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Abstract—To prevent students from learning risks and improve
teachers’ teaching quality, it is of great significance to provide
accurate early warning of learning performance to students by
analyzing their interactions through an e-learning system. In exist-
ing research, the correlations between learning risks and students’
changing cognitive abilities or learning states are still underex-
plored, and the personalized early warning is unavailable for stu-
dents at different levels. To accurately identify the possible learning
risks faced by students at different levels, this article proposes a
personalized early warning approach to learning performance for
college students via cognitive ability and learning state modeling.
In this approach, students’ learning process data and historical
performance data are analyzed to track students’ cognitive abilities
in the whole learning process, and model their learning states from
four dimensions, i.e., learning quality, learning engagement, latent
learning state, and historical learning state. Then, the Adaboost
algorithm is used to predict students’ learning performance, and
an evaluation rule with five levels is designed to dynamically provide
multilevel personalized early warning to students. Finally, the com-
parative experiments based on real-world datasets demonstrate
that the proposed approach could effectively predict all students’
learning performance, and provide accurate early warning services
to them.

Index Terms—Cognitive ability modeling, learning performance
prediction, learning state modeling, multilevel early warning (EW),
personalized EW.
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NOMENCLATURE

CDM Cognitive diagnosis model [1].
IRT Item response theory [2].
DINA Deterministic inputs, noisy and-gate [3].
FuzzyCDF Fuzzy cognitive diagnosis framework [4].
FC-CDF Fuzzy cloud cognitive diagnosis framework [5].
BKT Bayesian knowledge tracing [6].
DBKT Dynamic Bayesian knowledge tracing [7].
LFA Learning factors analysis [8].
DKT Deep knowledge tracing [9].
LPKT Learning process-consistent knowledge tracing

[10].

I. INTRODUCTION

A. Motivations

BY MINING and analyzing the data related to students’
learning processes, early warning (EW) of learning per-

formance aims to identify the students who might be at risk
for their learning in the future [11]. EW could not only urge
students to make timely self-correction but also assist teach-
ers in adapting their instructional strategies, and is of great
significance in promoting students’ academic success and im-
proving teachers’ instructional quality [12]. Moreover, in recent
years, China is vigorously promoting the Engineering Education
Accreditation.1 It is necessary to establish an effective quality
monitoring mechanism of the teaching process to ensure that
students achieve the overall teaching objectives of a course and
the training objectives of a major. Therefore, it has become a
hotspot to provide dynamic and accurate EW to students with
different characteristics on the basis of continuous monitoring
of their whole learning process [13], [14].

Despite the efforts of previous research in EW of learning
performance, there are still the following limitations [15], [16],
[17].

1) EW is usually modeled as a classification problem of
learning performance, and mainly focuses on identifying
students at risk of dropout [17], failure [18], or delayed
graduation [19]. In practical teaching process, we should
not only pay more attention to the underachieving stu-
dents, but also pay attention to all students’ fluctuations
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in academic performance. For example, both George and
Bob rank around 50% in the exams in a course. George’s
performance has remained around the top 50% of the
class in previous courses, while Bob’s ranking has con-
sistently declined from the top 10% to 50%. Therefore, it
is urgent to warn George about the fluctuations and send
prompts to teachers to provide appropriate intervention
and personalized instruction to George. However, existing
research lacks the ability to analyze the different learning
characteristics of students at different levels [20], failing
to provide personalized EW to all students.

2) Existing research usually predicts a student who might be
at risk for their learning in the future based on the student’s
demographic information and test scores. Nevertheless,
it is difficult to reveal the correlation between learning
risks and students’ changing cognitive abilities or learning
states. For example, suppose that George and Bob with
similar background have an average score of about 70
in a phase exam of a multiphase course. However, their
learning process data recorded in an e-learning system
could demonstrate some significant differences between
George and Bob. George has mastered all key knowledge
concepts and actively participated in the daily learning
process. However, as a result of carelessness, George has
poor performance in this exam. Bob has insufficient mas-
tery on knowledge concepts and has not actively engaged
in daily learning activities. Obviously, since George and
Bob face different levels of learning risks, we should
send different EW signals to them. However, the existing
research has failed to accurately evaluate the students’
changing cognitive abilities and learning states. Thus, it is
not conducive to achieve accurate and personalized EW
[20].

Aiming at the limitations of existing research, this article pro-
poses a personalized EW approach to learning performance via
cognitive ability and learning state modeling. In this approach,
the students’ changing cognitive states are dynamically analyzed
based on their learning process data. Then, the learning process
data and historical performance data from an e-learning system
are mixed to model the students’ learning features from multiple
dimensions. Based on these features, the students’ learning
performance in the next phase is predicted. By comprehensively
analyzing the historical and predicted data about the students’
learning performance, a five-level evaluation rule for EW is
designed to provide multilevel and differentiated early warning
results to all students. The experiments based on real-world
datasets demonstrate that the proposed approach is effective to
predict all students’ learning performance, and provide accurate
early warning services.

B. Our Contributions

The main contributions of this article are as follows.
1) To explore the correlation between learning risks and

students’ changing cognitive abilities or learning states,
this article proposes a comprehensive approach to model

students’ cognitive abilities and learning states. The stu-
dents’ cognitive abilities are measured with a DKT model,
and the students’ learning states are modeled from four di-
mensions, i.e., learning quality (LQ), learning engagement
(LE), latent learning state (LLS), and historical learning
state (HLS). The modeling results of students’ cognitive
abilities and learning states serve as a crucial decision-
making foundation for personalized early warning.

2) To accurately identify the earning risks of students at
different levels, this article innovatively designs a person-
alized early warning approach to learning performance
from the perspective of multiclassification. The learning
performance of students is predicted via an Adaboost al-
gorithm and divided into five grades, i.e., excellent, good,
medium, pass, and fail. Then, the five-level evaluation
rules are designed to provide differentiated EW to stu-
dents. The proposed approach is conducive to preventing
students from encountering learning risks and helping
teachers improve their teaching for achieving the teaching
objectives of a curriculum.

II. RELATED WORK

This section reviews the existing research on cognitive ability
modeling and EW approaches of learning performance. The
related work on cognitive ability modeling is divided into two
categories, i.e., cognitive diagnosis and knowledge tracing. The
related work on EW is presented from three aspects, i.e., tra-
ditional EW, EW via cognitive ability analysis, and multilevel
EW.

A. Cognitive Ability Modeling

In the domain of smart education, the students’ mastery of
knowledge concepts is employed to represent their cognitive
abilities [5]. The modeling of cognitive ability helps us under-
stand a student’s knowledge concepts mastery based on their re-
sponse behaviors and outcome data. In recent years, researchers
have proposed various approaches for cognitive ability model-
ing, such as cognitive diagnosis, knowledge tracing, coverage
models, differential models, and deviation models [21]. Among
them, cognitive diagnosis and knowledge tracing are currently
the two most mainstream methods.

1) Cognitive Diagnosis: In the domain of psychological and
educational measurement, cognitive diagnosis refers to the di-
agnostic assessment of a student’s cognitive process and knowl-
edge concepts [22]. CDMs are typically classified into discrete
CDMs and continuous ones.

IRT [2] is one of the most representative continuous CDMs.
IRT assumes that each student possesses a unique latent trait,
representing their potential ability. It models students’ cogni-
tive abilities with a single value by analyzing students’ re-
sponses to exercises. However, a single value cannot reflect
student’s abilities in distinct knowledge concepts. Besides, IRT
has some limitations, e.g., the complex calculations and the
difficulty in satisfying the assumption of a single dimension.
In contrast, the DINA [3] model establishes the link between
students’ cognitive ability and knowledge concepts via the
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Q-matrix [23], which indicates the association between exer-
cises and knowledge concepts. With the incorporation of Q-
matrix and students’ historical learning data, each student’s
cognitive ability is represented by a binary multidimensional
vector.

To solve the problem of the DINA model’s inability to diag-
nose subjective exercise, FuzzyCDF [4] utilizes fuzzy intersec-
tion and fuzzy union operations to model the cognitive response
patterns of objective and subjective questions, respectively.
Thus, students’ cognitive ability is expressed as the membership
degree of a fuzzy set, i.e., a real number in a range from 0 to
1. To further improve the diagnostic efficiency of FuzzyCDF,
FC-CDF [5] utilizes the cognitive cloud to analyze students’ skill
proficiency with three numerical features, i.e., the expectation,
degree of variation, and variation frequency. The experiments
indicate that FC-CDF has significantly enhanced the execution
time of cognitive diagnosis. To improve the execution efficiency
of cognitive diagnosis, we presented a neutrosophic cognitive
diagnosis approach [24] with consideration of the complexity
of knowledge concepts and the influence of forgetting factors.
This approach employs the neutrosophic set theory to com-
prehensively evaluate students’ cognitive ability on knowledge
concepts from three features, i.e., understanding level, degree of
misunderstanding, and uncertainty.

2) Knowledge Tracing: The knowledge tracing is a dynamic
approach to evaluate the students’ mastery of specific knowledge
concepts by analyzing their interaction data with the exercises
[25]. It is applied to many downstream tasks, such as cognitive
ability modeling and performance prediction [21]. The classical
knowledge tracing models could be divided into three categories
as follows.

1) Probabilistic models: It assumes that the student’s learn-
ing process follows a Markov process and that the out-
comes are statistically interpretable. For example, BKT
model, proposed by Corbett and Anderson [6], is a spe-
cialized instance of the hidden Markov model. It models
students’ learning processes with Bayesian networks, and
diagnoses students’ cognitive abilities by incorporating
both slip and guess factors. However, BKT models each
knowledge concept independently, but ignores the prereq-
uisite or similar relationship within concepts. To address
this limitation, Käser et al. [7] put forward a DBKT model.
This model utilizes a dynamic Bayesian network to model
the hierarchical relationships among knowledge concepts.
Consequently, it could simultaneously model students’
cognitive abilities on different knowledge concepts within
a single model.

2) Logistic model: It estimates the parameters about students’
learning abilities and practices the parameters about test
difficulty and test differentiation through mathematical
functions to predict the probability of students answering
exercises correctly. For example, the learning factors anal-
ysis (LFA) [8] model assumes that learning is an ongoing
and dynamic process, and it models students’ cognitive
abilities using variables, such as their participation rate
and the number of attempts at exercises. By using them,
the LFA model would predict the probability of students
answering exercises correctly.

3) Deep learning-based models: It utilizes the robust fea-
ture extraction capabilities of deep learning algorithms
to effectively model the intricate cognitive processes of
students. Considering the fact that knowledge tracing is
a sequential prediction task, Piech et al. [9] put forward
a DKT model by introducing a recurrent neural network
(RNN). However, DKT fails to capture students’ learning
gain, which limits its capacity of modeling students’ real
learning processes. To tackle it, Shen et al. [10] proposed
an LPKT model. It integrates the effect of learning gain
and forgetting to model students’ learning processes. The
experiments show that LPKT is more effective in predict-
ing students’ future performance.

B. EW of Learning Performance

EW refers to analyzing students’ learning data (e.g., learning
background, learning behaviors, test scores) using certain crite-
ria, and sending prompt signals to teachers and students based
on the analysis results [26].

1) Traditional EW: Traditional research on EW typically
relies on the analysis of students’ scores and learning behavioral
data for detecting students’ potential learning risks in advance,
such as dropout, failure, and delayed graduation [27].

Dropout prediction is designed to predict whether a student
will quit a course before it ends, and the outcomes are usually
binary [28]. For example, by collecting the data from students’
logs and demographic information to analyze the correlation
between dropouts from different courses, Feng et al. [17] pro-
posed a context-aware feature interaction network to predict
online students’ dropout behavior in an e-learning system. Based
on textual data (i.e., papers, emails, and tasks) collected from
students’ learning processes, Phan et al. [29] put forward a
decision support framework based on logistic regression (LR)
for identifying students at risk of dropout in early phases of a
course.

Besides, there is a significant focus on identifying learning
risks, such as failure and delayed graduation, in traditional
research on EW. Hu et al. [18] employed a decision tree (DT)
and AdaBoost algorithm to predict whether students pass the
final exam by collecting their learning behavior data from online
courses. Asif et al. [19] conducted a case study by collecting
learning data from students at a college to identify those students
who are at risk of delayed graduation in the early years of college.
The results of the study indicate a correlation between students’
final graduation performance and their learning performance in
certain courses in the early years. Therefore, it is significant to
monitor students’ academic grades in real time for predicting
their learning performance and achieving accurate EW. By
analyzing students’ historical data, Polyzou and Karypis [30]
predicted whether students would pass the course exams before
the start of the semester. Alshanqiti and Namoun [31] proposed
a hybrid regression model to optimize the prediction accuracy
of student academic performance. To evaluate whether students
would pass the course exams, Osmanbegovic and Suljic [32] in-
vestigated the impact of students’ socio-demographic variables,
achieved results from high school and from the entrance exam,
and attitudes toward studying.
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2) EW via Cognitive Ability Analysis: In traditional research
on EW, it is difficult to accurately model students’ changing
cognitive states by analyzing their grades or learning behavioral
data. Therefore, the EW approach via cognitive ability analysis
is gradually receiving attention from researchers.

There has been some progress in the existing research. Wang
et al. [33] proposed an EW model from the perspective of knowl-
edge concepts. They identified key knowledge concepts with
Bayesian networks and sensitivity analysis, and the students’
overall mastery on these knowledge concepts is predicted for
EW based on their learning assessment data. Zou et al. [34]
presented a new approach to analyze students’ learning behavior
data according to two novel features, i.e., knowledge points and
question types. Based on the analysis results, the students’ final
performances are predicted by neural networks. To improve
the accuracy of prediction, Alcaraz et al. [35] proposed that
students’ learning performance could be predicted by analyzing
their weekly assignments. Besides, Okubo et al. [36] put forward
an integrated review system via cognitive ability to improve
students’ learning. The system designs a review dashboard based
on students’ cognitive abilities, and then provides students with
appropriate learning materials to support their reviews.

There have been efforts to explore the impact of students’
cognitive abilities on their learning performance. However, the
existing research usually ignored the fluctuations of students’
cognitive abilities in the learning process, failing to accurately
capture the correlation between students’ learning performance
and their changing cognitive abilities. Our approach devotes to
address this issue.

3) Multilevel EW: Researchers have proposed some multi-
level EW approaches based on the students’ learning perfor-
mance. The learning performance refers to students’ situation
related to learning process, including their completion of learn-
ing tasks, grades, and LE [37]. The LE is usually measured by
the scores and the frequency of interactions [38].

The existing research on learning performance prediction usu-
ally applies the classification algorithms or network models to
predict the students’ final exam grades or learning performance
(i.e., excellent, good, and poor) by analyzing their learning data
[39]. Pandey and Taruna [40] proposed a multilevel classification
model of learning performance based on a DT algorithm. In this
model, the students’ learning performance are classified into four
levels, i.e., A, B, C, and F. Guo et al. [41] put forward a learning
performance prediction model via the artificial neural networks
to classify the students’ learning performance into five levels,
i.e., O, A, B, C, and D. Arnold and Pistilli [42] used traffic lights
to provide EW to students based on their academic performance.
Romero et al. [43] compared different data mining methods
and techniques for classifying students based on their Moodle
usage data and the final marks obtained in their courses. Jain and
Solanki [44] analyzed the performance of four machine learning
algorithms on educational dataset used for the early prediction
of student performance, and used a multiclass classification in
which students are divided into three classes, namely, poor-,
average-, and good-performing students. Hua [45] analyzed the
multilevel EW from a theoretical perspective by dividing the
EW into five levels, i.e., severe, moderate, light, normal, and

Fig. 1. Framework of the system.

best. This mechanism provides an EW service to students by
analyzing qualitative or quantitative data about the mind state,
learning performance, and activity participation. However, there
is no research on the algorithm implementation and experimental
validation of multilevel personalized EW.

The above approaches do not differentiate the learning char-
acteristics of students at different levels, failing to provide
personalized EW to all students. In this case, teachers cannot
provide targeted guidance to those students at risk of learning.

III. DESCRIPTION OF EW SYSTEM

Aiming at the limitations of existing work and the practical
teaching requirements, a personalized EW system has been
developed, and applied to the practical teaching process for
college students. An overview of the system’s framework is
shown in Fig. 1.

The core modules of the system are as follows.
1) Data acquisition and processing: In this module, the data

related to students’ learning process are collected from an
e-learning system, whereas historical performance data
are collected from a teaching management system. After
the data are cleansed, the preprocessed data are stored in
the learning history database.

2) EW analysis: By utilizing students’ learning data from the
learning history database, this module provides personal-
ized EW analysis to students. The main functions are as
follows.
a) Dynamically model the students’ skill proficiency re-

quired by exercises via cognitive ability modeling ap-
proach.

b) Analyze the students’ learning state features from four
dimensions based on their skill proficiency.

c) Predict the students’ learning performance in the cur-
rent phase based on their learning state features.

d) Evaluate the students’ EW level based on the predicted
learning performance in the current phase.

3) EW visualization: To illustrate EW results in a visual man-
ner, students’ cognitive abilities, learning performance,
EW level, and their learning process data are presented
by graphs, e.g., radar charts, pie charts, bar charts, and
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Fig. 2. Diagram of cognitive ability diagnosis.

Fig. 3. Diagram of early warning of learning performance.

line graphs. Two examples about the implementation of
cognitive ability diagnosis and EW are shown in Figs. 2
and 3.

IV. RESEARCH DESIGN

To further explore the research design of the personalized EW
system introduced in Section III, we will explain in detail the
problem definition, the personalized EW framework of learning
performance, and the personalized EW approach to learning
performance in this section.

A. Problem Statement

The problem scenario of personalized EW is described as
follows. In the learning process of a course, a teacher assigns
learning tasks to students in the e-learning system according to
the order of chapters or knowledge concepts. Then, the system
records all the learning data generated by students as they
complete the tasks. Considering that the learning period of a
course is usually as long as 3–4 months, we could analyze the
students’ data relevant to this course’s different learning phases
corresponding to different learning tasks. Based on the analysis
result, we could accurately model students’ cognitive abilities
and learning states for predicting their learning performance in
the future. Finally, the differentiated EW results are provided

dynamically and accurately to all students. To further explicit
the problem, three definitions are given as follows.

Definition 1. Learning phase: A learning phase refers to a
period in a course’s learning process, and corresponds to a certain
learning task. Usually, a learning phase lasts for 1–3 weeks. If
a course reaches the learning phase #i, which is defined as the
current phase, we name the learning phases from #1 to #(i-1) as
previous phases and phase #(i+1) as the next phase.

Definition 2. Learning process data: It refers to the data
related to students’ participation in learning activities from
learning phase #1 to phase #i of the course. For example,
after George participates in an exam, the learning process data,
including the time to complete the exam, scores, and response
records. The data about response records reveal whether the
student answered correctly for each exercise.

Definition 3. Historical performance data: It refers to the
student’s grades in the prerequisite courses or previous phases
of the course.

Then, a multilevel personalized EW problem is defined as
follows. Given student u’s learning process data in phases #1–
#i and historical performance data, how to predict u’s learning
performance in phase #(i+1) and evaluate his EW level. This
problem is shown in Fig. 4.

From Fig. 4, George is in the learning phase #i of the course,
and has taken a periodical test. Then, George’s learning process
data about this test are recorded by the e-learning system. We
assume that this test includes j exercises, denoted as e1, e2,
…, ej. The system will record the related data of answering
each exercise, e.g., answer record, score, and answer time. After
George finishes all learning tasks for each phase, there are two
types of tests for George to complete. To assess George’s mastery
of the knowledge concepts learned in the phase, a periodical
test is organized for him to complete within a specified time.
In addition, to assist George in consolidating and reinforcing
his mastery of knowledge concepts, the self-tests would be
automatically generated by the system based on the diagnosis
results of his cognitive ability. George could decide whether to
complete these tests after class according to his actual needs.
Meanwhile, George’s historical performance data are extracted
from the teaching management system. As shown in Fig. 4,
George’s historical performance data include the grades of four
prerequisite courses, i.e., c1–c4. In addition, it is necessary to
use the Q-matrix for accurately assessing George’s cognitive
ability. The Q-matrix is annotated by experts to describe the
correlation between exercises and knowledge concepts, and the
element in Q-matrix denotes whether a knowledge concept is
required to answer an exercise correctly. Specifically, the value
of 1 represents that the knowledge concept is required to answer
the exercise correctly, otherwise, the value is 0.

In summary, this article needs to address two key issues as
follows: how to model student George’s cognitive ability and
learning state with the input data consisting of his learning
process data produced in the current phase, historical perfor-
mance data, and the Q-matrix? Based on this, how to predict
George’s learning performance in the next phase and finally
give a personalized EW result that could accurately reflect the
fluctuation of his learning situation?
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Fig. 4. Multilevel personalized early warning problem.

Fig. 5. Framework of PerLEW2LP. (a) Model cognitive ability. (b) Analyze learning state. (c) Predict learning performance. (d) Evaluate early warning level.

B. Personalized EW Framework

This article proposes a personalized early warning approach
to learning performance based on cognitive ability and learning
state modeling, denoted as PerLEW2LP. By tracking the learn-
ing performance of all students, PerLEW2LP identifies those
who might be at risk for their learning, providing precise EW
services to all students. The framework of PerLEW2LP is shown
in Fig. 5.

The process of PerLEW2LP consists of the following four
steps.

1) Diagnose the students’ mastery of knowledge concepts
(i.e., skill proficiency) via a cognitive ability modeling
approach.

2) Model comprehensively the learning state features by
combining students’ skill proficiency from four dimen-
sions, i.e., LQ, LE, LLS, and HLS.

3) Employ the Adaboost algorithm to predict students’ learn-
ing performance in the next phase based on their learning
state features.

4) Provide the multilevel personalized EW to students by
analyzing their performance in the current phase and HLS.

C. Personalized EW Approach

1) Model Student’s Cognitive Ability: To assess students’ LQ
and predict their learning performance, it is essential to model
their cognitive abilities. Cognitive diagnosis and knowledge
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Fig. 6. Process of cognitive ability modeling.

tracing are currently the two most common approaches to mod-
eling cognitive ability. They are suitable for different scenarios
[21]. Cognitive diagnosis employs the limited data about the
students’ answer results of exercises to evaluate their cognitive
states in the current phase. In contrast, knowledge tracing uses
more data about students’ answer sequences from the progres-
sive learning process to analyze their cognitive abilities. The
modeling flow of the two approaches is shown in Fig. 6.

a) Cognitive diagnosis: Cognitive diagnosis typically em-
ploys probability formulas to establish the static model of stu-
dents’ cognitive abilities from two aspects, i.e., exercises and
knowledge concepts. Here, knowledge concepts are synony-
mous with skills. Suppose that George has finished n exercises in
the learning process, and these exercises are related to k skills, his
responses to n exercises are represented as an answer sequence
x1, x2, x3, . . . , xn. Then, by introducing Q-matrix, George’s
cognitive ability is modeled as a proficiency vector over k skills,
denoted as η = {η1, η2, . . . , ηk}.

However, different forms of cognitive diagnosis results would
be generated by different approaches. Specifically, in the DINA
[3] model, a student’s mastery of skill i, denoted as ηi, is
represented as either 0 or 1. In FuzzyCDF [4], ηi is represented
as a fuzzy real number between 0 and 1. In the neutrosophic
CD approach [24], ηi is represented as a fuzzy interval with
three values, e.g., [0.50, 0.75, 0.46], indicating the degree of
understanding, misunderstanding, and uncertainty.

By analyzing the results of students’ responses to exercises
over a continuous timeslot, knowledge tracing aims to predict
their skill proficiency by applying sequential prediction tech-
niques. Suppose Bob answers n exercises in the timeslot from t1
to tn of the learning process, his answer records on n exercises
are denoted as an answer sequence x1, x2, x3, . . . , xn. Then,
by introducing Q-matrix, Bob’s mastery of skills examined in
n exercises is modeled to predict his probability of answering
next exercise correctly. Since each exercise is usually related to
a single skill in knowledge tracing, the probability of a student
answering an exercise correctly corresponds to the student’s skill
proficiency.

b) Knowledge tracing: To model students’ cognitive abil-
ities more precisely, knowledge tracing considers not only
students’ response records but also the order of their answer
sequences. In addition, with the development of deep neural
networks, the input data used in knowledge tracing changed from
1-D data to multidimensional data. For example, considering the

forgetting factors in a learning process, LPKT [10] model further
analyzes students’ answer time data to diagnose their cognitive
abilities.

In PerLEW2LP, we would apply DKT [9] model to diagnose
students’ cognitive abilities. First, referring to Q-matrix, the
response records of Bob would be converted into input vectors
consisting of three types of data, i.e., exercise id, skill id, and
response result, which denotes whether an exercise is answered
correctly. The input vector is then fed into the DKT model,
after the transformation of hidden states, the probability vector
y of Bob’s correctly answering these exercises is output. The
probability of Bob’s correctly answering an exercise denotes his
skill proficiency in the DKT model. The main equations of DKT
are shown as follows:

ht = tanh(Whxxt +Whhht−1 + bh) (1)

yt = σ(Wyhht + by) (2)

where Whx denotes the weight matrix of input data, Whh denotes
the weight matrix of the long short-term memory (LSTM)
network, bh and by denote the bias of the hidden state and
output layer, respectively, σ denotes the sigmoid function, and
ht denotes the student’s hidden cognitive state at timeslot #t.

2) Analyze Student’s LS: After assessing students’ cogni-
tive abilities, we further model their learning state features
from four aspects, i.e., LQ, LE, LLS, and HLS. Take student
u as an example, u’s learning state is described as a vector
fu = {qu, eu, lu, su}, where qu, eu, lu, and su are four vectors,
representing u’s LQ, LE, LLS, and HLS, respectively. Next, we
will introduce each aspect of the learning state features in detail.

a) Learning quality: It is evident that students’ LQ is
easily influenced by their learning states. Therefore, we reversely
model students’ learning states by analyzing their LQ in skills
[46]. Since a periodical test is uniformly organized by a teacher
for all the students, the score and skill proficiency related to
this test directly reflect students’ actual learning effects. Based
on this, we select three metrics to measure students’ LQ, i.e.,
completion rate, average accuracy, and average skill proficiency
of the periodical test, denoted as zc, zα, and zη . The three metrics
are given by

zc = nz/na (3)

zα = ny
z/n

q
z (4)
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zη =
∑
k∈Kz

ηkz

/
|Kz| (5)

where nz is the number of periodical tests completed by one
student, na denotes the total number of periodical tests, ny

z is
the number of exercises correctly answered by the student in the
completed periodical test, nq

z is the total number of exercises
completed by the student, ηkz denotes the proficiency of the
student on skill k, and Kz refers to the set of skills involved
in periodical tests completed by this student, k ∈ Kz.

Thus, the u’s LQ is defined by qu = {zcu, zαu , zηu}.
b) Learning engagement: LE is a crucial factor for mea-

suring students’ learning outcomes [47]. The self-tests are au-
tomatically generated by the e-learning system according to
students’ skill proficiency, which aims to assist them in consol-
idating and reinforcing poorly mastered skills. Students could
decide whether to complete these tests after class according to
their actual needs. In this case, the completion of these tests could
serve as an indicator of their LE. Based on this, we select three
metrics to measure students’ LE, including times of completing
self-tests, average accuracy rate of self-tests, and average skill
proficiency of self-tests. They are denoted as κn, κα, and κη ,
respectively. κα and κη are calculated by

κα = ny
κ/n

q
κ (6)

κη =
∑
k∈K

ηkκ

/
|Kκ| (7)

where ny
κ is the number of exercises answered correctly by one

student in the self-tests, nq
κ is the total number of exercises

completed by the student, ηkκ is the student’s proficiency on skill
k, and Kκ is the set of skills involved in self-tests, k ∈ Kκ.

Thus, u’s LE is given by eu = {κn
u, κ

α
u , κ

η
u}.

c) Latent learning state: The LLS of students influences
their learning performance. It is challenging to observe directly.
The skill proficiency and answer time, which are generated by
students in the learning process, could reflect their academic
effectiveness and answering patterns. In this case, we would
explore students’ LLS from the two types of data with a joint
network combining a convolutional neural network (CNN) and
LSTM network.

The specific details of the structure are given as follows.
1) Input layer: Suppose that student u completes J periodical

tests, each test examining M skills. The answer time matrix
of u is defined as Xu = [au

j,m
]
J×M

, where auj,m denotes
the answer time that u has spent on exercise m in test
j. The matrix of skill proficiency is represented as Yu =
[ηu

j,k
]
J×K

, where ηu
j,k

denotes u’s proficiency on skill k
involved in test j. The missing values in Xu and Yu are
filled with zero.

2) CNN layer: The matrix of answer time and skill profi-
ciency of student u are fed into CNN, respectively. Then,
a nonlinear mapping is performed on this matrix via
the rectified linear unit (ReLU) activation function, and
the matrices cXu and cYu are generated. Taking Xu as an

example, the convolution layer is defined as

cXu = σ(WcXu + bc) (8)

where Wc is the weight matrix of the convolutional layer. We
specifically choose a convolutional kernel of 1×N to extract
horizontal features of the data. The value of N is set as �M/2�,
and M denotes the size of a column in matrix Xu, bc denotes the
bias of CNN, and σ denotes the ReLU activation function.

3) LSTM layer: To further explore the LLS of student u, the
outputs cXu and cYu from the convolutional layer are input
to the LSTM to extract the hidden state features of two
types of data. The hidden state features are denoted as
hX
u and hY

u , respectively. Taking cXu as an example, cXu
is divided into J rowwise vectors based on the number
of periodical tests, and these vectors are represented as
cXu = {cX1

u , cX2
u , . . . , cXJ

u }, where c
Xj
u denotes the vector

of answer time for u on periodical test j. The hidden state
feature is obtained by

h
Xj
u = σ(W c

Lc
Xj
u +W h

Lh
Xj−1
u + bL) ∀j=1, 2, . . . , J

(9)
where W c

L and W h
L denote the weight matrices of the LSTM

layer, bL denotes the bias of the LSTM layer, hXj−1
u denotes the

hidden state feature obtained by inputting the (j-1)th vector, and
σ denotes the ReLU activation function.

4) Output layer: The hidden state features hXJ
u and hYJ

u are
inputted into the full connection (FC) layer. Then, u’s LLS
is obtained by

lu = FC(hXJ
u ||hYJ

u ) (10)

where || denotes the concatenation operation.
d) Historical learning state: The students’ academic per-

formance in the previous phases could not only serve as a sig-
nificant predictor for their learning outcomes in the next phase,
but also reflect the students’ learning state in previous phases
[48]. Since the difficulty is different for different courses, the
assessment standards of courses are also different. Accordingly,
we classify the students’ HLS into five levels based on their
scores and rankings, denoted as A, B, C, D, and F. The five
levels represent excellent, good, moderate, pass, and failure,
respectively. To evaluate students’ HLS, we first transform their
scores and rankings into a five-level format. In this article, the
scores above 95 are viewed as level A, the scores between 85 and
95 as B, the scores between 75 and 85 as C, the scores between
65 and 75 as D, and the scores below 65 as F. Similarly, the
rankings are transformed into five levels. The students ranked
in the top 15% get level A, those from 15% to 30% get B, those
from 30% to 50% get C, those from 50% to 80% get D, and
those within the bottom 20% get F.

The HLS is evaluated according to the learning states in the
current and previous phases, denoted as sL and sO, respectively.
The evaluation vector of student u on the HLS is defined as
su = {sLu, sOu }. To calculate sLu and sOu , the different data need
to be used in the following two cases.

1) In the first learning phase of a course, the students’ his-
torical performance data of all prerequisite courses are
extracted from the teaching management system. The
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student u’s grades from the most recently completed pre-
requisite courses are used to calculate sLu. The u’s average
grade from all the prerequisite courses is used to calculate
sOu .

2) In the second or subsequent phase of the course, the stu-
dents’ historical performance data in the previous phases
are extracted from the e-learning system. The u’s grades
in the last phase are used to calculate sLu. The u’s average
grade in all previous phases is used to calculate sOu .

Based on the above data, both sLu and sOu are calculated in the
same way. Take the calculation of sLu as an example

sLu =
⌊
gIu ∗ wg + rIu ∗ (1− wg)

⌋
(11)

where gIu and rIu denote the level of u’s score and ranking, both
represented by integers ranging from 1 to 5 corresponding to
levels from A to F. For example, gIu = 1 denotes that u scored
in the range of 95–100, rIu = 2 denotes that u’s ranking is in
the range of the top 15%–30%, and wg is the weight coefficient
and is set as 0.5 by default. sLu is an integer ranging from 1 to
5, representing the levels of u’s performance. The integers 1–5
correspond to levels A, B, C, D, and F, respectively.

3) Predict Student’s Learning Performance: At the end of
the learning tasks released by the teacher at the current phase,
students’ learning state features, including the LQ, LE, LLS,
and HLS, are fed into the classifier as input data to predict their
learning performance in the next phase.

In multiclassification tasks, the problem of imbalanced sam-
ple sizes is easily lead to misclassification, consequently re-
ducing the accuracy of the results. There are some approaches
proposed in existing research for dealing with the multiclassi-
fication problems with unbalanced data, e.g., the under sam-
pling approach, oversampling approach, or ensemble learning
algorithm [49]. Based on careful experimental comparisons, we
select the Adaboost algorithm with the best performance to as-
sess students’ learning performance. Details about experimental
results are presented in Section V.

As one of ensemble learning algorithms, Adaboost improves
the overall classification effect by solving the problem that
minority samples are too difficult to classify. For each itera-
tion, Adaboost first calculates the weights of each sample in
the training data based on the classification results and overall
accuracy of the last iteration. In this case, the base classifier
is trained by adjusting data distribution and sample weights
[49]. Then, the modified dataset with updated weights is sub-
sequently fed into the base classifier for training. Finally, the
classifiers obtained from each iteration are combined into an
ultimate decision classifier. This classifier performs excellently
in handling imbalanced data in multiclassification tasks, and is
widely adopted in practical applications.

After inputting student u’s learning state (fu) into the Adaboost
classifier, the u’s predicted learning performance in the next
phase is generated, denoted as vpu. vpu is an integer between
1 and 5, representing the five levels of learning performance,
respectively, i.e., A, B, C, D, and F.

4) Evaluate Student’s EW Level: Referring to the classifica-
tion criteria from Taiwan’s EW system [45], we classify the EW
results into five levels, i.e., severe warning, moderate warning,

TABLE I
EARLY WARNING EVALUATION RULES

light warning, normal state, and best state. Inspired by Hua
[45], we design the five-level EW evaluation rules for accurately
identifying the changes of students’ learning performance and
providing personalized EW to students. The EW rules are given
in Table I.

Specifically, three factors are involved in the rule, i.e., student
u’s predicted learning performance in the next phase, learning
states in previous phases, and the span between learning per-
formance in the current and next phases. The span between u’s
learning performance is given by

εu = vpu − sLu (12)

where vpu denotes u’s learning performance in the next phase,
and sLu denotes u’s learning performance in the current phase,
which also refers to u’s learning state in the current phase. ε<0
denotes an improvement in students’ learning performance. ε
= 0 denotes stability in students’ learning performance. ε = 1
denotes a slight decline in students’ learning performance. ε≥2
denotes a serious decline in students’ learning performance.

In summary, the u’s EW level is evaluated based on u’s
learning performance in the next phase, learning state in the
previous phases, and span between learning performance. For
example, suppose that two students, u1 and u2, are taking the
same course. Based on the PerLEW2LP, the analysis process of
their EW levels is shown as follows. 1) If u1 gets level A for sOu1

,
B for sLu1

, and C for vpu1
, thenεu1

is equal to 1. It is evident that
u1’s learning state has been consistently declining. Based on the
warning rule, u1 will receive a moderate warning notification.
2) If u2 gets level D for sOu2

, D for sLu2
, and F for vpu2

, then εu2

is equal to 1. Since the u2’s learning state has declined to level
F, a severe warning notification will send to u2 according to the
warning rules.

V. EXPERIMENTS

Experiments are implemented by Python 3.6 run in a Linux
server with a 2.3 GHz Inter Xeon CPU. The CNN_LSTM
model and Adaboost algorithm are implemented by PyTorch
and Sklearn library, respectively.
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TABLE II
DATASET INFORMATION

A. Experiment Setup

1) Datasets: To verify the effectiveness of PerLEW2LP,
we conduct experiments on a real dataset collected from the
e-learning system of Hunan Normal University. The dataset
consists of learning data of students majoring in software engi-
neering for two courses, i.e., Java Programming and Principles
of Database Systems, denoted as Course #1 and Course #2,
respectively. Both courses are instructed by the same teacher
across four consecutive semesters, i.e., fall 2021, spring 2022,
fall 2022, and spring 2023. Detailed learning data for each
student are recorded in the database. Data are collected by class
at the end of the course. The dataset information is as given in
Table II. The dataset is already available online via a URL.2

2) Parameter Settings: For all approaches, the common hy-
perparameters are listed as follows: the convolution unit is set
as 1-D, the batch size is fixed as 20, the epoch is set as 100, the
loss function is the cross-entropy error, the Adam optimizer is
used to update all parameters, and the learning rate is fixed as
0.001. To prevent the model from overfitting, we added dropout
regularization with the probability of 0.2.

3) Evaluation Metrics: We select precision, recall, and F1 as
evaluation metrics, and the parameter is weighted. These metrics
are defined by

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

F1 =

C∑
i=1

ai
n

∗ 2 ∗ precisioni ∗ recalli
precisioni + recalli

(15)

where TP and TN denote the number of positive and negative
samples that are correctly classified, respectively, FP and FN de-
note the number of misclassified negative and positive samples,
respectively, C is the number of categories, n is the number of
samples, andai is the number of samples in category i.

To further evaluate the accuracy of PerLEW2LP, we select the
Kappa coefficient [50] as the evaluation metric. It is widely used
for consistency testing in statistics, which could also be applied
as an indicator for evaluating classification accuracy. The Kappa
coefficient is given by

K = (ωo − ωe)/(1− ω) (16)

2[Online]. Available: https://github.com/ZW-301/early-learning-warning.git

ωe =

C∑
i=1

ai ∗ bi
/

n2 (17)

where ωo denotes the precision, C denotes the total number of
categories, n denotes the total number of samples, ai denotes
the actual number of samples in category i, and bi denotes the
predicted number of samples in category i.

B. Comparative Experiments

Our approach differs from existing approaches. Consequently,
we conducted comparative experiments based on different algo-
rithms to achieve the best results. The details of PerLEW2LP
are as follows.

1) The DKT model is applied to model students’ cognitive
abilities.

2) The CNN_LSTM structure is employed to mine students’
LLS features.

3) The Adaboost algorithm is used to predict students’
learning performance. To verify the effectiveness of Per-
LEW2LP, we collect the students’ final exam grades on
two courses as true labels for calculating their learning
performance and EW level. In experiments, a fivefold
cross-validation is conducted, and the dataset is divided
into two subdatasets, i.e., Course #1 and Course #2.

1) Comparison of Different Neural Network Structures: In
PerLEW2LP, the CNN_LSTM structure is used to extract the
LLS features of students. To verify the effectiveness of EW
approaches to learning performance based on CNN_LSTM
structure, we replace the CNN_LSTM structure with two other
neural network structures, i.e., the joint network combining
a CNN and RNN, and the joint network combining a CNN
and gated recurrent unit (GRU), denoted as CNN_RNN and
CNN_GRU, respectively. Besides, other modules remain the
same, with Adaboost as the classification algorithm and the
DKT model as the cognitive ability modeling approach. The
two variant approaches are denoted as EW_CNN_RNN and
EW_CNN_GRU. The experimental results are given in Table III.

The experimental results show that PerLEW2LP outperforms
EW_CNN_RNN and EW_CNN_GRU in prediction accuracy
and stability. The results are analyzed as follows: 1) due to
the problem of gradient disappearance and gradient explosion,
RNN has trouble dealing with long time sequences. There-
fore, EW_CNN_RNN performs worse than PerLEW2LP in all
evaluation metrics and 2) since the GRU structure has fewer
parameters, it is typically faster than LSTM in training speed.
However, because of the limited data scale, there is no signif-
icant difference between PerLEW2LP and EW_CNN_GRU in
training speed. Moreover, PerLEW2LP even performs better in
prediction accuracy and stability.

2) Comparison of Different Classification Algorithms: To
verify the effectiveness of EW approaches to learning perfor-
mance based on the Adaboost algorithm, similar to [51], we se-
lect seven baseline approaches for comparison, including linear
support vector machine (SVM) denoted as LSVM, SVM with ra-
dial basis function (RBF) kernel denoted as SVM_RBF, LR, DT,
random forest (RF), gradient boosting decision tree (GBDT),
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TABLE III
COMPARISON OF NEURAL NETWORK STRUCTURES

TABLE IV
COMPARISON OF CLASSIFICATION ALGORITHMS

TABLE V
COMPARISON OF COGNITIVE ABILITY MODELING

and deep artificial neural network (DANN). Specifically, we
replace the Adaboost algorithm with each of the above six
different classification algorithms. Meanwhile, other modules
use the same process workflow as PerLEW2LP, utilizing the
CNN_LSTM as neural network structure and employing the
DKT model for cognitive ability modeling. These variant ap-
proaches are denoted as EW_LSVM, EW_SVM_RBF, EW_LR,
EW_DT, EW_RF, EW_GBDT, and EW_DANN, respectively.

As given in Table IV, the experimental results demonstrate
that PerLEW2LP performs better than other EW approaches.
Specifically, the Kappa values of PerLEW2LP in the two
courses are 0.572 and 0.595, respectively, which indicate bet-
ter stability. The reason is that the diversity of learning re-
sources and tasks in an e-learning system leads to the vari-
ous learning states of students. However, ensemble learning
algorithms, such as Adaboost, RF, and GBDT, have advan-
tages in identifying complex learning states. Thus, EW_RF,
EW_GBDT, and PerLEW2LP are more effective compared
with EW_SVM_LK, EW_SVM_RBF, EW_LR, EW_DT, and
EW_DANN. Moreover, since the data are unbalanced, the ex-
perimental results display higher precision but lower recall.
However, EW_DT has reduced its precision as a result of
overfitting.

3) Comparison of Different Cognitive Ability Models: Since
PerLEW2LP uses DKT to model students’ cognitive abilities,
we conduct a comparison experiment to verify the effectiveness
of the EW approach based on the DKT model. Specifically,
we replace the DKT model with the DINA model and the new
approach is denoted as EW_DINA. In addition, the remaining
modules of EW_DINA are kept the same as PerLEW2LP. Ad-
aboost is used as the classification algorithm and CNN_LSTM

as the neural network structure. The results are presented in
Table V.

From Table V, PerLEW2LP performs better than EW_DINA
in all metrics. The dataset used in the experiments includes two
courses with a learning period of 2–3 months. In the long-term
learning period, the DKT model, as a dynamic cognitive mod-
eling approach, could better predict students’ knowledge acqui-
sition process and timely identify their changing cognitive abil-
ities, which is suitable for the dataset. Therefore, PerLEW2LP
could more accurately predict changes of students’ learning
performance, and provide better EW services to students.

4) Error Analysis of EW Approaches: To further evaluate the
accuracy of PerLEW2LP, we employ a confusion matrix, which
is widely used to evaluate the accuracy of classification models,
to analyze the errors of all the afore-mentioned PerLEW2LP
variant approaches. The confusion matrix of PerLEW2LP on
Course #1 and Course #2 is given in Table VI.

The classification results of students’ EW include five levels,
i.e., the best state, normal state, light warning, moderate warning,
and severe warning, denoted as B, N, L, M, and S, respectively.
From Table VI, the superscripts P and A denote the predicted
result and actual result, respectively. For example, BP and BA

correspond to the predicted and actual results of the best state,
respectively. Our experiments show that the actual results of EW
for 130 students in Course #1 are as follows: 55 students should
receive the best state notification, 33 a normal state notification,
21 a light warning one, 16 a moderate one, and 5 a severe one.
According to Table VI, the predicted results of PerLEW2LP for
Course #1 are as follows: the best state is sent to 46 students,
normal one to 21, light warning to 14, moderate one to 11, and
severe one to 2.
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TABLE VI
CONFUSION MATRIX OF PERLEW2LP

TABLE VII
ERROR ANALYSIS

TABLE VIII
ABLATION EXPERIMENTS

Based on the confusion matrix, we could calculate total
errors consisting of two types of errors, i.e., Types I and II.
A Type I error means that a student’s actual result is worse
than the predicted one. In contrast, a Type II error means
that a student’s actual result is better than the predicted one.
Obviously, in an EW system, the negative effect of mistaking
poor students for excellent ones is much more serious than
mistaking excellent students for poor ones. The reason is that the
poor students urgently need more teachers’ attention and timely
instruction. Therefore, the fewer Type I errors in the prediction
results obtained by an EW approach, the better its prediction
effect.

The two types of errors are analyzed for all variants of
PerLEW2LP in the two courses, and results are given by
Table VII. The mean value of PerLEW2LP is 10.35% for Type
I errors and 17.65% for II. From the experimental results,
PerLEW2LP has the best EW performance since it has the
minimum Type I errors and the minimum total number of
errors.

5) Ablation Experiments: To analyze the validity and impor-
tance of different types of learning state features on prediction
results, we conducted ablation experiments. Four learning state
features including LQ, LE, LLS, and HLS, are abandoned from

PerLEW2LP, respectively. The four variant approaches are de-
noted as PerLEW2LP-LQ, PerLEW2LP-LE, PerLEW2LP-LLS,
and PerLEW2LP-HLS, respectively.

From Table VIII, it is clear that the impact of four features on
students’ learning performance is quite different. Among them,
LQ has the most significant impact on the EW effect compared
with other features. After removing the LQ, the recall values
of Course #1 and Course #2 decrease by 0.117 and 0.104, F1
decreases by 0.137 and 0.103, and Kappa coefficient decreases
by 0.100 and 0.092, respectively. The accuracy and stability of
PerLEW2LP decrease significantly. It is shown that students’
learning effectiveness is significantly influenced by their LQ.

VI. CONCLUSION

To meet the EW needs of college students at different levels,
we propose a personalized EW approach to learning perfor-
mance via cognitive ability and learning state modeling. First,
we employ a cognitive ability modeling approach to track stu-
dents’ changing cognitive abilities. Then, based on students’
learning processes data and historical performance data, we
comprehensively model students’ learning states from four di-
mensions, which provide differentiated learning performance
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prediction and personalized EW services to all students. Finally,
the extensive experiments on real-world datasets demonstrate
the accuracy and effectiveness of our approach.

This article tries to provide multilevel and differentiated EW
results to all college students. Nevertheless, the proposed per-
sonalized EW approach has a lot of room for improvement. In the
future, we will first explore to evaluate more comprehensively
the students’ learning performance by collecting richer and more
diverse learning process data (e.g., the number and duration of
learning resources learned) from the e-learning system. Second,
the data used in the experiments show a significant imbalance
among students at different EW levels. The imbalance data
may reduce the accuracy of our approach in predicting these
levels. We will apply the data-level algorithms, e.g., oversam-
pling and undersampling techniques, to improve the prediction
performance. Finally, to further verify the generalizability and
feasibility of our approach in different educational scenarios, we
will promote the widespread application of the EW system. We
will also further explore effective early warning approaches of
teaching oriented to the achievement of curriculum objectives.
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