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6 Abstract—Themulti-valued evaluations of quality of service (QoS), the complicated constraints between cloud services (CSs) and the

7 collaborative resource assignments addmany difficulties to the problem ofCS composition for data-intensive applications (DiA) in a

8 hybrid cloud (CSCD-HC). Solving theCSCD-HCproblem has become a challenging task due to the uncertainQoS, the diverse hardware

9 configurations and the flexible pricing about CSs. This paper proposes a collaborative optimization approach for CSCD-HC. This

10 approachmodels a DiA as a role-based collaboration (RBC) system and employs the environments—classes, agents, roles,groups, and

11 objects (E-CARGO)model to formalize the CSCD-HC problemwith complicated constraints. To deal with themulti-valuedQoS

12 evaluations, this paper exploits the cloudmodel theory to analyze the performance of CSs, and presents a newmethod utilizing the

13 Mahalanobis distance to improve the similarity calculation of QoS cloudmodels. Based on it, the qualification of candidate CSs can be

14 precisely measured for supporting CS composition. A solution via the IBM ILOGCPLEX optimization package is put forward to solve the

15 CSCD-HC problem. The experimental results demonstrate that the proposed approach is effective and feasible for optimizing CSCD-HC.

16 Index Terms—Collaboration optimization, data-intensive, hybrid cloud, multi-valued QoS evaluations, service composition

Ç

17 1 INTRODUCTION

18 1.1 Motivation

19 WITH the increasing computation complexity and data
20 scale, data-intensive applications (DiAs) have had the
21 urgent needs for high performance computation andmassive
22 data storage to solve the challenging problems, such as DNA
23 computing, astronomical observation and earthquake pre-
24 diction [1], [2], [3]. A DiA system over big data completely
25 depending on private infrastructures is too expensive. The
26 exploitation of public cloud services (CSs) is appealing due to
27 its costs reduction and resource elasticity [4]. For example,
28 the data captured by image sensors is usually partitioned
29 into the sensitive data (<20 percent) and the insensitive data
30 (>80 percent), and the substantial cost can be savedwhen the
31 latter is stored in public CSs [5]; A DiA with dynamic work-
32 load experiences the flash crowd load at rare time (e.g., the 5
33 percent-percentile heavy load time), and the hybrid cloud
34 can provide the service provisioning in a cost-effective way
35 [6], [7]. Now, the hybrid cloud integrating CSs from the

36private and public clouds has been a promising computing
37paradigm [8], [9]. Many enterprises and organizations (e.g.,
38OpenText, Oxford University and SEGA) have successfully
39harnessed the hybrid cloud for their DiAs [10]. The leading
40CS providers (CSPs) (e.g., IBM1, Cisco2 and Tencent3) are
41devoting to helping users construct their hybrid clouds.
42However, in a hybrid cloud, how to achieve the CS composi-
43tion optimization for a DiA consisting of multiple computa-
44tion or storage tasks, with the consideration of quality of
45service (QoS) and cost, is still an open issue. This issue is fac-
46ing a series of challenges as follows:

47(1) The multi-valued QoS evaluations make it hard to
48objectively assess a CS’s performance for DiAs in a
49hybrid cloud. The CS resources in a private cloud are
50limited and usually used to store or process the sensi-
51tive or critical data. Public cloud could provide
52enough CSs for any organization in theory. Unlike
53the reliable and stable private CSs, the QoS of public
54CSs is uncertain and dynamic due to the vulnerability
55of Internet and the diversity of user features [11], [12].
56The quality of experience (QoE) of a public CS is usu-
57ally different from its QoS declared by the CSP [13],
58[14]. Accurately predicting the QoS of public CSs has
59been a challenging problem due to the dynamic cloud
60environment. In a hybrid cloud, a DiA is composed of
61both private CSs and public CSs. The QoS of a private
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62 CS is definite and described easily with a single real
63 number, while the QoS of a public CS may be uncer-
64 tain and depictedwith an interval number or the time
65 series data obtained by continuous monitoring [11],
66 [15]. Thus, how to objectively assess the overall per-
67 formance of CS composition based on the multi-val-
68 ued QoS evaluations [15] consisting of the single
69 number, interval number and time series data, is a
70 key problem for obtaining the optimal CS composi-
71 tion for a DiA in a hybrid cloud.
72 (2) With the increasing CSs from a hybrid cloud inte-
73 grated into DiAs, the complicated constraints about
74 CSs add more difficulties for optimizing CS compo-
75 sition. Recently, CSPs have constantly published
76 diverse CSs with the same or similar functions. For
77 example, Amazon EC24 provides dozens of products
78 aiming at various requirements. The QoS and prices
79 are not the same for different products. In a hybrid
80 cloud, the CSs from different CSPs need to be
81 selected and integrated into a DiA. To obtain the best
82 execution performance and customer satisfaction, CS
83 composition has to meet the various objective and
84 subjective constraints about CSs. These constraints
85 include the collaboration or conflict relationship
86 between CSs determined by the compatibility of var-
87 ious CSP platforms, the users’ preferences for CSPs
88 influenced by the interoperability between CS plat-
89 forms [1], [16]. Therefore, the abundant candidate
90 CSs and the complicated constraints between them
91 make it more challenging to optimize CS composi-
92 tion for DiAs in a hybrid cloud.
93 (3) The CS composition for DiAs is supposed to achieve
94 the collaborative optimization of resource assign-
95 ment in a hybrid cloud. To meet the changing and
96 emerging demands of DiAs, an organization will
97 maintain a sharing resource pool accommodating
98 enough hybrid CSs in a hybrid cloud by reserving
99 the public or private CSs. A DiA usually consists of

100 multiple tasks. The CS with the suitable computation
101 or storage capacity needs to be selected from candi-
102 dates for every task. Then, a DiA can be viewed as a
103 collaboration system involving multiple CSs from
104 CSPs [17], [18]. The capacity of a CS can be depicted
105 by its hardware configuration, cost and QoS. The
106 capacity of different CSs determines their different
107 collaborative abilities. The appropriate CSs should
108 be assigned for a DiA according to its actual requi-
109 rements. Thus, given the uncertainty of QoS, the
110 diversity of hardware configurations and the flexi-
111 bility of pricing, it is an intricate problem to optimize
112 resource assignment based on available CSs in
113 a hybrid cloud for maximizing the synthetically
114 collaborative ability of a DiA.
115 Researchers have put considerable efforts on the service
116 composition problem as it is related to web services, public
117 CSs, mobile services and pervasive services [19], [20], [21],
118 [22], [23], [24]. However, the hybrid cloud paradigm endows
119 DiAs with new characteristics. The problem of CS composi-
120 tion forDiAs in a hybrid cloud (denoted asCSCD-HC) needs

121to deal with the multi-valued QoS evaluations, complicated
122constraints and resource assignment optimization, for achiev-
123ing the optimal resource utilization on the premise of meeting
124the computation and storage requirements of users within
125budget limits.
126Inspired by the role-based collaboration (RBC) theory
127[25], [26], [27], [28], [29], [30], [31], [32], this paper models a
128DiA in a hybrid cloud as an RBC system, and proposes a col-
129laborative optimization approach for the CSCD-HC prob-
130lem. The cloud model theory is employed to analyze the
131characteristics of multi-valued QoS evaluations. By utilizing
132the Mahalanobis distance, a new similarity measurement
133method of cloud models is presented to evaluate the qualifi-
134cation of a CS for a task. The environments—classes, agents,
135roles, groups, and objects (E-CARGO) model is exploited to
136formalize the CSCD-HC problem with complicated con-
137straints, and a solution using IBM ILOGCPLEX optimization
138package5 is put forward to optimize CSCD-HC.

1391.2 Our Contributions

140The main contributions of this paper are as follows:

141(1) Targeting the uncertain and dynamic characteristics
142of CSs, this paper exploits the cloud model theory to
143analyze the multi-valued QoS evaluations. To over-
144come the limitations of existing research, a new
145method utilizing the Mahalanobis distance is pre-
146sented to measure the similarity of QoS cloud mod-
147els. Based on it, the qualification of every candidate
148CS for every task is measured for supporting the
149decision-making of CS composition. The experimen-
150tal results demonstrate that the proposed similarity
151measurement method is effective and can guarantee
152the high accuracy for assessing the CS’s qualification.
153(2) Inspired by the RBC theory, this paper innovatively
154models a DiA based on CS composition in a hybrid
155cloud as an RBC system, and utilizes the E-CARGO
156model to formalize the CS composition optimization
157problem for DiAs in a hybrid cloud. With the consid-
158eration of the multi-valued QoS evaluations and the
159complicated constraints, a solution using CPLEX is
160put forward to solve this problem. The experimental
161results demonstrate that the proposed approach is
162effective and feasible for optimizing the CS composi-
163tion in a hybrid cloud.
164The rest of this paper is organized as follows. Section 2
165reviews the related work. Section 3 gives the problem state-
166ment. Section 4 utilizes the E-CARGO to define the problem
167model. Section 5 presents the qualification assessment
168method via cloud model theory. Section 6 proposes a solu-
169tion to solve the CSCD-HC problem. Section 7 analyzes the
170experiments and results. Finally, the conclusions and fur-
171ther study are given in Section 8.

1722 RELATED WORKS

1732.1 CS Composition Problem

174As an NP hard optimization problem [33], CS composition
175has been attracting much attention from the academic and

4. https://aws.amazon.com/ec2/ 5. https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
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176 industrial community. Some key issues in this problem,
177 such as selecting appropriate CSs from a service pool, satis-
178 fying service composition constraints, coping with dynamic
179 characteristics of CSs and network, must be addressed to
180 assure the users’ satisfaction [34].

181 Recently, a lot of achievements on service composition
182 have been made aiming at the diverse constraints in the
183 web services, public CSs, mobile services and pervasive
184 services. Considering that the QoS correlations between
185 services cause the performance issues for service composi-
186 tion, Deng et al. [19] proposed a correlation-aware service
187 pruning method to select the candidate services. Targeting
188 the mobility, unpredictability, and variation of mobile
189 network’s signal strength, Deng et al. [20] designed a mobil-
190 ity-enabled selection algorithm for composite services. To
191 protect the privacy of CSs in the cross-cloud environment,
192 Dou et al. [21] proposed a privacy-aware CS composition
193 method for big data applications. Combining the service’s
194 past social interactions and popularity, Chen et al. [22] stud-
195 ied the strength of relationships between services and
196 exploited the service’s sociability to improve the quality of
197 service composition. From the perspective of a developer,
198 Deng et al. [23] studied the cost performance driven service
199 mashup by taking the service package into account. To
200 lower the communication cost and composition time, Sie-
201 bert et al. [24] proposed a localized approach for service
202 composition to interconnect various smart devices in perva-
203 sive computing environments. Aiming at the characteristics
204 of DiAs, Liu et al. [35] indicated that the computation tasks
205 related to the fixed datasets should be executed by the CSs
206 of the same CSPs. In addition, the cloud workflow over
207 Hadoop [16] and the Internet of things [36] bring new con-
208 straints for the CS composition problem related to DiAs.

209 Some classic algorithms, evolutionary algorithms and heu-
210 ristic methods are applied to solve the large-scale service
211 composition problem. Wu et al. [37] proposed a QoS-aware
212 model and employed an extended genetic algorithm (GA) to
213 optimize the composite service. Deng et al. [23] formulated
214 the service mashup problem as a an integer-programming
215 problem and proposed a GA-based method to solve it. To
216 address the alliance relationship between services, Zhang
217 et al. [38] presented a particle swarm optimization algorithm
218 to solve service composition. Combining the greedy algo-
219 rithm and ant colony optimization, Yu et al. [39] optimized
220 the service compositions in a multi-cloud environment.

221 Although the above work is helpful, the CS composition
222 optimization for DiAs in a hybrid cloud is still an open
223 issue. To meet the requirements for the computation and
224 storage of big data and obtain the best users’ satisfaction, it
225 is necessary to accurately assess the performance and QoS
226 of CSs and to select the appropriate CSs for a DiA. The exist-
227 ing studies on DiAs focus on data placement and resource
228 provision for improving the performance or reducing the
229 cost [2], [16], [40]. Few of them take into account of the
230 multi-valued QoS evaluations and the complicated con-
231 straints between CSs in a hybrid cloud.

232 2.2 Cloud Model Theory and Its Applications

233 Gaussian distributions are found widely in nature and soci-
234 ety. The Gaussian distribution functions with the parameters

235of expectation ðExÞ and standard variance ðEnÞ are often
236used as themembership functions in fuzzy sets. However, Li
237et al. [41] found that a concept might have the different
238meanings for different people, such that the membership
239degree is difficult to be identified precisely. Therefore, Li
240et al. introduced the hyper entropy ðHeÞ as the standard vari-
241ance of En into the cloud model and proposed the cloud
242model theory. Cloud model theory [41] is an effective tool in
243transforming between the qualitative concepts and their
244quantitative expressions, and can represent the fuzziness,
245the randomness and the relationships of uncertain concepts.
246It has recently been applied successfully in many fields
247including the data processing [42], uncertaintymeasurement
248[43], performance evaluation [44] and decision analysis [45].
249Cloud model theory can also provide the strong support
250for analyzing the latent features hidden in time series data
251[46], and clearly depict the global and local features of time
252series data [47], [48]. In a hybrid cloud environment, the time
253series data is the important component of multi-valued QoS
254evaluations. Considering the advantages in recognizing adap-
255tively the relationships of the uncertain concepts, the cloud
256model theory could help to establish an effective mechanism
257to describe the characteristics of multi-valued QoS evalua-
258tions. Therefore, this paper employs the cloud model theory
259to analyze the multi-valued QoS evaluations, and puts for-
260ward a novelmethod by utilizing theMahalanobis distance to
261improve the similaritymeasurement of QoS cloudmodels.

2622.3 Role-Based Collaboration (RBC)

263In view of the uncertain big data, Wang et al. [17] studied
264the evolution of a service-oriented system via different
265machine learning models. Liang et al. [18] employed large-
266system theory to model a DiA based on CS composition,
267and predicted its system performance via the identification
268and control technologies of time-varying system.
269Although many achievements have been made on ser-
270vice composition, the existing approaches are limited to spe-
271cific scenarios. To the best of our knowledge, no existing
272research has studied the CSCD-HC problem and modeled
273this problem from the perspective of RBC.
274RBC is a promising computational methodology that uti-
275lizes roles as an underlying mechanism to facilitate collabo-
276ration and its model E-CARGO is valuable to model the
277components and processes of collaboration activities [25],
278[26]. E-CARGO model describes an RBC system and its key
279components in the form of formalized language. Based on it,
280researchers can employ its six core concepts, including envi-
281ronment, class, agent, role, group and object, to establish the
282standard mathematical model relevant to the assignment
283problem and combinatorial optimization problem. The
284research results on E-CARGO contribute to the theoretical
285models and solutions for group role assignment (GRA) [27],
286[28], GRA with conflicting agents (GRACA) [29], GRA with
287cooperation and conflict factors (GRACCF) [30] and group
288multi-role assignment (GMRA) [31], [32] problems. Recently,
289E-CARGO has been applied in different fields [49], [50].
290In a hybrid cloud, a DiA is a RBC system involving the
291cooperation of CSs from various CSPs. We introduce the E-
292CARGO model to describe the CSCD-HC problem, propose
293its formal model with multi-constraints, and probe into a
294new idea of CS composition optimization.

MA ET AL.: COLLABORATIVE OPTIMIZATION OF SERVICE COMPOSITION FOR DATA-INTENSIVE APPLICATIONS IN A HYBRID... 3
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296 Assume that a DiA consists of n tasks and there are m
297 candidate CSs in the hybrid cloud. The CSCD-HC problem
298 is to achieve the combinatorial optimization by mapping
299 between n tasks and m CSs. In a GRA problem, a group
300 needs to be initiated by assigning roles to its members or
301 agents to achieve its highest performance [27]. Similarly, a
302 task of a DiA and a candidate CS can be directly modeled as
303 a role and an agent in a GRA problem, respectively. To
304 make this DiA work efficiently, n tasks must be assigned to
305 a group of CSs. Every selected CS plays a specific role asso-
306 ciated with one task. Every task may have the various
307 demands about the hardware configuration, cost and QoS
308 for the expected CS. On the premise of meeting the compu-
309 tation and storage requirements of DiAs within budget lim-
310 its, the CS selected for a task is expected to have the best
311 possible QoS. For one task, the competencies of different
312 CSs are not identical. The qualification value can be used to
313 measure one CS’s competency for a task by evaluating its
314 hardware configuration, cost and QoS. The optimization
315 goal of CSCD-HC is to maximize the sum of qualification
316 values of CSs that are selected for n tasks. Thus, the above
317 characteristics of CSCD-HC problem make it become a spe-
318 cial kind of GRA problem.
319 In a private cloud, no additional cost needs to be paid for
320 CSs; the CSs’ performance is definite and stable; the qualifi-
321 cation of a CS for a task can be measured by directly evalu-
322 ating its QoS. An example is given in Fig. 1a.
323 In this example, some suitable CSs need to be selected
324 from 6 candidates to execute 4 tasks. The qualification value
325 of a CS for a task is described with a decimal within [0,1].
326 There are A4

6ð¼ 360Þ permutations for this example and the
327 different permutation associates the different sum of qualifi-
328 cation. By utilizing the improved K-M algorithm [27], the
329 optimization result can be obtained shown in Fig. 1b. T is an
330 assignment matrix. Ti;j ¼ 1 means that CS#i is selected for
331 executing task #j. According to T; fCS6;CS5;CS2;CS3g is
332 the optimal permutation and gains the largest sum of quali-
333 fication, namely, 3.61.
334 Considering the heavy financial burden of offering a vast
335 private infrastructure, the CS composition architecture for
336 DiAs in a hybrid cloud is designed in Fig. 2.
337 Fig. 2 illustrates a classic DiA—the GWAC light curve
338 processing system [51]. A data-intensive computation plat-
339 form is designed to support the CS composition for this
340 DiA. The core components of this platform include:

341 (1) Resource manager: It manages the CSs in the sharing
342 resource pool. The new CSs may be applied for users

343when the sharing resource pool cannot meet their
344requirements for computation and storage, and
345some long-term unused CSs with unsatisfactory QoS
346or low hardware configuration need to be eliminated
347from the pool.
348(2) Resource monitor: It collects the QoS parameters and
349load status of every CS. The key QoS parameters
350include response time, throughput and so on. The
351load status is evaluated based on the real-time moni-
352toring of CPU, memory, disk and network. Then,
353those CSs with low enough loads may be assigned
354the new computation tasks for improving the
355resource utilization.
356(3) Cloud service composer: It provides the decision-
357making of cloud service composition for DiAs
358according to the specified optimization goals and
359constraint conditions. The hardware configuration,
360cost and QoS of CSs will be considered in the process
361of decision-making.
362In a hybrid cloud, the complexity of CS composition
363for DiAs increases markedly due to the dynamic Internet
364network, the diverse CS products and the flexible pricing.
365We have to face the situation of multi-valued QoS evalua-
366tions [15] consisting of single real number, interval num-
367ber and time series data. By referring to the hardware
368configuration and pricing of Amazon EC2, an example
369with the multi-valued QoS evaluations is shown in
370Table 1. In Table 1, CS1 is a private CS with no extra cost
371for its usage.
372Moreover, the constraints, such as the relationship of col-
373laboration or conflict between CSs and the users’ preferen-
374ces for different CSPs, are the indispensable factors for the
375CSCD-HC problem. An example of constraints about CSs is
376shown in Table 2. From Table 2, 1 means the conflict rela-
377tionship between two CSs, while 0 means that the two CSs
378can collaborate in a DiA; a value greater than 0 indicates a
379positive preference for one CS, a value smaller than 0 means
380a negative preference, and 0 means no preference. Thus, it is

Fig. 1. An example of CS composition for a DiA in the private cloud. (a) A
qualification matrix. (b) An assignment matrix.

Fig. 2. CS composition architecture for DiAs in a hybrid cloud.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. X, XXXXX 2018
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382 qualification of every candidate CS for every task and
383 achieve the CS composition optimization for a DiA in a
384 hybrid cloud.
385 Aiming at the characteristics of multi-valued QoS evalua-
386 tions and the complicated constraints between CSs, this
387 paper employs the cloud model theory to measure the qual-
388 ification of every candidate CS for every task. Based on the
389 E-CARGO model, this paper formulates the CSCD-HC
390 problem as a GRA problem, and proposes a collaborative
391 optimization approach for solving it.

392 4 PROBLEM MODEL

393 A DiA based on CS composition in a hybrid cloud can be
394 viewed as an RBC system. In this system, the CSs from dif-
395 ferent CSPs play different roles to execute a group of rele-
396 vant tasks. As the fundamental model of RBC, E-CARGO
397 brings in new visions to a collaboration system [25]. With
398 the E-CARGO model, the CSCD-HC problem can be well
399 defined and finally solved by virtue of the mature algorithm
400 with high efficiency.

401 4.1 Basic Model

402 Aiming at the characteristics of a DiA in a hybrid cloud, the
403 basic model of CSCD-HC problem based on E-CARGO [25],
404 [27], [29], [30] can be defined as a six-tuple:

X
::¼<E;C;O;R;A;G> ;

406406

407 whose components are explained below. E represents the
408 problem environment. An environment denotes a plan or
409 proposal to compose a set of CSs. C is a set of classes repre-
410 senting the definitions of abstract concepts relevant to E. O
411 is a set of concrete objects connecting to C. R is a set of tasks
412 in a DiA. A task corresponds to a task in GRA problem. A is
413 a set of candidate CSs. A candidate CS corresponding to an
414 agent in GRA problem can play one or several roles in a
415 DiA. G is a set of groups. A group is a team of CSs to be
416 established to fit an environment. In order to gain an opti-
417 mal group, we need to assign the suitable candidate CSs to
418 the appropriate tasks.
419 Assume the nonnegative integersm ¼ ðjAjÞ expresses the
420 size of A; n ¼ ðjRjÞ expresses the size of R; i; i1; i2; . . .
421 expresses the indices of candidate CSs, and j; j1; j2; . . .
422 expresses the indices of tasks. Three supplemental compo-
423 nents of the basic model include:

424 (1) Qualification matrix Q: It is an m� n matrix, where
425 Q½i; j� is the qualification value of CS#i for task#j.

426(2) Task assignmentmatrixT: It is anm� nmatrix, where
427T ½i; j� 2 f0; 1g ð0 � i < m; 0 � j < nÞ expresses if CS
428#i is assigned to task #j. T ½i; j� ¼ 1 means yes and
429zeromeans no.
430(3) Group performance r: It is the sum of qualification
431values of assigned CSs in a group, i.e., r ¼
432

Pm�1
i¼0

Pn�1
j¼0 Q½i; j� � T ½i; j�.

4334.2 Constraints Definitions

434The CSCD-HC problem satisfies the following constraints:

435(1) Weight vector of tasks W : W ½j� 2 ½0; 1� is the weight
436of task #j, satisfying

Pn�1
j¼0 W ½j� ¼ 1. In a DiA, the

437weights of some tasks processing the critical data are
438greater than other tasks processing the non-critical
439data.
440(2) Lower bound vector of tasks L : L½j� expresses how
441many CSs must be assigned to task #j. L½j� > 1
442means that task #j requires multiple CSs for the spe-
443cific demands caused by the parallel computing or
444critical data backups.
445(3) Conflicting CSs matrix C: It is an m�m matrix,
446where C½i1; i2� 2 f0; 1g. C½i1; i2� ¼ 0 means that
447CS#i1 is in conflict with CS#i2 due to the incompat-
448ibility of CSP platforms, while C½i; k� ¼ 0 means that
449CS#i1 can collaborate with CS#i2 in the same
450group.
451(4) Preference vector P : P ½i� 2 ½�0:5; 0:5� ð0 � i < mÞ.
452P ½i� ¼ 0 means no preference for CS#i;P ½i� > 0
453means the positive preference; P ½i� < 0 means the
454negative preference.

4554.3 Objective Function

456Given R, A, Q and the above constraints definitions, the
457CSCD-HC problem is to find a matrix T to:

max r ¼
Xm�1

i¼0

Xn�1

j¼0

Q½i; j� � T ½i; j� �W ½j� � ð1þ P ½i�Þ; (1)

459459

460subject to:

T ½i; j� 2 f0; 1g ð0 � i < m; 0 � j < nÞ; (2)

462462

463

Xm�1

i¼0

T ½i; j� ¼ L½j� ð0 � j < nÞ; (3) 465465

466

Xn�1

j¼0

T ½i; j� � 1 ð0 � i < mÞ; (4)
468468

TABLE 1
An Example with Multi-Valued QoS Evaluations

CS
Hardware Configuration

Cost
($/h)

QoS Evaluations

vCPU Memory
(GiB)

Storage
(GB)

Response time
for task1 ðsÞ

Throughput for
task1 (k/s)

CS1 4 30.5 3�2000 \ 1.9 400
CS2 8 61 160 0.665 ½1:4; 1:7� ½330; 510�
CS3 16 122 320 1.33 f3:1; 3:2; 2:8; . . .g f320; 310; 300; . . .g
CS4 8 61 6�2000 1.38 f2:0; 1:7; 1:6; . . .g f340; 320; 330; . . .g
CS5 16 122 12�2000 2.76 f2:4; 2:1; 2:8; . . .g f180; 230; 390; . . .g
CS6 36 244 24�2000 5.52 f1:4; 1:1; 1:6; . . .g f380; 360; 370; . . .g

TABLE 2
An Example of Constraints About CSs

Users
Collaboration or conflict

Use preference
CS1 CS2 CS3 CS4 CS5 CS6

CS1 0 0 0 0 0 0 0
CS2 0 0 0 0 0 0 0.2
CS3 0 0 0 0 1 0 0
CS4 0 0 0 0 0 0 0.3
CS5 0 0 1 0 0 0 �0.3
CS6 0 0 0 0 0 0 0

MA ET AL.: COLLABORATIVE OPTIMIZATION OF SERVICE COMPOSITION FOR DATA-INTENSIVE APPLICATIONS IN A HYBRID... 5
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469
C½i1; i2� � ðT ½i1; j� þ T ½i2; j�Þ � 1;

ð0 � i1; i2 < m; i1 6¼ i2; 0 � j < nÞ; (5)
471471

472

C½i1; i2� � ðT ½i1; j1� þ T ½i2; j2�Þ � 1;

ð0 � i1; i2 < m; i1 6¼ i2; 0 � j1; j2 < nÞ; (6)

474474

475 where Eq. (2) shows that a CS can only be assigned or not;
476 Eq. (3) requires that a group should satisfy the tasks’ lower
477 bound constraint; Eq. (4) requires that each CS can only be
478 assigned to one task; Eq. (5) shows that the two CSs
479 assigned to execute the same task should satisfy the conflict-
480 ing constraints; Eq. (6) requires that two CSs in a group
481 should meet the conflicting constraints.
482 To solve the objective function, we need to establish an
483 optimal group with the maximum group performance r by
484 selecting the appropriate candidate CSs for n tasks. Thus,
485 the qualification assessment is the key precondition to iden-
486 tify the optimal solution. In a private cloud environment,
487 the CSs’ performance and QoS are definite and stable, and
488 there is no additional cost and complicated constraints; the
489 qualification value of a CS for a task can be easily assessed
490 and described with a decimal by comparing the QoS of CSs.
491 Taking Fig. 1a for example, based on an 6� 4 qualification
492 matrix, Fig. 1b is the optimal solution that makes the group
493 work with L ¼ ½1; 1; 1; 1; 1� and W ¼ ½0:2; 0:2; 0:2; 0:2�; the
494 optimal r is 0.903. However, in a hybrid cloud environment,
495 the virtual hardware configuration, uncertain QoS and flexi-
496 ble pricing of public CSs make it difficult to exactly assess
497 the qualification values of CSs and identify the optimal solu-
498 tion; an example is shown in Tables 1 and 2. Thus, the quali-
499 fication assessment model is proposed in Section 4.4.

500 4.4 Qualification Assessment Model

501 The CSs, possibly integrated into DiAs, are mainly classified
502 into four types as follows: general storage CSs providingmas-
503 sive data storage capacity, such as Amazon S36; general com-
504 putation CSs providing high performance compute capacity,
505 such as Amazon EC2; dedicated storage CSs providing mas-
506 sive storage capacity for specific data formats or types, such
507 as Google Cloud SQL and Cloud Bigtable7; dedicated compu-
508 tation CSs providing high performance platform and efficient
509 algorithms for specific computation tasks, such as Tencent-
510 Cloud cloud recommendation engine8. The qualification of a
511 CS for a task is determined by comparing the task’s requi-
512 rements with the CS’s actual situation. Different tasks have
513 various requirements for CSs in a DiA. These requirements
514 aremainly divided into three aspects as follows:

515 (1) Hardware configuration expectationEH:EH expresses
516 the minimal requirements to complete a task for
517 hardware parameters, such as virtual CPU (vCPU),
518 memory, storage and so on.EH

i ¼ feHi;1; eHi;2; . . .g, where
519 eHi;j is the ith task’s expectation for the jth hardware
520 parameter. For example, the EH of a task is: EH

i ¼
521 f2 vCPU, 4 GiB ofmemory, 1000G storage}.
522 (2) Cost expectation EC: EC expresses the cost expecta-
523 tion of CSs. EC ¼feC1 ; eC2 ; . . . ; eCng, where eCi is the ith

524CS’s cost expectation and its default value is the
525mean cost of all candidate CSs.
526(3) QoS expectation: On the condition of satisfying EH

527and EC, the CS selected for a task usually is expected
528to obtain the best possible QoS.
529The CSs’ actual situations include: the real hardware
530status RH

i ¼ frHi;1; rHi;2; . . .g ð0 � i < mÞ, the real usage cost

531RC ¼ frC1 ; rC2 ; . . . ; rCmg and the QoS evaluations RQ
i ð0 � i <

532mÞ. RQ
i ¼ frQi;1; rQi;2; . . .g , where rQi;k is the CS #i’s multi-val-

533ued evaluations relevant to the kth QoS parameter. Taking
534CS3 from Table 1 for example, RH

3 ¼ {16 vCPU, 122 GiB of
535memory, 320G storage}; rC3 ¼ 1:33 $=h; the multi-valued
536evaluations of response time and throughput are collected,
537denoted as rQ3;1 and rQ3;2, respectively. rQ3;1 ¼ f3:1s; 3:2s;
5382:8s; . . .g, rQ3;2 ¼ f320k; 310k; 300k; . . .g. Then, the qualifica-
539tion value of CS#i for task#j can be measured as follows:

Qi;j ¼ fH
i;j � fQ

i;j � fC
i;j; (7)

541541

542where fHi;j, f
C
i;j and fQ

i;j are the hardware conformity, cost
543conformity and QoS conformity of CS #i for task #j,
544respectively. Considering that EH is the minimal hardware
545requirements to complete a task, a qualified CS should have
546more hardware resources than EH. Then, the hardware con-
547formity fH

i;j is obtained by:

fH
i;j ¼ 0; if 8k; rHi;k < eHi;k

1; other:

�
(8)

549549

550

551The cost conformity fCi;j is calculated by:

fC
i;j ¼

1; if rCi � eCj

1� ððrCi � eCj Þ
.
eCj Þ2; if eCj < rCi � 2eCj

0; if rCi > 2eCj
a; if CSi is a private CS;

8>>><
>>>:

(9) 553553

554where 0 � fC
i;j � 1; a denotes the cost coefficient of private

555CSs. a is set as a fixed value because there is no additional
556usage fee for private CSs. The value range of a is suggested
557from 1.0 to 1.3 according to the application scenarios.
558In practice, the public CSswith a high hardware configuration
559usually have a high price. Thus, we only assign the appropri-
560ate resources for a DiA according to its actual requirements.
561To gain the QoS conformity fQ

i;j, we need to analyze the

562different QoS parameters individually in accordance with
563their types: gain or loss type. For example, response time is
564the loss type of QoS parameter, and throughput is the gain
565type of QoS parameter. When the evaluation data about
566multiple QoS parameters is available, fQ

i;j is calculated

567by aggregating the conformity values of multiple QoS
568parameters with weighted operator. For example, if the
569tasks’ QoS expectation of a DiA involves two QoS parame-
570ters, namely, response time and throughput, then

fQi;j ¼ wrt � frt
i;j þ wtp � ftpi;j ; (10)

572572

573where wrt and wtp are the weights of response time and
574throughput, respectively; frt

i;j and ftpi;j are the response time
575conformity and throughput conformity of CS#i for task
576#j, respectively. In a hybrid cloud, we have to face the

6. https://aws.amazon.com/s3/
7. https://cloud.google.com/products/storage/
8. https://www.qcloud.com/product/cre
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577 multi-valued QoS evaluations consisting of single real num-
578 ber, interval number and time series data. To calculate the
579 QoS parameters’ conformity and the CS’s qualification, we
580 introduce the cloud model theory to analyze the multi-
581 valued QoS evaluations in Section 5.

582 5 QUALIFICATION ASSESSMENT VIA CLOUD

583 MODEL THEORY

584 In this section, we define a QoS cloud model to analyze the
585 multi-valued QoS evaluations and calculate the qualifica-
586 tion value of candidate CSs for the tasks in a DiA.

587 5.1 QoS Cloud Model

588 A QoS cloud model [42] is composed of three numerical
589 characteristics, namely Ex (expectation), En (entropy) and
590 He (hyper entropy), defined as cm ¼ fEx;En;Heg. Ex is
591 the most representative value of QoS, En denotes the granu-
592 larity scale of QoS, and He depicts the uncertainty of the
593 QoS granularity. From the viewpoint of fuzzy set, Ex is the
594 expected value of QoS with the membership degree 1, En
595 represents the uncertainty of QoS values, which can be used
596 to calculate the membership degree, and He depicts the
597 uncertainty of membership degree. The QoS cloud models
598 make it possible to get the distributing range of QoS by
599 exploiting the continuous monitoring data.
600 A QoS cloud model consists of many cloud drops. The
601 CSs‘ multi-valued QoS evaluations obtained in multiple
602 timeslots can be viewed as the cloud drops and sent to a
603 reverse cloud generator (RCG) [52], where the QoS cloud
604 model’s three-digit features can be calculated by:

Ex ¼ V ¼ 1
N

Ptotal
k¼1 vk

En ¼ ffiffiffi
p
2

p � s ¼ ffiffiffi
p
2

p � 1
N

Ptotal
k¼1 vk � Exj j

He ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � En2j jp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

Ptotal
k¼1 ðvk � V Þ2 �En2

��� ���
r

;

8>>>><
>>>>:

(11)606606

607 where vk is the QoS evaluation obtained in timeslot #k;Ex
608 is the mean value of QoS evaluations; s is the standard devi-
609 ation of Ex;S2 is the sample variance of Ex, and total is the
610 number of timeslots. For example, assume Sa ¼ f0:305;
611 0:383; 0:331; 0:311; 0:338; 0:272; 0:262; 0:315; 0:329; 0:357g is
612 the response time data of CS a. The QoS cloud model related
613 to it is cm ¼ f0:3203; 0:0342; 0:0121g.

614 5.2 Similarity Measurement of QoS Cloud Model

615 To select the appropriate candidates for CS composition, it is
616 crucial to identify the differences of the CSs’ QoS by calculat-
617 ing the similarity of QoS cloud models. Some methods, such
618 as DropCM method [53], LICM method [54], EDCM method
619 [55], ECM method and MCM method [46], have been pro-
620 posed to compute the similarity between two cloud models.
621 However, thesemethods have their own limitations [15], such
622 as the time-consuming computation, obvious calculation
623 errors, and unsatisfactory calculation precision. To overcome
624 the limitations of the existing methods, in the CS selection
625 research,Ma et al. [15] presented a vector comparisonmethod
626 called as VCM method by combining the orientation similar-
627 ity and dimension similarity; whereas this method cannot
628 adaptively adjust the regulatory factor, which determines the

629weights of the orientation similarity anddimension similarity,
630in light of the diverse requirements of different tasks in a DiA.
631Therefore, this paper proposes a new measurement method
632utilizing the Mahalanobis distance to compute the similarity
633between two QoS cloud models for the qualification assess-
634ment in the CSCD-HCproblem.
635The Mahalanobis distance is a method of measuring the
636distance of data covariance that can effectively calculate the
637similarity between two unknown sample sets. The Mahala-
638nobis distance is independent of the measurement scales
639unlike the Euclidean distance, and it remains unaffected by
640the different dimensions between coordinates. Recently, the
641Mahalanobis distance has been applied in many research
642fields [56], [57].
643This paper utilizes the Mahalanobis distance to improve
644the computational accuracy of QoS cloud model similarity,
645noted as MaCM method. Let cm1 ¼ V 1

�! ¼ ðv11; v12; v13Þ ¼
646ðEx1; En1; He1Þ and cm2 ¼ V2

�! ¼ ðv21; v22; v23Þ ¼ ðEx2; En2;
647He2Þ be two QoS cloud models. Then, the Mahalanobis dis-
648tance between cm1 and cm2 is calculated by:

MDðcm1; cm2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð V1
�!� V2

�!ÞS�1ð V1
�!� V2

�!ÞT
q

; (12)

650650

651where V1
�!� V2

�! ¼ ðv11 � v21; v
1
2 � v22; v

1
3 � v23Þ; T represents the

652transposition operation; S�1 is the inverse matrix of sample
653covariance matrix, and it is a symmetry positive definite
654matrix as follows:

S�1 ¼
s1;1 s1;2 s1;3
s2;1 s2;2 s2;3
s3;1 s3;2 s3;3

2
4

3
5

656656

657

658Then, the Mahalanobis distance can also be defined by:

MDðcm1; cm2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

1�m;n�3
sm;nðv1m � v1mÞðv2n � v2nÞ

q
; (13)

660660

661where S�1 reveals the relationship between Mahalanobis
662distance and Euclidean distance. When S�1 ¼ I (an identity
663matrix), the three dimensions of cloud model, namely Ex,
664En andHe, have the same fluctuation range, and we have

MDðcm1; cm2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

m¼1
ðv1m � v2mÞ2

r
;

666666

667which is equivalent to the Euclidean distance. When S�1 is a
668diagonal matrix, for example,

S�1 ¼
s1;1 0 0
0 s2;2 0
0 0 s3;3

2
4

3
5;

670670

671we have

MDðcm1; cm2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

m¼1
sm;mðv1m � v2mÞ2

r
;

673673

674which is equivalent to the weighted Euclidean distance.
675The smaller the Mahalanobis distance, the more similar
676two QoS cloud models. Therefore, the similarity between
677two QoS cloud models can be obtained by:

MaCM simðcm1; cm2Þ ¼ 1

1þMDðcm1; cm2Þ : (14) 679679

680
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681 5.3 Qualification Assessment Method

682 The qualification assessment method is stated as follows:

683

684 Step 1: Transform the multi-valued QoS data into the QoS
685 cloud models. If the QoS evaluation is described as
686 the time series data or interval numbers, all evalua-
687 tions are sent to RCG, and a QoS cloud model includ-
688 ing three numerical characteristics can established
689 by Eq. (11). If the QoS evaluations are the single-val-
690 ued data, let pi be the unique evaluation value; then,
691 a specific QoS cloud model fpi; 0; 0g is obtained.
692 Thus, the cloud model matrix of QoS evaluations for
693 m CSs can be described as follows:

CM ¼
cm1;1 cm1;2 . . . cm1;n

cm2;1 cm2;2 . . . cm2;n

..

. ..
.

cmi;j
..
.

cmm;1 cmm;2 . . . cmm;n

2
6664

3
7775; (15)

695695

696 where cmi;j ¼ ðExji ; Enj
i ;HejiÞ is the QoS cloud model

697 of service #i for task #j. One task may experience
698 the different QoS when running in various CS infra-
699 structures. Due to the differences between task
700 types, tasks may obtain the different QoS even if
701 they are executed in the same CS.
702

703 Step 2: Identify the positive and negative ideal solutions for
704 every task. An excellent CS should provide a steady
705 QoS for users. The smaller the fluctuation ranges of
706 En and He, the steadier the QoS. According to this
707 principle, we define the ideal solutions. For the gains
708 type, the positive and negative ideal solutions are
709 identified by:

cmþ
j ¼ max

1�i�m
fExjig; min

1�i�m
fEnj

ig; min
1�i�m

fHejig
� �

cm�
j ¼ min

1�i�m
fExjig; max

1�i�m
fEnj

ig; max
1�i�m

fHejig
� �

:

(16)

711711

712

713 For the loss type, the positive and negative ideal
714 solutions can be defined by:

cmþ
j ¼ min

1�i�m
fExjig; min

1�i�m
fEnj

ig; min
1�i�m

fHejig
� �

cm�
j ¼ max

1�i�m
fExjig; max

1�i�m
fEnj

ig; max
1�i�m

fHejig
� �

:

(17)

716716

717

718

719 Step 3: Calculate the CS’s QoS conformity for every task. By
720 utilizing the Mahalanobis distance to measure the
721 similarity between the QoS cloudmodel and the ideal
722 solutions, the QoS conformity of every CS for every
723 task is calculated by:

fQ
i;j ¼

MDðcmi;j; cm
�
j Þ

MDðcmi;j; cm
þ
j Þ þMDðcmi;j; cm

�
j Þ

; (18)

725725

726 where fQi;j 2 ½0; 1�. The larger fQ
i;j, the better the QoS

727 of CS#i for task#j.
728

729 Step 4: Employ the weighed operator to calculate the com-
730 prehensive QoS conformity. fQ

i;j is obtained by:

fQi;j ¼
Xz
k¼1

fQ;k
i;j � wQ;k: (19)

732732

733where z is the number of QoS parameters; fQ;k
i;j and

734wQ;k are the conformity of the kth QoS parameter
735and its weight. When a user has no explicit preferen-
736ces for QoS parameters, wQ;k ¼ 1=z.
737

738Step 5: Calculate the hardware conformity and cost confor-
739mity by Eqs. (8) and (9), respectively.
740

741Step 6: Compute the qualification value of every CS for one
742task by Eq. (7). Then, the qualification matrix Q is
743available.

7446 SOLUTION TO THE CSCD-HC PROBLEM

745Our previous work [27], [32] provides a solid solution
746framework for solving the CSCD-HC problem, i.e., role
747negotiation, agent evaluation, and group role assignment.
748RBC and GRA are applied and extended to adapt solving
749the CSCD-HC problem from the following aspects:

750(1) CSCD-HC can be taken as a specialized GRA prob-
751lem, and the assessment of CSs’ qualification is critical
752for solving it. The qualification of a CS is determined
753by its hardware configuration, cost and QoS; espe-
754cially, the QoS of public CSs, affected bymany factors,
755is usually dynamic and uncertain. Thus, we propose
756a cloud model theory-based method to assess
757the qualification of public CSs. This work extends the
758methodology of agent evaluation in RBC to solve
759problems in the same category.
760(2) The existing solutions to GRA problem only support
761the single-valued qualification of the agents. In the
762CSCD-HC problem, we have to face the situation of
763multi-valued QoS evaluations. It is necessary to
764adopt the solving algorithm to support the multi-val-
765ued data including decimal, interval number and
766time series data.
767(3) In the original GRA problem, the feasible solution
768may be available if m > n and 0 � Pn�1

j¼0 L½j� � m;
769whereas the conditions,m � n and 0 � Pn�1

j¼0 L½j� � m,
770are satisfied in a CSCD-HC problem because there
771are enough candidate CSs from the public cloud. This
772work in fact adds a specific solution to a set of
773extendedGRAproblems.
774(4) Considering that the private CSs have no extra usage
775cost, the private CSs should be used in precedence
776when they meet the basic requirements of tasks.
777Thus, we define a threshold vector of task ðtÞ to
778depict the tasks’ requirements. t states that a CS is
779qualified for task #j only if its qualification value is
780greater than t½j�.

7816.1 Steps of Solving the CSCD-HC Problem

782Based on the above analysis, the main steps of solving the
783CSCD-HC problem are described as follows:
784

785Step 1: By analyzing the characteristics of a DiA, collect in
786the data-intensive computation platform its require-
787ments including hardware configuration expectation
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788 ðEHÞ, cost expectation ðECÞ and QoS parameter pref-
789 erences ðwQ;kÞ; determine the private CSs’ cost coeffi-
790 cient ðaÞ; set the qualification threshold vector of
791 task ðtÞ; identify the weight vector of task ðWÞ, lower
792 bound vector of task ðLÞ, conflicting CS matrix ðCÞ
793 and preference vector ðP Þ.794

795 Step 2: By comparing the task’s requirements with the
796 CS’s actual situations, calculate the hardware con-
797 figuration conformity (fH

i;j) by Eq. (8) and the cost

798 conformity fC
i;j by Eq. (9), and the fCi;j of private

799 CSs is set as a.800

801 Step 3: Transform the multi-valued QoS evaluations into
802 QoS cloud models and calculate every CS’s QoS con-
803 formity for every task by Eqs. (18) and (19).804

805 Step 4: Compute every CS’s qualification for every task by
806 Eq. (7). Then, the qualificationmatrix ðQÞ is obtained.807

808 Step 5: Copy Q to a temporary matrix QT and update the
809 values of QT according to t;W and P. If QT ½i; j� <
810 t½j�; letQT ½i; j� ¼ 0. Next, QT ½i; j� ¼ QT ½i; j� �W ½j� �
811 ð1þ P ½i�Þ.812

813 Step 6: Based on the given QT;W;L;C and P, solve the
814 objective function of the CSCD-HC problem.815

816 Step 7: Obtain an optimal solution if the role assignment
817 matrix ðT Þ is available. If there is no feasible solution,
818 reduce the values of t½j� and redo the above opera-
819 tions from Step 5. If a feasible solution is still unavail-
820 able although all acceptable t½j� has been used, then
821 the data-intensive computation platform notifies the
822 administrators to lower the expectations for CSs or
823 reserve more CSs with high performance from the
824 public cloud.

825 6.2 Solving the CSCD-HC Problem

826 To solve the CSCD-HC problem, we use the IBM ILOG
827 CPLEX optimization packages, which is different from the
828 original usage of the Optimization Programming Language
829 (OPL) of CPLEX optimization studio. Using the package by
830 designing a Java program can result in better performance
831 than using the OPL’s compiler. To obtain a solution with
832 the CPLEX package, we need to collect the four required
833 elements and convert them into the forms required by
834 CPLEX. The main steps are stated as follows:

835 (1) Identify four elements, including objective function
836 coefficients, constraint coefficients, right-hand side
837 constraint values, and upper and lower bounds,
838 required by CPLEX package.We useQT;L;C and T to
839 define a linear programming (LP) problem in CPLEX.
840 QT is the objective function coefficient. T is the varia-
841 bles, and its upper and lower bounds are 1 and 0.
842 (2) Add the objective and constraint expressions. The
843 objective of CSCD-HC problem should be described
844 by a formula of the one-dimensional array forms of
845 matrices QT; T and C and the linear expressions of
846 W, L and P.
847 First, transform the matrices into 1-dimensional arrays
848 as follows: X½i� nþ j� ¼ T ½i; j�; V ½i� nþ j� ¼ QT ½i; j� and
849 F ½i� nþ j� ¼ C½i; j� ð0 � i < m; 0 � j < nÞ. Second, to add
850 the optimization objective, the following methods need to
851 be invoked:

IloIntVar½�X ¼ cplex:intVarArray m 	 n; 0; 1ð Þ;
cplex:addMaximizeðcplex:scalProdðX; V ÞÞ; 853853

854

855Third, to add the constraints to CPLEX, we iteratively
856add each constraint expression into CPLEX:

8571) For Eq. (3):

IloLinearNumExpr expr1 ¼ cplex:linearNumExprðÞ;
for int j ¼ 0; j < m; jþþð Þ

expr1:addTerm 1; X iþ j 	 n½ �ð Þ;
cplex:addEq expr1; L i½ �ð Þ; 859859

860

8612) For Eq. (4):

IloLinearNumExpr expr2 ¼ cplex:linearNumExprðÞ;
for int j ¼ 0; j < n; jþþð Þ

expr2:addTerm 1; X n 	 iþ j½ �ð Þ;
cplex:addLe expr2; 1:0ð Þ; 863863

864

8653) For Eqs. (5) and (6):

for int i ¼ 0; i < m 	m; iþþð Þf
int row ¼ i=m; int col ¼ i%m;

if row >¼ colð Þ
continue;

if 1 ¼¼ C i½ �ð Þf
IloLinearNumExpr conflict ¼ cplex:linearNumExprðÞ;
for int j ¼ 0; j < n; jþþð Þf

conflict:addTerm 1; X row 	 nþ j½ �ð Þ;
conflict:addTerm 1; X col 	 nþ j½ �ð Þ;

g
cplex:addLe conflict; 1ð Þ;
g

g 867867

868

869(4) Invoke the cplex:solveðÞ method of the CPLEX pack-
870age to maximize this formula based on the objective
871and constraint expressions.

8727 EXPERIMENTS

873The related work [5], [6], [7], [8], [9], [10] indicates that the
874hybrid cloud computing paradigm facilitates to significantly
875save monetary cost and improve performance for the enter-
876prises and organizations consumers. In this paper, the pro-
877posed collaborative optimization approach for CSCD-HC
878centers on helping consumers to achieve the optimal
879resource utilization, on the premise of meeting their compu-
880tation and storage requirements for DiAs within budget
881limits. The experiments mainly answer the two questions:

882

883(1) Could the proposed approach accurately assess
884the qualification of CSs in the multi-valued QoS
885evaluations environment? Assuming that both
886the hardware configuration and the cost expecta-
887tion have been satisfied, Sections 7.1 and 7.2 ver-
888ify whether the cloud model-based assessment

MA ET AL.: COLLABORATIVE OPTIMIZATION OF SERVICE COMPOSITION FOR DATA-INTENSIVE APPLICATIONS IN A HYBRID... 9



IEE
E P

ro
of

889 method can select the CS with the best QoS for
890 a task of DiAs in a hybrid cloud.
891 (2) Could the proposed approach obtain the optimal
892 CS composition solution for DiAs in a hybrid
893 cloud? Considering that the CSs with a high
894 hardware configuration usually have a high
895 price in reality, only the appropriate resources
896 are assigned for a DiA according to its actual
897 requirements. Section 7.3 illustrates a complete
898 case analysis for solving CSCD-HC. Assuming
899 that the qualification values of CSs have been
900 accurately assessed, Section 7.4 verifies the prac-
901 ticability and effectiveness of the proposed
902 approach by the comparative analysis.

903 7.1 Case Analysis on Similarity Measurement
904 Method of QoS Cloud Models

905 In this section, a case is analyzed to validate the similarity
906 measurement method of QoS cloud model (MaCM method)
907 proposed in Section 5.2. Assume that there are six QoS
908 cloud models, noted as cm1 � cm6, as shown in Table 3.
909 From Table 3, obviously, cm2 is the more similar cloud
910 model to cm1 than cm3. To compare the accuracy of differ-
911 ent similarity measurement methods, the similarity values
912 between cm1 and other cloud models were calculated, with
913 the results displayed in Table 4.
914 As shown in Table 4, we can analyze it as follows:
915 (1) The DropCM method mistakenly identifies cm3 as the
916 most similar cloud model to cm1. In addition, some cloud
917 models that differ from cm1, such as cm4 and cm6, also
918 obtain high similarity values. The calculation results of the
919 DropCM method fail to reflect the real differences between
920 the QoS cloud models. (2) Although cm2 is identified as the
921 most similar cloud model to cm1, the LICM method has
922 the same flaw as the DropCM method. The maximum and
923 minimum obtained by DropCM method are 1.0000
924 and 0.9967, respectively. The apparently different cloud
925 models have the high similarity values which easily cause
926 errors when complex calculations are based on these val-
927 ues. (3) The ECM method mistakenly identifies cm4 as the
928 most similar cloud model to cm1, although the He of cm4

929 has a very unusual value, about 41.5 times larger than that
930 of cm1, which demonstrates the irrationality of ignoring
931 the influence of He. (4) The MCM method mistakenly iden-
932 tifies cm5 as the most similar cloud model to cm1. It is obvi-
933 ous that cm2 is more similar to cm1 than cm5. The MCM
934 method produces misleading results because the influence
935 of He is exaggerated in the integral area calculation.
936 (5) The EDCM method mistakenly identifies cm3 as the
937 most similar cloud model to cm1 because three-digit fea-
938 tures in a cloud model have various measurement scales.
939 In addition, Ex is more than ten times larger than En and
940 He, according to Table 4. Therefore, the subtle differences

941in Ex between two QoS cloud models will hide the drastic
942fluctuations in En and He. (6) The MaCM method accu-
943rately identifies cm2 as the most similar cloud model to
944cm1. The similarity measurement results can reflect the
945real differences between two QoS cloud models more
946precisely than the other five methods.

9477.2 Accuracy Analysis of Qualification Assessment

948The proposed qualification assessment method utilizes the
949Mahalanobis distance to measure the similarity of QoS
950cloud models. The precise assessment of CSs’ qualifications
951is the prerequisite for solving the CSCD-HC problem. Thus,
952the following experiments validate the accuracy of the pro-
953posed method in the multi-valued QoS evaluations environ-
954ment. The experiments use the real WS-DREAM dataset
955#2,9 which collects the QoS evaluations from 142 users of
9564,532 services in 64 timeslots.
957First, randomly select a potential user from the dataset,
958and use the method proposed in Ref. [15] to identify the
959neighboring users for the potential user and to predict the
960QoS values of the candidate CSs. Second, the hardware con-
961formity and cost conformity of candidates are fixed as 1.0
962because the hardware and cost information about CSs are
963unavailable in the dataset. Finally, employ the proposed
964qualification assessment method to evaluate the candidates
965and select the CS with the largest qualification value for the
966potential user.
967The mean absolute error ðMAEÞ is used to assess the
968accuracy of the proposed method.MAE is defined by:

MAE ¼ 1

S

XS
s¼1

Xtotal
k¼1

v	k � vok
�� ��; (20)

970970

971where S denotes the number of service selection executed;
972v	k is the QoS value in timeslot #k of the optimal CS experi-
973enced by a potential user; vok is the QoS value in timeslot #k
974of the predicted optimal CS.
975We compare the service selection approach via the pro-
976posed qualification assessment method based on MaCM
977method, noted as SS_MaCM, with the other six approaches as
978follows: (1) the service selection approach using the DropCM
979method, noted as SS_DropCM; (2) the service selection
980approach using the LICMmethod, noted as SS_LICM; (3) the
981service selection approach using the ECM method, noted as
982SS_ECM; (4) the service selection approach using the MCM
983method, noted as SS_MCM; (5) the service selection approach
984using the EDCM method, noted as SS_EDCM; and (6) the

TABLE 3
Six QoS Cloud Models

cm1 cm2 cm3 cm4 cm5 cm6

Ex 9.400 9.100 9.200 9.400 9.100 8.200
En 0.326 0.390 0.520 0.326 0.490 0.606
He 0.019 0.019 0.133 0.789 0.029 0.037

TABLE 4
Similarity Measurement between QoS Cloud Models

cm2 cm3 cm4 cm5 cm6

DropCM 0.9932 0:9936 0.9880 0.9925 0.9732
LICM 1:0000 0.9997 0.9967 0.9998 0.9992
ECM 0.6752 0.7437 1:0000 0.6996 0.1979
MCM 0.7197 0.5860 0.2490 0:7300 0.2753
EDCM 0.7653 0:7686 0.5650 0.7451 0.4480
MaCM 0:5543 0.2800 0.2467 0.3571 0.2328

9. https://github.com/wsdream/WS-DREAM
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986 of interval numbers [58], noted as SS_PDRIN. The experi-
987 ments are performed by extracting the response time data
988 from the dataset. Every experiment consists of 9 batches, in
989 which 500 services are used in order. The first batch uses
990 services #1–#500; the second batch uses services #501–#1000;
991 and the last batch uses services #4,001–#4,500. Every batch is
992 executed repeatedly for 50 rounds when the matrix density
993 of the data is 60 and 80 percent, respectively. The MAE val-
994 ues are shown in Fig. 3.
995 From Fig. 3, SS_ECM obtained the largest MAEs in all
996 approaches. The reason is that the QoS cloud models estab-
997 lished based on the dataset are with the large hyper entropy
998 values. The unsatisfactory results are certainly caused when
999 the influence of hyper entropy is ignored. The MAEs of

1000 SS_DropCM and SS_LICM are also quite unsatisfactory,
1001 because they cannot identify the exact differences between
1002 QoS cloud models. The similarity between two significantly
1003 different cloud models is still very high, which can easily
1004 cause mistakes. Meanwhile, the MAEs of SS_LICM may be
1005 larger than SS_DropCM, because SS_DropCM can improve
1006 its accuracy to a certain extent through the massive
1007 calculations involving the large amounts of sampling cloud
1008 drops. SS_MCM achieved better results than SS_ECM,
1009 SS_DropCM, and SS_LICM. However, it is difficult to
1010 improve its accuracy significantly due to the errors caused by
1011 area integral calculations. The accuracy of SS_EDCMwas bet-
1012 ter than that of SS_MCM overall, although lack of consider-
1013 ation of the differences betweenmeasurement scales reduced
1014 its accuracy. The accuracy of SS_PDRIN is somewhat similar
1015 to SS_EDCM because SS_PDRIN exploits the cloud model
1016 to identify the trustworthiness interval number. However,
1017 the possibility degree ranking of interval numbers used by
1018 SS_PDRIN also easily bring about errors in the multi-valued
1019 QoS evaluations environment. SS_MaCM obtained the

1020highest accuracy in all approaches because it is capable of
1021precisely measuring subtle differences between QoS cloud
1022models. The results also demonstrate that the performance
1023fluctuations of the original QoS data and the matrix density
1024are closely related to MAEs. Greater performance uncer-
1025tainty is bound to affect the precision of QoS cloud models,
1026and then severely disrupts the accuracy of service selection
1027approaches. The lower the matrix density, the larger the
1028distortion of the QoS cloud model, which leads to the larger
1029MAEs.

10307.3 Case Analysis for Solving CSCD-HC

1031A case analysis is given to illustrate the proposed collab-
1032orative optimization approach based on the example in
1033Table 1 and Table 2. Let m ¼ 6; n ¼ 4; L ¼ ½1; 2; 1; 1�, W ¼
1034½0:3; 0:15; 0:15; 0:3�;a ¼ 1:2 and t½j� ¼ 0:3. EH and EC are
1035shown in Table 5. The complete multi-valued evaluations
1036about response time are shown in Table 6.
1037The response time cloud models matrix is as follows:

CM ¼

f1:90; 0:00; 0:00gf1:40; 0:00; 0:00gf2:30; 0:00; 0:00gf2:70; 0:00; 0:00g
f1:55; 0:19; 0:10gf1:55; 0:31; 0:16gf1:45; 0:19; 0:10gf1:40; 0:25; 0:13g
f2:95; 0:19; 0:02gf2:30; 0:44; 0:06gf2:10; 0:54; 0:19gf1:56; 0:37; 0:13g
f1:80; 0:29; 0:04gf1:34; 0:20; 0:08gf2:73; 0:42; 0:11gf2:07; 0:26; 0:06g
f2:28; 0:36; 0:09gf2:43; 0:21; 0:04gf1:35; 0:17; 0:08gf3:13; 0:18; 0:07g
f1:48; 0:23; 0:13gf1:51; 0:24; 0:10gf1:48; 0:23; 0:13gf1:46; 0:23; 0:11g

2
6666664

3
7777775
:

10391039

10401041Based on CM; fH; fC and fQ are obtained as follows:

fH ¼

1 1 1 1
0 1 1 0
0 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1

2
6666664

3
7777775
fC ¼

1:2 1:2 1:2 1:2
1 1 1 1
1 1 0:89 1
1 1 0:86 1
1 0:29 0 1
0:86 0 0 0:99

2
6666664

3
7777775
fQ ¼

0:76 0:94 0:48 0:62
0:55 0:38 0:55 0:51
0:41 0:50 0:42 0:45
0:58 0:63 0:49 0:53
0:40 0:43 0:67 0:31
0:48 0:55 0:40 0:55

2
6666664

3
7777775
:

10431043

10441045Then, the Q matrix is obtained, and the final optimized
1046CS composition is obtained with the proposed solution via
1047CPLEX. The matrices Q;QT , and T are as follows:

Fig. 3. Accuracy analysis. (a) the matrix density is 60%; (b) the matrix
density is 80%.

TABLE 5
EH and EC of a DiA

Tasks
EH

EC ð$=hÞ
vCPU Memory (GiB) Storage (GB)

Task1 4 30 4000 4.0
Task2 4 30 160 1.5
Task3 4 20 100 1.0
Task4 8 60 6000 5.0

TABLE 6
Multi-Valued QoS Evaluations About Response Time

Task1 Task2 Task3 Task4

CS1 1.9 1.4 2.3 2.7
CS2 ½1:4; 1:7� ½1:3; 1:8� ½1:3; 1:6� ½1:2; 1:6�
CS3 f3:1; 3:2; 2:8; 2:9; 2:7; 3:0g f2:7; 2:1; 1:5; 2:6; 2:1; 2:6; 2:0g f2:5; 2:1; 1:4; 1:9; 1:7; 3:0g f1:4; 1:7; 1:9; 1:3; 1:2; 2:1; 1:3g
CS4 f2:0; 1:7; 1:6; 1:9; 1:4; 2:2g f1:2; 1:3; 1:2; 1:5; 1:1; 1:5; 1:6g f2:3; 3:3; 2:8; 2:4; 2:5; 3:1g f2:2; 1:9; 1:7; 2:1; 1:9; 2:4; 2:3g
CS5 f2:4; 2:1; 2:8; 2:5; 1:9; 2:0g f2:7; 2:5; 2:4; 2:2; 2:6; 2:1; 2:5g f1:2; 1:3; 1:7; 1:2; 1:4; 1:3g f3:1; 3:3; 3:0; 3:3; 2:9; 3:0; 3:3g
CS6 f1:4; 1:1; 1:6; 1:5; 1:4; 1:9g f1:4; 1:1; 1:6; 1:5; 1:4; 1:9; 1:7g f1:4; 1:1; 1:6; 1:5; 1:4; 1:9g f1:4; 1:1; 1:6; 1:5; 1:4; 1:9:1:3g

MA ET AL.: COLLABORATIVE OPTIMIZATION OF SERVICE COMPOSITION FOR DATA-INTENSIVE APPLICATIONS IN A HYBRID... 11
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0:91 1:13 0:58 0:74
0 0:38 0:55 0
0 0:50 0:37 0

0:58 0:63 0:42 0:53
0:40 0:13 0 0:31
0:41 0 0 0:54

2
6666664

3
7777775
QT ¼

0:27 0:17 0:09 0:22
0 0:07 0:10 0
0 0:07 0:06 0

0:23 0:12 0:08 0:21
0:08 0 0 0:06
0:12 0 0 0:16

2
6666664

3
7777775
T ¼

1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 1

2
6666664

3
7777775
:

10491049

1050

1051 Thus, the optimal CS composition is obtained by selecting
1052 five CSs, namely, fCS1; fCS3;CS4g;CS2;CS6g, for task1�
1053 task4, and the best group performance r is 0.73.

1054 7.4 Performance Analysis for Solving CSCD-HC

1055 For no related work on CSCD-HC, two typical approaches,
1056 the exhaustion approach and the greedy approach, are
1057 employed to compare with the proposed approach in the
1058 following experiments. The optimal solution obtained
1059 by the exhaustion approach is used as the baseline, and the
1060 precise of other two approaches can be calculated as:

precise ¼ r	
�
rb; (21)

10621062

1063 where rb is the group performance of optimal solution
1064 obtained by the exhaustion approach and r	 represents the
1065 group performance obtained by other approach.
1066 The experiments are executed in Dell notebook with Intel
1067 i7-6500U processor @2.5 GHz 2.6 Hz and 8G memory,
1068 and use MyEclipse (V2015 Stable 1.0) with JavaSE 1.7
1069 in Windows 10 Home (64-bit). In the experiments, let n ¼ 6;
1070 t½j� ¼ 0:2 and 0 � L½j� � 3 ð0 � j < nÞ; m changes from 8 to
1071 30 with a step of 2. In each step, the test is repeated for
1072 50 rounds. In each round, Q;L;W;P and C are randomly
1073 generated. The proportion of elements assigned 1 in C and
1074 the proportion of nonzero elements in P are held within
1075 10 percent. Fig. 4 shows the performance comparison about
1076 the precise and execution time of three approaches. The par-
1077 tial data about execution time is displayed in Table 7.

1078The execution time of the exhaustion approach shows the
1079trend of rapid growth in Fig. 4b, and it reaches 175.13s when
1080m ¼ 30. Especially, its execution time will increase exponen-
1081tially when n is larger than 6, which means there are more
1082tasks in a DiA. Fig. 4a shows that the greedy approach is
1083enable to gain the larger precise value with the increasing
1084candidate CSs. As shown, the greedy approach could quickly
1085find the feasible solutions with the precise values more than
10860.94. However, it cannot ensure to obtain the optimal solution
1087in majority of cases. Fig. 4 demonstrates that the proposed
1088approach is effective to acquire the optimal solution at a
1089lower time cost, compared to the exhaustion approach.
1090m and n are the most important parameters to determine
1091the problem complexity. The following experiments focus
1092on the performance analysis for verifying the practicability
1093of the proposed approach when m changes from 20 to 200
1094with a step of 10. To compare the impact of the ratio of n=m,
1095we form two groups of tests whose n=m ratios are 1=3 and
10961=5, respectively. The results are shown in Fig. 5. Fig. 5 dem-
1097onstrates that the proposed approach is practical. The larger
1098m and n require more time than that of a group with the
1099smaller m and n. When m is smaller than 140, the time cost
1100is within 2s. Thus, this proposed approach could provide
1101the optimal CS composition solution within an acceptable
1102computation time, and meet the vast majority of application
1103requirements for solving the CSCD-HC problem.
1104In addition, the number of constraints also greatly affects
1105the solution’s performance. Fig. 6 compares the average
1106execution time when the proportion of elements assigned
11071 in C and the proportion of nonzero elements in P are
1108confined within 5–20 percent, respectively. It is clear that a
1109greater proportion leads to the dramatic increase in time for
1110finding the feasible solution satisfying all constraints when
1111m is larger than 160.

Fig. 4. Performance comparison. (a) precise; (b) execution time.

TABLE 7
The Partial Data About Execution Time (ms)

Approaches
m

8 10 12 14 16 18 20

Exhaustion
approach

8.437 15.060 79.825 340.596 932.385 2740.844 5621.183

Proposed
approach

5.000 5.000 5.000 5.000 5.000 5.800 5.600

Greedy
approach

0.010 0.016 0.027 0.019 0.034 0.039 0.050

Fig. 5. Performance analysis. (a) n ¼ m=3; (b) n ¼ m=5.

Fig. 6. Performance analysis when n ¼ m=4; 0 � L½j� � 3, and 0 � j < n.
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1112 8 CONCLUSION AND FURTHER STUDY

1113 Aiming at the characteristics of the CSCD-HC problem, this
1114 paper proposes a collaborative optimization approach. This
1115 approachmodels a DiA based on CS composition in a hybrid
1116 cloud as an RBC system and employs the E-CARGO model
1117 to formalize the CSCD-HC problem with the complicated
1118 constraints. From the perspective of RBC, the E-CARGO’s
1119 utilization facilitates to improve the extendibility of the
1120 CSCD-HCproblemmodel and the generality of solutions. To
1121 deal with the multi-valued QoS evaluations, this paper
1122 exploits the cloud model theory to analyze the dynamic per-
1123 formance of CSs, and present a new method utilizing the
1124 Mahalanobis distance to improve the similarity measure-
1125 ment of QoS cloud models. The precise assessment of CSs’
1126 qualification is available, and provides the strong supports
1127 for solving the CSCD-HC problem. The solution using IBM
1128 ILOG CPLEX package is put forward to optimize CSCD-HC.
1129 The experiments demonstrate that the proposed approach
1130 is effective and feasible for solving the CSCD-HCproblem.
1131 As for future work, we will study the following problems:
1132 (1) the dynamic extensibility mechanisms of CS resources in
1133 the sharing resource pool of the hybrid cloud for reducing
1134 the possibility of no solution and meeting the increasing
1135 requirements from DiAs; (2) the load balancing mechanisms
1136 and the parallel task scheduling strategies for enhancing the
1137 CS utilization.
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