
Knowledge-Based Systems 138 (2017) 27–45 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Time-aware trustworthiness ranking prediction for cloud services 

using interval neutrosophic set and ELECTRE 

Hua Ma 

a , b , ∗, Haibin Zhu 

b , Zhigang Hu 

c , Keqin Li d , Wensheng Tang 

a 

a Department of Computer, Hunan Normal University, Changsha 410081, China 
b Collaborative Systems Laboratory, Nipissing University, North Bay, ON P1B8L7, Canada 
c School of Software, Central South University, Changsha 410075, China 
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA 

a r t i c l e i n f o 

Article history: 

Received 22 September 2016 

Revised 16 September 2017 

Accepted 21 September 2017 

Available online 27 September 2017 

Keywords: 

Cloud services 

ELECTRE 

Interval neutrosophic set 

Ranking prediction 

Time-aware 

Trustworthiness 

a b s t r a c t 

The imprecise quality of service (QoS) evaluations from consumers may lead to the inappropriate pre- 

diction for the trustworthiness of cloud services in an uncertain cloud environment. The service ranking 

prediction is a promising idea to overcome this deficiency of values prediction approaches by probing 

the ordering relations between cloud services concealed in the imprecise evaluations. To address the 

challenges for trustworthy service selection resulting from fluctuating QoS, flexible service pricing and 

complicated potential risks, this paper proposes a time-aware approach to predict the trustworthiness 

ranking of cloud services, with the tradeoffs between performance-cost and potential risks in multiple 

periods. In this approach, the interval neutrosophic set (INS) theory is utilized to describe and assess the 

performance-costs and potential risks of cloud services: (1) the original evaluation data about cloud ser- 

vices are preprocessed into the trustworthiness interval neutrosophic numbers (INNs); (2) the new INS 

operators are proposed with the theoretical proofs to calculate the possibility degree and the ranking 

values of trustworthiness INNs, contributing to the identification of the neighboring users based on the 

Kendall rank correlation coefficient (KRCC). The problem of time-aware trustworthiness ranking predic- 

tion is formulated as a multi-criterion decision-making (MCDM) problem of creating a ranked services 

list using INS, and an improved ELECTRE method is developed to solve it. The proposed approach is veri- 

fied by experiments based on an appropriate baseline for comparative analysis. The experimental results 

demonstrate that the proposed approach can achieve a better prediction quality than the existing ap- 

proach. The results also show that our approach works effectively in the risk-sensitive and performance- 

cost-sensitive application scenarios and prevent the malignant price competition launched by low-quality 

services. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Recently, with the proliferation of cloud services over the In-

ernet, it has become more and more challenging to select the

ighly trustworthy services meeting the user-specific requirements

rom the abundant candidates [1,2] . Traditional service selection

pproaches employ the probability theory [3] , fuzzy mathematics

4] , rough set theory [5] , interval number theory [6,7] and evidence

heory [8] to predict the trustworthiness of cloud services based

n the exact evaluation data from cloud service consumers. How-
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ver, in an uncertain cloud environment, the real quality of service

QoS) of cloud services experienced by cloud service consumers is

sually different from the QoS claimed by cloud service providers.

he QoS evaluations from different consumers also show signifi-

ant variations due to the various factors, such as different client

eatures among users, unpredictable network congestions and un-

xpected exceptions [8,9] . Unfortunately, the imprecise QoS eval-

ation data has been a critical basis for decisions in order to ac-

urately predict the trustworthiness of candidate services for the

sers. Inevitably, these evaluation data may lead to an inappropri-

te prediction result. 

Currently, service ranking prediction becomes a promising idea

o overcome the deficiency of the existing approaches based on

he imprecise evaluation values [10,11] . Unlike the traditional value

rediction approaches, the ranking prediction examines the order

f services under consideration for a particular user. Suppose there

https://doi.org/10.1016/j.knosys.2017.09.027
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are a set of three cloud services, on which two users have observed

the trustworthiness values of {0.5, 0.7, 0.9} and {0.3, 0.5, 0.7}, re-

spectively. The trustworthiness values on these services observed

by the two users are clearly different; nevertheless, their rankings

are very close as the services are ordered in the same way. Thus,

analyzing the ordering relations between services concealed in the

imprecise evaluation values facilitates to improve the accuracy of

identifying similar users and predicting the trustworthiness of ser-

vices for users. However, in an uncertain cloud environment, it is

still a critical issue to utilize the trustworthiness ranking predic-

tion approach to select the highly trustworthy service from abun-

dant candidates meeting the user-specific requirements. This task

includes the following challenges: 

(1) The performance and price of cloud services are usually

not identical in the different periods. The existing research

[12,13] has revealed that the cloud services’ performance has

the apparent characteristic of the periodic variation. Cloud

services perform the best in the idle hours, and their perfor-

mance deteriorates during the busy hours. Thus, cloud ser-

vice providers usually adopt the dynamic pricing strategies

for balancing loads or improving the energy efficiency, such

as offering a discount from 8 PM to 9 PM [13] . Service con-

sumers can achieve a higher performance-cost of cloud ser-

vices by changing the period of their usage, or enjoy a bet-

ter performance in a specific period by paying more. It is

helpful to select the trustworthy cloud services by consider-

ing the objective characteristics of periodic variation of their

performance and price. 

(2) Users have different preferences for the trustworthiness of

cloud services in different periods. For many application do-

mains, users’ demands for computing systems are never sta-

ble. Even with the same computing infrastructures and soft-

ware, at different time, Susers’ demands might be different

due to the constraints on performance, cost, and data quality

[14] . For example, such demands are known in an interactive

data analysis in the cloud [15] and data analytics of equip-

ment operations in smart cities [16] . Thus, it is indispensable

to support subjective user preferences for periods to predict

the trustworthiness of cloud services. 

(3) Recently, a series of cloud security events, occurred in Sales-

force services, EC2 services, BPOS services, SONY Playstation

services and iCloud services, have proven that cloud com-

puting is fraught with potential risks that must be care-

fully evaluated prior to engagement [17,18] . Some organi-

zations, including Cloud Security Alliance (CSA) [19] , China

Cloud Computing Promotion and Policy Forum (3CPP) [20] ,

and researchers [21,22] have dedicated them to the risk as-

sessment for a cloud. The primary potential risks to a cloud

have been identified and analyzed [23,24] . Especially, rec-

ognized as important risks inherent to a cloud, the avail-

ability [25,26] of cloud services and the disruption or fail-

ure of cloud computing networks [27] are vulnerable to the

heavy loads and networks’ susceptibility in specified peri-

ods. In contrast to performance and costs of cloud services,

these potential risks inherent to a cloud are more uncertain.

The assessment of potential risks over multiple periods adds

extra complexities to predict the trustworthiness values of

cloud services. 

(4) Users have different sensitivity to performance-cost and po-

tential risks of cloud services in different application sce-

narios. For example, a stock exchange corporation, ready

to purchase a cloud service to store massive amounts of

stock trading data, must pay more attentions to the potential

risks of this cloud storage service. However, a logistics com-

pany, preparing to purchase a cloud host service to deploy
the express delivery query application not involving confi-

dential data, may desire the performance-cost ratio of the

service to be as high as possible due to the limited bud-

get. In our previous research [12] , we proposed the c loud

service i nterval n eutrosophic s et (CINS) to support users’

decision-making of service selection with the tradeoffs be-

tween performance-cost and potential risks. In CINS, the

tradeoff coefficients represent both the importance of every

period and the sensitive degrees to the performance-cost ra-

tio, uncertainty and potential risks. Nevertheless, consider-

ing the complicated coupling relationships among the trade-

off coefficients, in practice, accurately determining the val-

ues of the tradeoff coefficients is a challenging task for the

users without professional knowledge. The improper trade-

off coefficients do deteriorate the accuracy of prediction.

Therefore, it is required to conveniently support users with

the tradeoffs between performance-cost and potential risks

in multiple periods. 

.2. Our contributions 

To select the highly trustworthy cloud services from abun-

ant candidates meeting user-specific requirements in an uncertain

loud environment, this paper formulates the problem of time-

ware trustworthiness ranking prediction with the tradeoffs be-

ween performance-cost and potential risks in multiple periods as

 multi-criterion decision-making (MCDM) problem. In this prob-

em, every period is viewed as an evaluation criterion. The in-

erval neutrosophic set (INS) theory is employed to measure the

rustworthiness of cloud services by combining the objective char-

cteristics of periodic variation of cloud services. Aiming at the

omplicated coupling relationship among the parameters, this pa-

er redefines two mutually independent parameters consisting of

he subjective period preferences and tradeoff coefficients. The

ew INS operators are proposed to calculate the possibility de-

ree values and ranking values of trustworthiness interval neu-

rosophic numbers (INNs). These operators contribute significantly

o the identification of neighboring users for a user by using the

endall rank correlation coefficient (KRCC). Based on these prepa-

ations, an improved ELECTRE (elimination and choice expressing

eality) method [28] supporting the INS operators is developed to

olve the MCDM problem for achieving the trustworthiness rank-

ng prediction of candidate services. 

The main contributions of this paper are as follows: 

(1) Aiming at the objective characteristics of periodic variation

for cloud services, we utilize the INS theory to measure

the trustworthiness values of cloud services and employ

the mutually independent parameters to depict the subjec-

tive period preferences and tradeoff coefficients following

the users’ demands. To conveniently support the decision-

making of trustworthy service selection with the tradeoffs

between performance-cost and potential risks, we design

new INS operators to calculate the possibility degree values

and ranking values of trustworthiness INNs based on theo-

retical proofs. 

(2) We employ the trustworthiness INNs to assess the

performance–costs and potential risks of cloud services

from the new perspective of time series analysis and then

exploit the ordering relations between services to accurately

identify similar users via the Kendall rank correlation coeffi-

cient. Based on the INS theory, we formulate the time-aware

trustworthiness ranking prediction problem with the trade-

offs between performance-costs and potential risks over

multiple periods as an MCDM problem. We then develop an
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improved ELECTRE method supporting the INS operators to

solve this problem. 

(3) We examine the proposed approach through experiments

on a real-world dataset and an appropriate baseline for

our comparative analysis. The results demonstrate that the

proposed approach can achieve a better prediction qual-

ity than the existing approach. The proposed approach can

work effectively in the risk-sensitive application scenario

and the performance-cost-sensitive application scenario, and

also prevent malignant price competition launched by some

low-quality services. 

The rest of this paper is organized as follows. Section 2 intro-

uces the related work. Section 3 provides the preliminary con-

epts. Section 4 defines the problem. Section 5 presents an identi-

cation method of neighboring users based on the KRCC. Section 6

uts forward the MCDM procedure of trustworthiness ranking pre-

iction. Section 7 describes the experiments and analyzes the

esults. Finally, the conclusions and further study are given in

ection 8 . 

. Related work 

.1. Prediction methods for cloud services 

In conventional studies, some theories and techniques, such as

he probability theory, the fuzzy theory, the evidence theory, the

ocial network analysis, the collaborative filtering and matrix fac-

orization techniques, are employed to predict the QoS or trustwor-

hiness of cloud services and assist users to select suitable services.

Mehdi et al. [3] presented a QoS-aware approach based on

robabilistic models to aid service selection by allowing consumers

o maintain a trust model of each service provider they have in-

eracted with in the past. Peng et al. [29] proposed a QoS-driven

ervice selection method for group users in which alternatives are

anked based on QoS and preferences of group members as de-

cribed by fuzzy terms. Ma et al. [8] presented an evidence theory-

ased fusion approach to predicting the QoS of cloud services

y filtering out the unreliable evaluations. Huang et al. [30] pro-

osed a novel algorithm based on online user communities to es-

imate the QoS evaluations. Mo et al. [31] put forward a cloud-

ased mobile multimedia recommendation system in which the

ser contexts, user relationships, and user profiles are collected

rom video-sharing websites. Zheng et al. [32] employed the col-

aborative method to take advantage of past experiences from ser-

ice consumers and designed a neighborhood-integrated approach

or personalized web service QoS prediction. 

For improving the accuracy of prediction, Hu et al. [33] pro-

osed a time-aware collaborative filtering algorithm to predict the

issing QoS values by calculating the similarities between services

nd users based on the historical data of services at different time

ntervals. Zhong et al. [34] proposed a time-aware service recom-

endation approach that extracts the time sequence of topic ac-

ivities and the service-topic correlation from service usage history

nd then employs a time series prediction method to forecast topic

volution and future service activities. Based on the intuition that

sers inside a neighborhood are likely to share the similar services

nvocation experience, Yin et al. [35] proposed a collaborative ma-

rix factorization framework to predict the personalized QoS val-

es by leveraging the personal geographical and QoS information

o identify the robust neighborhoods. Ding et al. [36] designed a

ramework for conducting cloud service trustworthiness evaluation

y combining QoS prediction and customer satisfaction estimation.

The above prediction approaches might have the limitations

ue to the deficiency caused by the imprecise evaluation values.

hus, the service ranking prediction becomes a promising idea to
nhance the accuracy of prediction. Zheng et al. [10] employed the

RCC to evaluate the user similarity by considering the number

f inversions of service pairs and developed a QoS ranking predic-

ion framework for personalized cloud services ranking. Mao et al.

11] utilized the KRCC-based method to measure the user similar-

ty by combining the occurrence probability of relation pairs and

dopted the Particle Swarm Optimization (PSO) algorithm to solve

he QoS ranking prediction problem. However, the related work

as not considered two factors, including the user preferences for

ifferent periods and the tradeoffs between performance-cost and

otential risks in multiple periods, while the two factors could fa-

ilitate to improve the customer satisfaction indicated by the pre-

ious research [12] . 

.2. MCDM methods for service selection 

MCDM is concerned with structuring and solving decision prob-

ems involving multiple criteria. Typically, there is not a unique op-

imal solution for them, and it is necessary to use decision-maker’s

references to differentiate the candidate solutions. MCDM meth-

ds can be used to solve the service selection problem, provided

hat the trustworthiness attributes and candidate services are fi-

ite. Techniques such as the analytic hierarchy process (AHP), fuzzy

nalytic hierarchy process (FAHP), analytic network process (ANP),

LECTRE and TOPSIS fall into this category. 

AHP, FAHP and ANP methods provide a comprehensive frame-

ork for structuring a complex decision problem and assist the

ecision makers to systematically evaluate a group of factors or

riteria that relate to the goal of problem. To exactly assess the

erformance of candidate services, these methods are usually used

o measure the weights of attributes of QoS or trustworthiness.

or example, Godse et al. [37] presented an AHP-based SaaS ser-

ice selection approach to scoring and ranking services. Garg et al.

38] employed AHP method to measure the attributes of QoS and

ank cloud services. Menzel et al. [39] introduced ANP method for

electing IaaS services. Ma et al. [8] proposed a trustworthy cloud

ervice selection approach that employs the FAHP method to cal-

ulate the weights of user features. 

TOPSIS method can effectively assess the advantages and dis-

dvantages of cloud services for service selection when the pos-

tive and negative ideal solutions in an n -dimensional space are

vailable. For example, Sun et al. [40] presented a multi-criteria

ecision-making technique based on fuzzy TOPSIS method to rank

loud services. Nevertheless, in the time-aware trustworthiness

anking prediction problem, it is unpractical to identify the optimal

r worst trustworthiness ranking list of candidate cloud services. 

ELECTRE is an important outranking method of decision making

nd now has been applied to many fields, such as business man-

gement, energy management, information technology, financial

anagement [28] . For example, Silas et al. [41] developed a cloud

ervice selection middleware based on ELECTRE method. However,

o literatures have studied the trustworthiness ranking prediction

f cloud services by combining INS and ELECTRE method from the

ime series analysis. 

.3. Neutrosophic set theory and its applications 

Since Zadeh presented the fuzzy set (FS) theory in 1965, many

ovel extensions have been proposed to settle the issues surround-

ng the imprecise, incomplete or uncertain information. These ex-

ensions include interval-valued fuzzy set (IVFS) [42] , intuition-

stic fuzzy sets (IFS) [43] and interval-valued intuitionistic fuzzy

ets (IVIFS) [44] . Based on the fact that IFSs cannot handle inde-

erminate information [45] , Smarandache [46] proposed the neu-

rosophic logic and the neutrosophic set (NS). An NS is a set of

eutrosophic numbers (NNs) and an extension to IFS’s standard
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interval [0, 1]. Each neutrosophic number (NN) possesses the de-

grees of truth, indeterminacy and falsity, whose values lie in the

non-standard unit interval ]0 −, 1 + [ , and the degrees of truth, in-

determinacy and falsity are independent. The uncertainty involved

here, that is, the indeterminacy factor, is independent of truth and

falsity values. NS has been used in a variety of fields, including

intrusion detection systems [47] , image segmentation [4 8,4 9] , ar-

tificial intelligence [50] , social network analysis [51] and financial

data set detection [52] . 

For the convenience of application of NS in a practical applica-

tion, Wang et al. [53] proposed an instance of NS called a single-

valued neutrosophic set (SVNS). In turn, Ye [54] put forward a sim-

plified neutrosophic set (SNS), which can be described by three

real numbers in the real unit interval [0, 1]. Sometimes the degrees

of truth, falsity and indeterminacy in a certain statement cannot

be precisely defined in real situations, but they can be denoted by

several possible interval values, requiring the interval neutrosophic

set (INS). Wang et al. [53] proposed the concepts of INS and in-

terval neutrosophic number (INN), and provided its set-theoretic

operators. 

NS has also been applied to MCDM problems. Ye [45] devel-

oped an MCDM approach by using SVNS correlation coefficient

measurement. Zhang et al. [55] presented a new correlation co-

efficient measure of INS and developed an MCDM method that

takes into account the influence of the evaluations’ uncertainty

and both the objective and subjective weights. In another study,

Liu et al. [56] proposed several novel SVNS aggregation opera-

tors based on Hamacher operations and developed a multi-criteria

group decision-making approach. To address the situations that the

criteria are not independent and subject to compensation, Zhang

et al. [57] put forward an outranking approach based on INS and

ELECTRE IV for MCDM problems. Ş ahin et al. [58] proposed an

MCDM method based on the inclusion measure for INS. 

The above work focuses on the application of NS and INS in

generalized MCDM problems based on theoretical analysis. To ef-

fectively address the specific problems, it is necessary to constantly

develop the NS and INS theories for meeting the diverse users’ re-

quirements of decision-making in different application scenarios.

In the previous research [12] , we proposed the cloud service in-

terval neutrosophic set (CINS) and the relevant operators to sup-

port the time-aware trustworthy cloud service selection. However,

the CINS approach might lead to an unsatisfactory result when the

proper tradeoff coefficients are unavailable. Moreover, the ordering

relations between services have not been exploited to identify sim-

ilar users for improving the accuracy of service selection. 

To the best of our knowledge, no similar research has investi-

gated the time-aware trustworthiness ranking prediction using the

INS theory and ELECTRE method as what we do in this paper. In

our work, the tradeoffs between performance-costs and potential

risks in multiple periods are applied from the perspective of time

series analysis. 

3. Preliminary concepts 

3.1. Trustworthiness of cloud services 

According to the definition of trusted cloud services [59] , a

cloud service should be trustworthy if its behaviors and the cor-

responding consequences are consistent with the expectation of

users. With our previous researches [12] , the trustworthiness of a

cloud service can be expressed with a 4-tuple as: T = 〈 F , C, R, U 〉 . 
(1) F represents the performance evaluation of the cloud service

consisting of multiple attributes of QoS, such as response

time, throughput, and so on; C represents the cost of the
service. F and C jointly depict the behaviors and capacities

of the cloud service. 

(2) R and U represent the potential risks and uncertainty of the

cloud service, respectively. R and U together describe the

possibility of consequences inconsistent with the expecta-

tion of a user. 

The cloud service consumers, cloud service providers and the

hird-party entities can provide the evaluation data about the per-

ormance, cost and potential risks of a cloud service. These evalua-

ion data are the important evidences for accurately measuring the

rustworthiness of the cloud service. 

To compare and calculate the trustworthiness of candidate

loud services, we introduce the INS theory to define the trust-

orthiness of a cloud service as follows: 

efinition 1. The trustworthiness of cloud service A is character-

zed by an INN T A = 〈 O A , U A , R A 〉 . O A = [ inf O A , sup O A ] represents the

valuation interval value of the performance-cost ratio, equivalent

o the truth-membership function of the INN. Especially, O A di-

ectly represents the performance when all the candidate services

re free or have the same prices. R A = [ inf R A , sup R A ] represents the

valuation interval value of the potential risks, equivalent to the

alsity-membership function of the INN. U A = [ inf U A , sup U A ] repre-

ents the evaluation interval value of the uncertainty of O A and R A ,

quivalent to the indeterminacy-membership function of the INN.

 A , U A , R A ∈ [0, 1], and 0 ≤ sup O A + sup U A + sup R A ≤ 3 . 

A larger O A with a smaller U A and a smaller R A yields a better

valuation on cloud service A . Thus, the comparison on the advan-

age and disadvantage of cloud services can be transformed into

he comparison on the possibility degree of trustworthiness INNs.

 formula is proposed to calculate the possibility degree of trust-

orthiness INNs as follows: 

.2. Possibility degree of trustworthiness INNs 

efinition 2. Let two INNs T A = 〈 [ inf O A , sup O A ] , [ inf U A , sup U A ] ,

 inf R A , sup R A ] 〉 and T B = 〈 [ inf O B , sup O B ] , [ inf U B , sup U B ] , [ inf R B ,

up R B ] 〉 , representing the trustworthiness values of cloud service A

nd B . The possibility degree of T A ≥ T B is defined by: 

 ( T A ≥ T B ) = α · P ( O A ≥ O B ) + β · P ( U B ≥ U A ) + γ · P ( R B ≥ R A ) , 

(1)

where α, β and γ are the tradeoff coefficients representing the

ensitive degree of the current user to performance-cost ratio, un-

ertainty and potential risks; 0 ≤α, β , γ ≤ 1, and α + β + γ = 1 .

he traditional method to calculate the possibility degree between

wo interval numbers A = [ inf A, sup A ] and B = [ inf B, sup B ] is as fol-

ows [60] : 

 ( A ≥ B ) = 

min 

{
l A + l B , max { sup A − inf B, 0 } }

l A + l B 
, (2)

here l A = sup A − inf A , l B = sup B − inf B . To achieve the more

ccurate calculation precision of possibility degree for interval

umbers, we proposed a calculation method [7] to compute

he values of P ( O A ≥ O B ), P ( U B ≥ U A ) and P ( R B ≥ R A ). For example,

he possibility degree of O A ≥ O B is calculated by Eq. (3) when

up O A ≥ sup O B : 

 ( O A ≥ O B ) 

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 , inf O A ≥ sup O B 

1 − ( sup O B −inf O A ) 
2 

2 ×l O A ×l O B 
, inf O B ≤ inf O A ≤ sup O B ≤ sup O A 

2 ×sup O A −sup O B −inf O B 
2 ×l O A 

, inf O A ≤ inf O B ≤ sup O B ≤ sup O A 

, (3)
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Fig. 1. Geometrical representation of possibility degree with (a) inf O A ≥ sup O B ; 

(b)inf O B ≤ inf O A ≤ sup O B ≤ sup O A ; (c) inf O A ≤ inf O B ≤ sup O B ≤ sup O A . 
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here l O A = sup O A − inf O A and l O B = sup O B − inf O B . Especially,

 ( O A ≥ O B ) = 0 . 5 when O A = O B , and P ( O A ≥ O B ) = 1 − P ( O B ≥ O A )

hen sup O A < sup O B . 

A geometrical analysis method shown in Fig. 1 can deduce

q. (3) . In Fig. 1 , O A lies in the y axis and O B lies in the x axis.

he four points consisting of inf O A , sup O A , inf O B , and sup O B com-

ose a rectangle. There are six situations about the rectangle and

he straight line y = x . According to the complementarity, we shall

onsider only three of them as shown in Fig. 1 . The possibility de-

ree of O A ≥ O B is the ratio of area above the straight line y = x to

he rectangular area, and Eq. (3) can easily be deduced. 

heorem 1. According to Eq. (3) , the following expressions are true . 

(T1a) 0 ≤ P ( O A ≥ O B ) ≤ 1. 

(T1b) P ( O A ≥ O B ) = 1 when inf O A ≥ sup O B . 

(T1c) P ( O A ≥ O B ) = 0 when inf O B ≥ sup O A . 

(T1d) P ( O A ≥ O A ) = 0 . 5 . 

(T1e) P ( O A ≥ O B ) + P ( O B ≥ O A ) = 1 . 

roof. According to Fig. 1 and Eq. (3) , P ( O A ≥ O B ) is just the ratio

f area above the straight line y = x to the rectangular area com-

osed of inf O A , sup O A , inf O B , and sup O B . Obviously, (T1a), (T1b),

T1c), (T1d) and (T1e) are right. Thus, Theorem 1 holds. 

Obviously, P ( U B ≥ U A ) and P ( R B ≥ R A ) can also be similarly calcu-

ated by Eq. (3) satisfying the Theorem 1 . 

heorem 2. According to Definition 2 , the following expressions are

rue . 

(T2a) 0 ≤ P ( T A ≥ T B ) ≤ 1. 

(T2b) P ( T A ≥ T B ) = 1 when inf O A ≥ sup O B , inf U B ≥ sup U A and

inf R B ≥ sup R A . 

(T2c) P ( T A ≥ T B ) = 0 when inf O B ≥ sup O A , inf U A ≥ sup U B and

inf R A ≥ sup R B . 

(T2d) P ( T A ≥ T A ) = 0 . 5 . 

(T2e) P ( T A ≥ T B ) + P ( T B ≥ T A ) = 1 . 

roof. (T2a) According to Theorem 1 , 0 ≤ P ( O A ≥ O B ) ≤ 1,

 ≤ P ( U B ≥ U A ) ≤ 1, 0 ≤ P ( R B ≥ R A ) ≤ 1. In addition, Eq. (1) sat-

sfies 0 ≤α, β , γ ≤ 1, and α + β + γ = 1 . Assuming that

 

M = max { P ( O A ≥ O B ) , P ( U B ≥ U A ) , P ( R B ≥ R A ) } , then, 

 ( T A ≥ T B ) = α · P ( O A ≥ O B ) + β · P ( U B ≥ U A ) + γ · P ( R B ≥ R A ) 

≤ ( α + β + γ ) · P M ≤ P M . 

Thus, 0 ≤ P ( T A ≥ T B ) ≤ 1. 

(T2b) When inf O A ≥ sup O B , then P ( O A ≥ O B ) = 1 . Similarly,

hen inf U B ≥ sup U A , P ( U B ≥ U A ) = 1 ; and when inf R B ≥ sup R A ,

 ( R B ≥ R A ) = 1 . Then, when inf O A ≥ sup O B , inf U B ≥ sup U A , and

inf R B ≥ sup R A , we can deduce that 

 ( T A ≥ T B ) = α · P ( O A ≥ O B ) + β · P ( U B ≥ U A ) + γ · P ( R B ≥ R A ) 

= α + β + γ = 1 . 

T2c) When inf O B ≥ sup O A , then P ( O A ≥ O B ) = 0 . Similarly,

hen inf U ≥ sup U , P ( U ≥ U ) = 0 ; and when inf R ≥ sup R ,
A B B A A B 
 ( R B ≥ R A ) = 0 . Then, when inf O B ≥ sup O A , inf U A ≥ sup U B , and

nf R A ≥ sup R B , we can deduce that 

 ( T A ≥ T B ) = α · P ( O A ≥ O B ) + β · P ( U B ≥ U A ) + γ · P ( R B ≥ R A ) = 0

(T2d) According to Theorem 1 , P ( O A ≥ O A ) = 0 . 5 , P ( U A ≥ U A ) =
 . 5 , P ( R A ≥ R A ) = 0 . 5 . Then, P ( T A ≥ T A ) = α · P ( O A ≥ O A ) + β ·
 ( U A ≥ U A ) + γ · P ( R A ≥ R A ) = ( α + β + γ ) × 0 . 5 = 0.5. 

(T2e) Based on Eq. (1) , P ( T A ≥ T B ) = α · P ( O A ≥ O B ) + β ·
 ( U B ≥ U A ) + γ · P ( R B ≥ R A ) , and P ( T B ≥ T A ) = α · P ( O B ≥ O A ) +
· P ( U A ≥ U B ) + γ · P ( R A ≥ R B ) . Then, 

 ( T A ≥ T B ) + P ( T B ≥ T A ) 

= α · ( P ( O A ≥ O B ) + P ( O B ≥ O A ) ) 

+ β · ( P ( U B ≥ U A ) + P ( U A ≥ U B ) ) 

+ γ · ( P ( R B ≥ R A ) + P ( R A ≥ R B ) ) 

= α + β + γ = 1 . 

hus, Theorem 2 holds. 

Let T i = 〈 [ inf O i , sup O i ] , [ inf U i , sup U i ] , [ inf R i , sup R i ] 〉 (1 ≤ i ≤ N ) be

he trustworthiness values of N cloud services (denoted as s 1 - s N ).

he possibility degree P ( T i ≥ T j ) between any two INNs can be ob-

ained by Eq. (1) , denoted as P i, j . Then, a possibility degree matrix

elated to INNs can be created as follows: 

 = 

⎛ ⎝ 

P 1 , 1 . . . P 1 ,N 
. . . 

. . . 
. . . 

P N, 1 · · · P N,N 

⎞ ⎠ . (4) 

o rank the N cloud services, we employ the following method to

alculate the ranking values of trustworthiness INNs for cloud ser-

ices. 

.3. Ranking values of trustworthiness INNs 

According to Theorem 2 , P is a fuzzy complementary judgment

atrix. The sum of every row in P is obtained as follows: 

 i = 

∑ N 

j=1 
P i, j . 

 fuzzy consistent complementary judgment matrix P = ( P i, j ) N×N 

s computed by the mathematical transformations based on P as

ollows [61] : 

 i, j = 

P i − P j 

2 ( N − 1 ) 
+ 0 . 5 . (5)

hen, a ranking vector R = ( r 1 , r 2 , . . . , r N ) is gained by the normal-

zation method via P . 

heorem 3. The ranking value of INN T i in a set of INNs can be nor-

alized by : 

 i = 

1 

N ( N − 1 ) 

(∑ N 

j=1 
P i, j + 

N 

2 

− 1 

)
, (6) 

where N is the total number of INNs . 

roof. Firstly, P is a fuzzy complementary judgment matrix satis- 

ying P i, j + P j,i = 1 and P i,i = 0 . 5 . Then, 

 i = 

∑ N 
j=1 P i, j ∑ N 

i =1 

∑ N 
j=1 P i, j 

= 

∑ N 
j=1 P i, j ∑ N 

i =1 

∑ N 
j =1 , j >i 

(
P i, j + P i,i 

)
+ N × 0 . 5 

= 

∑ N 
j=1 P i, j 

( N 2 −N ) 
2 

+ 

N 
2 

= 

∑ N 
j=1 P i, j 

N 2 

2 

. 

Then, according to Eq. (5) , r i can be transformed into: 

 i = 

∑ N 
j=1 

(
P i −P j 

2(N−1) 
+ 0 . 5 

)
N 2 

2 

= 

∑ N 
j=1 

(
P i −P j 
N−1 

)
+ N 

N 

2 
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Table 1 

Definitions of key symbols. 

Symbol Meaning 

U C = { u 1 , u 2 , . . . , u X } U C is the set of candidate users; X is the number of candidate users 

U N = { u ∗1 , u ∗2 , . . . , u ∗K } U N is the set of neighboring users; K is the number of neighboring users 

S T = { s 1 , s 2 , . . . , s n } S T is the set of training services; n is the number of training services 

S C = { s 1 , s 2 , . . . , s N } S C is the set of candidate services; N is the number of candidate services 

S R = { s r 1 , s r 2 , . . . , s rN } The ranking list of N candidate cloud services 

T S = { t 1 , t 2 , . . . , t Y } T S is the set of timeslots; Y is the number of timeslots 

P T = { p 1 , p 2 , . . . , p Z } P T is the set of periods; Z is the number of periods 

d The density coefficient of periods 

W = { w 1 , w 2 , . . . , w Z } The period preferences reflecting the importance degree of every period 

D = { α, β, γ } The tradeoff coefficients 

δth The threshold of user similarity 

W 

I = { w 

I 
1 , w 

I 
2 , . . . , w 

I 
H } W 

I is the weights vector of evaluation indicators; H is the number of evaluation indicators 

o k 
i, j 

The original evaluation of the k th indicator of service # i in timeslot # j 

o k ∗
i, j 

The predicted evaluation of the k th indicator of service # i in timeslot # j 

o k,m 
i, j 

The original evaluation of the k th indicator of service # i in timeslot # j provided by user # m 

T k 
i, j 

= < O k 
i, j 

, U k 
i, j 

, R k 
i, j 

> The trustworthiness INN of service # i in period # j related to user # k 
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4

 

i

 

a  

s  
= 

∑ N 
j=1 

(
P i − P j 

)
+ N ( N − 1 ) 

N 

2 (N − 1) 

= 

N P i −
∑ N 

j=1 

(
P j 
)

+ N ( N − 1 ) 

N 

2 ( N − 1 ) 

= 

P i −
∑ N 

i =1 

∑ N 
j=1 , j>i ( P i, j + P i,i ) + N×0 . 5 

N 
+ ( N − 1 ) 

N ( N − 1 ) 

= 

P i − N 2 

2 N 
+ ( N − 1 ) 

N ( N − 1 ) 
= 

∑ N 
j=1 P i, j + 

N 
2 

− 1 

N ( N − 1 ) 
. 

Thus, Eq. (6) holds. 

By sorting the ranking vector R = ( r 1 , r 2 , . . . , r N ) , a ranking list

of the N cloud services can be obtained as follows: s r 1 �s r 2 �... �s rN ,

where s ri represents the i th cloud service in the ranking list. 

4. Modeling problem 

In this section, we model the problem of time-aware trustwor-

thiness ranking prediction and introduce the solving process. The

definitions of some key symbols used in the following sections are

shown in Table 1 . 

4.1. Problem definition 

The problem of time-aware trustworthiness ranking prediction

for cloud services with the tradeoffs between performance-cost

and potential risks in multiple periods can be formulated as an

MCDM problem, in which every period is viewed as an evaluation

criterion. The problem model is shown in Fig. 2 . 

From Fig. 2 , the input data of this problem consists of: 

(1) The evaluation data about performance, costs and potential

risks of cloud services: these data can be provided by cloud

service consumers or relevant organizations, such as CSA

and 3CPP. Considering that the direct evaluation data about

the uncertainty of cloud services are usually unavailable in

the real world, we will employ the cloud model theory to

deduce the uncertainty of cloud services by measuring the

dispersion of evaluations about performance, costs and po-

tential risks. 

(2) The period preferences: W = { w 1 , w 2 , . . . , w Z } , which reflects

the importance degree of Z periods for the current user.

0 ≤ w i ≤ 1 and 

∑ Z 
i =1 w i = 1 . 

(3) The tradeoff coefficients: D = { α, β, γ } , which reflects the

sensitive degree to performance-cost and potential risks for
the current users. 0 ≤α, β , γ ≤ 1, and α + β + γ = 1 . a  
Assuming that S T = { s 1 , s 2 , . . . , s n } is the set of training services

hat have been invoked by the current user and other service con-

umers; S C = { s 1 , s 2 , . . . , s N } is the set of candidate services that

eets the requirements of the current user; U 

C is the set of can-

idate users who have invoked some services from S T ; U 

N is the

et of neighboring users who have a high similarity to the current

ser; T S = { t 1 , t 2 , . . . , t Y } is the set of timeslots. 

The core goal of this problem is to exactly predict the trustwor-

hiness ranking of candidate services for the current user based on

he historical evaluations. The output of this problem is a ranked

ist of the N candidate services: s r 1 �s r 2 �... �s rN . 

The process of solving this problem can be generalized into

even steps as follows: 

Step 1: Collect the original evaluation data of training services

rovided by candidate users from U 

C , and preprocess them into

he trustworthiness INNs matrix. In every period, a trustworthiness

NN is used to objectively measure the performance-cost ratio, un-

ertainty and potential risks of a training service. 

Step 2: Calculate the trustworthiness ranking of training ser-

ices for every candidate user in U 

C . Based on it, calculate the user

imilarity between the current user and other users by measuring

he KRCC of training services in multiple periods. 

Step 3: Select the top- K neighboring users for the current user

n light of the specified similarity threshold. These neighboring

sers are aggregated into U 

N . 

Step 4: Collect the original evaluation data of candidate services

rovided by the neighboring users from U 

N , and preprocess them

nto the trustworthiness INNs matrix for every candidate service

rom S C . 

Step 5: Establish the possibility degree matrix of trustworthi-

ess INNs for candidate services in every period. 

Step 6: Calculate the ranking value of every candidate cloud ser-

ice in every period. 

Step 7: Perform the improved ELECTRE operations based on the

riority relation, relative priority, and inconsistency matrix, and

hen sort all the candidate services in accord with the net supe-

iority value for every candidate service. 

.2. Preprocessing original data into trustworthiness INNs 

The preprocessing method for transforming the original data

nto the trustworthiness INNs consists of six steps as follows: 

Step 1: Collect the evaluation data about the performance, costs

nd potential risks of cloud services. The different types of cloud

ervices have the different evaluation indicators of performance

nd potential risks. Taking the performance evaluation for exam-
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Fig. 2. Problem model. 
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t  
le, the original evaluation matrix of n cloud services related to

ser u can be represented by: 

 (u ) = 

⎡ ⎢ ⎢ ⎢ ⎣ 

(
o 1 1 , 1 , o 

2 
1 , 1 , · · · , o H 1 , 1 

) (
o 1 1 , 2 , o 

2 
1 , 2 , · · · , o H 1 , 2 

)
· · ·

(
o 1 1 ,Y ,(

o 1 2 , 1 , o 
2 
2 , 1 , · · · , o H 2 , 1 

) (
o 1 2 , 2 , o 

2 
2 , 2 , · · · , o H 2 , 2 

)
· · ·

(
o 1 2 ,Y ,

. . . 
. . . · · ·(

o 1 n, 1 , o 
2 
n, 1 , · · · , o H n, 1 

) (
o 1 n, 2 , o 

2 
n, 2 , · · · , o H n, 2 

)
· · ·

(
o 1 n,Y ,

here o k 
i, j 

represents the evaluation value of the k th performance

ndicator of service # i in timeslot # j; Y is the number of timeslots;

 is the number of performance indicators. The multiple attributes

valuations of potential risks can also be defined similarly by

q. (7) . 

Step 2: Aggregate the multi-dimensional performance evalua-

ions and risk evaluations into the comprehensive evaluations with

eighted arithmetic averaging operator. The gain-type indicators

an be normalized by: 

̂ 

 

k 
i, j 

= 

(
o k i, j −

n 

min 

i =1 
o k i, j 

)
/ 

(
n 

max 
i =1 

o k i, j −
n 

min 

i =1 
o k i, j 

)
. (8) 

he loss-type indicators are normalized by: 

̂ 

 

k 
i, j 

= 

(
n 

max 
i =1 

o k i, j − o k i, j 

)
/ 

(
n 

max 
i =1 

o k i, j −
n 

min 

i =1 
o k i, j 

)
. (9) 

et W 

I = { w 

I 
1 
, w 

I 
2 
, . . . , w 

I 
H 
} be the weights vector of evaluation in-

icators. w 

I 
i 

represents the weight of the i th indicator assigned by

he current user. 0 ≤ w 

I 
i 
≤ 1 and 

∑ H 
i =1 w 

I 
i 
= 1 . The comprehensive

erformance evaluation of service # i in timeslot # j related to user
, · · · , o H 1 ,Y 

)
, · · · , o H 2 ,Y 

)
, · · · , o H n,Y 

)
⎤ ⎥ ⎥ ⎥ ⎦ 

, (7) 

 can be determined by: 

 

F 
i, j ( u ) = 

H ∑ 

k =1 

(̂ o k 
i, j 

× w 

I 
k 

)
. (10) 

imilarly, the comprehensive potential risk evaluation of service # i

elated to user u can also be defined. 

Step 3: Calculate the performance-cost ratio of cloud services

n every timeslot. Let e C 
i, j 

be the normalized cost of service # i in

imeslot # j . Then, the performance-cost ratio is defined as e O 
i, j 

=
 

F 
i, j 

/ e C 
i, j 

. 

Step 4: Divide the timeslots into multiple periods by analyzing

he user’s time zone and application requirements. The set of pe-

iods is noted as: P T = { p 1 , p 2 , . . . , p Z } , where Z is the number of

eriods. Let d be the density coefficient of periods, assuming that

he number of timeslots is d in every period. Then Y = Z × d. In

ractice, d may be a variable, because the size of period could be

ifferent according to the diverse requirements from users. 

Step 5: Transform the single-value evaluation data from the

ame period into the interval numbers by utilizing cloud model

heory. The cloud model [62,63] is a cognitive model realizing
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the bidirectional transformation between qualitative concept and

quantitative data based on probability statistics and fuzzy set the-

ory. It can effectively represent the fuzziness, randomness and un-

certain concepts, and has been applied in many fields [63–65] .

In this paper, we establish the cloud models for performance-

costs and potential risks to identify their interval numbers in ev-

ery period. Let E O 
i, j 

(u ) = 

{
e O 

i,d ×( j −1 )+1 
, e O 

i,d ×( j −1 )+2 
, . . . , e O 

i,d× j 

}
b e the

performance-cost ratio data of service # i in period # j related to

user u . The data is viewed as cloud drops and sent into the reverse

cloud generator (RCG). Then, the cloud model of performance-cost

of service # i in period # j can be obtained by: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Ex O 
i, j 

= 

1 
d 

×∑ d 
k =1 e 

O 
i,d×( k −1 ) + k 

E n 

O 
i, j 

= 

√ 

π
2 

× 1 
d 

∑ d 
k =1 

∣∣∣e O i,d×( k −1 ) + k − E x O 
i, j 

∣∣∣
HE O 

i, j 
= 

√ ∣∣∣∣ 1 
d−1 

∑ d 
k =1 

(
e O 

i,d×( k −1 ) + k − Ex O 
i, j 

)2 

−
(
En 

O 
i, j 

)2 

∣∣∣∣
(11)

The performance-cost ratio of service # i in period # j relevant to

user u is defined as o i, j , described with an interval number as

o i, j = 

[
o L 

i, j 
, o U 

i, j 

]
. o L 

i, j 
and o U 

i, j 
are calculated by: { 

o U 
i, j 

= E x O 
i, j 

+ E n 

O 
i, j 

+ HE O 
i, j 

× τ

o L 
i, j 

= E x O 
i, j 

− E n 

O 
i, j 

− HE O 
i, j 

× τ
, (12)

where τ is the influence coefficient of HE , suggested to remain in

the interval range [0.1, 0.2] [7] . Similarly, the cloud model for po-

tential risks also can be established, and the potential risks interval

number of service # i in period # j is defined as r i, j = 

[ 
r L 

i, j 
, r U 

i, j 

] 
. 

Step 6: Calculate the uncertainty interval of service # i in period

# j . Let λO 
i, j 

= 

√ 

( En O 
i, j 

) 
2 + ( HE O 

i, j 
) 

2 
and λR 

i, j 
= 

√ 

( En R 
i, j 

) 
2 + ( HE R 

i, j 
) 

2 
be

the uncertainty of performance-cost ratio and the uncertainty of

potential risks of service # i in period # j , respectively. Then, the

uncertainty interval number of service # i in period # j is defined

by: 

 i, j = 

[
u 

L 
i, j , u 

U 
i, j 

]
= 

[
min 

{
λO 

i, j , λ
R 
i, j 

}
, max 

{
λO 

i, j , λ
R 
i, j 

}]
. (13)

Then, the original data of n cloud services related to user u is

transformed into the trustworthiness INNs matrix as follows: 

T u = 

⎛ ⎜ ⎜ ⎝ 

T u 1 

T u 2 
. . . 

T u n 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎝ 

T u 1 , 1 T u 1 , 2 . . . T u 1 ,Z 

T u 2 , 1 T u 2 , 2 . . . T u 2 ,Z 

. . . 
. . . 

. . . 
. . . 

T u n, 1 T u n, 2 . . . T u n,Z 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

〈
O 

u 
1 , 1 , U 

u 
1 , 1 , R 

u 
1 , 1 

〉
. . . 

〈
O 

u 
1 ,Z , U 

u 
1 ,Z , R 

u 
1 ,Z 

〉
. . . 

. . . 
. . . 〈

O 

u 
n, 1 , U 

u 
n, 1 , R 

u 
n, 1 

〉
· · ·

〈
O 

u 
n,Z , U 

u 
n,Z , R 

u 
n,Z 

〉
⎞ ⎟ ⎠ 

, 

where T u 
i, j 

= 

〈
O 

u 
i, j 

, U 

u 
i, j 

, R u 
i, j 

〉
= 

〈
[ o L 

i, j 
, o U 

i, j 
] , [ u L 

i, j 
, u U 

i, j 
] , [ r L 

i, j 
, r U 

i, j 
] 
〉

is the

trustworthiness INN of service # i in period # j related to user u . 

In the following sections, we will discuss the identification

method of neighboring users based on the KRCC and the MCDM

procedure of the trustworthiness ranking prediction based on an

improved ELECTRE method. 

5. Identification method of neighboring users based on the 

KRCC 

The neighboring users can be identified for the current user

based on the KRCC, consisting of six steps as follows: 

Step 1: Calculate the trustworthiness INNs of n training ser-

vices. Collect the training data from candidate users who have
nvoked these services. Employ the preprocessing method to

alculate the trustworthiness INNs of n training services for the

andidate users and the current user. The trustworthiness INN of

he i th training service in period # j related to the k th candidate

ser can be described by: 

 

k 
i, j = 

〈
O 

k 
i, j , U 

k 
i, j , R 

k 
i, j 

〉
= 

〈[
inf O 

k 
i, j , sup O 

k 
i, j 

]
, 
[
inf U 

k 
i, j , sup U 

k 
i, j 

]
, 
[
inf R 

k 
i, j , sup R 

k 
i, j 

]〉
. (14)

hen, the comprehensive trustworthiness evaluation matrix of the

 th candidate user in Z periods is obtained as follows: 

 

k = 

⎛ ⎜ ⎝ 

T k 1 , 1 . . . T k 1 ,Z 

. . . 
. . . 

. . . 

T k n, 1 · · · T k n,Z 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

〈
O 

k 
1 , 1 , U 

k 
1 , 1 , R 

k 
1 , 1 

〉
. . . 

〈
O 

k 
1 ,Z , U 

k 
1 ,Z , R 

k 
1 ,Z 

〉
. . . 

. . . 
. . . 〈

O 

k 
n, 1 , U 

k 
n, 1 , R 

k 
n, 1 

〉
· · ·

〈
O 

k 
n,Z , U 

k 
n,Z , R 

k 
n,Z 

〉
⎞ ⎟ ⎠ 

. 

imilarly, obtain the comprehensive trustworthiness INNs matrix of

he current user, denoted as T o . 

Step 2: Establish the possibility degree matrix of every period

or the current user and every candidate user by Eqs. (1) and (3) .

he possibility degree matrix of the k th candidate user in period

 i can be gained as follows: 

 

k,i = 

⎛ ⎜ ⎜ ⎜ ⎝ 

P k,i 
1 , 1 

P k,i 
1 , 2 

· · · P k,i 
1 ,n 

P k,i 
2 , 1 

P k,i 
2 , 2 

· · · P k,i 
2 ,n 

. . . 
. . . 

. . . 
. . . 

P k,i 
n, 1 

P k,i 
n, 2 

· · · P k,i 
n,n 

⎞ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 . 5 P k,i 
1 , 2 

· · · P k,i 
1 ,n 

P k,i 
2 , 1 

0 . 5 · · · P k,i 
2 ,n 

. . . 
. . . 

. . . 
. . . 

P k,i 
n, 1 

P k,i 
n, 2 

· · · 0 . 5 

⎞ ⎟ ⎟ ⎟ ⎠ 

. 

tep 3: Calculate the ranking values of every training service by Eq.

6) . The ranking matrix of the k th candidate user in Z periods can

e obtained by: 

 

k = 

(
R 

k 
1 , R 

k 
2 , ..., R 

k 
Z 

)
= 

⎛ ⎜ ⎝ 

r k 1 , 1 . . . r k 1 ,Z 

. . . 
. . . 

. . . 

r k n, 1 · · · r k n,Z 

⎞ ⎟ ⎠ 

, (15)

here R k 
i 

represents the ranking vector of the n training services

n period # i related to the k th candidate user. Similarly, calculate

he ranking vector of the n training services in period # i related to

he current user, namely, R o 
i 
. 

Step 4: Calculate the ranking similarity in every period between

he current user and every candidate user. The existing researches

mploy the KRCC to evaluate the similarity between two rankings

n the same set of services by considering the number of inver-

ions of service pairs. The KRCC similarity between user u and user

 is calculated by: 

im ( u, v ) = 

C − B 

n ( n − 1 ) / 2 

, (16)

here n is the number of training services; C is the number of

oncordant pairs between two lists; B is the number of discordant

airs. There are totally n ( n − 1 ) / 2 pairs f or n training services, and

 = n ( n − 1 ) / 2 − B . Thus, Eq. (16) is equal to 

im ( u, v ) = 1 − 4 B 

n ( n − 1 ) 
. (17)

ased on Eq. (15) , employ the KRCC to calculate the ranking simi-

arity in period # m between the k th candidate user and the current

ser by: 

im 

k 
m 

= Sim 

(
R 

k 
m 

, R 

o 
m 

)
= 1 −

4 ×∑ n 
i =1 

∑ n 
j= i +1 f 

((
r k 

i,m 

−r k 
j,m 

)
×
(
r o 

i,m 

−r o 
j,m 

))
n ( n −1 ) 

. (18)
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here f ( x ) is an indicator function and defined by: 

f ( x ) = 

{
1 , if x < 0 

0 , otherwise 
. (19) 

he value of Sim ( R k n , R 
o 
n ) is within the interval of [ −1 , 1] , where 1

s obtained when the order of R k n is equal to the order of R o n , and

1 is obtained when the order of R k n is the exact reverse of the

rder of R o n ; 

Step 5: Calculate the comprehensive ranking similarity be-

ween the current user and every candidate user. Let Si m 

k =
( Sim 

k 
1 
, Sim 

k 
2 
, . . . , Sim 

k 
Z 
) be the ranking similarity vector of the k th

andidate user, and W = { w 1 , w 2 , . . . , w Z } be the period preference

f the current user. W reflects the importance degree of every pe-

iod. The comprehensive ranking similarity between the current

ser and the k th candidate user can be obtained by: 

k = 

∑ Z 

i =1 
Sim 

k 
i × w i . (20) 

tep 6: Select the set of the top- K neighboring users for the current

ser. The users with the low similarities will be filtered out and

he neighboring users are identified for the current user by: 

 

N = 

{
u i 

∣∣u i ∈ U 

C & & δi ≥ δth 
}
, (21) 

here δth is the threshold ensuring the dissimilar users are filtered

ut. Let U 

N = { u ∗
1 
, u ∗

2 
, . . . , u ∗

K 
} be the se t of the top- K neighboring

sers, and K be the number of neighboring users. 

. MCDM procedure of trustworthiness ranking prediction 

ased on an improved ELECTRE method 

Assume that there are N candidate services, denoted as s 1 –s N .

o solve the problem of trustworthiness ranking prediction of N

andidate services with the tradeoffs between performance-cost

nd potential risks in multiple periods, the MCDM procedure based

n an improved ELECTRE method is developed as follows: 

(1) Collect the evaluation data of the candidate services pro-

vided by neighboring users. Taking the performance for ex-

ample, the evaluation of the k th performance indicator of

the i th candidate service in timeslot # j can be predicted by

aggregating historical data from neighboring users with sim-

ilarity weights as follows: 

o k ∗i, j = 

∑ K 

m =1 

(
o k,m 

i, j 
× δm 

)/ ∑ K 

m =1 
δm 

, 

where o k,m 

i, j 
represents the evaluation value of the k th per-

formance indicator of the i th candidate service in timeslot

# j provided by user # m from U 

N . 

(2) Employ the preprocessing method to transform them into

trustworthiness INNs. Then, a trustworthiness matrix of N

candidate services in Z periods is denoted as follows: 

T = 

⎛ ⎝ 

T 1 
. . . 

T N 

⎞ ⎠ = 

⎛ ⎝ 

T 1 , 1 . . . T 1 ,Z 
. . . 

. . . 
. . . 

T N, 1 · · · T N,Z 

⎞ ⎠ . 

(3) Establish the possibility degree matrix for every period by

Eqs. (1) and (3) . The possibility degree matrix of the k th pe-

riod is denoted as follows: 

P k = 

⎛ ⎜ ⎜ ⎝ 

P k 1 , 1 P k 1 , 2 · · · P k 1 ,N 

P k 2 , 1 P k 2 , 2 · · · P k 2 ,N 

. . . 
. . . 

. . . 
. . . 

P k N, 1 P k N, 2 · · · P k N,N 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎝ 

0 . 5 P k 1 , 2 · · · P k 1 ,N 

P k 2 , 1 0 . 5 · · · P k 2 ,N 

. . . 
. . . 

. . . 
. . . 

P k N, 1 P k N, 2 · · · 0 . 5 

⎞ ⎟ ⎟ ⎠ 

, 

where P k is a complementary judgment matrix, and each el-

ement in this matrix P k 
i, j 

denotes the possibility degree that
the value of the i th candidate service exceeds that of the j th

candidate service in period # k . 

(4) Employ Eq. (6) to calculate the ranking vector of N can-

didate service in period # k based on P k , denoted as R k =
( r 1 ,k , r 2 ,k , . . . , r N,k ) 

T , where r i, k represents the ranking value

of the i th candidate service in period # k . Then, the compre-

hensive decision matrix consisting of the ranking vectors of

candidate services in Z periods is denoted as follows: 

R = ( R 1 R 2 ... R Z ) = 

⎛ ⎜ ⎜ ⎝ 

r 1 , 1 r 1 , 2 · · · r 1 ,Z 
r 2 , 1 r 2 , 2 · · · r 2 ,Z 
. . . 

. . . 
. . . 

. . . 
r N, 1 r N, 2 · · · r N,Z 

⎞ ⎟ ⎟ ⎠ 

. 

(5) Calculate the normalized matrix of R by: 

r ∗i, j = r i, j / 

√ ∑ N 

i =1 
r 2 

i, j 
. (22) 

Then, the normalized matrix is denoted as R ∗ = ( r ∗
i, j 

) N×Z . 

(6) Identify the priority relation between two candidate services

in every period based on R ∗. The priority relation is defined

according to the following rules: service # i is equivalent to

service # j in period # k when r ∗
i,k 

= r ∗
j,k 

; service # i is supe-

rior to service # j in period # k when r ∗
i,k 

> r ∗
j,k 

; service # i is

inferior to service # j in period # k when r ∗
i,k 

< r ∗
j,k 

. The con-

sistency set is defined by: 

J ( i, j ) = 

{
k 
∣∣1 ≤ k ≤ Z, ∀ k, r ∗i,k ≥ r ∗j,k 

}
, (23) 

where J ( i, j ) represents the set of some periods in which ser-

vice # i is superior or equivalent to service # j . 

The inconsistency set is defined by: 

J −( i, j ) = 

{
k 
∣∣1 ≤ k ≤ Z, ∀ k, r ∗i,k < r ∗j,k 

}
, (24) 

where J −(i, j) is the set of some periods in which service # i is

inferior to service # j . 

(7) Compute the relative priority weights matrix by: 

C R = 

⎛ ⎜ ⎜ ⎝ 

c 1 , 1 c 1 , 2 · · · c 1 ,Z 
c 2 , 1 c 2 , 2 · · · c 2 ,Z 
. . . 

. . . 
. . . 

. . . 
c N, 1 c N, 2 · · · c N,Z 

⎞ ⎟ ⎟ ⎠ 

, c i, j = 

∑ 

k ∈ J ( i, j ) 

w k ∑ Z 
k =1 w k 

. (25) 

(8) Calculate the inconsistency matrix by: 

D 

I = 

⎛ ⎜ ⎜ ⎝ 

d 1 , 1 d 1 , 2 · · · d 1 ,Z 
d 2 , 1 d 2 , 2 · · · d 2 ,Z 
. . . 

. . . 
. . . 

. . . 
d N, 1 d N, 2 · · · d N,Z 

⎞ ⎟ ⎟ ⎠ 

, d i, j 

= 

⎧ ⎨ ⎩ 

max 
k ∈ J − ( i, j ) 

{ | w k ×
(
r ∗

j,k 
−r ∗

i,k 

)| } 
max 

k ∈ J − ( i, j ) + J ( i, j ) 

{ ∣∣∣w k ×
(

r ∗
j,k 

−r ∗
i,k 

)∣∣∣} , i 
 = j 

0 , i = j 

. (26) 

For the candidate services # i and # j , a larger c i, j means a

better candidate service # i , while a smaller d i, j means a

better candidate service # i . Thus, the inconsistency matrix

should be amended to ensure that it is similar to the con-

sistency matrix. 

(9) Compute the modification factor for the inconsistency ma-

trix by: 

e i, j = c i, j ×
(
1 − d i, j 

)
. (27) 

Then, the modified weighting matrix is denoted as E I =
( e 

i, j 
) N×Z . 
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Table 2 

Range of timeslots and line number ranges for every period in the dataset. 

Period p 1 p 2 p 3 p 4 p 5 p 6 

Range of timeslot [0,10] [11,20] [21,30] [31,40] [41,51] [52,63] 

Line number range [1,1139] [1140,2146] [2147,3135] [3136,4105] [4106,5159] [5160,6294] 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Fig. 3. Coefficients of variation of response time. 
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(10) Calculate the net superiority value for every candidate ser-

vice by: 

ξi = 

∑ N 

j =1 , j 
 = i e i, j −
∑ N 

j =1 , j 
 = i e j,i , i = 1 , 2 , . . . , N. (28)

(11) Sort all the candidate services in light of the net superiority

value ξ i . A larger ξ i means a better candidate service # i . Ac-

cording to ξ i , the ranking list of candidate services can be

obtained as follows: s r1 � s r2 � . . . � s rN , where s ri denotes

the service with the net superiority value is at the i th num-

ber in the ranking. 

7. Experiments 

7.1. Experiment setup 

To demonstrate our approach in experiments, we used WS-

DREAM dataset #2 [66] , which collected the real-world QoS eval-

uations from 142 users on 4500 services in 64 timeslots. The

dataset has been applied into the researches concerned with cloud

computing [12,67,68] . We analyzed the response time data of the

dataset and found that these data has great dispersion due to the

uncertain cloud environment. The coefficients of variation of re-

sponse times of 3873 services were larger than 1.0, as shown in

Fig. 3 . 

In the following experiments, let us consider a list of n = 5

training services and a list of N = 8 candidate services. The orig-

inal data is divided into six periods. Table 2 shows the range of

timeslots and the line number ranges for every period. 

In the experiments, user #9 is viewed as the current user.

The history evaluations from services #736–#740 are used as the

training data to identify neighboring users for the current user in

light of the period preferences and tradeoff coefficients. Taking ser-

vices #741–#748 as candidate services, for example, we employ

the original evaluations of response time in three numerical ex-

amples to demonstrate the proposed approach. The first example

is for a risk-sensitive application scenario; the second one is for a

performance-cost-sensitive application scenario; and the third one
s for a low price competition application scenario. The original

ata used in the experiments is provided online [69] . 

Aiming at the response time, we assess the potential risks of

ervices experienced by user # i in timeslot # j as follows: 

 i, j = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 , r t i, j < ζ(
δ ×

(
r t i, j − ζ

))
/ ζ , ζ ≤ r t i, j ≤ ( ζ × ( 1 + δ) ) /δ

1 , ( ζ × ( 1 + δ) ) /δ < r t i, j 

, (29)

here ζ is the user’s expectation of response time and rt i, j repre-

ents the response time value experienced by user # i in timeslot

 j . If rt i, j ≤ ζ , the i th user considers this service to be risk-free. δ
s an adjustment factor that determinates the tolerable range for

esponse time. In the experiments, we set ζ = 2 s, δ = 0.25, and

= 0.1 [12] . 

Considering that there is no cost data of services in the dataset,

e assume that the costs of all the services are identical. In the

CDM procedure, the costs of services play a part with the perfor-

ance of services together, namely performance-cost. The dataset

emonstrates that the performance data of services is diverse

nough to ensure the effectiveness of our outcome. In addition,

e assume that service #745 attempts to improve its performance-

ost ratio by offering different price discounts in the third example.

.2. Metric of prediction results 

To measure the accuracy of our approach, the real response

ime experienced by the current user is employed as an appro-

riate baseline for comparative analysis. The baseline sort value of

ervice s i ( i = 1 , 2 , . . . , N ) , noted as f b 
i 

, is calculated by: 

f b i = 

γ ·
∣∣r isk b 

i 
− r is k b−∣∣

α ·
∣∣per f b 

i 
− per f b+ 

∣∣+ γ ·
∣∣risk b 

i 
− ris k b−

∣∣ , (30)

here per f b 
i 

= 

∑ Z 
j=1 ( w j ×

∑ j×d 

k =( j−1 ) ×d+1 
per f k ) and risk b 

i 
=

 Z 
j=1 ( w j ×

∑ j×d 

k =( j−1 ) ×d+1 
ris k k ) represent the total response time

nd the total risk evaluation of s i aggregated with weights of peri-

ds, respectively, and d is the density coefficient of periods; α and

are the tradeoff coefficients; perf k and risk k represent the actual

esponse time and risk value experienced by the current user in

imeslot # k , respectively; r is k b− = 

Z 
max 

i =1 
{ r isk b 

i 
} , representing the

aximum of risk evaluations; per f b+ = 

Z 
max 

i =1 
{ per f b 

i 
} , representing

he minimum of response time. The order of s i in the baseline

anking can be obtained in accordance with f b 
i 

. The service with a

arge f b ranks higher than the one with a small f b . 

The ranking prediction result of candidate services should be

nstructive to the current user for selecting the highly trustworthy

ervices. Obviously, the current user usually pays the special atten-

ions to the excellent candidates. Therefore, the rankings for the

ront part of the candidate services list are usually more important

han those at the rear [11,70] . However, the original KRCC’s mea-

urement cannot ensure this, as it treats services at any position in

he sequence equally. For example, assume that {3, 1, 2, 5, 4, 6} is

he baseline ranking. There are two predicted rankings, {1, 2, 3, 5,

, 6} and {3, 1, 2, 4, 6, 5}. The two predicted rankings obtain the

ame KRCC value, 0.7333. However, the second prediction result is

ctually better than the first one. 
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Table 3 

Period preferences and tradeoff coefficients in Example 1 . 

W D 

w 1 w 2 w 3 w 4 w 5 w 6 α β γ

0 0.15 0.35 0.35 0.15 0 0.35 0.10 0.55 
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Aiming at the limitation of the KRCC in measuring the service

anking, we developed a new metric, called the difference degree,

o evaluate the quality of a ranking prediction with respect to the

ctual order. The difference degree, noted as D 

D , is defined to com-

are our ranked service list and the baseline list by: 

 

D = 

∑ N 

i =1 

∣∣d D i 

∣∣ = 

∑ N 

i =1 

| R i − B i | 
B i 

, (31) 

here R i represents the ranking order of s i obtained by the pro-

osed approach; B i represents the order of s i in the baseline list;

 

D 
i 

represents the relative difference of s i . Obviously, a smaller D 

D 

eans a better accuracy. 

Taking the baseline trustworthiness rankings {3, 1, 2, 5, 4, 6}

nd two predicted trustworthiness ranking, {1, 2, 3, 5, 4, 6} and {3,

, 2, 4, 6, 5}, for example, the D 

D value of the first ranking is 2.1667

nd the second one is 0.8667. The calculation result clearly indi-

ates that the second predicted ranking is much better than the

rst one, as the top 3 elements in the second ranking are identical

o the baseline ranking. 

.3. Experiment in risk-sensitive application scenario 

xample 1. Assume that a large-scale stock exchange corporation

s ready to purchase a cloud service to store massive amounts of

tock trading data. This service should have fairly high trustwor-

hiness with a high performance-cost ratio and low potential risks.

onsidering that the peak stock trading time is from 9:30 AM to

1:30 AM and from 1:00 PM to 3:00 AM every working day, the

rustworthiness evaluation of the cloud service is more important

uring these two periods than in other periods. 

Based on this analysis of the user’s requirements, we define

he period preferences and the tradeoff coefficients for the current

ser, as shown in Table 3 . 

Then, we calculate the comprehensive ranking similarity be-

ween the current user and every candidate user based on the

valuations of training services by Eq. (20) . By setting the different

hreshold values of user similarity δth , we get the different top- K

eighboring users for the current user by Eq. (21) . Based on the

valuation data from candidate services provided by the neighbor-

ng users, the original data is transformed into INNs. Table 4 shows

he preprocessed evaluation data of candidate services #741–#748,

enoted as s 1 –s 8 , when δth = 0.5. 

The net superiority values of the candidate services are ob-

ained by Eq. (28) when δth is set with the different values shown

n Table 5 . In Table 5 , | U 

N | is the total number of neighboring users.

The predicted ranking results are shown in Table 6 . 

Table 6 shows that the prediction results are distinctly different

hen the similarity threshold is set as a different value. By calcu-

ating the baseline sort values of candidate services with Eq. (30) ,

e get the ranked services list shown in Table 7 . 

Table 7 demonstrates that the actual ranked list of candidate

ervices is s 3 �s 2 �s 8 �s 7 �s 1 �s 5 �s 6 �s 4 . Next, we employ the KRCC

nd difference degree to measure the quality of prediction when
th is set with a different value shown in Table 8 . 

Table 8 displays that the prediction results are identical with

he baseline ranking when δth = 0.50 or δth = 0.55. Moreover, in

ost of the cases, the proposed approach can ensure that the sort



38 H. Ma et al. / Knowledge-Based Systems 138 (2017) 27–45 

Table 5 

Net superiority values of candidate services in Example 1 . 

δth | U N | 

Net superiority values of candidate services 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

0.20 44 −1.8438 3.6191 6.2802 −6.4595 −4.2575 −3.4392 2.3086 3.7921 

0.25 34 −1.8128 3.7031 7.0 0 0 0 −6.8292 −3.7096 −3.6485 2.1744 3.1224 

0.30 29 −2.6177 4.5715 6.6480 −6.8464 −2.5777 −3.9582 1.8937 2.8868 

0.35 24 −2.9126 4.5768 6.6481 −6.8490 −2.2405 −3.9979 1.9008 2.8743 

0.40 21 −1.6225 3.5336 6.2670 −6.4493 −5.1136 −2.8145 2.5052 3.6942 

0.45 17 −1.8439 3.0070 7.0 0 0 0 −6.4497 −5.1136 −2.5928 1.9791 4.0138 

0.50 13 −1.0 0 0 0 5.0 0 0 0 7.0 0 0 0 −4.8024 −4.4529 −5.7447 1.4227 2.5773 

0.55 11 −1.5256 5.0 0 0 0 7.0 0 0 0 −3.1711 −4.9237 −6.3796 1.5982 2.4018 

0.60 5 −2.3060 5.7465 5.4073 −2.3395 −5.7877 −5.5667 1.3940 3.4522 

0.65 2 −2.2698 5.6904 5.6242 −3.4319 −5.7167 −4.5816 1.2563 3.4291 

Table 6 

Predicted ranking results in Example 1 . 

δth 

Candidate services 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

0.20 5 2 1 8 7 6 4 3 

0.25 5 2 1 8 7 6 4 3 

0.30 6 2 1 8 5 7 4 3 

0.35 6 2 1 8 5 7 4 3 

0.40 5 3 1 8 7 6 4 2 

0.45 5 3 1 8 7 6 4 2 

0.50 5 2 1 8 6 7 4 3 

0.55 5 2 1 8 6 7 4 3 

0.60 5 1 2 6 8 7 4 3 

0.65 5 1 2 6 8 7 4 3 
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g  
order of the top 4 services in our ranked list is identical to the

baseline list. By dynamically adjusting the user similarity thresh-

old, the proposed approach can explore the optimal prediction re-

sult in which D 

D = 0. The CINS approach introduced in the previ-

ous research [12] cannot ensure the optimal prediction result, and

the minimum difference degree obtained by the CINS approach is

0.6524 in Example 1 . 

To demonstrate the superiority of the proposed approach in

comparison to the CINS approach in Example 1 , we perform the

following experiments as follows. The user #9 is still viewed as

the current user. The first experiment uses services #1–#500, and

the second one uses services #501–#10 0 0, and the remainder will

continue to add another 500 services until all the 4500 services

have been used. In every experiment, 8 candidate services are se-

lected from 500 available services, and the threshold of user simi-

larity is set with a known optimal value by adjusting dynamically

it. The trustworthiness ranking of candidate services is predicted

and the average difference degree between the baseline ranking
Table 7 

Baseline sort value and baseline ranking of candidate servi

Candidate service s 1 s 2 s 3 

Baseline sort value 0.0139 0.3234 1.0 0 0 0 

Baseline ranking order 5 2 1 

Table 8 

Quality of predictions in Example 1 . 

Quality of prediction δth 

0.20 0.25 0.30 0.35 

KRCC 0.9286 0.9286 0.9286 0.9286 

D D 0.3096 0.3096 0.3667 0.3667 
ces in Example 1 . 

s 4 s 5 s 6 s 7 s 8 

0.0 0 0 0 0.0102 0.0066 0.0414 0.0470 

8 6 7 4 3 

0.40 0.45 0.50 0.55 0.60 0.65 

0.8571 0.8571 1.0 0 0 0 1.0 0 0 0 0.7143 0.7143 

1.1429 1.1429 0.0 0 0 0 0.0 0 0 0 2.0833 2.0833 

nd the predicted ranking are calculated based on 50 trials. The

xperiment result is shown in Fig. 4 . 

Fig. 4 demonstrates that the proposed approach can achieve

 better prediction quality than the CINS approach. Compared to

he CINS approach, the proposed approach approximately reduces

8.83 percent of the average difference degree. The main reason

s that the proposed approach employs KRCC-based ranking anal-

sis to accurately measure the similarity of preferences between

sers in regard to a set of cloud services, and the optimal sim-

larity threshold ensures that the valuable evaluation data from

he neighboring users produces good prediction results. Fig. 4 also

isplays that both the proposed approach and the CINS approach

ains the best prediction quality when services #20 0 0–#250 0 are
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Table 9 

Period preferences and tradeoff coefficients in Example 2 . 

W D 

w 1 w 2 w 3 w 4 w 5 w 6 α β γ

0.10 0.10 0.20 0.25 0.25 0.10 0.55 0.10 0.35 
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sed in the experiments. The reason is that the data dispersion

f these services is smaller than other services, the coefficients of

ariation of them also showed this in Fig. 3 . 

.4. Experiment in performance-cost-sensitive application scenario 

xample 2. Assume that a logistics company is preparing to pur-

hase a cloud host service to deploy their express delivery query

pplication. The budget is very limited, and no highly confidential

ata is involved in this application. Therefore, the company desires

he performance-cost ratio of the cloud host service to be as high

s possible, on the premise that the potential risks are sufficiently

ow. The anticipated peak of visiting time for this application is

rom 9:00 AM to 5:00 PM every working day. 

Based on this analysis of the user’s requirements, we identify

he period preferences and the tradeoff coefficients for the current

ser, as shown in Table 9 . 

Then, we calculate the comprehensive ranking similarity be-

ween the current user and every candidate user based on the

valuation data from the training services. By changing user sim-

larity threshold, we get the different neighboring users for the

urrent user. On the basis of evaluation data from candidate ser-

ices, the original data is transformed into INNs. Table 10 shows

he preprocessed evaluation data of the candidate services when
th = 0.75. 

As shown in Table 11 , the net superiority values of candidate

ervices can be obtained when δth is set with different values. The

redicted ranking results are shown in Table 12 . By calculating the

aseline sort values of candidate services, we get the ranked ser-

ices list shown in Table 13 . Table 13 demonstrates that the actual

anked list of candidate services is s 2 �s 3 �s 8 �s 7 �s 1 �s 5 �s 6 �s 4 . 

We employ the KRCC and difference degree to measure the

uality of prediction. The result is shown in Table 14 . Table

4 demonstrates that the proposed approach can get the best qual-

ty of prediction in which D 

D = 0.5595, when δth = 0.75. The min-

mum difference degree obtained by the CINS approach is 0.6857

n Example 2 [12] . 

In the following experiments, we analyze the superiority of the

roposed approach in comparison to the CINS approach in Example

 . The experiment setup is similar to Example 1 . The experimen-

al result is shown in Fig. 5 . Compared to the CINS approach, the

roposed approach approximately reduces 38.30 percent of the av-

rage difference degree. 

Fig. 5 also demonstrates that the proposed approach can

chieve a better prediction quality than the CINS approach. 

.5. Experiment in low price competition application scenario 

xample 3. Assume that service #5 adopts a low price strat-

gy by offering different discounts from 10 to 50% to improve

ts performance-cost ratio. In this case, we can again utilize the

roposed approach to assist the stock exchange corporation in

xample 1 and the logistics company in Example 2 to make de-

isions. Tables 15 and 16 are the preprocessed evaluation data of

ervice #5 when δth = 0.50 in Example 1 and when δth = 0.75 in

xample 2 , respectively. 
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Table 11 

Net superiority values of candidate services in Example 2 . 

δth | U N | 

Net superiority values of candidate services 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

0.35 65 −3.7223 3.6407 2.9728 −4.1449 −6.0960 −2.0368 5.5064 3.8800 

0.40 60 −3.2808 4.3085 3.7568 −4.2825 −5.9892 −2.4475 5.0409 2.8938 

0.45 57 −2.1035 4.8119 3.0488 −3.7348 −6.3310 −3.8307 5.1691 2.9702 

0.50 50 −1.8216 4.0315 3.7584 −3.2859 −4.1571 −6.3521 3.6709 4.1560 

0.55 44 −2.5625 3.6487 3.9305 −3.1986 −3.7679 −6.1478 4.6614 3.4360 

0.60 33 −1.5916 6.3222 3.1317 −3.6541 −5.1930 −5.4336 3.7853 2.6332 

0.65 24 −2.4642 5.9449 3.5598 −4.0770 −4.9069 −4.4 4 48 2.1687 4.2195 

0.70 16 −1.5210 6.1096 3.1156 −3.2934 −5.5335 −5.3067 2.1941 4.2353 

0.75 7 −1.6237 6.2370 3.5440 −3.3454 −4.9658 −5.6248 2.4427 3.3360 

0.80 3 −4.1190 5.2859 6.7141 −3.5324 −3.2778 −5.0708 1.0 0 0 0 3.0 0 0 0 

Table 12 

Predicted ranking results in Example 2 . 

δth 

Candidate services 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

0.35 6 3 4 7 8 5 1 2 

0.40 6 2 3 7 8 5 1 4 

0.45 5 2 3 6 8 7 1 4 

0.50 5 2 3 6 7 8 4 1 

0.55 5 3 2 6 7 8 1 4 

0.60 5 1 3 6 7 8 2 4 

0.65 5 1 3 6 8 7 4 2 

0.70 5 1 3 6 8 7 4 2 

0.75 5 1 2 6 7 8 4 3 

0.80 7 2 1 6 5 8 4 3 
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Fig. 5. Comparison of two approaches in Example 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17 displays the sort values of candidate services in the

low price competition application scenario for comparative analy-

sis. Obviously, service #5 fails to increase its probability to obtain a

distinct advantage although it achieves an attractive performance-

cost ratio in every period. The proposed approach consistently

maintains the absolute dominance of service #3 for the stock ex-

change corporation and the advantage of service #2 for the logis-

tics company. 

7.6. Analysis and discussion 

These experiments illustrate the merits of the proposed ap-

proach as follows: 

(1) Flexibly customizing the user preferences for different peri-

ods in the light of the actual demands facilitates to improve

the consumer satisfaction. The users will be no more con-

fused when submitting their preferences. In the proposed

approach, the period preferences and the tradeoff coeffi-

cients have become the mutually independent parameters,

and then we can simplify the MCDM procedure based on
Table 13 

Baseline sort value and baseline ranking of candidate serv

Candidate service s 1 s 2 s 3 

Baseline sort value 0.0240 1.0 0 0 0 0.3020 

Baseline ranking order 5 1 2 

Table 14 

Quality of predictions in Example 2 . 

Quality of prediction δth 

0.35 0.40 0.45 0.50 

KRCC 0.4286 0.5714 0.5714 0.7143 

D D 5.0274 3.5274 3.1667 2.7262 
ices in Example 2 . 

s 4 s 5 s 6 s 7 s 8 

0.0 0 0 0 0.0128 0.0110 0.0662 0.0741 

8 6 7 4 3 

0.55 0.60 0.65 0.70 0.75 0.80 

0.5714 0.7143 0.7143 0.7143 0.8571 0.7143 

3.6429 1.8929 1.4167 1.4167 0.5595 2.4595 

INS theory. In Example 1 , the evaluations of service #3 is

far from outstanding in period #1 and period #6 in compar-

ison with service #2, but service #3 becomes the optimal

candidate by relying on its advantages in period #3 and pe-

riod #4. The stock exchange corporation does not care at all

about period #1 and period #6, while period #3 and period

#4 cover the period of stock exchange. A precise analysis of

the period preferences helps users to find the most trust-

worthy candidate service. 

(2) Supporting the tradeoffs between performance-cost and po-

tential risks in multiple periods can produce different trust-

worthiness ranking results for different application scenar-

ios. In the risk-sensitive application scenario of Example 1 ,
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Table 15 

Preprocessed evaluation data of service #5 with discounts expressed by INNs when δth = 0.50 in Example 1 . 

Discount (%) T 1 T 2 T 3 T 4 T 5 T 6 

O U R O U R O U R O U R O U R O U R 

10 1.00 1.00 0.01 0.53 0.00 0.01 1.00 1.00 0.03 0.57 0.00 0.01 0.30 1.00 0.01 0.37 0.00 0.01 0.00 1.00 0.00 0.44 0.00 0.00 0.00 1.00 0.04 0.66 0.00 0.02 0.00 1.00 0.01 0.51 0.00 0.00 

20 1.00 1.00 0.01 0.53 0.00 0.01 1.00 1.00 0.03 0.57 0.00 0.01 0.34 1.00 0.01 0.37 0.00 0.01 0.00 1.00 0.00 0.44 0.00 0.00 0.00 1.00 0.04 0.66 0.00 0.02 0.00 1.00 0.01 0.51 0.00 0.00 

30 1.00 1.00 0.01 0.53 0.00 0.01 1.00 1.00 0.03 0.57 0.00 0.01 0.38 1.00 0.01 0.37 0.00 0.01 0.00 1.00 0.00 0.44 0.00 0.00 0.00 1.00 0.04 0.66 0.00 0.02 0.00 1.00 0.01 0.51 0.00 0.00 

40 1.00 1.00 0.01 0.53 0.00 0.01 1.00 1.00 0.03 0.57 0.00 0.01 0.45 1.00 0.01 0.37 0.00 0.01 0.00 1.00 0.00 0.44 0.00 0.00 0.00 1.00 0.04 0.66 0.00 0.02 0.00 1.00 0.01 0.51 0.00 0.00 

50 1.00 1.00 0.01 0.53 0.00 0.01 1.00 1.00 0.03 0.57 0.00 0.01 0.54 1.00 0.01 0.37 0.00 0.01 0.00 1.00 0.00 0.44 0.00 0.00 0.00 1.00 0.04 0.66 0.00 0.02 0.00 1.00 0.01 0.51 0.00 0.00 

Table 16 

Preprocessed evaluation data of service #5 with discounts expressed by INNs when δth = 0.75 in Example 2 . 

Discount (%) T 1 T 2 T 3 T 4 T 5 T 6 

O U R O U R O U R O U R O U R O U R 

10 1.00 1.00 0.01 0.49 0.00 0.00 1.00 1.00 0.00 0.51 0.00 0.00 0.16 1.00 0.00 0.32 0.00 0.00 0.00 1.00 0.00 0.37 0.00 0.00 0.00 1.00 0.01 0.40 0.00 0.00 0.00 0.99 0.01 0.45 0.00 0.00 

20 1.00 1.00 0.01 0.49 0.00 0.00 1.00 1.00 0.00 0.51 0.00 0.00 0.18 1.00 0.00 0.32 0.00 0.00 0.00 1.00 0.00 0.37 0.00 0.00 0.00 1.00 0.01 0.40 0.00 0.00 0.00 1.00 0.01 0.45 0.00 0.00 

30 1.00 1.00 0.01 0.49 0.00 0.00 1.00 1.00 0.00 0.51 0.00 0.00 0.21 1.00 0.00 0.32 0.00 0.00 0.00 1.00 0.00 0.37 0.00 0.00 0.00 1.00 0.01 0.40 0.00 0.00 0.00 1.00 0.01 0.45 0.00 0.00 

40 1.00 1.00 0.01 0.49 0.00 0.00 1.00 1.00 0.00 0.51 0.00 0.00 0.24 1.00 0.00 0.32 0.00 0.00 0.00 1.00 0.00 0.37 0.00 0.00 0.00 1.00 0.01 0.40 0.00 0.00 0.00 1.00 0.01 0.45 0.00 0.00 

50 1.00 1.00 0.01 0.49 0.00 0.00 1.00 1.00 0.00 0.51 0.00 0.00 0.29 1.00 0.00 0.32 0.00 0.00 0.00 1.00 0.00 0.37 0.00 0.00 0.00 1.00 0.01 0.40 0.00 0.00 0.00 1.00 0.01 0.45 0.00 0.00 
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the assessment of potential risks plays a more important

role than the performance-cost ratio in evaluating candidate

services. This assessment leads to service #3 to be judged as

the most trustworthy candidate. However, the performance-

cost-sensitive application scenario of Example 2 shows an

entirely different prediction result, in which service #2 be-

comes the most trustworthy candidate. 

(3) The proposed approach can effectively prevent the low-

quality services with high performance-cost ratio from

achieving an absolute advantage in competition with other

services. In practice, some service providers adopt the low-

price strategy for dramatically increasing the performance-

cost ratio of low-quality services. In the proposed approach,

the low-price strategy can boost the popularity of low-

quality services to some extent, but it does not help these

services to dominate their competition based solely on a

malignant price war. As shown in Tables 15 and 16 , one ser-

vice with high marks in the assessment of potential risks

and uncertainty is unlikely to be a highly trustworthy can-

didate. Table 17 demonstrates that service #5 does not earn

the ideal sort value in Example 3 . 

(4) The proposed approach is capable of improving the quality

of ranking prediction by exactly identifying the neighboring

users. In the uncertain cloud environment, in order to ac-

curately measure the similarity of preferences between dif-

ferent users in regard to a set of cloud services, the KRCC-

based ranking analysis method can foster a better result

than other methods directly based on the imprecise evalu-

ation data. Tables 8 and 14 demonstrate that the quality of

the trustworthiness ranking predictions can be upgraded by

adjusting the user similarity threshold. Moreover, if there is

enough original evaluation data, the ideal value of the user

similarity threshold can be obtained by the limited trials.

Figs. 4 and 5 indicate that the ranking predictions of the

proposed method are more accurate than the previous ap-

proach based on CINS. 

. Conclusions and further study 

In an uncertain cloud environment, the fluctuating QoS, flex-

ble service pricing and complicated potential risks have always

resented challenges to service selection. Aiming at the deficiency

f the traditional value prediction approaches, this paper utilizes

he INS theory to propose a time-aware trustworthiness ranking

rediction approach to selecting the highly trustworthy cloud ser-

ice meeting the user-specific requirements. To support the trade-

ffs between performance-costs and potential risks during multiple

eriods, we put forward the new INS operators with the theoret-

cal proofs provided to calculate the possibility degree and rank-

ng value of trustworthiness INNs. These operators contribute sig-

ificantly to the identification of neighboring users based on the

RCC. The problem of time-aware trustworthiness ranking predic-

ion is formulated as an MCDM problem of creating a ranked ser-

ices list using the INS theory, and an improved ELECTRE method

s developed to solve it. The experiments based on a real-world

ataset illustrate that the proposed approach can enhance the ac-

uracy of prediction by about 58.83 percent in the risk-sensitive

pplication scenario and 38.30 percent in the performance-cost-

ensitive application scenario compared to the existing approach,

nd also can effectively prevent the malignant price competition

aunched by low-quality services. 

Although this paper presents a promising solution from the per-

pective of the time series analysis for the trustworthiness ranking

rediction in the cloud environment, this problem is still an open

uestion. In this paper, only the limited evaluation data are ex-

loited in the experiments, but more information from more users
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nd timeslots may make for improving the quality of trustworthi-

ess ranking prediction. Especially, in the big data environment,

ome issues, such as the preprocessing mechanisms of the orig-

nal evaluations, the assessment modes of history trustworthiness

ata and the execution performance of core algorithms, require the

eep-going studies in the future. 

cknowledgement 

This work is supported by Hunan Provincial Natural Science

oundation of China (No. 2017JJ2186 ), Natural Sciences and Engi-

eering Research Council of Canada (NSERC) (No. RGPIN262075-

013 ) and National Natural Science Foundation of China (No.

1501192 ). 

eferences 

[1] L. Sun , H. Dong , F.K. Hussain , O.K. Hussain , E. Chang , Cloud service selection:

state-of-the-art and future research directions, J. Netw. Comput. Appl. 45 (10)
(2014) 134–150 . 

[2] F. Ramezani , J. Lu , J. Taheri , F.K. Hussain , Evolutionary algorithm-based multi-
-objective task scheduling optimization model in cloud environments, World

Wide Web-Internet Web Inf. Syst. 18 (6) (2015) 1737–1757 . 

[3] M. Mehdi , N. Bouguila , J. Bentahar , Probabilistic approach for QoS-aware rec-
ommender system for trustworthy web service selection, Appl. Intell. 41 (2)

(2014) 503–524 . 
[4] H. Ma , Z. Hu , User preferences-aware recommendation for trustworthy cloud

services based on fuzzy clustering, J. Cent. South Univ. 22 (9) (2015)
3495–3505 . 

[5] W. Ma , L. Zhu , W. Wang , Cloud service selection model based on QoS-aware in
cloud manufacturing environment, Comput. Integr. Manuf. Syst. 20 (5) (2014)

1246–1254 . 

[6] L. Zhang , C. Qing , Hybrid-context-aware web service selection approach, J. In-
ternet Technol. 14 (1) (2013) 57–69 . 

[7] H. Ma , Z. Hu , Recommend trustworthy services using interval numbers of four
parameters via cloud model for potential users, Front. Comput. Sci. 9 (6) (2015)

887–903 . 
[8] H. Ma , Z. Hu , L. Yang , T. Song , User feature-aware trustworthiness measure-

ment of cloud services via evidence synthesis for potential users, J. Vis. Lang.

Comput. 25 (6) (2014) 791–799 . 
[9] Z.U. Rehman , O.K. Hussain , F.K. Hussain , User-side cloud service manage-

ment: State-of-the-art and future directions, J. Netw. Comput. Appl. 55 (2015)
108–122 . 

[10] Z. Zheng , X. Wu , Y. Zhang , M.R. Lyu , J. Wang , QoS ranking prediction for cloud
services, IEEE Trans. Parallel Distrib. Syst. 24 (6) (2013) 1213–1222 . 

[11] C. Mao , J. Chen , D. Towey , J. Chen , X. Xie , Search-based QoS ranking prediction

for web services in cloud environments, Futur. Gen. Comput. Syst. 50 (2015)
111–126 . 

[12] H. Ma , Z. Hu , K. Li , H. Zhang , Toward trustworthy cloud service selection: a
time-aware approach using interval neutrosophic set, J. Parallel Distrib. Com-

put. 96 (2016) 75–94 . 
[13] C. Yu , L. Huang , Time-aware collaborative filtering for QoS-based service rec-

ommendation, in: Proceedings of the IEEE International Conference on Web

Services (ICWS), IEEE, 2014, pp. 265–272 . 
[14] H.L. Truong , S. Dustdar , F. Leymann , Towards the realization of multi-dimen-

sional elasticity for distributed cloud systems, Proc. Comput. Sci. 97 (2016)
14–23 . 

[15] S. Madden , Interactive data analytics: the new frontier, in: Proceedings of the
Sixth ACM Symposium on Cloud Computing, ACM, 2015 1-1 . 

[16] H.L. Truong , S. Dustdar , Programming elasticity in the cloud, IEEE Comput. 48

(3) (2015) 87–90 . 
[17] N. Ghosh , S.K. Ghosh , S.K. Das , SelCSP: a framework to facilitate selection of

cloud service providers, IEEE Trans. Cloud Comput. 3 (1) (2015) 66–79 . 
[18] M. Ali , S.U. Khan , A.V. Vasilakos , Security in cloud computing: opportunities

and challenges, Inf. Sci. 305 (2015) 357–383 . 
[19] Cloud Security Alliance, CSA security, trust and assurance registry (STAR).

https://cloudsecurityalliance.org/star/ , 2016 . 

20] China Cloud Computing Promotion and Policy Forum, The evaluation results of
trusted services authentication. http://www.3cpp.org/news/44.html , 2017 . 

[21] L. Zeng , B. Veeravalli , X. Li , SABA: a security-aware and budget-aware workflow
scheduling strategy in clouds, J. Parallel Distrib. Comput. 75 (2015) 141–151 . 

22] M.L. Hale , R. Gamble , Secagreement: advancing security risk calculations in
cloud services, in: Proceedings of the IEEE Eighth World Congress on Services

(SERVICES, IEEE, 2012, pp. 133–140 . 
23] S. Drissi , H. Houmani , H. Medromi , Survey: risk assessment for cloud comput-

ing, Int. J. Adv. Comput. Sci. Appl. 4 (12) (2013) 143–148 . 

[24] K.M. Khan , Q. Malluhi , Establishing trust in cloud computing, IT Prof. 12 (5)
(2010) 20–27 . 

25] N. Brender , I. Markov , Risk perception and risk management in cloud comput-
ing: results from a case study of Swiss companies, Int. J. Inf. Manag. 33 (5)

(2013) 726–733 . 
26] P. Saripalli , B. Walters , QUIRC: a quantitative impact and risk assessment
framework for cloud security, in: Proceedings of the IEEE Third International

Conference on Cloud Computing (CLOUD), IEEE, 2010, pp. 280–288 . 
[27] G. Prestifilippo , D. Roy , J. Reipert , Real-time risk management through the use

of intelligent cloud-computing solutions, Prod. Manag. 19 (4) (2014) 62–64 . 
28] K. Govindan , M.B. Jepsen , ELECTRE: a comprehensive literature review on

methodologies and applications, Eur. J. Oper. Res. 250 (1) (2016) 1–29 . 
29] C. Peng , L. Zhang , Z. Pang , L. Chen , Fuzzy QoS-driven service selection method

for group user, Int. J. Innov. Comput. Inf. Control 10 (6) (2014) 2251–2262 . 

30] X. Huang , UsageQoS: estimating the QoS of web services through online user
communities, ACM Trans. Web 8 (1) (2013) 774–778 . 

[31] Y. Mo , J. Chen , X. Xie , C. Luo , L.T. Yang , Cloud-based mobile multimedia rec-
ommendation system with user behavior information, IEEE Syst. J. 8 (1) (2014)

184–193 . 
32] Z. Zheng , H. Ma , M.R. Lyu , I. King , Collaborative web service QoS prediction via

neighborhood integrated matrix factorization, IEEE Trans. Serv. Comput. 6 (3)

(2013) 289–299 . 
[33] Y. Hu , Q. Peng , X. Hu , A time-aware and data sparsity tolerant approach for

web service recommendation, in: Proceedings of the IEEE International Con-
ference on Web Services (ICWS), IEEE, 2014, pp. 33–40 . 

34] Y. Zhong , Y. Fan , K. Huang , W. Tan , J. Zhang , Time-aware service recommenda-
tion for mashup creation, IEEE Trans. Serv. Comput. 8 (3) (2015) 356–368 . 

[35] J. Yin , W. Lo , S. Deng , Y. Li , Z. Wu , N. Xiong , Colbar: a collaborative loca-

tion-based regularization framework for QoS prediction, Inf. Sci. 265 (2014)
68–84 . 

36] S. Ding , S. Yang , Y. Zhang , C. Liang , C. Xia , Combining QoS prediction and cus-
tomer satisfaction estimation to solve cloud service trustworthiness evaluation

problems, Knowl. Based Syst. 56 (1) (2014) 216–225 . 
[37] M. Godse , S. Mulik , An approach for selecting software-as-a-service (SaaS)

product, in: Proceedings of the IEEE International Conference on Cloud Com-

puting (CLOUD’09), IEEE, 2009, pp. 155–158 . 
38] S.K. Garg , S. Versteeg , R. Buyya , A framework for ranking of cloud computing

services, Futur. Gen. Comput. Syst. 29 (4) (2013) 1012–1023 . 
39] M. Menzel, M. Schönherr, S. Tai, (MC2) 2: criteria, requirements and a software

prototype for cloud infrastructure decisions, Softw. Pract. Exp., 43 (11) (2013)
1283–1297. 

40] L. Sun , J. Ma , Y. Zhang , H. Dong , F.K. Hussain , Cloud-FuSeR: fuzzy ontology

and MCDM based cloud service selection, Futur. Gen. Comput. Syst. 57 (2016)
42–55 . 

[41] S. Silas , E.B. Rajsingh , K. Ezra , Efficient service selection middleware using
ELECTRE methodology for cloud environments, Inf. Technol. J. 11 (7) (2012)

868–875 . 
42] I.B. Turksen , Interval valued fuzzy sets based on normal forms, Fuzzy Sets Syst.

20 (2) (1986) 191–210 . 

43] K.T. Atanassov , Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1) (1986) 87–96 . 
44] K. Atanassov , G. Gargov , Interval valued intuitionistic fuzzy sets, Fuzzy Sets

Syst. 31 (3) (1989) 343–349 . 
45] J. Ye , Multicriteria decision-making method using the correlation coefficient

under single-valued neutrosophic environment, Int. J. Gen. Syst. 42 (4) (2013)
386–394 . 

46] F. Smarandache , A Unifying Field in Logics: Neutrosophic Logic, American Re-
search Press, Rehoboth, NM, 1999 . 

[47] B. Kavitha , S. Karthikeyan , P.S. Maybell , An ensemble design of intrusion detec-

tion system for handling uncertainty using neutrosophic logic classifier, Knowl.
Based Syst. 28 (2012) 88–96 . 

48] A. Sengur , Y. Guo , Color texture image segmentation based on neutrosophic
set and wavelet transformation, Comput. Vis. Image Underst. 115 (8) (2011)

1134–1144 . 
49] K. Hanbay , M.F. Talu , Segmentation of SAR images using improved artificial bee

colony algorithm and neutrosophic set, Appl. Soft Comput. 21 (2014) 433–443 .

50] A. Ansari , R. Biswas , S. Aggarwal , Proposal for applicability of neutrosophic set
theory in medical AI, Int. J. Comput. Appl. 27 (5) (2011) 5–11 . 

[51] H. Zhang , P. Ji , J. Wang , X. Chen , A novel decision support model for satisfac-
tory restaurants utilizing social information: a case study of TripAdvisor.com,

Tour. Manag. 59 (2017) 281–297 . 
52] M. Khoshnevisan , S. Bhattacharya , A short note on financial data set detection

using neutrosophic probability, in: Proceedings of the First International Con-

ference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic
Probability and Statistics, University of New Mexico, 2001, pp. 75–80 . 

53] H. Wang , F. Smarandache , R. Sunderraman , Y. Zhang , Interval Neutrosophic Sets
and Logic: Theory and Applications in Computing, Hexis, Phoenix, Az, 2005 . 

54] J. Ye , A multicriteria decision-making method using aggregation operators for
simplified neutrosophic sets, J. Intell. Fuzzy Syst. 26 (5) (2014) 2459–2466 . 

55] H. Zhang , P. Ji , J. Wang , X. Chen , An improved weighted correlation coefficient

based on integrated weight for interval neutrosophic sets and its application
in multi-criteria decision-making problems, Int. J. Comput. Intell. Syst. 8 (6)

(2015) 1027–1043 . 
56] P. Liu , Y. Chu , Y. Li , Y. Chen , Some generalized neutrosophic number Hamacher

aggregation operators and their application to group decision making, Int. J.
Fuzzy Syst. 16 (2) (2014) 242–255 . 

[57] H. Zhang , J. Wang , X. Chen , An outranking approach for multi-criteria deci-

sion-making problems with interval-valued neutrosophic sets, Neural Comput.
Appl. 27 (3) (2016) 615–627 . 
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