 82.87 89.05 94.22 108.81 128.98 135.41 140.47 145.78 150.70

NeuralCDM 1,491.12 1,650.71 1,785.98 1,880.76 2,024.66 2,200.01 2,298.45 2,414.66 2,507.09 2,634.03

FuzzyCDF 11,245.00 12,288.67 13,251.61 14,213.42 15,260.87 16,204.95 17,407.16 18,344.19 19,371.07 20,369.43

R-FuzzyCDF 17,625.45 19,187.76 20,859.00 22,300.08 24,245.91 25,884.54 27,340.67 28,834.23 30,070.94 32,464.96

FC-CDF 77.96 83.52 91.30 98.92 110.29 112.48 120.90 126.33 134.25 141.21
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There are still some open issues, which can be explored

in the future: (1) In a big data environment, the neural

networks could be utilized to mine the latent attributes of

learners and test items for more accurate cognitive mod-

eling. Based on the neural networks, it is possible to

incorporate the cloud model theory and fuzzy interval

numbers to measure the fuzziness and uncertainty of cog-

nitive status more exactly. (2) Based on the cognitive status

and predicted scores via FC-CDF, the personalized learn-

ing resources recommendation, collaborative learning team

formation and learning path recommendation could be

achieved.
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