
Journal of Parallel and Distributed Computing 191 (2024) 104915

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Energy-efficient triple modular redundancy scheduling on heterogeneous

multi-core real-time systems

Hongzhi Xu a,∗, Binlian Zhang a, Chen Pan b, Keqin Li c

a College of Computer Science and Engineering, Jishou University, Zhangjiajie 427000, China
b Department of Electrical & Computer Engineering, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Energy consumption

Heterogeneous multi-core platform

Real-time system

Reliability

Triple modular redundancy

Triple modular redundancy (TMR) fault tolerance mechanism can provide almost perfect fault-masking, which
has the great potential to enhance the reliability of real-time systems. However, multiple copies of a task
are executed concurrently, which will lead to a sharp increase in system energy consumption. In this work,
the problem of parallel applications using TMR on heterogeneous multi-core platforms to minimize energy
consumption is studied. First, the heterogeneous earliest finish time algorithm is improved, and then according
to the given application’s deadline constraints and reliability requirements, an algorithm to extend the execution
time of the copies is designed. Secondly, based on the properties of TMR, an algorithm for minimizing the
execution overhead of the third copy (MEOTC) is designed. Finally, considering the actual situation of task
execution, an online energy management (OEM) method is proposed. The proposed algorithms were compared
with the state-of-the-art AFTSA algorithm, and the results show significant differences in energy consumption.
Specifically, for light fault detection, the energy consumption of the MEOTC and OEM algorithms was found
to be 80% and 72% respectively, compared with AFTSA. For heavy fault detection, the energy consumption of
MEOTC and OEM was measured at 61% and 55% respectively, compared with AFTSA.
1. Introduction

1.1. Background

Nowadays, integrated circuit technology and computer technol-

ogy are developing rapidly, more than a hundred processor elements
can be integrated into a single chip, which is called multi-core pro-

cessors [30]. Multi-core platforms often integrate different types of
cores to execute applications, which have heterogeneous character-

istics. For example, OMAP1/OMAP2 integrates CPU and DSP on
the same chip, the Tegra integrates CPU and GPU on the same
chip [4]. Because the multi-core platform has high performance and
low energy consumption it has recently received much attention
[13][18][19][20][21][23][27][28][29]. In recent years, safety-critical
embedded real-time systems also used multi-core platforms to execute
parallel applications [2].

Due to the temporary failure of the components or by external inter-

ference such as cosmic ray radiations, electrical power drops, and elec-

* Corresponding author.

trostatic discharge, transient faults may occur at run-time, which will
reduce the reliability of the system [10][22][40]. Reliability is an ex-

tremely important non-functional target in the safety-critical embedded
real-time systems. For example, in ISO 26262, the corresponding relia-

bility requirements for exposure level-E2 (low probability) and level-E3
(medium probability) are 0.99 and 0.9, respectively [35]. The reliabil-

ity requirements of applications must be guaranteed, the faults should
be handled when the system is in run-time, otherwise, it may lead to
disastrous consequences [12].

N-Modular Redundancy (NMR) is one of the most popular tech-

niques for enhancing the reliability of applications [2][30]. NMR exten-

sively utilizes the 𝑀 -out-of-𝑁 voter as a decision-making component.
Within an array of inputs from 𝑁 voters, the system can be considered
error-free only when at least 𝑀 of these inputs are equal to each other.
In general, 𝑀 ≥ ⌊𝑁∕2 + 1⌋ is required, that is, at least 𝑀 ≥ ⌊𝑁∕2 + 1⌋
voter inputs should be equal. Because NMR uses the comparison of the
execution results for fault detection and masking, it does not require
any other specific fault detection mechanism. Since it is unlikely that
Available online 13 May 2024
0743-7315/© 2024 Elsevier Inc. All rights are reserved, including those for text and

E-mail addresses: xuhongzhi@jsu.edu.cn (H. Xu), zhangbinlian@163.com (B. Zha

https://doi.org/10.1016/j.jpdc.2024.104915

Received 8 December 2022; Received in revised form 3 February 2024; Accepted 5 M
data mining, AI training, and similar technologies.

ng), chen.pan@utsa.edu (C. Pan), lik@newpaltz.edu (K. Li).

ay 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:xuhongzhi@jsu.edu.cn
mailto:zhangbinlian@163.com
mailto:chen.pan@utsa.edu
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2024.104915
https://doi.org/10.1016/j.jpdc.2024.104915
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2024.104915&domain=pdf

H. Xu, B. Zhang, C. Pan et al.

all modules in NMR will fail at the same time and generate the same
error results, the NMR fault tolerance mechanism can provide almost
perfect fault-masking [26]. Triple Modular Redundancy (TMR) is a spe-

cial NMR, which uses the results of three copies of the application (or
task) for voting comparison.

Existing research has demonstrated that a Dual Modular Redundant
(DMR) system exhibits lower reliability compared to a simplex sys-

tem. Both 4MR and 5MR configurations consistently demonstrate lower
reliability than TMR. Furthermore, 6MR shows only slightly higher re-

liability than TMR [30]. Therefore, TMR has the great potential to
enhance the reliability of the real-time systems [16][26]. When em-

ploying the TMR or NMR mechanism, multiple copies of a task are
executed on different cores, and their execution results are subjected to
a voting process. Consequently, the system must access the memory or
cache corresponding to multiple cores. Excessive communication over-

head can significantly delay voting time. Therefore, multi-core systems
with robust parallelism and low communication overhead are suitable
for executing multiple task copies.

1.2. Motivation

Many safety-critical systems necessitate the use of TMR technique
due to their high reliability requirements. TMR involves executing mul-

tiple copies of a task simultaneously, which can result in increased
system energy consumption and scheduling length of the application.
An increase in the scheduling length of an application implies a de-

crease in system performance and may also lead to missed deadlines.
Therefore, an effective task-scheduling scheme is essential in such sys-

tems. On the one hand, the reliability requirements and deadlines of
the application must be met, and on the other hand, system energy con-

sumption should be minimized. The Dynamic Voltage Frequency Scal-

ing (DVFS) which reduces the execution voltage and frequency of the
task and prolongs the execution time, can be used to reduce the energy
consumption of the systems [9][11][31][36][37]. DVFS can also be ap-

plied to TMR fault tolerance. In [26] and [16], the authors have studied
the energy-efficient TMR problem for a homogeneous multi-core system
with DVFS. However, to the best of our knowledge, the problem of min-

imizing the energy consumption of parallel applications on heteroge-

neous multi-core platforms with the TMR technique is rarely reported.
Therefore, this work mainly studies the energy-efficiency scheduling
scheme for parallel applications on heterogeneous multi-core real-time
systems with the TMR technique.

1.3. Main contributions

The main contributions of this paper are as follows.

(1) We have transformed the reliability requirement of the applica-

tion into the reliability requirement of the task and then calculated the
reliability requirement for each copy under the TMR mechanism.

(2) We have proposed an enhanced version of the Heterogeneous
Earliest Finish Time (HEFT) algorithm called Improved HEFT (IHEFT).
IHEFT assigns three copies of the task to different cores, which mini-

mizes the scheduling length while meeting the reliability requirement
of the application.

(3) We have proposed an algorithm, known as Extending Execution
Time of the copies (EET). The purpose of this algorithm is to reduce the
system energy consumption while meeting the deadline and satisfying
the reliability requirements of the application.

(4) Based on the task assignment information from IHEFT, we have
introduced an algorithm, known as Minimizing the Execution Overhead
of the Third Copy (MEOTC) using TMR properties. The purpose of this
algorithm is to minimize the execution overhead of the third copy, re-

sulting in energy savings.

(5) Because the execution results of two copies of a task are voted
on immediately after their execution, the task will be completed in
2

advance. Therefore, we have proposed an Online Energy Management
Journal of Parallel and Distributed Computing 191 (2024) 104915

scheme (OEM). When a task is completed, the first two copies of sub-

sequent tasks are executed immediately, and the third copy is still
executed according to the offline scheduling.

2. Related work

2.1. Energy-efficient technique

From the perspective of system design, parallel applications are com-

posed of tasks with precedence-constrainted, which are usually modeled
as Directed Acyclic Graph (DAG) [1][3][8][9][31][34]. At present, for
DAG-based parallel applications execution on heterogeneous platforms
with deadline constraints, there are some energy-efficient scheduling
algorithms with DVFS technique [8][9][11][31][36][37]. However,
these algorithms do not consider the reliability requirements of the ap-

plications.

2.2. Reliability aware without task replication

To reduce the energy consumption of the system while satisfying the
reliability requirements of the applications, Xie et al. [35] designed a
resource minimization algorithm for parallel applications on heteroge-

neous embedded systems, which first transfers the reliability require-

ment of the application to that of each task and then assigns each task
to the processor with the minimum resource consumption. Zhang et
al. [43] studied the reliability maximization problem under energy con-

straints and proposed the RMEC algorithm to maximize the reliability of
the system. Zhang et al. [44] proposed a bi-objective genetic scheduling
algorithm to achieve high system reliability and low energy consump-

tion for workflow on heterogeneous systems. Xu et al. [41] introduced
two methods to decompose the reliability requirement of the applica-

tion to each task for non-DVFS and DVFS respectively and designed two
energy-efficient algorithms to satisfy the reliability requirement. Huang
et al. [7] proposed a method of optimizing energy allocation with the
reliability constraint. The above studies do not consider task replica-

tion, which may be difficult to satisfy the high-reliability requirement
of applications.

2.3. Fault-tolerant with task replication or recovery

The application’s reliability can be improved by applying the task
replication technique. Haque et al. [6] investigated the techniques
based on task replication to minimize energy consumption for a set
of periodic real-time tasks executing on a multi-core system. Kumar et
al. [10] introduced an active replication-based framework to minimize
the energy consumption for a set of periodic real-time tasks with relia-

bility requirements and timing constraints on a heterogeneous system.
Wang et al. [33] proposed the task replication scheduling algorithm to
maximize system reliability. Xie et al. [38] presented a fault-tolerant
scheduling algorithm EFSRG to reduce energy consumption while sat-

isfying the reliability requirement of the application based on an active
replication. In [39] the authors proposed a redundancy minimization al-

gorithm to satisfy the reliability requirement for a parallel application
on heterogeneous platforms. Roy et al. [24] introduced an energy-

efficient fault-tolerant framework for real-time tasks with precedence
constraints on a heterogeneous dual core system. Han et al. [5] de-

signed two algorithms that reduce energy consumption while meeting
the reliability requirements of applications through task replication. Liu
et al. [14] introduced a transient fault-tolerant scheduling algorithm
AFTSA to improve system reliability within a given deadline. However,
the above works require fault-detection mechanisms which imply that
they can detect all faults during task execution.

2.4. N-modular redundancy scheduling

NMR executes multiple copies of a task in parallel and compares

the execution results of these copies for fault detection and masking,

H. Xu, B. Zhang, C. Pan et al.

which can achieve higher system reliability, although it increases en-

ergy consumption and reduces system utilization. Reliability is crucial
for many safety-critical systems. Therefore, it is necessary to use NMR
in many scenarios. In [25], a DRVS system is proposed to select a
particular reliability mechanism (Single Execution, Dual Modular Re-

dundancy, or TMR) and voltage-frequency level under reliability and
time constraints. Salehi et al. [26] introduced a two-phase TMR tech-

nique to minimize energy consumption while guaranteeing reliability
and deadline requirements on multi-core platforms. Mireshghallah et
al. [16] proposed an energy-efficient reactive TMR approach to tolerate
both transient and permanent faults. However, these works are im-

plied based on a homogeneous multi-core processor, while we consider
energy-efficient TMR technique on heterogeneous multi-core real-time
systems.

3. Models

3.1. System model

The heterogeneous multi-core platform used in this paper is mod-

eled as the core group architecture. 𝑆𝐺 is the set of groups, and for
each 𝑠𝑔 ∈ 𝑆𝐺 there are 𝑛𝑠𝑔 cores in this group. Therefore, the to-

tal number of cores in platform is 𝑀 =
∑|𝑆𝐺|

𝑠𝑔=1 𝑛𝑠𝑔 , where |𝑆𝐺| is the
size of the set 𝑆𝐺. (In this paper, |𝑋| represents the size of set 𝑋.)
In this case, the processor cores in the system can be represented as
{𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ..., 𝑐𝑜𝑟𝑒𝑀}. For 𝑐𝑜𝑟𝑒𝑖, 𝑔𝑟𝑜𝑢𝑝(𝑖) represents the group in
which it is located. The system architecture is shown in Fig. 1, where
the core types within a group can be the same or different. This is a flex-

ible model where 𝑀 cores in the platform can be in the same group,
or in 𝑀 different groups (each group only has one core), or have the
same type in the same group. Therefore, we assume that the commu-

nication cost between cores within the same group is much lower than
that of cores in different groups. In addition, we assume that there is the
same communication bandwidth between different groups and do not
consider conflicts during data transmission. Similar to [42], each core
in the platform is DVFS-enabled with a finite set of available execution
frequencies and the frequency can be adjusted separately.

In the design of multi-core processors, there are typically two pri-

mary approaches to operating frequency management: shared execution
frequency and independent core-level frequency adjustment.

The shared execution frequency approach benefits from a reduction
in hardware complexity and associated costs, as it does not mandate
separate dynamic frequency regulation components for each core. How-

ever, its disadvantage becomes evident when certain cores do not fully
utilize the common frequency, potentially leading to energy waste. This
approach also lacks the ability to dynamically adjust the performance
of individual cores according to varying workloads.

On the other hand, the independent core-level frequency adjustment
approach offers greater flexibility in resource allocation and enables
more effective energy efficiency optimization. It is particularly advan-

tageous in multitasking scenarios where resources can be dynamically
allocated based on the real-time demands of each task, thereby mini-

mizing energy consumption. The disadvantage of this approach is the
requirement for an individual dynamic frequency control component
for every core, which results in increased hardware costs.

This paper will investigate how to minimize the energy consumption
of applications under the TMR mechanism. We hope to fully leverage
the performance of each core, therefore, this paper adopts the approach
of individually adjusting the execution frequency for every core.

Table 1 gives the definitions of notations used in this study.

3.2. Application model

The parallel application execution on the heterogeneous platform
3

is usually modeled as DAG 𝐺 = (𝑇 , 𝐶, 𝑊), where 𝑇 , 𝐶 , and 𝑊 are
Journal of Parallel and Distributed Computing 191 (2024) 104915

Fig. 1. System architecture.

Table 1

Definitions of notations.

Notation Definition

𝑐𝑖,𝑗 communication time between 𝑡𝑖 and 𝑡𝑗
𝑤𝑖,𝑗 WCET of the task 𝑡𝑖 executes on 𝑐𝑜𝑟𝑒𝑗
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) dynamic energy consumption of the 𝑘th copy of task 𝑡𝑖

on 𝑐𝑜𝑟𝑒𝑗 at frequency 𝑓𝑗,𝑙
𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) communication energy consumption of copy 𝑡𝑖,𝑘

assigned to 𝑐𝑜𝑟𝑒𝑗
𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) energy consumption of transmitting the execution

results of all copies of task 𝑡𝑖 to 𝑐𝑜𝑟𝑒𝑗
𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) energy consumption of the execution results of all

copies of task 𝑡𝑖 voting on 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙
𝑟𝑡𝑡𝑖,𝑘,𝑗 the time required for the execution result of the copy

𝑡𝑖,𝑘 to be transmitted to 𝑐𝑜𝑟𝑒𝑗
𝑣𝑐𝑡𝑖,𝑗,𝑙 the time required for the execution results of task 𝑡𝑖 to

be voted on 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙
𝐸dcrv(𝑡𝑖) the total amount of the dynamic energy consumption

of task 𝑡𝑖
𝐸dcrv(𝐺) the total amount of the dynamic energy consumption

of the application

𝐸st (𝐺) the static energy consumption of the application

𝐸(𝐺) the total energy consumption of the application

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) the reliability of the copy 𝑡𝑖,𝑘 executed on 𝑐𝑜𝑟𝑒𝑗 with
frequency 𝑓𝑗,𝑘

𝑅(𝑡𝑖) the reliability of task 𝑡𝑖
𝑅(𝐺) the reliability of the application

𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) the earliest start time of the copy 𝑡𝑖,𝑘 executing on
𝑐𝑜𝑟𝑒𝑗

𝐸𝐹𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) the earliest finish time of the copy 𝑡𝑖,𝑘 executing on
𝑐𝑜𝑟𝑒𝑗

𝑆𝑇 (𝑡𝑖,𝑘) the actual start time of the copy 𝑡𝑖,𝑘
𝐹𝑇 (𝑡𝑖,𝑘) the actual finish time of the copy 𝑡𝑖,𝑘
𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) the extended finish time of the copy 𝑡𝑖,𝑘
𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) the start time for comparing the execution results of

the copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗
𝐹𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) the finish time for comparing the execution results of

the copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗

described as follows: 𝑇 = {𝑡1, 𝑡2, ..., 𝑡|𝑇 |} is a vertex set in 𝐺, which rep-

resents a task set in application. 𝐶 is a edge set in 𝐺, 𝑐𝑖,𝑗 ∈ 𝐶 indicates
the time required for data transmission from 𝑡𝑖 to 𝑡𝑗 , 𝑡𝑗 can be executed
only after data transmission is completed. Because a task may have mul-

tiple immediate predecessors or successors, let 𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖) and 𝑐ℎ𝑖𝑙𝑑(𝑡𝑖)
represent all immediate predecessor and successor tasks of 𝑡𝑖 respec-

tively. The task without a predecessor (or successor) task is called 𝑡entry
(or 𝑡exit). In general, if there are multiple 𝑡entry (or 𝑡exit) in application 𝐺,
we can construct a dummy task of entry (or exit) to 𝐺. A motivation ex-

ample parallel application is shown in Fig. 2. Because the processor core
is heterogeneous, the required execution time of the same task on dif-

ferent cores is different, so a matrix 𝑊 = |𝑇 | ×𝑀 is used to represent
the Worst-Case Execution Time (WCET) of each task on the different
cores with the maximum execution frequency. 𝑤𝑖,𝑗 is the WCET of the
task 𝑡𝑖 executes on 𝑐𝑜𝑟𝑒𝑗 . It should be noted that the same task requires
the same execution time to execute on the same type of core. The WCET
of the five tasks in Fig. 2 on three types of cores are shown in Table 2,
the WCET of 𝑡1 on three different types of cores is 19, 16, and 11, re-
spectively.

H. Xu, B. Zhang, C. Pan et al.

Fig. 2. Motivation example of a DAG.

Table 2

The WCET of the five tasks in motivation exam-

ple on three types of cores.

𝑡𝑎𝑠𝑘 core type 1 core type 2 core type 3

𝑡1 19 16 11

𝑡2 14 10 18

𝑡3 9 17 12

𝑡4 13 8 16

𝑡5 12 15 7

3.3. Energy consumption model

This work considers processor cores with adjustable voltage and fre-

quency, according to [31][37][43], the power dissipation of CMOS chip
at frequency 𝑓 is given by

𝑃 (𝑓) = 𝑃st + ℏ(𝑃in + 𝑃dy) = 𝑃st + ℏ(𝑃in +𝐶sw𝑓
𝑚) (1)

In (1), 𝑃st is the static power dissipation, which is used to maintain the
basic operating state of the system. 𝑃in is the leakage power dissipation
independent of the execution frequency, which is a constant and can
be ignored when the processor is in a sleep state. 𝑃dy is the dynamic
power dissipation, which is related to the execution frequency. 𝐶sw and
𝑚 are the switching capacitance and the dynamic energy exponent, re-

spectively.

Based on Eq. (1), the lowest energy-efficient frequency can be cal-

culated as

𝑓ee =
𝑚

√
𝑃in

𝐶sw(𝑚− 1)
. (2)

When the processor operates at a frequency lower than 𝑓ee, it will
generate higher energy consumption due to lower energy efficiency
and longer execution time. Assume that the operating frequency range
of the processor core is 𝑓min to 𝑓max, to reduce energy consump-

tion, the lowest execution frequency of the processor core should be
𝑓low = max(𝑓ee, 𝑓min). In practice, because the available execution fre-

quency of the processor core is discrete, it is advisable to assume that
the execution frequency of core 𝑗 is {𝑓𝑗,low, ⋅ ⋅ ⋅, 𝑓𝑗,𝑙, 𝑓𝑗,𝑙+1, ⋅ ⋅ ⋅𝑓𝑗,max}. In
this paper, these available frequencies are normalized with respect to
the highest frequency 𝑓𝑗,max, i.e. 𝑓𝑗,max = 1.

In heterogeneous multi-core embedded systems, the cores with dif-

ferent core types have different power dissipation parameters. Let
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) represent the dynamic energy consumption of the
𝑘th copy of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗 at frequency 𝑓𝑗,𝑙 , which can be calculated
by

𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = (𝑃𝑗,in +𝐶𝑗,sw𝑓
𝑚𝑗

𝑗,𝑙
) ×𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙
. (3)

Considering that different tasks may be executed on different cores
in different groups, the communication energy consumption will be
generated when there is communication between two different groups.
Assuming that the communication energy consumption is proportional
to the communication time, the energy consumption rate per unit time
of communication is defined as 𝑐𝑟 [35]. Therefore, when 𝑘th copy of
task 𝑡𝑖 is assigned to core 𝑐𝑜𝑟𝑒𝑗 , the energy consumption of communi-
4

cation can be calculated by
Journal of Parallel and Distributed Computing 191 (2024) 104915

𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) =
∑

𝑡𝑥∈𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖)
𝑐𝑟 × 𝑐′

𝑥,𝑖
. (4)

In Eq. (4), if the copy 𝑡𝑖,𝑘 and any correctly executed copy of 𝑡𝑥 are
assigned to the same group, then 𝑐′

𝑥,𝑖
= 0; otherwise 𝑐′

𝑥,𝑖
= 𝑐𝑥,𝑖.

When the 𝑁 -modular redundancy technique is used, we do not al-

low different copies of the same task to be assigned to the same core for
execution. When 𝑁 copies of task 𝑡𝑖 are completed, assuming that their
execution results are transmitted to 𝑐𝑜𝑟𝑒𝑗 for voting comparison, which
consumes execution results transmission energy 𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) and vot-

ing comparison energy 𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙). The energy consumption for
data transmission and voting comparison can be calculated as

𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) =
∑𝑁

𝑘=1
𝑟𝑡𝑡𝑖,𝑘,𝑗 × 𝑐𝑟 (5)

and

𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = (𝑃𝑗,in +𝐶𝑗,sw𝑓
𝑚𝑗

𝑗,𝑙
) × 𝑣𝑐𝑡𝑖,𝑗,𝑙 ×

𝑓𝑗,max

𝑓𝑗,𝑙
(6)

respectively, where 𝑟𝑡𝑡𝑖,𝑘,𝑗 represents the time required for the execution
result of 𝑡𝑖,𝑘 to be transmitted to 𝑐𝑜𝑟𝑒𝑗 , and 𝑣𝑐𝑡𝑖,𝑗,𝑙 indicates the time
required for the execution result to be voted on 𝑐𝑜𝑟𝑒𝑗 with frequency
𝑓𝑗,𝑙 .

For task 𝑡𝑖, let 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘) represent the assigned core of the 𝑘th copy,
𝑓𝑎𝑝𝑐(𝑖,𝑘),𝑎𝑒𝑓 (𝑖,𝑘) represent the assigned execution frequency of the 𝑘th
copy, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖) represent the core used to compare the execution re-

sults, 𝑓𝑐𝑒𝑟(𝑖),𝑐𝑒𝑓 (𝑖,𝑙) represent the execution frequency used to compare
the execution results.

According to the above description, for task 𝑡𝑖, the energy consump-

tion for executing the task itself, for communicating with its parent task,
for transmitting the execution results for comparison, and for the pro-

cess of comparing the execution results can be calculated by

𝐸dy(𝑡𝑖) =
∑𝑁

𝑘=1
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘), 𝑓𝑎𝑝𝑐(𝑖,𝑘),𝑎𝑒𝑓 (𝑖,𝑘)), (7)

𝐸co(𝑡𝑖) =
∑𝑁

𝑘=1
𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘)), (8)

𝐸rt (𝑡𝑖) =𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖)), (9)

and

𝐸vc(𝑡𝑖) =𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖), 𝑓𝑐𝑒𝑟(𝑖),𝑐𝑒𝑓 (𝑖,𝑙)), (10)

respectively.

Therefore, the total energy consumption for executing task 𝑡𝑖 is given
by

𝐸dcrv(𝑡𝑖) =𝐸dy(𝑡𝑖) +𝐸co(𝑡𝑖) +𝐸rt (𝑡𝑖) +𝐸vc(𝑡𝑖). (11)

When all the tasks with 𝑁 -modular redundancy are assigned, the
energy consumption of the application is given by

𝐸dcrv(𝐺) =
∑|𝑇 |

𝑖=1
𝐸dcrv(𝑡𝑖). (12)

Let 𝐸st (𝐺) represent the static energy consumption of the applica-

tion, which is derived from all the processor cores and can be calculated
by

𝐸st (𝐺) =
∑𝑀

𝑗=1
𝑃𝑗,st ×𝑆𝐿(𝐺), (13)

where 𝑆𝐿(𝐺) is the scheduling length of parallel application 𝐺. Based
on (12) and (13), the total energy consumption of the application is
given by

𝐸(𝐺) =𝐸dcrv(𝐺) +𝐸st (𝐺). (14)

3.4. Reliability model

There are transient faults and permanent faults during the execution
of the application. Since transient faults occur more commonly than
permanent faults [47][48], only transient faults are considered in this

study. In general, the occurrence of transient faults follows a Poisson

H. Xu, B. Zhang, C. Pan et al.

process [35][43]. Given 𝜆 as the constant failure rate per time unit,
the probability of no faults occurring (which represents system reliabil-

ity) within the time interval 𝑡 can be expressed as 𝑒−𝜆𝑡 [35][38][39]. In
this paper, the reliability of a task (a copy of a task or an application)
is defined as the probability that the task (copy or application) will be
completed correctly before its deadline [48]. Therefore, in the subse-

quent discussion, we assume that a task (copy or application) can be
completed before its deadline if no faults occur during its execution. If
a task (copy) cannot meet its deadline constraint, the application will
not be correctly scheduled by the algorithm proposed in this paper. Dif-

ferent cores have distinct 𝜆 values representing failure rates. Let 𝜆𝑗,max
represent the failure rate per time unit for 𝑐𝑜𝑟𝑒𝑗 execution with the
maximum frequency, when the 𝑘th copy of task 𝑡𝑖 is executed on 𝑐𝑜𝑟𝑒𝑗
with execution frequency 𝑓𝑗,max, the reliability of this copy can be given
by [35][38]

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) = 𝑒−𝜆𝑗,max×𝑤𝑖,𝑗 (15)

When the execution frequency is reduced to save energy, the probability
of fault will increase. According to [43][47][48], the transient faults
rate 𝜆𝑗,𝑙 of core 𝑐𝑜𝑟𝑒𝑗 with the frequency 𝑓𝑗,𝑙 is given by

𝜆𝑗,𝑙 = 𝜆𝑗,max × 10
𝑑𝑗×(𝑓𝑗,max−𝑓𝑗,𝑙)
𝑓𝑗,max−𝑓𝑗,min , (16)

where 𝑑𝑗 indicates the sensitivity fault rates to voltage and frequency
scaling of 𝑐𝑜𝑟𝑒𝑗 , which is greater than 0.

According to Eq. (15), when the 𝑘th copy of task 𝑡𝑖 is executed on
core 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙 , the reliability can be calculated by

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = 𝑒
−𝜆𝑗,𝑙×

𝑤𝑖,𝑗×𝑓𝑗,max
𝑓𝑗,𝑙 . (17)

This work mainly studies the energy-efficiency scheduling problem
with the TMR technique, that is, three copies of task 𝑡𝑖 will be executed.
According to Eq. (17), the reliability of the three copies is 𝑅(𝑡𝑖,1), 𝑅(𝑡𝑖,2),
and 𝑅(𝑡𝑖,3) respectively. Then the reliability of task 𝑡𝑖 can be calculated
by

𝑅(𝑡𝑖) =𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,2)(1 −𝑅(𝑡𝑖,3))

+𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,3)(1 −𝑅(𝑡𝑖,2))

+𝑅(𝑡𝑖,2)𝑅(𝑡𝑖,3)(1 −𝑅(𝑡𝑖,1))

+𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,2)𝑅(𝑡𝑖,3). (18)

The reliability of the task can be significantly improved by using the
TMR technique. For example, when the reliability of each copy of a
task is 0.9, the reliability of this task with TMR will increase to 0.972.

When the reliability of all tasks is calculated, the application’s relia-

bility can be given by

𝑅(𝐺) =
∏|𝑇 |

𝑖=1
𝑅(𝑡𝑖). (19)

3.5. Problem description

Consider a parallel application 𝐺 using TMR execution on the het-

erogeneous multi-core platform, in which each core supports the DVFS
technique. When three copies of all tasks in 𝐺 are assigned to the pro-

cessor core to execute at the appropriate frequency, the schedule length
of the application is 𝑆𝐿(𝐺). The problem in this paper is to minimize
the energy consumption of the system while the schedule length 𝑆𝐿(𝐺)
is less than or equal to the given deadline 𝐷𝐿(𝐺) and the reliability
of the application 𝐺 is higher than the given reliability requirement
𝑅req(𝐺).

4. Energy-efficient TMR scheduling framework

To solve the problem of minimizing energy consumption under
5

scheduling length and reliability constraints, we first design an algo-
Journal of Parallel and Distributed Computing 191 (2024) 104915

rithm that minimizes scheduling length while satisfying system relia-

bility requirement, which is an improved version of the well-known
HEFT algorithm (IHEFT). IHEFT can be used to determine whether the
application can meet the scheduling length and reliability constraints
with the TMR mechanism. Then we designed three energy-efficient al-

gorithms to minimize energy consumption, which are the Extending Ex-

ecution Time of the copies (EET) algorithm, Minimizing the Execution
Overhead of the Third Copy (MEOTC) algorithm, and the Online En-

ergy Management (OEM) algorithm. The specific introduction of these
algorithms is as follows.

4.1. The IHEFT algorithm

4.1.1. Introduction to key principles

The primary objective of the IHEFT algorithm is to minimize the
scheduling length while satisfying the reliability requirement of the
application. Unlike the original HEFT algorithm, IHEFT initially trans-

forms the application-level reliability requirement into corresponding
task-level reliability requirements. Subsequently, it calculates the reli-

ability requirement for each replica of a task within the context of the
TMR framework. Following this, the algorithm assigns each copy to pro-

cessor cores with the aim of achieving the minimum finish time. Finally,
after all copies have been assigned and executed, a voting mechanism
is implemented where the results from the three replicas of each task
are compared and validated.

4.1.2. Computing reliability requirements for task copies

To make the reliability of the application satisfy the requirements,
the reliability of each copy of the task should not be lower than the
given critical value 𝑅critical when using the TMR technique. Therefore,
we should obtain 𝑅critical based on the reliability requirement of the
application.

When the reliability requirement 𝑅req(𝐺) of the application 𝐺 is
given, the reliability requirement of the task 𝑅req(𝑡𝑖) can be obtained
by different methods [38][45][46]. For simplicity, this paper uses the
method in literature [38], and the reliability requirement of the task is
given by

𝑅req(𝑡𝑖) = |𝑇 |√𝑅req(𝐺). (20)

When assigning tasks, the reliability requirement of task 𝑡𝑖 can be given
by

𝑅req(𝑡𝑖) ≥
𝑅req(𝐺)∏𝑖−1

𝑥=1𝑅(𝑡𝑥) ×
∏|𝑇 |

𝑥=𝑖+1𝑅req(𝑡𝑥)
, (21)

where item
∏𝑖−1

𝑥=1𝑅(𝑡𝑥) is the reliability obtained by 𝑖 − 1 tasks that
have been assigned, and item

∏|𝑇 |
𝑥=𝑖+1𝑅req(𝑡𝑥) is the reliability expected

to be obtained for tasks that have not yet been assigned.

Assuming that 𝑅(𝑡𝑖,1) =𝑅(𝑡𝑖,2) =𝑅(𝑡𝑖,3) =𝑅critical can make the task
𝑡𝑖 just satisfy the reliability requirement, Eq. (18) can be rewritten as an
univariate cubic equation

2𝑅3
critical − 3𝑅2

critical +𝑅req(𝑡𝑖) = 0. (22)

Based on recent derivations of the cubic solution [15], let 𝑅critical be
represented as

𝑅critical = 𝑥− −3
3 × 2

= 𝑥+ 1
2
, (23)

and then the univariate cubic equation (22) can be expressed as

𝑥3 + 𝑝𝑥+ 𝑞 = 0, (24)

where 𝑝 = −3
4 and 𝑞 = −1

4 + 1
2𝑅req(𝑡𝑖). Then we calculate the discrim-

inant 𝐷 using the formula 𝐷 = 𝑞2

4 + 𝑝3

27 . Due to reliability requirement
0 < 𝑅req(𝑡𝑖) < 1, it is easy to know that 𝐷 < 0, so the univariate cubic

equation (24) has three distinct real roots, which are

H. Xu, B. Zhang, C. Pan et al.

𝑥1 = 2
√

− 𝑝
3
cos

(
𝜋

6
+ 𝜃

3

)
(25)

𝑥2 = −2
√

− 𝑝
3
cos

(
𝜋

6
− 𝜃

3

)
(26)

𝑥3 = 2
√

− 𝑝
3
sin 𝜃

3
(27)

where 𝜃 = tan−1
(

𝑞

2
√
−𝐷

)
and − 𝜋

2 < 𝜃 <
𝜋

2 . According to Eq. (23), we

know that 𝑅critical = 𝑥 +0.5. Because the reliability must be greater than
0 and less than 1, only 𝑥3 provides a valid solution which ensures that
𝑅critical falls within the required range of reliability. For 𝑥1 and 𝑥2, the
corresponding reliabilities exceed 1 and fall below 0 respectively. To
calculate the 𝑅critical, for instance, if the 𝑅req(𝑡𝑖) = 0.99, then we can
get 𝑅critical = 0.941097. For more details on solving univariate cubic
equations, please refer to reference [15].

4.1.3. Determining minimum finish times for task copies

HEFT [32] is a well-known algorithm to solve the problem of mini-

mizing the scheduling length of a parallel application executing on het-

erogeneous systems, which has high performance and relatively short
scheduling length. HEFT uses the concept of 𝑅𝑎𝑛𝑘 to obtain the schedul-

ing order of tasks, the 𝑅𝑎𝑛𝑘 value of task 𝑡𝑖 is defined as

𝑅𝑎𝑛𝑘(𝑡𝑖) =𝑤𝑖 + max
𝑡𝑗∈𝑐ℎ𝑖𝑙𝑑(𝑡𝑖)

{𝑐𝑖,𝑗 +𝑅𝑎𝑛𝑘(𝑡𝑗)}, (28)

where 𝑤𝑖 =
(∑𝑀

𝑗=1𝑤𝑖,𝑗

)/
𝑀 represents the average WCET of the task

𝑡𝑖 on each core. The tasks scheduled in non-ascending order of 𝑅𝑎𝑛𝑘
value can meet the requirements of execution order. Assuming that the
task 𝑡𝑖 mentioned below has been sorted by non-ascending order.

When an application executes on a heterogeneous system with
TMR technique, for the 𝑘th copy of task 𝑡𝑖 is assigned to core 𝑗, let
𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) represent the earliest start time in the worst-case sce-

nario and 𝐸𝐹𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) represent the earliest finish time. In addition,
let 𝑆𝑇 (𝑡𝑖,𝑘) represent the actual start time of the 𝑘th copy of task 𝑡𝑖 and
𝐹𝑇 (𝑡𝑖,𝑘) represent the actual finish time of the 𝑘th copy of task 𝑡𝑖. The
start time and finish time for comparing the execution results of three
copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗 can be calculated by

𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) = max
1≤𝑘≤3

{𝐹𝑇 (𝑡𝑖,𝑘) + 𝑟𝑡𝑡𝑖,𝑘,𝑗} (29)

and

𝐹𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) = 𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗) + 𝑣𝑐𝑡𝑖,𝑗,𝑙 , (30)

respectively. During the scheduling, let 𝐹𝑇𝐶(𝑡𝑖) represent the finish
time of comparing the execution results of the three copies of task 𝑡𝑖 .
When the copy 𝑡𝑖,𝑘 is assigned to 𝑐𝑜𝑟𝑒𝑗 , its earliest start time is related to
the predecessor task. Assuming that the communication time overheads
from the three copies 𝑡𝑥,1, 𝑡𝑥,2, and 𝑡𝑥,3 of the predecessor task 𝑡𝑥 to
𝑐𝑜𝑟𝑒𝑗 are 𝑐𝑡1, 𝑐𝑡2, and 𝑐𝑡3, respectively, and 𝑐𝑡1 ≥ 𝑐𝑡2 ≥ 𝑐𝑡3. Because
the copy 𝑡𝑖,𝑘 can obtain data from any correctly executed copy when
executing on 𝑐𝑜𝑟𝑒𝑗 , the worst-case scenario is a transient fault occurred
in 𝑡𝑥,3. In this case, 𝑡𝑖,𝑘 obtains data from 𝑡𝑥,2, resulting in a worst-case
communication time overhead of 𝑐𝑡2. Since we do not know which copy
will occur transient faults, this article calculates the earliest start time
of 𝑡𝑖,𝑘 based on the worst-case communication time as

⎧⎪⎨⎪⎩
𝐸𝑆𝑇 (𝑡entry,𝑘, 𝑐𝑜𝑟𝑒𝑗) = 0

𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) = max

{
𝑎𝑣𝑎𝑖𝑙[𝑗],

max
𝑡𝑥∈𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖)

{𝐹𝑇𝐶(𝑡𝑥) +𝑤𝑐𝑐𝑡𝑥,𝑖,𝑗}

}
(31)

where 𝑎𝑣𝑎𝑖𝑙[𝑗] represents the earliest available time of 𝑐𝑜𝑟𝑒𝑗 and
𝑤𝑐𝑐𝑡𝑥,𝑖,𝑗 represents the worst-case communication time of data trans-

mitting from task 𝑡𝑥 to 𝑐𝑜𝑟𝑒𝑗 for executing the copy of 𝑡𝑖.
Based on Eq. (31), the earliest finish time of 𝑡𝑖,𝑘 on 𝑐𝑜𝑟𝑒𝑗 can be
6

calculated by
Journal of Parallel and Distributed Computing 191 (2024) 104915

𝐸𝐹𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗) =𝐸𝑆𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗) +𝑤𝑥,𝑗 . (32)

Finally, the scheduling length of the application 𝐺 is given by

𝑆𝐿(𝐺) = 𝐹𝑇𝐶(𝑡exit). (33)

4.1.4. Detailed design of the IHEFT algorithm

Based on the previous analysis, we designed the IHEFT algorithm as
shown in Algorithm 1.

The IHEFT algorithm first determines the priority of the task (Line
1), and then assigns three copies of the task to the appropriate core for
execution. For each task, IHEFT first calculates its reliability require-

ment (Line 5) and then assigns its three copies (Lines 6-15). To avoid
assigning different copies of a task to the same core, a matrix 𝑆 with
𝑛 rows and 3 columns is defined to represent the processor cores to
which each copy of the task is assigned, where 𝑛 denotes the number of
tasks. The 𝑖-th row of the matrix corresponds to the processors to which
the three copies of task 𝑡𝑖 are assigned. The IHEFT algorithm initializes
all elements in matrix 𝑆 to 0 before assigning tasks (Line 2). When as-

signing a copy to a core, it first determines whether the core has been
occupied by other copies. If the processor core is unoccupied (Line 8),
IHEFT calculates the finish time and reliability of the copy (Lines 9-10).
Then IHEFT assigns the copy to the core that can complete it earliest
while satisfying the reliability requirement. After a copy is assigned,
IHEFT adds the corresponding core to the matrix 𝑆 (Line 14). Finally,
the execution results of the three copies are compared (Line 16), and if
the completion time for this comparison exceeds the application’s dead-

line, the algorithm returns a ‘false’ value (Lines 17-19).

Algorithm 1 IHEFT.

Input: 𝑃𝐶 = {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, application 𝐺, and 𝑅req(𝐺)
Output: the start time and finish time of all copies

1: sort the tasks to queue 𝑅𝑒𝑎𝑑𝑦𝑄 by non-ascending order of 𝑅𝑎𝑛𝑘
2: initialize all elements in matrix 𝑆 to 0
3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: for 𝑘 ← 1 to 3 do

7: for 𝑗← 1 to 𝑀 do

8: if 𝑗 is not in the 𝑖-th row of the matrix 𝑆 then

9: calculate 𝐸𝐹𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗) using Eq. (32)

10: calculate 𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) using Eq. (15)

11: end if

12: end for

13: assign copy 𝑡𝑖,𝑘 to the 𝑐𝑜𝑟𝑒𝑗 that minimizes EFT of copy 𝑡𝑖,𝑘 and satisfies
𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) ≥ 𝑅critical // the start time and finish time of the
copy 𝑡𝑖,𝑘 can be obtained

14: assign the element at the 𝑘-th column of the 𝑖-th row in matrix 𝑆 to
the value of 𝑗

15: end for

16: Transfer the execution results of the two earlier-finished copies to the
core where the third copy is assigned for voting comparison

17: if the completion time of the voting comparison is greater than the dead-

line 𝐷𝐿(𝐺) then

18: return false

19: end if

20: end while

HEFT has a time complexity of 𝑂(|𝑇 |2 ×𝑀), three copies of each
task need to be assigned when using the TMR technique, so the time
complexity of IHEFT is 𝑂((3 × |𝑇 |)2 ×𝑀).

4.2. The EET algorithm

When the IHEFT algorithm is completed, the scheduling length
𝑆𝐿IHEFT(𝐺) can be obtained. If the given deadline 𝐷𝐿(𝐺) > 𝑆𝐿IHEFT(𝐺),
there is a slack time between each task. The slack time can be used to
reduce the execution frequency and thus save energy. To more intu-
itively describe the degree of relaxation, the slack ratio (SR) is defined

H. Xu, B. Zhang, C. Pan et al.

as the ratio of the given deadline to the scheduling length generated by
IHEFT, which is expressed as

𝑆𝑅(𝐺) = 𝐷𝐿(𝐺)
𝑆𝐿IHEFT(𝐺)

. (34)

After all copies of all tasks are scheduled with the IHEFT algorithm,
the start time and finish time of each copy can be obtained. If the ex-

ecution time of the task is extended by 𝑆𝑅(𝐺) times, the application
can still meet the deadline requirements. Therefore, we can reduce the
execution frequency and extend the execution time of all copies for im-

proving energy efficiency. The extended finish time (ExFT) of the 𝑘th
copy of task 𝑡𝑖 is given by

𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘)=𝐹𝑇 (𝑡𝑖,𝑘) ×𝑆𝑅(𝐺). (35)

For any 𝑖 and 𝑘, if the finish time of the copy 𝑡𝑖,𝑘 does not exceed
𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘), the application can meet the deadline. Because the tasks
with extended execution time may not be suitable for the frequency
level requirements or may not satisfy the reliability requirements, it is
necessary to adjust the execution frequency of all the copies of all tasks.
During the scheduling, if the copy 𝑡𝑖,𝑘 is assigned to 𝑐𝑜𝑟𝑒𝑗 with the
execution frequency 𝑓𝑗,𝑙 , the finish time should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘);
Otherwise, the application may not meet the deadline. Therefore, the
EET algorithm for adjusting the execution frequency can be designed as
Algorithm 2.

Algorithm 2 EET.

Input: core set {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, 𝑅req(𝐺), 𝑆𝑅(𝐺), and the results of
IHEFT

Output: 𝐸(𝐺), 𝑆𝐿(𝐺) and 𝑅(𝐺)
1: reload the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄
2: obtain extended finish time (ExFT) of each copy using Eq. (35)

3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: for 𝑘 ← 1 to 3 do

7: 𝑐𝑜𝑟𝑒𝑗 ← get the core that executes copy 𝑡𝑖,𝑘
8: calculate 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) using Eq. (31) //the earliest start time of the

copy 𝑡𝑖,𝑘 on the core 𝑐𝑜𝑟𝑒𝑗
9: for frequency 𝑓𝑗,𝑙 ← 𝑓𝑗,low to 𝑓𝑗,max do

10: if 𝑤𝑖,𝑗 × 𝑓𝑗,𝑚𝑎𝑥

𝑓𝑗,𝑙
≤ 𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) − 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) and

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) ≥𝑅critical then

11: 𝑆𝑇 (𝑡𝑖,𝑘) ←𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗)
12: 𝐹𝑇 (𝑡𝑖,𝑘) ← 𝑆𝑇 (𝑡𝑖,𝑘) +𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙

13: break

14: end if

15: end for

16: end for

17: Transfer the execution results of the two earlier-finished copies to the
core where the third copy is assigned for voting comparison

18: end while

19: calculate 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺) using Eqs. (14), (33), and (19), respec-

tively

The EET algorithm saves energy by reducing the execution fre-

quency of the tasks, the details of which are explained as follows.

The input part of the EET algorithm is core set 𝑃𝐶 , 𝑅req(𝐺), 𝑆𝑅(𝐺),
and the results of IHEFT, the output part is 𝐸(𝐺) and 𝑆𝐿(𝐺). Line
1 reloads the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄. Line 2 indicates that the execu-

tion time of the tasks is extended. Lines 3-18 are a nested loop, which
traverses all the tasks in the application 𝐺. For any task 𝑡𝑖, the EET al-

gorithm first calculates the reliability requirement and then traverses
the execution frequency to make each copy meets the deadline and sat-

isfies the reliability requirement (Lines 5-16). Line 17 compares the
execution results by voting. Line 19 calculates 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺)
7

respectively.
Journal of Parallel and Distributed Computing 191 (2024) 104915

Fig. 3. Example of three copies of tasks 𝑡𝑖 .

The EET algorithm needs to traverse all copies of all tasks. Line 8 cal-

culates 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗), which needs to traverse all the precursor tasks
of 𝑡𝑖,𝑘. Lines 9-15 traverse all frequencies of 𝑐𝑜𝑟𝑒𝑗 . Therefore, the time
complexity of EET is 𝑂(3 × |𝑇 | × (3 × |𝑇 | + 𝐹𝐿)), where 𝐹𝐿 represents
the maximum number of frequency levels of all cores.

4.3. The MEOTC algorithm

When the IHEFT algorithm is completed, the start time and finish
time of all copies for all tasks can be obtained. Because the cores are
heterogeneous, the start time and finish time of different copies of the
same task may be different. In a TMR system, as long as two copies
of a task are executed correctly, the results of the task will be correct.
Therefore, it may not be necessary to complete the execution of the
third copy, which can save more energy. The main design idea of the
MEOTC algorithm using this mechanism is as follows.

(1) The execution frequency of the three copies should be reduced
as much as possible to reduce energy consumption. When the first two
copies are completed, their execution results will be voted in advance.
If no transient fault occurs, terminate the execution of the third copy.
Otherwise, after the third copy is completed, their execution results will
be voted together again.

(2) Because the third copy may be terminated prematurely, its exe-

cution overhead should be minimized.

We will use Fig. 3 to illustrate the implementation methods of the
three main design ideas mentioned above.

Fig. 3 shows an example of three copies of tasks 𝑡𝑖 after using the
IHEFT algorithm. Since the three copies are independent of each other,
it is advisable to assume that copy 𝑡𝑖,3 has the maximum finish time of
the three copies of 𝑡𝑖, and similarly, copy 𝑡𝑖,2 has the maximum fin-

ish time among the remaining two copies (i.e. 𝐹𝑇 (𝑡𝑖,3) ≥ 𝐹𝑇 (𝑡𝑖,2) ≥
𝐹𝑇 (𝑡𝑖,1)). In addition, assuming that the three copies 𝑡𝑖,1, 𝑡𝑖,2, and 𝑡𝑖,3 are
assigned to 𝑐𝑜𝑟𝑒𝑎, 𝑐𝑜𝑟𝑒𝑏, and 𝑐𝑜𝑟𝑒𝑐 , respectively. The energy-efficient
methods that use the TMR mechanism are as follows.

(1) If the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 are voted in advance, the
actual finish time of all copies should not exceed the extended finish
time, otherwise it may result in the deadline not being met. Therefore,
the available execution time for each copy should be determined.

For the copy 𝑡𝑖,1, its available execution time should not exceed
𝐸𝑥𝐹𝑇 (𝑡𝑖,1) −𝐸𝑆𝑇 (𝑡𝑖,1, 𝑐𝑜𝑟𝑒𝑎). If the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 are
voted in advance on 𝑐𝑜𝑟𝑒𝑏, it is necessary to transfer the results of 𝑡𝑖,1 to
𝑐𝑜𝑟𝑒𝑏. In this case, the available execution time of 𝑡𝑖,1 should not exceed
𝐸𝑥𝐹𝑇 (𝑡𝑖,2) −𝐸𝑆𝑇 (𝑡𝑖,1, 𝑐𝑜𝑟𝑒𝑎) − 𝑟𝑡𝑡𝑖,1,𝑏 − 𝑣𝑐𝑡𝑖,𝑏,𝑙 . Therefore, the available
execution time of 𝑡𝑖,1 is given by

𝑎𝑒𝑡1 = min
(
𝐸𝑥𝐹𝑇 (𝑡𝑖,1)−𝐸𝑆𝑇 (𝑡𝑖,1,𝑐𝑜𝑟𝑒𝑎),
𝐸𝑥𝐹𝑇 (𝑡𝑖,2)−𝐸𝑆𝑇 (𝑡𝑖,1,𝑐𝑜𝑟𝑒𝑎)−𝑟𝑡𝑡𝑖,1,𝑏−𝑣𝑐𝑡𝑖,𝑏,𝑙

)
. (36)

When the previous two copies 𝑡𝑖,1 and 𝑡𝑖,2 are completed, their ex-

ecution results are voted on 𝑐𝑜𝑟𝑒𝑏, the available execution time of 𝑡𝑖,2
should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,2) −𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏) − 𝑣𝑐𝑡𝑖,𝑏,𝑙 . In addition, if
a transient fault occurs in one of the copies 𝑡𝑖,1 and 𝑡𝑖,2, the execution
results of these two copies need to be transmitted to 𝑐𝑜𝑟𝑒𝑐 to compare
the results of the three copies again. In this case, the available execution
time of 𝑡𝑖,2 should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,3) − 𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑐) − 𝑟𝑡𝑡𝑖,1,𝑐 −

𝑣𝑐𝑡𝑖,𝑏,𝑙 . Therefore, the available execution time of 𝑡𝑖,2 is given by

H. Xu, B. Zhang, C. Pan et al.

𝑎𝑒𝑡2 = min
(
𝐸𝑥𝐹𝑇 (𝑡𝑖,2)−𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏) − 𝑣𝑐𝑡𝑖,𝑏,𝑙 ,

𝐸𝑥𝐹𝑇 (𝑡𝑖,3)−𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏)−𝑟𝑡𝑡𝑖,1,𝑐−𝑣𝑐𝑡𝑖,𝑏,𝑙

)
. (37)

For the copy 𝑡𝑖,3, its finish time should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,3), so its
available execution time is given by

𝑎𝑒𝑡3 =𝐸𝑥𝐹𝑇 (𝑡𝑖,3) −𝐸𝑆𝑇 (𝑡𝑖,3). (38)

(2) If both copies 𝑡𝑖,1 and 𝑡𝑖,2 have no faults and the completion
time for voting on their execution results is 𝑓𝑡𝑐, the copy 𝑡𝑖,3 is not
necessary to be executed in the time interval [𝑓𝑡𝑐, 𝐹𝑇 (𝑡𝑖,3)]. In this case,
the execution time 𝑒𝑡 of 𝑡𝑖,3 is 𝑓𝑡𝑐−𝑆𝑇 (𝑡𝑖,3), so the energy consumption
of execution 𝑡𝑖,3 is given by

𝐸𝐶(𝑡𝑖,3) =
{

(𝑃𝑐,ind +𝐶𝑐,ef𝑓
𝑚𝑐
𝑐,𝑙

) × 𝑒𝑡 𝑒𝑡 > 0
0 𝑒𝑡 ≤ 0

. (39)

Then, we set the finish time of 𝑡𝑖,3 to 𝐸𝑥𝐹𝑇 (𝑡𝑖,3) and try to increase
the execution frequency of 𝑡𝑖,3, thereby delaying its start time and re-

calculating the energy consumption. In this way, the minimum energy
consumption for executing 𝑡𝑖,3 can be found.

(3) If the first two copies cannot vote in advance due to insufficient
available execution time, or if a transient fault occurs in the first two
copies, the execution results of the three copies will be voted on 𝑐𝑜𝑟𝑒𝑐

Based on the above analysis, the MEOTC algorithm is designed as
shown in Algorithm 3, and its details are explained as follows.

The input part of the MEOTC algorithm is the core set, the applica-

tion 𝐺, and the results of the IHEFT algorithm, the output part is 𝐸(𝐺),
𝑆𝐿(𝐺), and 𝑅(𝐺). Line 1 initializes ready queue 𝑅𝑒𝑎𝑑𝑦𝑄. Line 2 ob-

tains the extended finish time of each copy. Lines 3-38 are a nested
loop, which traverses all the tasks in the application 𝐺. For any task 𝑡𝑖,
MEOTC first obtains the available execution time of each copy (Lines
9-15), and then MEOTC enters the inner loop, which traverses the exe-

cution frequency of the core to find the minimum energy consumption
of each copy (Lines 16-21). If the first two copies complete execution
and immediately vote, MEOTC will reconsider the possible minimum
energy consumption of the third copy (Lines 23-34). If the first two
copies cannot be voted or if a transient fault occurs, the execution re-

sults of the three copies will be voted (Lines 35-37).

The time complexity of the MEOTC algorithm is analyzed as follows.
The MEOTC algorithm is mainly loop nesting, the outer loop traverses
each task, and the inner loop needs to calculate the earliest start time of
each copy, which requires traversing each copy of the task. In addition,
the inner loop also needs to traverse the core’s execution frequency for
each copy. Therefore, the time complexity of MEOTC is 𝑂(3 × |𝑇 | × (3 ×|𝑇 | + 𝐹𝐿)), where 𝐹𝐿 represents the maximum number of frequency
levels of all cores.

4.4. Case study

The following is a case study of the proposed algorithms to execute
the motivation example (see section 3.2). Assuming that the parameters
of the three types of cores in the motivation example are in Table 3,
where each core type has two cores and is assigned to the same group.
To transmit the execution results to a certain core for voting, the trans-

mission time 𝑟𝑡𝑡𝑖,𝑘,𝑗 is set as the maximum communication time between
task 𝑡𝑖 and the direct successor tasks. In addition, 𝑟𝑡𝑡5,𝑘,𝑗 is set to 2. If
the execution result is within the same group, the transmission time
𝑟𝑡𝑡𝑖,𝑘,𝑗 = 0. The voting comparison time is set to 1, and the communica-

tion energy consumption rate 𝑐𝑟 is set to 0.2. The maximum frequency
of each core is 1.0, and the difference between adjacent frequencies is
0.1. The reliability requirement of the application is 𝑅req(𝐺) = 0.99.

Table 4 shows the results of the IHEFT algorithm scheduling motiva-

tion application 𝐺 in Fig. 2, where ST, FT, FTC, 𝐸co, 𝐸dy , 𝐸rt , 𝐸vc, and
𝐸dcrv represent the start time, finish time, voting finish time, communi-

cation energy consumption with the predecessor task, dynamic energy
consumption of the core, energy consumption for transmitting execu-
8

tion results, energy consumption of executing result voting, and the
Journal of Parallel and Distributed Computing 191 (2024) 104915

Algorithm 3 MEOTC.

Input: core set {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, the application 𝐺, and the results of
IHEFT

Output: 𝐸(𝐺), 𝑆𝐿(𝐺) and 𝑅(𝐺)
1: reload the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄
2: obtain extended finish time (ExFT) of each copy using Eq. (35)

3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: obtain the copy 𝑡𝑖,3 , 𝑡𝑖,2, and 𝑡𝑖,1 that have 𝐹𝑇 (𝑡𝑖,3) ≥ 𝐹𝑇 (𝑡𝑖,2) ≥ 𝐹𝑇 (𝑡𝑖,1)
7: 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 ← true

8: for 𝑘 ← 1 to 3 do

9: 𝑐𝑜𝑟𝑒𝑗 ← the core that executes copy 𝑡𝑖,𝑘
10: calculate 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗) using Eq. (31)

11: calculate the available execution time 𝑎𝑒𝑡𝑘 according to Eqs. (36),
(37), and (38)

12: if 𝑎𝑒𝑡𝑘 < 𝑤𝑖,𝑗) then

13: 𝑎𝑒𝑡𝑘 ←𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) −𝐸𝑆𝑇 (𝑡𝑖,𝑘)

14: 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 ← false

15: end if

16: for frequency 𝑓𝑗,𝑙 ← 𝑓𝑗,low to 𝑓𝑗,max do

17: if 𝑤𝑖,𝑗 ×
𝑓𝑗,𝑚𝑎𝑥

𝑓𝑗,𝑙
≤ 𝑎𝑒𝑡𝑘 and 𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) ≥𝑅critical then

18: 𝑆𝑇 (𝑡𝑖,𝑘) ←𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗)
19: 𝐹𝑇 (𝑡𝑖,𝑘) ← 𝑆𝑇 (𝑡𝑖,𝑘) +𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙

20: end if

21: end for

22: end for

23: if 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 is true then

24: transfer the execution result of 𝑡𝑖,1 to the core where 𝑡𝑖,2 is located for
voting

25: obtain 𝑐𝑜𝑟𝑒𝑗 to execute the copy 𝑡𝑖,3
26: 𝑒𝑐← +∞
27: for execution frequency 𝑓 ← 𝑓𝑗,𝑙 to 𝑓𝑗,max do

28: calculate 𝐸𝐶(𝑡𝑖,3) using Eq. (39)

29: if 𝐸𝐶(𝑡𝑖,3) < 𝑒𝑐 then

30: 𝑒𝑐←𝐸𝐶(𝑡𝑖,3)
31: mark 𝑓𝑗,𝑙 and 𝐴𝑆𝑇 (𝑡𝑖,3)
32: end if

33: end for

34: end if

35: if 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 is false or a transient fault occurs in the first two
copies then

36: transfer the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 to the core where 𝑡𝑖,3 is
located for voting

37: end if

38: end while

39: calculate 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺) using Eqs. (14), (33), and (19), respec-

tively

Table 3

The parameters of the processor cores in motivation example.

Core type 𝑃s 𝑃ind 𝐶ef 𝑚 𝑓max 𝜆 𝑑

type 1 0.001 0.03 1.2 2.9 1.0 0.0002 2.3

type 2 0.001 0.05 0.9 2.8 1.0 0.0005 2.1

type 3 0.001 0.04 1.1 3.0 1.0 0.0009 2.2

total amount of the dynamic energy consumption, respectively. Finally,
scheduling length 𝑆𝐿(𝐺) = 56 and 𝐸dcrv(𝐺) = 187.42. The static energy
consumption is 0.001 × 6 × 56 = 0.34. Therefore, the total energy con-

sumption of the application is 187.42 + 0.34 = 187.76.

Assuming that the given 𝑆𝑅(𝐺) is 1.4 (i.e. the deadline of the appli-

cation is 78.4), the scheduling results of the EET algorithm are shown
in Table 5, which shows the execution frequency of all copies of the
task is reduced. Finally, the reliability of the application is 0.9915076,
which is higher than 0.99. The scheduling length generated by EET is
70.03, which is less than 1.4 ×𝑆𝐿IHEFT(𝐺) = 78.4. The total amount of

the dynamic energy consumption of EET is 136.81, and the static en-

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Table 4

The results of the motivation example using IHEFT.

Task Core ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0 11 0 0.990149 0 12.54 0 0 12.54

1 6 0 11 0 0.990149 0 12.54 0 0 12.54

1 3 0 16 17 0.992032 0 15.2 1.2 0.95 17.35

2 3 19 29 0 0.995012 0 9.5 0 0 9.5

2 4 19 29 0 0.995012 0 9.5 0 0 9.5

2 1 19 33 34 0.997204 0.4 17.22 0.8 1.23 19.65

3 2 19 28 0 0.998202 0 11.07 0 0 11.07

3 5 17 29 0 0.989258 0 13.68 0 0 13.68

3 6 17 29 32 0.989258 0 13.68 0.6 1.14 15.42

4 3 29 37 0 0.996008 0 7.6 0 0 7.6

4 4 29 37 0 0.996008 0 7.6 0 0 7.6

4 2 28 41 42 0.997403 0 15.99 0.4 1.23 17.62

5 5 43 50 0 0.993720 0.6 7.98 0 0 8.58

5 6 43 50 0 0.993720 0 7.98 0 0 7.98

5 1 43 55 56 0.997603 0 14.76 0.8 1.23 16.79

𝑆𝐿(𝐺) = 56, 𝐸dcrv(𝐺) = 187.42, 𝑅(𝐺) = 0.999436

Table 5

The results of the motivation example using EET after IHEFT.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 3 0.9 0 17.78 18.78 0.982421 0 12.80 1.2 0.95 14.95

2 3 0.8 20.78 33.28 0 0.975425 0 6.65 0 0 6.65

2 4 0.8 20.78 33.28 0 0.975425 0 6.65 0 0 6.65

2 1 0.8 20.78 38.28 39.28 0.984232 0.4 11.52 0.8 1.23 13.95

3 2 0.7 20.78 33.64 0 0.975425 0 5.87 0 0 5.87

3 5 0.9 18.78 32.11 0 0.975560 0 11.23 0 0 11.23

3 6 0.9 18.78 32.11 37.64 0.975560 0 11.23 0.6 1.14 12.97

4 3 0.8 33.28 43.28 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 33.28 43.28 0 0.980291 0 5.32 0 0 5.32

4 2 0.8 33.64 49.89 50.89 0.985350 0 10.70 0.4 1.23 12.33

5 5 0.8 51.89 60.64 0 0.967072 0.6 5.28 0 0 5.88

5 6 0.8 51.89 60.64 0 0.967072 0 5.28 0 0 5.28

5 1 0.7 51.89 69.03 70.03 0.967368 0 7.83 0.8 1.23 9.86

𝑆𝐿(𝐺) = 70.03, 𝐸dcrv(𝐺) = 136.81, 𝑅(𝐺) = 0.9915076
ergy consumption is 0.001 ×6 ×70.03 = 0.42. Therefore, the total energy
consumption is 136.81 + 0.42 = 137.23, which is 73.09% of the IHEFT
algorithm.

Table 6 shows the results of the motivation example using MEOTC
after IHEFT. When there are no faults in the first two completed copies
of the tasks, the third copy can be terminated prematurely to save en-

ergy. For example, the copy 𝑡1,3 can be terminated at time 13.22 when
the execution of 𝑡1,1 and 𝑡1,2 is completed at time 12.22 and their ex-

ecution results completed the voting at time 13.22. If any transient
faults occur in the first two copies, the third copy 𝑡1,3 must be executed
completely and its execution results must be voted together with the ex-

ecution results of the first two copies. We have marked the execution
finish time and voting finish time of the third copy when fully executed
in the brackets in columns 5 and 6 of Table 6, respectively. Considering
that the probability of faults occurring in the first two copies is not high,
the MEOTC algorithm tries to minimize the energy consumption of the
third copy, so MEOTC delays the start time of the third copy to 4.62.
When all copies are executed without any transient faults, the energy
consumption for executing the copy 𝑡1,3 will be reduced from 12.80
to 6.19. Finally, the reliability of the application is 0.993746, which
satisfies the reliability requirement. The total amount of the dynamic
energy consumption is 121.04, and the static energy consumption is
9

0.001 × 6 × 78 = 0.47. Therefore, the total energy consumption of the
application is 121.04 + 0.47 = 121.51, which is 64.72% of the IHEFT
algorithm.

It should be noted that any failure must be considered from the per-

spective of reliability. However, from the perspective of average energy
consumption, we do not need to consider the cases in which the system
tolerates a fault [26]. For example, consider the task 𝑡1, the reliabil-

ity of the copies 𝑡1,1 and 𝑡1,2 are 0.977573 and 0.977573, respectively.
Therefore, the probability of no fault occurs during execution 𝑡1,1 and
𝑡1,2 is 0.977573 × 0.977573 = 0.955649. When no fault occurs, the en-

ergy consumption for executing task 𝑡1 is 10.29 + 11.43 + 6.19 = 27.91.
If a fault occurs during the execution of 𝑡1,1 and 𝑡1,2, the copy 𝑡1,3
must be executed completely and hence the energy consumption is
10.29 + 11.43 + 14.95 = 36.67. From the above analysis, it can be
seen that the average energy consumption for executing task 𝑡1 is
0.955649 × 27.91 + (1 − 0.955649) × 36.67 = 28.30, which is very close
to the energy consumption when no faults occur (27.91).

4.5. Online energy management

We observe Table 6 and find that when the three copies of the first
task are completed at time 13.22, the copies of the second task are not
executed immediately, and the corresponding start times are 25.4, 25.4,

and 28.7 respectively. When the task is executed online, we can make

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Table 6

The results of the motivation example using MEOTC after IHEFT.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 13.22 0.977573 0 10.29 0 1.14 11.43

1 3 0.9 4.62 13.22 [22.4] [23.4] 0.982421 0 6.19 0 0 6.19

2 3 0.8 25.4 37.9 0 0.975425 0.4 6.65 0 0 7.05

2 4 0.8 25.4 37.9 38.9 0.975425 0 6.65 0 0.95 7.60

2 1 0.8 28.7 38.9 [46.2] [47.2] 0.984232 0.4 6.71 0 0 7.11

3 2 0.9 25.4 35.4 0 0.995747 0 9.14 0 0 9.14

3 5 1 23.4 35.4 39.4 0.989258 0 13.68 0.6 1.14 15.42

3 6 0.9 27.27 39.4 [40.6] [41.6] 0.975560 0 10.22 0 0 10.22

4 3 0.8 37.9 47.9 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 38.9 48.9 49.9 0.980291 0 5.32 0 0.95 6.27

4 2 0.7 38.83 49.9 [57.4] [58.4] 0.964697 0 5.05 0 0 5.05

5 5 1 59.4 66.4 0 0.993720 0.6 7.98 0 0 8.58

5 6 0.8 59.4 68.15 69.4 0.967072 0 5.28 0 1.14 6.42

5 1 0.7 59.86 69.4 [77] [78] 0.967368 0.6 4.36 0 0 4.96

𝑆𝐿(𝐺) = 78, 𝐸dcrv(𝐺) = 121.04, 𝑅(𝐺) = 0.993746

Table 7

The results of online energy management after MEOTC.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 13.22 0.977573 0 10.29 0 1.14 11.43

1 3 0.9 4.62 13.22 0 0.982421 0 6.19 0 0 6.19

2 3 0.8 14.22 26.72 0 0.975425 0.4 6.65 0 0 7.05

2 4 0.8 14.22 26.72 27.72 0.975425 0 6.65 0 0.95 7.60

2 1 0.8 28.70 28.70 0 0.984232 0.4 0.00 0 0 0.4

3 2 0.9 14.22 24.22 0 0.995747 0 9.14 0 0 9.14

3 5 1 13.22 25.22 29.22 0.989258 0 13.68 0.6 1.14 15.42

3 6 0.9 27.27 29.22 0 0.975560 0 1.65 0 0 1.65

4 3 0.8 26.72 36.72 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 27.72 37.72 38.72 0.980291 0 5.32 0 0.95 6.27

4 2 0.7 38.83 38.83 0 0.964697 0 0.00 0 0 0

5 5 1 38.72 45.72 0 0.993720 0.6 7.98 0 0 8.58

5 6 0.8 38.72 47.47 48.72 0.967072 0 5.28 0 1.14 6.42

5 1 0.7 59.86 59.86 0 0.967368 0.6 0 0 0 0.6

𝑆𝐿(𝐺) = 48.72, 𝐸dcrv(𝐺) = 96.35, 𝑅(𝐺) = 0.993746
the first two copies of the second task start at 14.22 (the communication
time between 𝑡1 and 𝑡2 is 1), and the third copy still starts at 28.7. By
doing so, the first two copies can be completed in advance. If there
are no faults in these two copies, the execution time of the third copy
will be shortened, thus saving more energy. If any fault occurs during
the execution of the first two copies, the execution result of the third
copy will be voted together with the first two copies. In this way, the
application can still meet the deadline. Based on this idea, when no
fault occurs, the scheduling results of the online energy management
(OEM) are shown in Table 7.

As can be seen from Table 7, the execution time of the third copy
becomes shorter except for the first task, so they consume less energy.
Even if the third copy and other copies are assigned to the same type
of core, it can still save energy when scheduling online. For example,
two copies 𝑡3,2 and 𝑡3,3 of task 𝑡3 are assigned to the same type of cores
(the third type of core, that is 𝑐𝑜𝑟𝑒5 and 𝑐𝑜𝑟𝑒6), the third copy 𝑡3,3
(assigned to 𝑐𝑜𝑟𝑒6) can still delay the start execution time to 27.27 and
terminate at time 29.22. So the energy consumed by the copy 𝑡3,3 can
be reduced from 10.22 to 1.65. Note that some copies may not need to
be executed at all, for example, the copies 𝑡4,3 and 𝑡5,3 do not need to be
executed. Finally, the dynamic energy consumption of the application
10

is 96.35, and the static energy consumption is 0.001 × 6 × 48.72 = 0.29.
Therefore, the total energy consumption is 96.35 + 0.29 = 97.64, which
is 52.00% of the IHEFT algorithm.

5. Experimental performance evaluation

5.1. Experimental parameters

We a use C++ program to simulate the proposed algorithms. The pa-

rameter values of the multi-core platform, power consumption of core,
transient faults rate of core, and the WCET of a task on each core are
taken from [4], [35], [36], and [37]. These parameters are shown in
Table 8, where cores within the same group have the same parameters.
During the experiment, we saved the core parameters, parallel applica-

tion DAG parameters, and the worst-case execution time of each task
on each type of core to files separately, so that different algorithms are
based on the same platform and parallel applications.

Since IHEFT does not adjust the execution frequency of the core and
all copies of all tasks are completely executed, IHEFT is treated as the
original TMR algorithm. Because no similar algorithm is found for par-

allel application on heterogeneous platforms with TMR, we compared
our algorithms with a recently proposed AFTSA algorithm [14], which
uses task replication techniques to maximize system reliability within a

given deadline on heterogeneous platforms. To be fair, we consider the

H. Xu, B. Zhang, C. Pan et al.

Table 8

The value range of each experimental parameter.

Experimental parameters Value ranges

Number of groups |𝑆𝐺| 3

Number of cores 𝑛𝑠𝑔 within each group 4

Leakage power 𝑃𝑗,in [0.03, 0.07]

Switching capacitance 𝐶𝑗,sw [0.8, 1.2]

Dynamic energy exponent 𝑚𝑗 [2.5, 3.0]

Maximum frequency 𝑓𝑗,max 1.0 GHz

Precision of frequency adjustment 0.1 GHz

Communication energy consumption rate 𝑐𝑟 0.2 Watt

Transient faults rate per ms of 𝑐𝑜𝑟𝑒𝑗 execution
with the maximum frequency

[0.000001, 0.000009]

Sensitivity fault rate 𝑑𝑗 to frequency scaling of
𝑐𝑜𝑟𝑒𝑗

[1.0, 3.0]

WCET of task 𝑡𝑖 assigned to 𝑐𝑜𝑟𝑒𝑗 [10, 100] ms

Communication time between 𝑡𝑖 and 𝑡𝑗 [1, 10] ms

Execution results transmission (for voting) time
𝑟𝑡𝑡𝑖,𝑘,𝑗

the maximum
communication time
between task 𝑡𝑖 and its
direct successor

Reliability requirement of the application 𝐺 at least exceeds 0.99

fault detection overhead in AFTSA and the result comparison overhead
in our experiments.

According to the overhead of fault detection for some benchmark
applications in [26], the average time overhead of light fault detection
(LFD) and heavy fault detection (HFD) mechanism is about 28% and
85% of the application execution time, respectively. To obtain the time
overhead for comparing execution results (CER) of different copies of
a task, we measured the execution time and result comparison time
for some benchmarks by using the 𝑐𝑙𝑜𝑐𝑘() function in C++. Table 9

shows that the comparison overhead of most applications is less than
3%. Therefore, the overhead of LFD, HFD, and CER is set to 28%, 85%,
and 3% of the task execution time, respectively. In addition, in order to
reduce the energy consumption of AFTSA, we have made the following
improvements.

(1) AFTSA improves reliability by increasing the number of copies of
tasks. When the application’s reliability value reaches the requirements,
we will not increase the number of copies of any task.

(2) When a copy of a task is completed and no fault is found after
fault detection, the execution of other copies of this task is also termi-

nated immediately.

(3) If a task has only one copy, it will not be fault detected.

In experiments, AFTSA with LFD is called AFTSA-LFD and with HFD
is called AFTSA-HFD.

Gaussian elimination and Fourier transform are used as the bench-

mark, which has been widely used in the field of parallel comput-

ing to evaluate the performance of algorithms [17][35][36][37]. To
describe the number of tasks in applications, a parameter 𝜌 is intro-

duced. For Gaussian elimination applications, the total number of tasks
is |𝑇 | = 𝜌2+𝜌−2

2 . Fig. 4 shows a Gaussian elimination application with
𝜌 = 5. For Fourier transform applications, the total number of tasks is |𝑇 | = (2 × 𝜌 − 1) + 𝜌 × log2𝜌 with 𝜌 = 2𝑛, where 𝑛 is a positive integer.
Fig. 5 shows a Fourier transform application with 𝜌 = 4.

5.2. Different deadline constraints of applications

Experiment 1: The small-scale, medium-scale, and large-scale Gaus-

sian applications are used to evaluate different algorithms. The value 𝜌
of these three sizes of applications is 16, 32, and 48, and the corre-

sponding task numbers of which are 135, 527, and 1175 respectively.
The reliability requirement of the application is 0.995 and the values
of slack ratio 𝑆𝑅 increase from 1.1 to 2.0 with 0.1 increments. Figs. 6

and 7 show the energy consumptions and actual reliabilities generated
by different algorithms.

As shown in Fig. 6, as the increase of slack ratio 𝑆𝑅, the energy con-
11

sumptions generated by IHEFT, AFTSA-LFD, and AFTSA-HFD remain
Journal of Parallel and Distributed Computing 191 (2024) 104915

Fig. 4. A Gaussian elimination application with 𝜌 = 5.

Fig. 5. A Fourier transform application with 𝜌 = 4.

unchanged, and the energy consumption generated by MEOTC and
OEM algorithms is significantly reduced. When 𝑆𝑅 ≥ 1.3 the energy
consumption generated by EET, MEOTC, and OEM is lower than that of
AFTSA-LFD and AFTSA-HFD. Among the three algorithms EET, MEOTC,
and OEM, OEM generates the lowest energy consumption and EET gen-

erates the highest energy consumption. In addition, when 𝑆𝑅 ≥ 1.3, the
energy consumption generated by EET does not significantly change as
𝑆𝑅 increases. Another interesting phenomenon in this experiment is
that the energy consumption of IHEFT in Fig. 6 (a) is higher than that
of AFTSA-HFD, while the energy consumption of the IHEFT algorithm
in Fig. 6 (b) and (c) is lower than that of AFTSA-HFD. On average,
the energy consumption generated by MEOTC and OEM is 79.0% and
68.9% of AFTSA-LFD, and 56.8% and 49.5% of AFTSA-HFD.

Fig. 7 shows the reliability generated by different algorithms, where
the reliability requirements are satisfied by all algorithms. IHEFT gen-

erates the highest reliability because it does not reduce the execution
frequency. AFTSA-LFD and AFTSA-HFD generate almost the same re-

liability, and they are slightly higher than the reliability requirement.
However, the reliabilities generated by EET, MEOTC, and OEM are sig-

nificantly higher than the reliability requirement when 𝑆𝑅 < 1.3. There
is no significant difference in the reliability generated by all algorithms
except IHEFT when 𝑆𝑅 > 1.4.

The main reasons for these results are as follows.

(1) When the reliability requirements of the application are satisfied,
AFTSA-LFD and AFTSA-HFD will not increase the number of copies of
any task, so the energy consumption generated by these two algorithms
will not change with 𝑆𝑅.

(2) When 𝑆𝑅 is greater than 1.0, there will be a slack time that can
be used to reduce the execution frequency of the copies. EET reduces
the execution frequency as much as possible while meeting the deadline
and satisfying the reliability requirement of the application. MEOTC
can also reduce the execution frequency and terminate the third copy

in advance, so MEOTC can also effectively reduce energy consumption.

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Table 9

Overhead of comparing execution results.

Benchmark Execution Time (ms) Comparison Time (ms) Overhead (%) Parameter Description

Qsort 90 2 2.2% 100000 elements of string type

Qsort 198 2 1.0% 1000000 elements of float type

Matrix Multiple 382 1 0.3% 500 × 500 elements of integer type

SusanCorners 192 2 1.0% image size 640*480

SusanEdges 504 2 0.4% image size 640*480

Fig. 6. The energy consumption generated by different algorithms.

Fig. 7. The actual reliability generated by different algorithms.
(3) EET tends to reduce the execution frequency of the copies, while
MEOTC tends to delay the start time of the third copy and also reduces
the execution frequency. When there are no transient faults in the first
two copies of the task, MEOTC will terminate the execution of the third
copy. Therefore, the energy consumption generated by MEOTC is lower
than that of EET.

(4) When a task is completed ahead of schedule, OEM immediately
executes the first two copies of the subsequent task, so that the third
copy will be terminated earlier or the third copy does not need to be
executed. Therefore, OEM consumes less energy than MEOTC.

(5) Due to the high fault detection overhead of the AFTSA-LFD and
AFTSA-HFD algorithms and the fact that they do not use DVFS, these
two algorithms generate high energy consumption.

(6) In IHEFT, even though each task has three copies to be executed,
they have lower voting overhead. In AFTSA-HFD, the total number of
copies of the task is less than IHEFT, but this algorithm has high fault
detection overhead and the number of copies is related to the scale and
12

reliability requirement of the application. For example, in Fig. 7 (a),
the total number of tasks is 135, and there are 102 tasks that need to be
replicated. The total number of tasks in Fig. 7 (b) is 527, and 499 tasks
need to be replicated to satisfy the reliability requirement. Therefore,
when the reliability requirement remains unchanged, as the applica-

tion scale increases, the energy consumption generated by AFTSA-HFD
increases more than that of IHEFT.

(7) When the execution frequency is reduced, the reliability of the
application will also be reduced. However, due to reliability constraints,
although there is enough relaxation time, the execution frequency can-

not be reduced indefinitely. Therefore, the reliability change trend gen-

erated by each algorithm is not obvious when 𝑆𝑅 > 1.3.

Experiment 2: The small-scale, medium-scale, and large-scale
Fourier applications are used to evaluate different algorithms. The value
𝜌 of these three sizes of applications is 32, 64, and 128, and the corre-

sponding task numbers of which are 223, 511, and 1151 respectively.
The reliability requirement of the application is 0.995 and the values

of slack ratio 𝑆𝑅 increase from 1.0 to 2.0 with 0.1 increments. Figs. 8

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Fig. 8. The energy consumption generated by different algorithms.

Fig. 9. The actual reliability generated by different algorithms.
and 9 show the energy consumptions and actual reliabilities generated
by different algorithms.

As shown in Fig. 8, the energy consumptions generated by EET,
MEOTC, and OEM are lower than that of AFTSA-HFD and AFTSA-LFD
when 𝑆𝑅 ≥ 1.2. Among the three algorithms of EET, MEOTC, and OEM,
OEM generates the lowest energy consumption. On average, the energy
consumption generated by MEOTC and OEM is 80.8% and 74.6% of
AFTSA-LFD, and 64.9% and 59.9% of AFTSA-HFD.

As shown in Fig. 9, all algorithms can make the application sat-

isfy the reliability requirement. IHEFT generates the highest reliability,
the reliability generated by the AFTSA-HFD and AFTSA-LFD remains
unchanged and slightly higher than the reliability requirements. The
reliability generated by EET, MEOTC, and OEM is significantly higher
than the reliability requirement when 𝑆𝑅 < 1.4.

5.3. Different reliability requirements of applications

Experiment 3: The medium-scale Gaussian applications with 𝜌 =
32 (527 tasks) are used to evaluate different algorithms. The value of
slack ratio 𝑆𝑅 = 1.5 and the reliability requirements of the application
increase from 0.990 to 0.999 with 0.001 increments. Fig. 10 shows the
results of different algorithms with different reliability requirements.

As shown in Fig. 10 (a), AFTSA-HFD generates the highest energy
consumption, while OEM generates the lowest energy consumption. The
energy consumption generated by MEOTC is higher than that of OEM
but lower than that of other algorithms. With the improvement of re-

liability requirements, the energy consumption generated by IHEFT re-
13

mains unchanged, and the energy consumption generated by the other
five algorithms is gradually increased. The main reason for this result is
that with the improvement of reliability requirements, EET and MEOTC
will run tasks at a higher frequency and AFTSA needs to assign more
task copies. Therefore, the energy consumption of these algorithms will
increase.

It should be noted that in Fig. 10 (a), a diagram OEM+ is added
to indicate the energy consumption generated by OEM when the time
overhead for comparing execution results of different copies of a task
increases from 3% to 10%. At this time, the energy consumption gener-

ated by OEM is still the lowest.

As shown in Fig. 10 (b), all algorithms can make the application
satisfy the reliability requirements.

5.4. Different platform scales

Experiment 4: This experiment evaluates the energy consumption
and reliability of each algorithm on different platforms. The medium-

scale Fourier application with 𝜌 = 64 (511 tasks) is used in this ex-

periment, the reliability requirement of which is 0.995 and slack ratio
𝑆𝑅 = 1.5. There are four different types of cores within the platform,
which are divided into four groups and each group has the same core
type. When the number of cores in each group is 4, 8, 16, and 32 (i.e.,
the total number of cores is 16, 32, 64, and 128 respectively), the en-

ergy consumption and actual reliability generated by each algorithm
are shown in Fig. 11.

As shown in Fig. 11 (a), as the total number of core increases, the en-

ergy consumption generated by all algorithms will decrease. The main

reason for this result is that as the number of cores in each group

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Fig. 10. Results of different algorithms with different reliability requirements.

Fig. 11. Results of different algorithms with different numbers of cores.
increases, the communication energy consumption between tasks will
decrease. Overall, AFTSA-HFD generates the highest energy consump-

tion, while OEM generates the lowest energy consumption.

The results of the above four experiments are summarized as fol-

lows.

• The TMR technique can also be applied to heterogeneous multi-

core real-time systems.

• When the cores support DVFS, with the application’s deadline in-

creasing, the energy consumption generated by the algorithms EET,
MEOTC, and OEM will be significantly reduced.

• In cases where the deadline of the application is relatively relaxed,
such as when 𝑆𝑅 > 1.3, MEOTC exhibits obvious advantages over
both AFTSA-LFD and AFTSA-HFD. To ensure that the deadline con-

straint and reliability requirement of the application are met, the
OEM algorithm based on MEOTC can be used in the actual environ-

ment. On average, the energy consumption generated by MEOTC
and OEM is 80% and 72% of that of AFTSA-LFD, and 61% and 55%
of that of AFTSA-HFD.

6. Conclusion

TMR technique can perfectly tolerate the faults in task execution,
but the system energy consumption will increase dramatically due to
multiple copies of execution. This paper studies the problem of mini-

mizing energy consumption for parallel applications on heterogeneous
multi-core real-time systems with TMR. First, the IHEFT algorithm is
designed to assign three copies of a task to different cores, and then
according to the given application’s deadline, the EET algorithm is de-

signed to extend the execution time of the tasks, so as to reduce the
execution frequency of copies. Based on the task assignment informa-
14

tion of IHEFT, the MEOTC algorithm is designed. Finally, considering
the actual scenarios during task execution, an online energy manage-

ment method is proposed. Simulation results show that OEM based on
MEOTC is more energy efficient than the original TMR method and the
existing task replication algorithm AFTSA in most cases. We believe that
the proposed algorithms can be applied to heterogeneous multi-core
real-time systems with the TMR technique. In future work, we will dis-

cuss how to minimize energy consumption under the TMR mechanism
in clusters where multiple cores share the same execution frequency
while ensuring both the deadline and the reliability requirement of ap-

plications are met.

CRediT authorship contribution statement

Hongzhi Xu: Data curation, Formal analysis, Investigation, Method-

ology, Writing – original draft, Software. Binlian Zhang: Data curation,
Investigation, Validation. Chen Pan: Investigation, Methodology, Val-

idation, Writing – review & editing. Keqin Li: Supervision, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

The authors are sincerely grateful to all the anonymous reviewers,

whose constructive comments have significantly improved the quality

H. Xu, B. Zhang, C. Pan et al.

of this paper. This research was partially funded by the National Natural
Science Foundation of China under Grant No. 62062036.

References

[1] H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous systems by
an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2014) 682–694.

[2] F. Baharvand, S.G. Miremadi, Lexact: low energy n-modular redundancy using ap-

proximate computing for real-time multicore processors, IEEE Trans. Emerg. Top.
Comput. 8 (2) (2020) 431–441, https://doi .org /10 .1109 /TETC .2017 .2737045.

[3] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, Energy-efficient real-

time scheduling of dags on clustered multi-core platforms, in: 2019 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), IEEE, 2019,
pp. 156–168.

[4] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, W. Liu, Response time bounds for typed
dag parallel tasks on heterogeneous multi-cores, IEEE Trans. Parallel Distrib. Syst.
30 (11) (2019) 2567–2581.

[5] Y. Han, J. Liu, W. Hu, Y. Gan, High-reliability and energy-saving dag schedul-

ing in heterogeneous multi-core systems based on task replication, in: 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2021,
pp. 2012–2017.

[6] M.A. Haque, H. Aydin, D. Zhu, On reliability management of energy-aware real-time
systems through task replication, IEEE Trans. Parallel Distrib. Syst. 28 (3) (2017)
813–825.

[7] J. Huang, R. Li, X. Jiao, Y. Jiang, W. Chang, Dynamic dag scheduling on multipro-

cessor systems: reliability, energy, and makespan, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 39 (11) (2020) 3336–3347.

[8] J. Huang, R. Li, J. An, H. Zeng, W. Chang, A dvfs-weakly dependent energy-efficient
scheduling approach for deadline-constrained parallel applications on heteroge-

neous systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40 (12) (2021)
2481–2494, https://doi .org /10 .1109 /TCAD .2021 .3049688.

[9] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), IEEE Computer Society, 2012, pp. 781–786.

[10] N. Kumar, J. Mayank, A. Mondal, Reliability aware energy optimized scheduling of
non-preemptive periodic real-time tasks on heterogeneous multiprocessor system,
IEEE Trans. Parallel Distrib. Syst. 31 (4) (2020) 871–885.

[11] K. Li, Optimal power and performance management for heterogeneous and arbitrary
cloud servers, IEEE Access 7 (2019) 5071–5084, https://doi .org /10 .1109 /ACCESS .
2018 .2889220.

[12] M. Lin, Y. Pan, L.T. Yang, M. Guo, N. Zheng, Scheduling co-design for reliability and
energy in cyber-physical systems, IEEE Trans. Emerg. Top. Comput. 1 (2) (2013)
353–365.

[13] D. Liu, J. Spasic, G. Chen, T. Stefanov, Energy-efficient mapping of real-time stream-

ing applications on cluster heterogeneous mpsocs, in: 2015 13th IEEE Symposium
on Embedded Systems for Real-Time Multimedia (ESTIMedia), 2015, pp. 1–10.

[14] J. Liu, Z. Zhu, C. Deng, A novel and adaptive transient fault-tolerant algorithm
considering timing constraint on heterogeneous systems, IEEE Access 8 (2020)
103047–103061.

[15] J. McNamee, V. Pan, Chapter 12 - low-degree polynomials, in: J. McNamee, V.
Pan (Eds.), Numerical Methods for Roots of Polynomials - Part II, in: Studies in
Computational Mathematics, vol. 16, Elsevier, 2013, pp. 527–556.

[16] F. Mireshghallah, M. Bakhshalipour, M. Sadrosadati, H. Sarbazi-Azad, Energy-

efficient permanent fault tolerance in hard real-time systems, IEEE Trans. Comput.
68 (10) (2019) 1539–1545, https://doi .org /10 .1109 /TC .2019 .2912164.

[17] T. Mladenov, S. Nooshabadi, K. Kim, Implementation and evaluation of raptor codes
on embedded systems, IEEE Trans. Comput. 60 (12) (2011) 1678–1691.

[18] S. Moulik, Reset: a real-time scheduler for energy and temperature aware heteroge-

neous multi-core systems, Integration 77 (2021) 59–69.

[19] S. Moulik, R. Devaraj, A. Sarkar, A. Shaw, A deadline-partition oriented heteroge-

neous multi-core scheduler for periodic tasks, in: 2017 18Th International Confer-

ence on Parallel and Distributed Computing, Applications and Technologies (PD-

CAT), IEEE, 2017, pp. 204–210.

[20] S. Moulik, R. Chaudhary, Z. Das, A. Sarkar, Ea-hrt: an energy-aware scheduler for
heterogeneous real-time systems, in: 2020 25th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC), IEEE, 2020, pp. 500–505.

[21] S. Moulik, Z. Das, R. Devaraj, S. Chakraborty, Seamers: a semi-partitioned energy-

aware scheduler for heterogeneous multicore real-time systems, J. Syst. Archit. 114
(2021) 101953.

[22] L. Niu, D. Zhu, Reliability-aware scheduling for reducing system-wide energy con-

sumption for weakly hard real-time systems, J. Syst. Archit. 78 (2017) 30–54.

[23] S. Paul, N. Chatterjee, P. Ghosal, J.-P. Diguet, Adaptive task allocation and schedul-

ing on noc-based multicore platforms with multitasking processors, ACM Trans.
15

Embed. Comput. Syst. 20 (1) (2020) 1–26.
Journal of Parallel and Distributed Computing 191 (2024) 104915

[24] A. Roy, H. Aydin, D. Zhu, Energy-efficient fault tolerance for real-time tasks with
precedence constraints on heterogeneous multicore systems, in: 2019 Tenth Inter-

national Green and Sustainable Computing Conference (IGSC), IEEE, 2019, pp. 1–8.

[25] M. Salehi, M.K. Tavana, S. Rehman, F. Kriebel, M. Shafique, A. Ejlali, J. Henkel,
Drvs: power-efficient reliability management through dynamic redundancy and volt-

age scaling under variations, in: 2015 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), IEEE, 2015, pp. 225–230.

[26] M. Salehi, A. Ejlali, B.M. Al-Hashimi, Two-phase low-energy n-modular redundancy
for hard real-time multi-core systems, IEEE Trans. Parallel Distrib. Syst. 27 (5)
(2016) 1497–1510, https://doi .org /10 .1109 /TPDS .2015 .2444402.

[27] Y. Sharma, S. Moulik, Cetas: a cluster based energy and temperature efficient
real-time scheduler for heterogeneous platforms, in: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 501–509.

[28] Y. Sharma, S. Moulik, Fats-2tc: a fault tolerant real-time scheduler for energy and
temperature aware heterogeneous platforms with two types of cores, Microprocess.
Microsyst. 96 (2023) 104744.

[29] Y. Sharma, S. Chakraborty, S. Moulik, Eta-hp: an energy and temperature-aware
real-time scheduler for heterogeneous platforms, J. Supercomput. 78 (8) (2022)
1–25.

[30] A. Simevski, R. Kraemer, M. Krstic, Investigating core-level n-modular redundancy
in multiprocessors, in: 2014 IEEE 8th International Symposium on Embedded Mul-

ticore/Manycore SoCs, 2014, pp. 175–180.

[31] Z. Tang, L. Qi, Z. Cheng, K. Li, S.U. Khan, K. Li, An energy-efficient task scheduling
algorithm in dvfs-enabled cloud environment, J. Grid Comput. 14 (1) (2016) 55–74.

[32] H. Topcuoglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13 (3)
(2002) 260–274.

[33] S. Wang, K. Li, J. Mei, G. Xiao, K. Li, A reliability-aware task scheduling algorithm
based on replication on heterogeneous computing systems, J. Grid Comput. 15 (1)
(2017) 23–39.

[34] G. Xie, R. Li, K. Li, Heterogeneity-driven end-to-end synchronized scheduling for
precedence constrained tasks and messages on networked embedded systems, J.
Parallel Distrib. Comput. 83 (2015) 1–12.

[35] G. Xie, Y. Chen, Y. Liu, Y. Wei, R. Li, K. Li, Resource consumption cost minimization
of reliable parallel applications on heterogeneous embedded systems, IEEE Trans.
Ind. Inform. 13 (4) (2017) 1629–1640.

[36] G. Xie, J. Jiang, Y. Liu, R. Li, K. Li, Minimizing energy consumption of real-time
parallel applications using downward and upward approaches on heterogeneous
systems, IEEE Trans. Ind. Inform. 13 (3) (2017) 1068–1078.

[37] G. Xie, G. Zeng, X. Xiao, R. Li, K. Li, Energy-efficient scheduling algorithms for real-

time parallel applications on heterogeneous distributed embedded systems, IEEE
Trans. Parallel Distrib. Syst. 28 (12) (2017) 3426–3442, https://doi .org /10 .1109 /
TPDS .2017 .2730876.

[38] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, K. Li, Energy-efficient fault-tolerant scheduling
of reliable parallel applications on heterogeneous distributed embedded systems,
IEEE Trans. Sustain. Comput. 3 (03) (2018) 167–181, https://doi .org /10 .1109 /
TSUSC .2017 .2711362.

[39] G. Xie, G. Zeng, Y. Chen, Y. Bai, Z. Zhou, R. Li, K. Li, Minimizing redundancy to
satisfy reliability requirement for a parallel application on heterogeneous service-

oriented systems, IEEE Trans. Serv. Comput. 13 (05) (2020) 871–886, https://doi .
org /10 .1109 /TSC .2017 .2665552.

[40] H. Xu, R. Li, L. Zeng, K. Li, C. Pan, Energy-efficient scheduling with reliability
guarantee in embedded real-time systems, Sustain. Comput., Inf. Syst. 18 (2018)
137–148.

[41] H. Xu, R. Li, C. Pan, K. Li, Minimizing energy consumption with reliability goal
on heterogeneous embedded systems, J. Parallel Distrib. Comput. 127 (May 2019)
44–57.

[42] Y. Yang, W. Diao, An energy-efficient frame-based task scheduling algorithm for
heterogeneous multi-core soc in iot devices, in: 2020 International Wireless Com-

munications and Mobile Computing (IWCMC), 2020, pp. 1404–1409.

[43] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster, Inf. Sci. 319
(2015) 113–131.

[44] L. Zhang, K. Li, C. Li, K. Li, Bi-objective workflow scheduling of the energy con-

sumption and reliability in heterogeneous computing systems, Inf. Sci. 379 (2017)
241–256, https://doi .org /10 .1016 /j .ins .2016 .08 .003.

[45] L. Zhao, Y. Ren, Y. Xiang, K. Sakurai, Fault-tolerant scheduling with dynamic num-

ber of replicas in heterogeneous systems, in: High Performance Computing and
Communications (HPCC), 2010 12th IEEE International Conference on, IEEE, 2010,
pp. 434–441.

[46] L. Zhao, Y. Ren, K. Sakurai, Reliable workflow scheduling with less resource redun-

dancy, Parallel Comput. 39 (10) (2013) 567–585.

[47] D. Zhu, Reliability-aware dynamic energy management in dependable embedded
real-time systems, ACM Trans. Embed. Comput. Syst. 10 (2) (2010) 26.

[48] D. Zhu, H. Aydin, Reliability-aware energy management for periodic real-time tasks,

IEEE Trans. Comput. 58 (10) (2009) 1382–1397.

http://refhub.elsevier.com/S0743-7315(24)00079-0/bib34DED17CB289BD4710986FEB16E28FF8s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib34DED17CB289BD4710986FEB16E28FF8s1
https://doi.org/10.1109/TETC.2017.2737045
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibFC362BD4B711157AF63D8BF3405643C6s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibFC362BD4B711157AF63D8BF3405643C6s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibFC362BD4B711157AF63D8BF3405643C6s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibFC362BD4B711157AF63D8BF3405643C6s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib428ADE443D6315EBAD3B67CAD56FEC8Es1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib428ADE443D6315EBAD3B67CAD56FEC8Es1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib428ADE443D6315EBAD3B67CAD56FEC8Es1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3416BC58D957292308E17443E7C3C3F7s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3416BC58D957292308E17443E7C3C3F7s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3416BC58D957292308E17443E7C3C3F7s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3416BC58D957292308E17443E7C3C3F7s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib67664958AA5F3292933465661972B30As1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib67664958AA5F3292933465661972B30As1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib67664958AA5F3292933465661972B30As1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF4F85E5BD69916B7BC6A0A319A599A1As1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF4F85E5BD69916B7BC6A0A319A599A1As1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF4F85E5BD69916B7BC6A0A319A599A1As1
https://doi.org/10.1109/TCAD.2021.3049688
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib283A787D5E2EA7C406FDA74A7AD88215s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib283A787D5E2EA7C406FDA74A7AD88215s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib283A787D5E2EA7C406FDA74A7AD88215s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib283A787D5E2EA7C406FDA74A7AD88215s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDF06F062438516F6BBA6E2F5E8E0FD7Es1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDF06F062438516F6BBA6E2F5E8E0FD7Es1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDF06F062438516F6BBA6E2F5E8E0FD7Es1
https://doi.org/10.1109/ACCESS.2018.2889220
https://doi.org/10.1109/ACCESS.2018.2889220
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC66511DBB6BA967DD7C33463876450D2s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC66511DBB6BA967DD7C33463876450D2s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC66511DBB6BA967DD7C33463876450D2s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF2275A799C8C47D8E97A78148EA46024s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF2275A799C8C47D8E97A78148EA46024s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF2275A799C8C47D8E97A78148EA46024s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib1D3B9C3C9864454BB4B5612F6D093679s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib1D3B9C3C9864454BB4B5612F6D093679s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib1D3B9C3C9864454BB4B5612F6D093679s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib648EF81A0FB49030FC4BF3D4AAC22C17s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib648EF81A0FB49030FC4BF3D4AAC22C17s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib648EF81A0FB49030FC4BF3D4AAC22C17s1
https://doi.org/10.1109/TC.2019.2912164
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib9C960B5259D9CAA4BED49D10D02D4091s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib9C960B5259D9CAA4BED49D10D02D4091s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib8BAC21147AB434BDD7CE12542D5D3351s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib8BAC21147AB434BDD7CE12542D5D3351s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC656A970F42603E0E3AE132E16C8F691s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC656A970F42603E0E3AE132E16C8F691s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC656A970F42603E0E3AE132E16C8F691s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC656A970F42603E0E3AE132E16C8F691s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib4CAFA84FDA35F1A850092862D1A1C3DBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib4CAFA84FDA35F1A850092862D1A1C3DBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib4CAFA84FDA35F1A850092862D1A1C3DBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib10044064913C4A0AAE7F7042E74715EAs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib10044064913C4A0AAE7F7042E74715EAs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib10044064913C4A0AAE7F7042E74715EAs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibAA8D1D79052EB01882963782B98FED01s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibAA8D1D79052EB01882963782B98FED01s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib400E03036DC094BC84623AED768F16CBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib400E03036DC094BC84623AED768F16CBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib400E03036DC094BC84623AED768F16CBs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibBEBABBEC5AF18E30BF127400AA1EC097s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibBEBABBEC5AF18E30BF127400AA1EC097s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibBEBABBEC5AF18E30BF127400AA1EC097s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3200094C539DCF8725CEE2B6A54E6F47s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3200094C539DCF8725CEE2B6A54E6F47s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3200094C539DCF8725CEE2B6A54E6F47s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib3200094C539DCF8725CEE2B6A54E6F47s1
https://doi.org/10.1109/TPDS.2015.2444402
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDA33371402350A2F213C7782A704BCF0s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDA33371402350A2F213C7782A704BCF0s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibDA33371402350A2F213C7782A704BCF0s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib72E937D465D87040F7874E2ECF0EED69s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib72E937D465D87040F7874E2ECF0EED69s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib72E937D465D87040F7874E2ECF0EED69s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibB003FFB9C2F50B4ADD25A8DEEE6A4140s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibB003FFB9C2F50B4ADD25A8DEEE6A4140s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibB003FFB9C2F50B4ADD25A8DEEE6A4140s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib51992FAC7FC031B5DBC8CC68B59E9DBDs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib51992FAC7FC031B5DBC8CC68B59E9DBDs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib51992FAC7FC031B5DBC8CC68B59E9DBDs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib06422C0B0FBA43D64EACD8F12A2BD5D1s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib06422C0B0FBA43D64EACD8F12A2BD5D1s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib20686E75B1A9CC6403AF70F35E2936C5s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib20686E75B1A9CC6403AF70F35E2936C5s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib20686E75B1A9CC6403AF70F35E2936C5s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC11258F372AA6AB306DDA2CF0823B608s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC11258F372AA6AB306DDA2CF0823B608s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibC11258F372AA6AB306DDA2CF0823B608s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF67EE837C53F032E85B4069C5AE60F81s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF67EE837C53F032E85B4069C5AE60F81s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibF67EE837C53F032E85B4069C5AE60F81s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibE54E6515662F85440134997B277640BEs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibE54E6515662F85440134997B277640BEs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibE54E6515662F85440134997B277640BEs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib133A6947E43F3CFF5DDE9E590E3BE5FAs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib133A6947E43F3CFF5DDE9E590E3BE5FAs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib133A6947E43F3CFF5DDE9E590E3BE5FAs1
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.1109/TSUSC.2017.2711362
https://doi.org/10.1109/TSUSC.2017.2711362
https://doi.org/10.1109/TSC.2017.2665552
https://doi.org/10.1109/TSC.2017.2665552
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib8A6359C55EDC2E389CF52AD0AF3E07C3s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib8A6359C55EDC2E389CF52AD0AF3E07C3s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib8A6359C55EDC2E389CF52AD0AF3E07C3s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib75B3BD9001AE09F15D2DF5F352AC3061s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib75B3BD9001AE09F15D2DF5F352AC3061s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib75B3BD9001AE09F15D2DF5F352AC3061s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib62701A794C5954DD783FC26CEE256145s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib62701A794C5954DD783FC26CEE256145s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib62701A794C5954DD783FC26CEE256145s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib2EE4453C4292B9410E3BA5950EA982E9s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib2EE4453C4292B9410E3BA5950EA982E9s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib2EE4453C4292B9410E3BA5950EA982E9s1
https://doi.org/10.1016/j.ins.2016.08.003
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib0F34A2233ADDA3B9A9C4427DA5D84ACFs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib0F34A2233ADDA3B9A9C4427DA5D84ACFs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib0F34A2233ADDA3B9A9C4427DA5D84ACFs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib0F34A2233ADDA3B9A9C4427DA5D84ACFs1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib97EE7022328AE36E3EB466FC5531FF37s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bib97EE7022328AE36E3EB466FC5531FF37s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibB2F732851B6021095776CAEEB85517C0s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibB2F732851B6021095776CAEEB85517C0s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibA532F789C803DA99D07E844DA4DCE5E5s1
http://refhub.elsevier.com/S0743-7315(24)00079-0/bibA532F789C803DA99D07E844DA4DCE5E5s1

Journal of Parallel and Distributed Computing 191 (2024) 104915H. Xu, B. Zhang, C. Pan et al.

Hongzhi Xu received the Ph.D. degree in computer science
and engineering from Hunan University, Changsha, China, in
2018. He is a professor at Jishou University, Zhangjiajie, China.
His research interests include heterogeneous computing systems
and energy-efficient computing.

Binlian Zhang received the M.S. degree in computer sci-

ence and engineering from Hunan Normal University, Changsha,
China, in 2007. She is an associate professor at Jishou University,
Zhangjiajie, China. Her research interests include heterogeneous
computing systems and energy-efficient computing.

Chen Pan (S’13-M’20) received M.S. degree in Electrical En-

gineering from Oklahoma State University in 2017 and the PhD
degree in Electrical and Computer Engineering from University
of Pittsburgh in 2019. He is currently an assistant professor with
the Department of Electrical & Computer Engineering at The Uni-

versity of Texas at San Antonio (UTSA). His current research
interests include sustainable and intelligent IoT systems, intel-

ligent low-power sparse sensing, tiny machine learning, transient
computing and communication, and emerging non-volatile mem-

ories.

Keqin Li (Fellow, IEEE) is a SUNY distinguished professor
of computer science with the State University of New York. He
is also a national distinguished professor with Hunan Univer-

sity, China. His current research interests include cloud com-

puting, fog computing and mobile edge computing, energy-

efficient computing and communication, embedded systems and
cyber-physical systems, heterogeneous computing systems, Big
Data computing, high-performance computing, CPU-GPU hybrid
and cooperative computing, computer architectures and sys-

tems, computer networking, machine learning, intelligent and
soft computing. He has authored or coauthored more than 850 journal articles, book
chapters, and refereed conference papers, and has received several best paper awards. He
holds more than 70 patents announced or authorized by the Chinese National Intellec-

tual Property Administration. He is among the world’s top 5 most influential scientists in
parallel and distributed computing in terms of both single-year impact and career-long
impact based on a composite indicator of Scopus citation database. He has chaired many
international conferences. He is currently an associate editor of the ACM Computing Sur-

veys and the CCF Transactions on High Performance Computing. He has served on the
editorial boards of the IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud Computing, the IEEE Trans-

actions on Services Computing, and the IEEE Transactions on Sustainable Computing.
He is a fellow of the Asia-Pacific Artificial Intelligence Association (AAIA). He is also a
member of Academia Europaea (Academician of the Europe).
16

	Energy-efficient triple modular redundancy scheduling on heterogeneous multi-core real-time systems
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Main contributions

	2 Related work
	2.1 Energy-efficient technique
	2.2 Reliability aware without task replication
	2.3 Fault-tolerant with task replication or recovery
	2.4 N-modular redundancy scheduling

	3 Models
	3.1 System model
	3.2 Application model
	3.3 Energy consumption model
	3.4 Reliability model
	3.5 Problem description

	4 Energy-efficient TMR scheduling framework
	4.1 The IHEFT algorithm
	4.1.1 Introduction to key principles
	4.1.2 Computing reliability requirements for task copies
	4.1.3 Determining minimum finish times for task copies
	4.1.4 Detailed design of the IHEFT algorithm

	4.2 The EET algorithm
	4.3 The MEOTC algorithm
	4.4 Case study
	4.5 Online energy management

	5 Experimental performance evaluation
	5.1 Experimental parameters
	5.2 Different deadline constraints of applications
	5.3 Different reliability requirements of applications
	5.4 Different platform scales

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

