
Journal of Parallel and Distributed Computing 127 (2019) 44–57

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Minimizing energy consumption with reliability goal on
heterogeneous embedded systems
Hongzhi Xu a,b,∗, Renfa Li a, Chen Pan c, Keqin Li a,d
a College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
b College of Software, Jishou University, Zhangjiajie 427000, China
c Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15216, USA
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• The reliability goal of the application is transformed to that of each task.
• The reliability goal transformation methods for non-DVFS and DVFS are both proposed.
• Two energy-efficient scheduling algorithms with the reliability goal are designed.

a r t i c l e i n f o

Article history:
Received 7 February 2018
Received in revised form 21November 2018
Accepted 8 January 2019
Available online 17 January 2019

Keywords:
DAG-based parallel application
DVFS technique
Energy-efficient
Heterogeneous embedded system
Reliability goal

a b s t r a c t

The embedded systems generally require to be low-powered and highly reliable. In order to achieve the
low-power design goal, dynamic voltage frequency scaling (DVFS) technique has been widely employed
in various embedded application scenarios. However, DVFS reduces execution frequency, which increases
transient faults of the processor dramatically. As a result, the reliability of the application will be severely
reduced. In this paper, we aim at minimizing energy consumption with reliability goal for parallel
application on heterogeneous embedded systems. Since the reliability of the application is the product
of the reliability of all the tasks that belong to the application, the reliability goal of the application
is transformed into the reliability goal of each task. Considering that some systems may not support
DVFS techniques, two methods are proposed to transform the reliability goal of the application into
each task for non-DVFS and DVFS, respectively. Based on the reliability goal transformation methods,
two energy-efficient scheduling algorithms with the reliability goal are designed. Experiments with real
parallel applications demonstrate that the proposed algorithms have significant improvements in energy
efficiency compared with the state-of-the-art algorithms.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

With the rapid development of computer hardware technology,
the cost of embedded systembecomesmuch lower and its comput-
ing performance has been greatly improved. Therefore, embedded
systems have been applied to many fields, such as aerospace,
intelligent transportation, smart grid, smart home, medical care,
and health monitoring of large buildings. However, the high per-
formance of processors will also bring high energy consumption.
Hence, energy management is important to the performance of

∗ Corresponding author at: College of Computer Science and Electronic Engi-
neering, Hunan University, Changsha 410082, China.

E-mail addresses: xuhongzhi9@163.com (H. Xu), lirenfa@vip.sina.com (R. Li),
chen.pan@pitt.edu (C. Pan), lik@newpaltz.edu (K. Li).

embedded systems, especially for battery powered embedded sys-
tems [14,33]. In order to improve energy efficiency of embedded
system, many techniques, such as dynamic power management
(DPM) and dynamic voltage frequency scaling (DVFS) , have been
proposed to reduce the system energy consumption by scaling
the voltage and frequency in runtime [4,9–12,15,26]. However, as
the frequency of the processor reduces, the probability of failure
will increase. As a result, the reliability of the application will be
weakened [13,34,35]. For many embedded systems, reliability is
an important quality targets of the application, especially in the
safety-critical real-time systems, the reliability goal of the applica-
tion should be satisfied.

1.2. Motivation

Since DVFS technique may cause unreliable issues to embed-
ded system, many researches have focused on improving energy

https://doi.org/10.1016/j.jpdc.2019.01.006
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.01.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.01.006&domain=pdf
mailto:xuhongzhi9@163.com
mailto:lirenfa@vip.sina.com
mailto:chen.pan@pitt.edu
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2019.01.006


H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 45

efficiency while guaranteeing the system reliability [13,27,34,35].
Most of these studies are only targeting on a single processor
with independent tasks. In recent years, many heterogeneous
embedded real-time systems have emerged. These systems use
high-speed networks to interconnect different processors to ex-
ecute parallel applications. From the system design perspective,
parallel applications are composed of tasks with precedence-
constrained, which can be represented by directed acyclic graph
(DAG) [1,7,19,25]. There are some studies focus on the reliability
goals of the heterogeneous systems with the DAG-based parallel
application. In [31,32], the authors proposed MaxRe and RR algo-
rithms to satisfy the reliability goal with the minimum resource
consumption. In [22], MRCRG algorithm is proposed to minimize
resource consumption while satisfying the reliability goal of the
application. Energy is also a system resource, and these studies
can also be used to improve energy efficiency. However, the above
studies did not discuss the use of DVFS technique to improve
energy efficiency of the system. In [23], the ESRG algorithm with
DVFS technique is proposed to reduce energy consumption while
satisfying the reliability goal of the application. However, without
using replication technique, the ESRG algorithm cannot always
satisfy the reliability goal of the applications. Therefore, this paper
studies the minimization of system energy consumption while
satisfying the reliability goal of a DAG-based parallel application
on heterogeneous embedded system.

1.3. Main contributions

The life cycle of system development usually includes phases
of analysis, design, implementation and testing [23]. This paper
focuses on the design phase of the system, the main contributions
are as follows.

(1) The reliability goal of the DAG-based parallel application is
transformed into the reliability goal of each task. Two methods
for predetermining the reliability goal of the task are proposed for
non-DVFS and DVFS, respectively. When the reliability goal is less
than or equal to maximum reliability that the application can be
reached, all tasks can be assigned to the appropriate processors so
that the reliability goal of the application can be satisfied.

(2) Based on the above reliability goal transformation methods,
two energy-efficient scheduling algorithms are proposed to min-
imize energy consumption for DAG-based parallel application on
heterogeneous embedded system. One is designedwithout using a
DVFS technique and the other is designed with a DVFS technique.

(3) Experiments are conducted under different scenarios using
real parallel applications. The experimental results show that the
proposed algorithms have significant improvements in energy ef-
ficiency compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2 reviews
related research. Section 3 introduces the models that are used
in this paper. Section 4 presents related preliminaries. Section 5
presents detailed algorithms of minimizing energy consumption
while satisfying the reliability goal requirements of the applica-
tions. Finally, Sections 6 and 7 discuss our simulation results and
conclusions.

2. Related work

At present, there are many studies focus on improving energy
efficiencywhile at the same time guaranteed the system reliability.
For a single processor, Zhu et al. [35] proposed the reliability-aware
power management for real-time periodic tasks, which lowers
down the execution efficiency in the slack time. Lin et al. [13]
presented the shared-recovery dynamic algorithm to guarantee
the reliability of the system. Based on shared-recovery technique,
Zhao et al. [30] presented the SHR algorithm to minimize energy

consumption of the system. Fan et al. [5] presented reliability
aware power management algorithm to minimize the energy con-
sumption for single processor real-time systems. In [29], Zhang
et al. presented the DLPSR algorithm for periodic tasks with shared
resources, the slack time is reclaimed to save energywhile preserv-
ing the system reliability.

In recent years, there are a lot of research works focuses on
the reliability of multi-processor systems (or multi-core systems).
In [21], a hybrid design-time/run-time framework is proposed for
resource allocation on multicore embedded systems, which con-
siders execution time, transient faults, and permanent faults due
to aging effects. Haque et al. [6] solved the problem of achieving a
given reliability target for a set of periodic tasks running on a DVS-
enabled multicore system with minimum energy consumption.
In [17], a reliability-aware scheduling is presented to maximize
system reliability, which dynamically schedules applications to the
different types of cores in heterogeneous multicore systems.

For parallel applications on heterogeneous distributed systems,
Tang et al. [18] proposed a reliability-aware scheduling algorithm
for DAG-based application. In [3], Assayad et al. presented a tri-
criteria scheduling for data-flow graphs of operations onto parallel
heterogeneous systems, which uses the active replication to im-
prove the system reliability. Zhang et al. [28] presented reliability
maximizationwith energy constraint algorithm for DAG-based ap-
plication on heterogeneous systems, which balanced the tradeoff
between reliability and energy consumption. In order to satisfy
specific reliability goal of the applications, Zhao et al. [32] proposed
the MaxRe algorithm to minimize system resources consumption,
in which the reliability goal of the application is transformed to
the reliability goal of each task. In [31], Zhao et al. also proposed
the RR algorithm which consumes less resources to satisfy the
reliability goal of the applications. In [22], the MRCRG algorithm
is proposed for parallel application on heterogeneous embedded
systems, which minimizing system resource consumption while
satisfying the reliability goal of the application. To improve the
energy efficiency of the heterogeneous embedded systems, Xie
et al. [23] proposed the ESRG algorithm to reduce energy consump-
tion while satisfying the reliability goal of the application.

3. Systemmodel and problem formulation

3.1. Power model

Similar to [13,34,35], the energy consumption of CMOS chip at
frequency f is given by

P(f ) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceff m). (1)

In (1), Ps is the static power, which is used to maintain the basic
circuit and the clock. Pind is the leakage power unrelated to the
frequency,which is a constant and canbe eliminatedwhen thepro-
cessor sleeps. Pd is the dynamic power caused by charge/discharge
of gate circuit, which is related to the processor frequency. Cef rep-
resents the switching capacitance, and m represents the dynamic
energy exponent. When the processor is active, h̄ = 1; otherwise,
h̄ = 0.

According to [13,34,35], the minimum energy-efficient fre-
quency is given by

fmee =
m

√
Pind

Cef(m− 1)
. (2)

When the execution frequency of the processor is less than fmee,
the energy consumptionwould bemore because of the longer exe-
cution time. Assuming that the available frequency of the processor
isminimum frequency fmin tomaximum frequency fmax, to improve



46 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

Fig. 1. Motivation example of a DAG-based parallel application.

energy efficiency, the lowest available frequency of the processor
should be

flow = max(fmee, fmin). (3)

This paper mainly studies the DAG-based parallel application
execution on heterogeneous embedded systems, the processor is
represented by a set as PR = {pr1, pr2, . . . , prM}, where M is the
number of processors. Assuming that different processors have
different computing performance, and all processors are connected
through the network. Considering that the processor’s execution
frequency is discrete, for processor prj, the available frequency set
is represented as {fj,low, fj,a, fj,b, . . . , fj,max}.

3.2. Application model

Based on [2,20], the DAG-based parallel application is repre-
sented as DAG G = (T , C), where T and C are described as follows.

T = {t1, t2, . . . , tN} is a node set in application G, which
represents task sets. C is an edge set in G, ci,j ∈ C indicates
that there is a precedence constraint between ti and tj, tj can be
executed after the completion of ti. The value of ci,j indicates the
worst case communication time (WCCT) between ti and tj. If ti and
tj are assigned on the same processor, then theWCCT is 0. A classic
DAG-based parallel application is shown in Fig. 1 [20,22,24,25],
c1,2 = 18 indicates the WCCT between t2 and t1. If the processor
that executes t2 is different from the processor that executes the
t1, the WCCT is 18. If t2 and t1 are executed on the same processor,
the WCCT is 0. To describe the successively relationship between
the tasks, parent(ti) is defined as the immediate predecessor task
set of ti, and child(ti) is defined as the immediate successor task set
of ti. The task without predecessor task is called tentry, and the task
without successor task is called texit. If there are multiple tentry (or
texit) in G, then the dummy task of entry (or exit) is constructed
to G. For heterogeneous embedded systems, the execution time of
the same task on different processors is different, the matrix W as
N×M is defined to represent theworst case execution time (WCET)
of each task on the different processors. wi,j is the WCET of task ti
that executes on processor prj withmaximumexecution frequency
fj,max. The WCETs of the tasks in Fig. 1 on the three processors are
shown in Table 1, where the WCETs of t1 on three processors are
14, 16 and 9, respectively.

This paper focuses on the design phase of the system, assuming
that all the WCCTs and WCETs are known through the WCCT and
WCET analysis methods in the analysis phase [22,23].

Table 1
WCET of tasks on different processors of the motivation example.
task pr1 pr2 pr3 Rank

t1 14 16 9 108
t2 13 19 18 77
t3 11 13 19 80
t4 13 8 17 80
t5 12 13 10 69
t6 13 16 9 63.3
t7 7 15 11 42.7
t8 5 11 14 35.7
t9 18 12 20 44.3
t10 21 7 16 14.7

3.3. Energy consumption

Because different processors have different energy consump-
tion parameter, let Edp(ti, prj, fj,k) represent the dynamic energy
consumption of task ti on processor prj at frequency fj,k, which can
be calculated by

Edp(ti, prj, fj,k) = (Pj,ind + Cj,eff mj )× wi,j ×
fj,max

fj,k
. (4)

Considering that tasks ti and parent(ti) may be executed on
different processors, there is communication energy consumption
when the tasks are communicated between two different proces-
sors. In this paper, the communication energy consumption is pro-
portional to the communication time, and the energy consumption
rate per time unit of communication is defined as ecr [22]. There-
fore, if task ti is assigned to processor prj, the energy consumption
of communication can be calculated by

Ecom(ti, prj) =
∑

tx∈parent(ti)

ecr × c ′x,i. (5)

In Eq. (5), if task ti and tx are assigned to the sameprocessor then
c ′x,i = 0; otherwise c ′x,i = cx,i.

Based on Eqs. (4) and (5), when task ti is assigned to the proces-
sor, the total dynamic energy consumption of the processor and
communication is given by

Ed(ti) = Edp(ti, prasp(ti), fasp(ti),asf (ti))
+ Ecom(ti, prasp(ti)), (6)

where prasp(ti) represents a processor which is assigned to task ti
and fasp(ti),asf (ti) represents the execution frequency of processor
prasp(ti).

When all the tasks in application G are assigned, the total
amount of the dynamic energy consumption is given by

Ed(G) =
N∑
i=1

Ed(ti). (7)

Let Es(G) represent the static energy consumption of the appli-
cation, the static energy consumption is derived from the processor
and network. Because the static energy consumption always exists,
for the sake of simplicity, the static energy consumption of network
is incorporated into the static energy consumption of the proces-
sor. Therefore, the static energy consumption of the application can
be calculated by

Es(G) =
M∑
j=1

Pj,s × SL(G), (8)

where SL(G) is scheduling length. Based on Eqs. (7) and (8), the total
energy consumption of the system is the sum of Ed(G) and Es(G),
namely

E(G) = Ed(G)+ Es(G). (9)



H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 47

3.4. Reliability model

The runtime faults can be divided into transient faults and per-
manent faults, while the transient faults happen more frequently
[34,35]. Similar to [13,22,34,35], only transient faults are consid-
ered in this paper. Assume that the transient fault follows Poisson
distribution [13,22,34,35], the reliability of execution a task during
the duration t is denoted by R(t) = e−λt , where λ is the transient
fault rate per time unit of processor. In this study, λj is defined as
the transient fault rate per time unit of processor prj. If task ti is
executed on processor prj withmaximum frequency, the reliability
of task ti can be calculated by

R(ti, prj, fj,max) = e−λj×wi,j . (10)

According to [13,28,34,35], in a DVFS-enabled system, the tran-
sient fault rate of processor with frequency f is given by

λ(f ) = λ010
d(fmax−f )
fmax−fmin , (11)

where d is a constant greater than 0, which represents the sensi-
tivity fault rate of voltage/frequency scaling, and λ0 is the transient
fault rate with the maximum frequency. For heterogeneous em-
bedded systems, we let λj,max represent the transient fault rate of
processor prj with the maximum frequency, and dj represents the
sensitivity fault rate of voltage/frequency scaling of processor prj,
then the transient fault rate λj,k of processor prj with frequency fj,k
is given by

λj,k = λj,max × 10
dj×(fj,max−fj,k)
fj,max−fj,min . (12)

Based on Eqs. (10) and (12), when task ti is executed on proces-
sor prj with frequency fj,k, the reliability of task ti can be calculated
by

R(ti, prj, fj,k) = e
−λj,max×10

dj×(fj,max−fj,k)
fj,max−fj,min ×

wi,j×fj,max
fj,k . (13)

Assuming that the network transmission is reliable [22], the
reliability of the application G can be calculated by

R(G) =
N∏
i=1

R(ti, prasp(ti), fasp(ti),asf (ti)). (14)

3.5. Problem description

Consider a DAG-based parallel application G executed on a
heterogeneous embedded system, the reliability goal of the appli-
cation is given as Rgoal(G). The problem of this paper is to minimize
the energy consumption of the system by assigning each task in
G to the appropriate processor, while satisfying the application’s
reliability goal. Formalized description is minimized

E(G) = Ed(G)+ Es(G) (15)

subject to

R(G) =
N∏
i=1

R(ti, prasp(ti), fasp(ti),asf (ti))

≥ Rgoal(G) (16)

for all i: 1 ≤ i ≤ N , prasp(ti) ∈ PR, and fasp(ti),low ≤ fasp(ti),asf (ti) ≤
fasp(ti),max.

4. Preliminaries

4.1. Reliability goal

According to Eq. (13), the maximum reliability and minimum
reliability of task ti can be calculated as

Rmax(ti) = max
prj∈PR,fj,low≤fj,k≤fj,max

{R(ti, prj, fj,k)}, (17)

and

Rmin(ti) = min
prj∈PR,fj,low≤fj,k≤fj,max

{R(ti, prj, fj,k)} (18)

respectively.
Based on Eqs. (17) and (18), the maximum reliability and mini-

mum reliability of the application can be calculated as

Rmax(G) =
N∏
i=1

Rmax(ti), (19)

and

Rmin(G) =
N∏
i=1

Rmin(ti) (20)

respectively.
Based on Eqs. (19) and (20), the reliability goal Rgoal(G) of the

application should be less than or equal to Rmax(G). If Rgoal(G) is
less than or equal to Rmin(G), the reliability goals can always be
satisfied. Therefore, the range of reliability goal of the application
in this paper is

Rmin(G) < Rgoal(G) ≤ Rmax(G). (21)

4.2. Task priority

Because the tasks in application G have precedence constraints,
the concept of Rank is used to generate task topology order, the
Rank value of task ti is defined as

Rank(ti) = wi + max
tj∈child(ti)

{Ci,j + Rank(tj)}, (22)

where wi = (
∑M

j=1 wi,j)/M represents the average WCET of the
task ti on eachprocessor. TheRank values of each task inmotivation
example are shown in Table 1, the task with a greater the Rank
value has a higher priority, so the assignment of the tasks according
to the non-ascending order of the Rank values canmeet the priority
requirements. Assuming that the task ti mentioned below has been
arranged a non-ascending order.

4.3. Earliest start time and earliest finish time

When the DAG-based parallel application is executed on a het-
erogeneous embedded system, the earliest start time (EST) and the
earliest finish time (EFT) of task ti can be expressed as⎧⎨⎩

EST (tentry, prj) = 0

EST (ti, prj) = max
{

avail[j],
maxtx∈parent(ti){EFT (tx, pry)+ c ′x,i}

}
,

(23)

and

EFT (tx, pry) = EST (tx, pry)+
wx,y × fy,max

fy,asf (tx)
. (24)

In Eq. (23), avail[j] represents the earliest available time for the
processor prj. If tx and ti are assigned to the same processor, then
c ′x,i = 0; otherwise, c ′x,i = cx,i.



48 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

5. Proposed algorithms

The problem of this paper is minimizing the energy consump-
tion with reliability goal for DAG-based parallel application on
heterogeneous embedded systems. Based on Eq. (14), the reliabil-
ity of the application is the product of the reliability of all tasks
that belong to the application. Therefore, the reliability goal of
the application can be transformed to the reliability goal of each
task [22,23,31,32]. It is important to note that this transformation
does not mean that the tasks are independent.

In this paper, we first transform the reliability goal of the appli-
cation into the reliability goal of each task, and then assign the tasks
to the processor that satisfies the reliability goals. The benefits of
this method are as follows:

(1) If the reliability goal of all tasks can be satisfied, the reliabil-
ity goal of the application will be satisfied.

(2) When the reliability goal of the task is determined, the
heuristic method can be used to minimize the energy consump-
tion of the application, thus reducing the time complexity of the
scheduling algorithm.

When assigning current task, if the reliability goal of current
task is too high, the probability of choosing the high energy ef-
ficiency processor will be reduced. This may reduce the energy
efficiency. Similarly, if the reliability goal of current task is too
low, the reliability requirements of the non-assigned tasks will be
higher, which may also reduce energy efficiency. In addition, if the
task’s reliability goal is greater than the maximum reliability that
can be reached, the task assignment will be fail. Therefore, it is
challenging to transform the application’s reliability goal into the
reliability goal of each task.

Considering that some systems may not support DVFS tech-
nique [8,26], this paper designs two algorithms, namely, the non-
DVFS energy-efficient scheduling algorithm with the reliability
goal, and the DVFS energy-efficient scheduling algorithm with the
reliability goal. We call these two algorithms NDERG and DERG,
respectively.

5.1. The reliability goal of NDERG

When the reliability goal of the application is transformed to the
reliability goal of each task, the reliability predetermined to task
ti must be made not greater than Rmax(ti), so Rmax(ti) can be used
as a reference for the reliability goal of task ti. This paper defines
reliability goal ratio as Definition 1.

Definition 1 (Reliability Goal Ratio). the reliability goal ratio RGR as
the ratio of the reliability goal of the application to the maximum
reliability of the application:

RGR(G) =
Rgoal(G)
Rmax(G)

. (25)

RGR describes the relationship between the reliability goal and
the maximum reliability. The smaller the RGR, the lower the relia-
bility requirements, the greater the RGR, the higher the reliability
requirements. It is clear that RGR(G) is less than or equal to 1. Now,
Eq. (25) can be written as

Rgoal(G) = RGR(G)× Rmax(t1)× Rmax(t2)× · · · × Rmax(tN ). (26)

Therefore, decomposing RGR(G) to each task can predetermine
the corresponding reliability goal of the task. Based on Eq. (26), we
have:{

Rgoal(G) = (Rmax(t1)× x1)× · · · × (Rmax(tN )× xN)
x1 × x2 × · · · × xN = RGR(G) (27)

For any xi (1 ≤ i ≤ N , 0 < xi ≤ 1 ), the reliability goal of task ti
can be written as Rmax(ti)× xi.

In fact, the actual reliability of the assigned task is greater than
or equal to the predetermined reliability goal. As a result, the tasks,
that were executed earlier (high priority tasks), are predetermined
with relatively low reliability goals. The tasks that will be executed
later (low priority tasks), are predetermined with relatively high
reliability goals. In this paper, the average WCET of the task ti
on each processor is used to predetermine the reliability goal of
each task. Assume that there are N tasks in application G, the
predetermined reliability goal of the ith task ti is described as
follows.

(1) Let predetermined value pdi = wi for all tasks ti. According
to Eq. (13), the reliability of tasks with a longer execution time will
be lower, so tasks with a longer average WCET are predetermined
with lower reliability goals. In addition, when task ti is assigned,
the actual reliability is generallymuch higher than Rgoal(ti) because
DVFS is not used to reduce processor’s execution frequency. There-
fore, it is necessary to further process the value of pdi.

(2) Define a compensation sequence CS as {cs1, cs2, . . . , csN},
where csi = wi and then sort CS by non-ascending order.

(3) Let pdi = pdi+ csi for all tasks ti. After the above processing,
the predetermined value pd of the task that executed earlier is
increased by a larger compensation value and the predetermined
value pd of the task that executed later is increased by a smaller
compensation value. In other words, the earlier the task executed,
the greater the compensation value is added. The later the task
executed, the smaller the compensation value is added. This helps
to reduce the reliability goals of the tasks that executed earlier.

(4) The predetermined reliability goal of task ti is given by

Rpregoal(ti) = Rmax(ti)× RGR(G)
pdi
S , (28)

where S =
∑N

i=1 pdi.
Because of RGR(G) ≤ 1 and pdi

S ≤ 1, we have

Rpregoal(ti) ≤ Rmax(ti). (29)

During the tasks assignment, let {t1, t2, . . . , ti−1} represent the
tasks that have been assigned to the processor, task ti is currently
being assigned to the processor, and {ti+1, ti+2, . . . , tN} represents
the tasks that have not been assigned to the processor. The relia-
bility goal of task ti is calculated by

Rgoal(ti) =
Rgoal(G)∏i−1

x=1 R(tx)×
∏N

y=i+1 Rpregoal(ty)
. (30)

In Eq. (30), the items
∏i−1

x=1 R(tx) represent the actual reliability
of tasks that have been assigned. The items

∏N
y=i+1 Rpregoal(ty) rep-

resent the predetermined reliability of remaining tasks that have
not been assigned.

Theorem 1.When the reliability goal of the application G is less than
or equal to Rmax(G), and Eqs. (28) and (30) are used to predetermine
the reliability goal of ti, the processors that satisfy the reliability goal
of the application can always be found.

Proof. Mathematical induction is used to prove Theorem 1.
Step 1: When the first task (i.e. n = 1) is currently being

assigned to the processor, according to Eq. (30), the reliability goal
of the first tasks is

Rgoal(t1) =
Rgoal(G)∏N

y=2 Rpregoal(ty)
. (31)

Substituting Eqs. (25) and (28) into Eq. (31), yields

Rgoal(t1) = Rmax(t1)× RGR(G)
pd(1)
S ≤ Rmax(t1). (32)



H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 49

So, the first task can be assigned to the appropriate processor.
The actual reliability of the first task assigned to the processor is
given by

R(t1) ≥ Rgoal(t1) =
Rgoal(G)∏N

y=2 Rpregoal(ty)
. (33)

If the reliability of the rest tasks are predetermined by Eq. (28),
then the reliability of application is given by

R(G) = R(t1)×
N∏
i=2

Rpregoal(ti)

≥
Rgoal(G)∏N

y=2 Rpregoal(ty)
×

N∏
y=2

Rpregoal(ty)

= Rgoal(G). (34)

So, when n = 1, Theorem 1 is correct.
Step 2: Assuming that when the kth task (i.e. n = k) is assigned,

Theorem 1 is still correct, namely

R(G) =
k∏

i=1

R(ti)×
N∏

y=k+1

Rpregoal(ty) ≥ Rgoal(G). (35)

Step 3: If the reliability goal of (k + 1)th task (i.e. n = k + 1) is
predetermined by Eq. (30), namely

Rgoal(tk+1) =
Rgoal(G)∏k

i=1 R(ti)×
∏N

y=k+2 Rpregoal(ty)
. (36)

Based on Eq. (35), we have
k∏

i=1

R(ti) ≥
Rgoal(G)∏N

y=k+1 Rpregoal(ty)
. (37)

Substituting Eq. (37) into Eq. (36), gives

Rgoal(tk+1) ≤
Rgoal(G)

Rgoal(G)∏N
y=k+1 Rpregoal(ty)

×
∏N

y=k+2 Rpregoal(ty)

= Rpregoal(tk+1). (38)

So, the (k+1)th task can be assigned to the appropriate proces-
sor and the actual reliability of the (k + 1)th task that assigned to
the processor is given by

R(tk+1) ≥ Rgoal(tk+1) =
Rgoal(G)∏k

i=1 R(ti)×
∏N

y=k+1 Rpregoal(ty)
. (39)

The reliability of the application should be

R(G) =
k∏

i=1

R(ti)× R(tk+1)×
N∏

y=k+2

Rpregoal(ty). (40)

Substituting Eq. (39) into Eq. (40) gives the following inequality:

R(G) ≥ Rgoal(G). (41)

Therefore, when n = k+ 1, Theorem 1 is correct.
From step 1 to step 3, Theorem 1 is proved.

5.2. The NDERG algorithm

In this section, the NDERG algorithm is proposed to minimize
the energy consumption while satisfying the reliability goal of the
application. According to the above analysis, the actual reliability
of the task ti should be greater than or equal to Rgoal(ti) when ti
is assigned to a processor. Therefore, the NDERG algorithm first

Algorithm 1 NDERG

Input: PR = {pr1, pr2, ..., prM} and application G
Output: E(G) and R(G)
1: sort the tasks to queue ReadyQ by non-ascending order of Rank
2: while ReadyQ is not empty do
3: ti ← ReadyQ .out()
4: calculate Rgoal(ti) using Eq. (30)
5: energy←∞
6: for each processor prj ∈ PR do
7: if R(ti, prj, fj,max) ≥ Rgoal(ti) then
8: if energy > Ed(ti) then
9: energy← Ed(ti)

10: asp(ti)← j
11: end if
12: end if
13: end for
14: end while
15: calculate E(G) using Eq. (9)
16: calculate R(G) using Eq. (14)

Table 2
Power and reliability parameters of processors.
prj Pj,s Pj,ind Cj,ef mj λj,max dj
pr1 0.001 0.003 1.2 2.9 0.0002 2.3
pr2 0.001 0.005 1.0 2.7 0.0004 2.1
pr3 0.001 0.007 0.8 2.5 0.0006 2.5

calculates the reliability goal of the task and then selects the
appropriate processor to assign the task. The NDERG algorithm is
described in Algorithm 1.

The main idea of the NDERG algorithm is that the reliability
goal of the application is transformed to the reliability goal of each
task. For any task, it will be assigned to the processor that satisfies
the reliability goal and consumes the least energy. The details of
NDERG algorithm are explained as follows:

The structure of the NDERG algorithm is a nested loop, and the
tasks are sorted to queue ReadyQ by non-ascending order of Rank
value before the loops (first line). The outer loop assigns the tasks
to the appropriate processor one by one (Lines 2–14). For each task
ti, its reliability goal is calculated first by Eq. (30), and then the
NDERG enters the inner loop (Lines 6–13), where the processor
which satisfies reliability goal of task ti and consumes the least
energy is chosen to assign the task ti (Lines 8–11). Lines 15–16
calculate energy consumption and actual reliability of application
respectively.

The time complexity of the NDERG algorithm is analyzed as
follows. The outer loop traverses all the tasks in application with
time complexity of O(N). The inner loop traverses all the processors
to findminimumenergy consumption of task ti with theworst time
complexity of O(M × N). Therefore, the worst time complexity of
NDERG is O(M × N2), which is equal to that of the HEFT [20] and
MRCRG [22].

5.3. Example of the NDERG algorithm

This section describes the motivation example (see Section 3.2)
using the NDERG algorithm. We assume that the power and re-
liability parameters for all processors are known and shown in
Table 2, where the maximum frequency fj,max for each processor is
1.0. The energy consumption rate of communication ecr is 0.5. For
the sake of simplicity, this example ignores all the units of all the
parameters. Thus, when the non-DVFS processor is used, we can
calculate that the maximum reliability and minimum reliability of



50 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

Table 3
The results of the motivation example using the NDERG.
ti Rgoal(ti) R(ti) prj ST FT Edp(ti, prj, fj,max) Ecom(ti, prj) Ed(ti)

t1 0.994181 0.994615 3 0 9 7.263 0 7.263
t3 0.994208 0.994813 2 21 34 13.065 6 19.065
t4 0.994011 0.996805 2 34 42 8.040 4.5 12.540
t2 0.991457 0.997403 1 27 40 15.639 9 24.639
t5 0.989155 0.994018 3 9 19 8.070 0 8.070
t6 0.989954 0.994615 3 19 28 7.263 0 7.263
t9 0.988764 0.995212 2 56 68 12.060 14.5 26.560
t7 0.989833 0.994018 2 68 83 15.075 0 15.075
t8 0.992658 0.999000 1 69 74 6.015 21 27.015
t10 0.988375 0.997204 2 85 92 7.035 5.5 12.535

R(G) = 0.95848631 > Rgoal(G) = 0.95, SL(G) = 92, E(G) = Ed(G)+ Es(G) = 160.301

the application are Rmax(G) = 0.976286 and Rmin(G) = 0.915944
according to Eqs. (19) and (20).

When the reliability goal of the application is set to Rgoal(G) =
0.95, Table 3 shows the results of themotivation example using the
NDERG algorithm, where ST and FT represent the start time and
the finish time of task ti, respectively. The actual reliability R(ti) is
greater than reliability goal Rgoal(ti). Finally, the actual reliability
of the application is R(G) = 0.95848631, which greater than
Rgoal(G) = 0.95, and the total energy consumption of application G
is E(G) = Ed(G) + Es(G) = 160.301. In addition, from Table 3, it is
easy to know the scheduling length SL(G) = 92.

The NDERG algorithm does not scale the execution frequency
of the processor. When the processor’s execution frequency is
scaleable, the frequency reduction may lead to further improved
energy efficiency. Therefore, an algorithm that uses DVFS tech-
nique to minimize energy consumption while satisfying the re-
liability goal (DERG) is designed. The use of DVFS technique to
reduce the execution frequency of the processor will reduce the
reliability of the task. Therefore, when the reliability goal of a task
is determined, the task may be executed with reduced frequency,
and its actual reliability may be very close to the reliability goal.
As a result, if the reliability goal of the tasks that executed earlier
is too low, the tasks that executed later must have high reliability,
which may reduce the energy efficiency of the system. Therefore,
it is necessary to redefine the predetermined reliability goal of the
task.

5.4. The reliability goal of DERG

In order to make the tasks’ predetermined reliability goal more
balanced, wi is used as a reference for calculating the predeter-
mined reliability goal of task ti. Therefore, the predetermined re-
liability goal of the task in DERG is defined as

R′pregoal(ti) = Rmax(ti)× RGR(G)
wi
S , (42)

where S =
∑N

i=1 wi. At the time of task assignment, the reliability
goal of the task ti is calculated by

R′goal(ti) =
Rgoal(G)∏i−1

x=1 R(tx)×
∏N

y=i+1 R
′

pregoal(ty)
. (43)

The predetermined reliability goal of the task R′pregoal(ti) in DERG
is different from Rpregoal(ti) inNDERG. DERG improves the predeter-
mined reliability goal of the tasks that executed earlier compared
with the NDERG algorithm.

Similar to the reliability goal of the NDERG algorithm, when the
reliability goal of the application G is less than or equal to Rmax(G),
Eqs. (42) and (43) are used to predetermine the reliability of task
ti, the processors that satisfy the reliability goal of the application
can always be found.

Algorithm 2 DERG

Input: PR = {pr1, pr2, ..., prM} and application G
Output: E(G) and R(G)
1: sort the tasks to queue ReadyQ by non-ascending order of Rank
2: while ReadyQ is not empty do
3: ti ← ReadyQ .out()
4: calculate R′goal(ti) using Eq. (43)
5: energy←∞
6: for each processor prj ∈ PR do
7: for processor frequency fj,k increases from fj,low to fj,max do
8: if R(ti, prj, fj,k) ≥ R′goal(ti) then
9: if energy > Ed(ti) then

10: energy← Ed(ti)
11: asp(ti)← j
12: asf (ti)← k
13: break
14: end if
15: end if
16: end for
17: end for
18: end while
19: calculate E(G) using Eq. (9)
20: calculate R(G) using Eq. (14)

5.5. The DERG algorithm

Based on the previous analysis, the DERG algorithm is described
in Algorithm 2.

The main idea of the DERG algorithm is that the reliability goal
of the application is also transformed to the reliability goal of
each task. For any task, it will be assigned to the processor that
satisfies the reliability goal and consumes the least energy. The
DERG algorithm should reduce processor frequency as much as
possible in order to improve energy efficiency.

The structure of the DERG algorithm is also a nested loop, and
the tasks are sorted to queue ReadyQ by non-ascending order of
Rank value before the loops (first line). The outer loop assigns the
tasks to the appropriate processor one by one (Lines 2–18). For
each task ti, its reliability goal is calculated first by Eq. (43), and
then the DERG enters the inner loop (Lines 6–17), the processor
prj and frequency fj,k, which satisfy reliability goal of task ti and
minimum energy consumption is chosen to assign the task ti.

The structure of the DERG algorithm is the same as that of the
NDERG algorithm, so the time complexity of the DERG algorithm
is O(M × N2

× mfs), where mfs represents the maximum number
of discrete frequency levels in all processors.



H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 51

Table 4
The results of the motivation example using the DERG.
ti Rgoal(ti) R(ti) prj fj,k ST FT Edp(ti, prj, fj,k) Ecom(ti, prj) Ed(ti)

t1 0.994554 0.994615 3 1 0 9 7.263 0 7.263
t3 0.994818 0.995272 1 0.9 21 33.22 10.842 6 16.842
t4 0.994367 0.996805 2 1 18 26 8.040 4.5 12.540
t2 0.991575 0.994415 1 0.9 33.22 47.67 12.813 9 21.813
t5 0.992381 0.994018 3 1 9 19 8.070 0 8.070
t6 0.993182 0.994615 3 1 19 28 7.263 0 7.263
t9 0.991583 0.995212 2 1 63.67 75.67 12.060 14.5 26.560
t7 0.992722 0.993444 1 0.8 47.67 56.42 5.524 0 5.524
t8 0.996233 0.997848 1 0.9 56.42 61.97 4.928 21 25.928
t10 0.992605 0.994322 2 0.9 75.67 83.45 5.891 14 19.891

R(G) = 0.95164361 > Rgoal(G) = 0.95, SL(G) = 83.45, E(G) = Ed(G)+ Es(G) = 151.944

5.6. Example of the DERG algorithm

This example still uses the parameters in the Section 5.3. The
maximum frequency fj,max for each processor is 1.0 and the fre-
quency precision is set at 0.1, the lowest frequency of each pro-
cessor is calculated by Eq. (3).

Table 4 shows the results of the motivation example of using
the DERG algorithm. The reliability goal of task t1 is R′goal(t1) =
0.994554, which is greater than Rgoal(t1) = 0.994181 (see Table 3)
in NDERG. Although the actual reliability of task t1 is the same
in DERG and NDERG, the reliability goal of second task R′goal(t3) is
still larger than Rgoal(t3). Task t3 executing with reduced frequency
leads to higher reliability goals for t4 to t10. Because the reliability
goal of the task in the DERG algorithm is designed based on the
average WCET of the tasks, t2, t7, t8, and t10 are still executed with
reduced frequency to improve energy efficiency.

The final actual reliability of the application is R(G) =

0.95164361, which is greater than Rgoal(G) = 0.95, and the total
energy consumption of application is E(G) = Ed(G) + Es(G) =
151.944, which is less than the E(G) value (160.301) obtained by
the NDERG algorithm. In addition, as shown in Tables 3 and 4,
there are some tasks assigned to different processors by differ-
ent algorithms. For example, t3 is assigned to pr2 in the NDERG
algorithm, but it is assigned to pr1 in the DERG algorithm. So, an
interesting result is that although DVFS technology reduces the
execution frequency and thus stretches the execution time of some
tasks, the scheduling length of application is not always larger than
non-DVFS scheduling. Here the scheduling length of application is
SL(G) = 83.45, which is less than the scheduling length (the value
is 92) obtained by the NDERG algorithm.

6. Experimental performance evaluation

6.1. Experimental parameters

According to the relevant parameters in [22,23,30], the system
parameters are shown as follows:

(1) Application parameters: TheWCET of task ti assigned to the
processor prj is 10 ms ≤ wi,j ≤ 100 ms, and the communication
time between ti and tj is 10 ms≤ ci,j ≤ 100 ms.

(2) Processor power parameters: Pj,s = 0.001, 0.03 ≤ Pj,ind ≤
0.07, 0.8 ≤ Cj,ef ≤ 1.2, 2.5 ≤ mj ≤ 3.0, and fj,max = 1.0 GHz. The
frequency precision is set at 0.1 GHz, and the lowest frequency of
each processor is calculated by Eq. (3).

(3) Reliability parameters: The transient fault rate with the
maximum frequency of the processor is 0.000001 ≤ λj ≤

0.000009, and the sensitivity fault rate of voltage scaling is 1.0 ≤
dj ≤ 3.0.

(4) The energy consumption rate of communication ecr =
0.5 W.

6.2. Comparison algorithms

MRCRG algorithm [22] consumes less resource thanMaxRe [32]
and the RR algorithm [31] for a DAG-based parallel application
on heterogeneous systems while satisfying the reliability goal re-
quirement. MRCRG is a state-of-the-art method, which can also be
used to improve energy efficiency. Considering that the use ofDVFS
technique, we also extend the MRCRG with DVFS enabled. We call
such method as MECRG (minimizing energy consumption with
reliability goal). In addition, ESRG is also energy-efficient schedul-
ing with reliability goal for a DAG-based parallel application on
heterogeneous systems [23]. Therefore, the algorithm proposed
in this paper is mainly compared with the MRCRG, MECRG, and
ESRG algorithms. The methods of assigning each task’s reliability
goal of MRCRG and ESRG algorithms are briefly introduced as
follows:

MRCRG: The reliability goal of task ti in MRCRG algorithm is
calculated by

Rgoal(ti) =
Rgoal(G)∏i−1

x=1 R(tx)×
∏N

y=i+1 Rmax(ty)
. (44)

In Eq. (44), the items
∏i−1

x=1 R(tx) represent the actual reliability
of tasks that have been assigned, the items

∏N
y=i+1 Rmax(ty) repre-

sent the predetermined reliability of remaining tasks that have not
been assigned.

ESRG: The ESRG algorithm calculates upper bound reliability
goal of the tasks as Rup_goal(ti) = N

√
Rgoal(G), the reliability goal of

task ti is calculated by

Rgoal(ti) =
Rgoal(G)∏i−1

x=1 R(tx)×
∏N

y=i+1 Rup_goal(ty)
. (45)

In Eq. (45), the items
∏i−1

x=1 R(tx) represent the actual reliability
of tasks that have been assigned, the items

∏N
y=i+1 Rup_goal(ty) rep-

resent the predetermined reliability of remaining tasks that have
not been assigned. Because Rgoal(ti) may be larger than Rmax(ti),
ESRG cannot always satisfy the reliability goal requirements of the
application without using replication technique.

6.3. Experimental evaluation

C++ programming is used to simulate the algorithms. Some
commonly used DAG-based parallel applications in the distributed
system, such as Gaussian elimination and Fourier transform appli-
cations [16,22,28], are used to simulate the algorithms, which are
briefly introduced as follows.

Gaussian elimination application: Gaussian elimination is a
kind of parallel applications which has precedence constraints. A
parameterρ is used to describe the size of theGaussian elimination
application, the total number of tasks in application isN = ρ2

+ρ−2
2 .

Fig. 2 shows a Gaussian elimination application with ρ = 5.



52 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

Fig. 2. Gaussian elimination application with ρ = 5.

Fig. 3. Fourier transform application with ρ = 4.

Fourier transformapplication: A parameterρ is used to describe
the size of the Fourier transform application, the total number of
tasks is N = (2 × ρ − 1) + ρ × log2ρ with ρ = 2y, where y is a
positive integer. Fig. 3 shows a Fourier transform application with
ρ = 4.

In all of the following experiments, we mainly compare the
energy consumptions and actual reliabilities generated by each al-
gorithm. In order to demonstrate how the scheduling and DVFS af-
fect the execution time of the applications, the scheduling lengths
generated by each algorithms are also compared.

6.3.1. Varying the application scales
Experiment 1: This experiment mainly tests the effects of dif-

ferent scales of Gaussian elimination applications on the perfor-
mance of the algorithms. 32 processors are used in this experiment,
the reliability requirement of application is 0.95. ρ is 16, 24, 32,
40, and 48 respectively, i.e., the total number of tasks is 135
(small scale), 299, 527, 819, and 1175 (large scale) respectively. The
energy consumption, actual reliability, and the scheduling length
with different algorithms are shown in Fig. 4.

Fig. 4(a) shows the energy consumptions of the different algo-
rithms. As the number of tasks increases, the energy consump-
tions generated by all algorithms are increased. Overall, MECRG
generates the highest energy consumption which is higher than
that is generated by ESRG and MRCRG. DERG generates the lowest
energy consumption. In detail, the energy consumption generated
by NDERG is 92% of MRCRG, 86% of MECRG, and 89% of ESRG. The

energy consumption generated by DERG is 89% of MRCRG, 83% of
MECRG, and 86% of ESRG.

Fig. 4(b) shows the actual reliability of the application with dif-
ferent algorithms.When the number of tasks is less than or equal to
1175, all algorithms canmake the application satisfy the reliability
goal. When the application is scheduled with MRCRG and NDERG,
the actual reliability of the application is almost the same, which is
obviously greater than reliability goal. With the number of tasks
increases, the actual reliabilities of the application generated by
these two algorithms are gradually approaching to the reliability
goal. However, when the application is scheduled with MECRG,
ESRG, and DERG, the actual reliability of the application are about
the same and slightly greater than reliability goal requirement.

Fig. 4(c) shows the scheduling length of the application with
different algorithms. As the number of tasks increases, the schedul-
ing lengths generated by all algorithms are increased. Overall,
the scheduling lengths of the three algorithms MECRG, ESRG, and
DERG are greater than that of the other two algorithms. In detail,
when the scheduling length generated by the MRCRG algorithm is
used as a reference, MECRG is 1.18 times of MRCRG, ESRG is 1.11
times of MRCRG, NDERG is 92% of MRCRG, and DERG is 1.02 times
of MRCRG.

The main reasons for the above results are as follows.
(1) In the MRCRG and MECRG algorithms, the reliability goal of

the tasks is extremely unbalanced. The predetermined reliability
goal of early execution tasks is too low, the tasks executed later
must have higher reliability. As a result, the chances of lately
executed task choosing an energy efficient processor are reduced.
Therefore, the energy consumptions generated by the MRCRG and
MECRG algorithms are relatively high. Although the ESRG algo-
rithm defines the upper bound of the reliability goal, the relia-
bility goal of the tasks is still unbalanced, so the ESRG algorithm
still generates more energy consumption. The NDERG and DERG
algorithms use wi as a reference to determine the reliability goal
of task ti, the reliability goal of the tasks is more balanced, each
task has the opportunity to execute on energy-efficient processor.
So the NDERG and DERG algorithms generate lower energy con-
sumptions.

(2) The MRCRG and NDERG algorithms did not use DVFS tech-
nique. When reliability goal of application is very small compared
with Rmax(G), each task reliability goal will be lower. When these
two algorithms assign tasks to the processor, the actual reliability
of a task may be far greater than the reliability goal. Therefore, the
actual reliability of application is far greater than the reliability
goal. However, MECRG, ESRG, and DERG reduce the execution
frequency asmuch as possible to improve energy efficiency, which
weaken the actual reliability of the task. As a result the actual
reliability of application is slightly greater than reliability goal
requirement.

(3) The MECRG, ESRG, and DERG algorithms use DVFS tech-
nique, which extends the execution time of the task. Hence these
three algorithms generate relatively long scheduling length.

Experiment 2: This experiment mainly tests the effect of dif-
ferent scales of Fourier transform applications on the performance
of the algorithms. 32 processors are used in this experiment, the
reliability requirement of application is 0.95. ρ is 8, 16, 32, 64,
and 128 respectively, i.e., the total number of tasks is 39 (small
scale), 95, 223, 511, and 1151 (large scale) respectively. The energy
consumption, actual reliability, and the scheduling length with
different algorithms are shown in Fig. 5.

Fig. 5(a) shows the energy consumption of the different algo-
rithms. As the number of tasks increases, the energy consumptions
generated by all algorithms are increased. However, the energy
consumptions generated by the NDERG and DERG algorithms are
relatively less.

As shown in Fig. 5(b), all algorithms can make the application
satisfy the reliability goal. When the number of tasks is less than



H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 53

or equal to 223, the actual reliabilities obtained by two algorithms
without implementing DVFS technique in MRCRG and NDERG are
far higher than the reliability goal. However, the actual reliabilities
obtained by other three algorithms that implement DVFS tech-
nique are slightly higher than the reliability goal.

As shown in Fig. 5(c), when the number of tasks increases, the
scheduling lengths generated by all algorithms are also increased.
Among all algorithms, the MECRG algorithm generates the longest
scheduling length, the NDERG algorithm generates the minimum
scheduling length.

6.3.2. Varying the reliability goals
Experiment 3: This experiment mainly tests the effect of the

different reliability goals of Gaussian elimination application on
the performance of the algorithms. 32 processors are used in this
experiment. ρ = 32, i.e., the total number of tasks is 527 (medium
scale). When the reliability goal of the application increases from
0.93 to 0.97 with 0.01 increments, the energy consumption, actual
reliability, and the scheduling length with different algorithms are
shown in Fig. 6.

As shown in Fig. 6(a), with the improvement of the reliability
goal of the application, the energy consumptions generated by all
algorithms are increased, but the increase is not obvious. In the five
algorithms, NDERG and DERG consume less energy than MRCRG,
MECRG, and ESRG. Overall, the energy consumption generated by
DERG is the least. In detail, the energy consumption generated by
NDERG is 96% of MRCRG, 83% of MECRG, and 89% of ESRG, the
energy consumption generated by DERG is 94% of MRCRG, 80% of
MECRG, and 86% of ESRG.

As shown in Fig. 6(b), with the improvement of the reliability
goal of the application, the actual reliabilities generated byMECRG,
ESRG, and DERG are about the same and slightly greater than
the reliability goal. Similarly, the actual reliabilities generated by
MRCRG and DERG are also about the same. When the reliability
goal is less than or equal to 0.97, the five algorithms can make the
application satisfy the reliability goal. But the attention is required
toward the reliability of the application which cannot be reached
to 0.98 using ESRG algorithm.

As shown in Fig. 6(c), with the improvement of the reliability
goal of the application, the scheduling lengths generated by the
MRCRG, ESRG, NDERG and DERG algorithms are increased, but
the scheduling length generated by the MECRG algorithm has
little change. Overall, the MECRG algorithm generates the longest
scheduling length, the NDERG algorithm generates the smallest
scheduling length.

Experiment 4: This experiment mainly tests the effect of the
different reliability goals of Fourier transform application on the
performance of the algorithms. 32 processors are used in this
experiment. ρ = 64, i.e., the total number of tasks is 511 (medium
scale), the reliability goal of the application increases from 0.93 to
0.97 with 0.01 increments.

Fig. 7(a) shows the energy consumption with different algo-
rithms. According to the results, as the reliability goal of the
application increases, the energy consumptions generated by all
algorithms are also increased. Overall, the DERG algorithm gener-
ates the lowest energy consumption.

Fig. 4. Results of the Gaussian applications with ρ are increased from 16 to 48 on reliability goal requirement Rgoal(G) = 0.95 (Experiment 1).

Fig. 5. Results of the Fourier transform applications with ρ is increased from 8 to 128 on reliability goal requirement Rgoal(G) = 0.95 (Experiment 2).



54 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

Fig. 6. Results of the Gaussian application with ρ = 32 on reliability goal requirements Rgoal(G) are increased from 0.93 to 0.97 (Experiment 3).

Fig. 7. Results of the Fourier transform application with ρ = 64 on reliability goal requirements Rgoal(G) are increased from 0.93 to 0.97 (Experiment 4).

As shown in Fig. 7(b), when the reliability goal of the application
increases from 0.93 to 0.97, all the algorithms can satisfy the
reliability goal, which are similar to that of Experiment 3.

As shown in Fig. 7(c), when the reliability goal of the application
is increased, the scheduling lengths generated by the MRCRG,
ESRG, NDERG, and DERG algorithms are also increased. However,
the scheduling length generated by theMECRG algorithm has little
change.

From Experiment 1 to experiment 4, an interesting result is
that when the reliability goal of the DAG-based parallel applica-
tion must have to be satisfied, using DVFS technique to reduce
the execution frequency of some tasks may increase the energy
consumption of the system. For example, the energy consumption
generated by MECRG is greater than that generated by MRCRG in
all experiments. The main reasons can be explained as follows:

(1) When the task’s reliability goal can be satisfied, DVFS tech-
nique reduces the execution frequency as much as possible to
improve energy efficiency, which will make the actual reliability
of the task closer to the reliability goal. Therefore, if the reliability
goals of some tasks are too low, the reliability goals of other tasks
must be higher, which will make the algorithm fall into local
optimization.

(2) MECRG sets a low reliability goal of the early assigned tasks,
as a result, more tasks executed later must be executed withmaxi-
mum reliability and it is hard to be assigned to an energy efficiency
processor. The MRCRG algorithm does not use DVFS technique,
although the reliability goal of the early assigned tasks is very low,
the actual reliabilities of these tasks may be much higher than the

reliability goal. Therefore, the impact on the reliability goals of the
tasks that are not assigned is relatively slightly.

It is known from the above analysis, when DVFS technique is
used to improve energy efficiency while satisfying the reliability
goal of the DAG-based parallel application. For each task ti, the
Rgoal(ti) is neither too high nor too low in respect of the maximum
reliability Rmax(ti), it have to be carefully designed to prevent the
algorithm fall into local optimization.

Reducing the execution frequency of task can improve energy
efficiency, but the reliability of the task will be weakened at the
same time. Intuitively, the sensitivity fault rates d (see Section 3.4)
should have an impact on energy consumption when DVFS tech-
nique is used to improve energy efficiency while satisfying the
reliability goal of the application, sowedesigned experiment 5 and
experiment 6.

6.3.3. Varying the sensitivity fault rates
Experiment 5: This experiment mainly tests the effect of the

sensitivity fault rates on the performance of the algorithms. Fourier
transform application with ρ = 128, i.e., the total number of tasks
is 1151 (large scale). 32 processors are used in this experiment.
The reliability goal requirement of application is 0.95. When the
sensitivity fault rate dj is randomly generated within the range
of (0, 1], (1, 2], (2, 3], (3, 4], and (4, 5] respectively, the energy
consumption , actual reliability, and the scheduling length with
different algorithms are shown in Fig. 8.

As shown in Fig. 8(a), in view of the overall situation, the energy
consumptions of NDERG and DERG are relatively low among all



H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 55

Fig. 8. Results of the Fourier transform applications with ρ = 128 on different rang of the sensitivity fault rates (Experiment 5).

Fig. 9. Results of the Fourier transform applications with ρ = 128 on different rang of the sensitivity fault rates (Experiment 6).

algorithms. When the sensitivity fault rate dj is in range of (0, 1],
ESRG and DERG have great ability to improve energy efficiency.
When the sensitivity fault rate dj is greater than 1, the energy
efficiency of ESRG and DERG has been reduced. But in any case,
the energy consumption of DERG is lower than that of ESRG.When
the sensitivity fault rate dj of each processor is greater than 3, the
energy consumption of NDERG is the lowest among all algorithms.
In fact, when the sensitivity fault rate dj of each processor is
greater than 3, because the fault rate is too high, MECRG, ESRG,
andDERG are almost impossible to reduce the execution frequency
for improving energy efficiency. Therefore, this experiment also
shows that when the DVFS technique is not used, the method of
predetermined the task reliability goal in the NDERG algorithm is
effective.

As shown in Fig. 8(b), all algorithms can make the applica-
tion satisfy the reliability goal requirements. Because the scale of
the application is relatively large, the actual reliabilities gener-
ated by all algorithms are only slightly greater than the reliability
goal.

As shown in Fig. 8(c), the scheduling lengths generated by the
MRCRG and NDERG algorithms remain unchanged. As the sensi-
tivity fault rate increases, the scheduling lengths generated by the
MECRG, ESRG, and DERG algorithms have the trend of decreasing,
which indicate that the number of tasks executed with reduced
frequency is decreased.

Experiment 6:We only change the range of the sensitivity fault
rate dj, all the other parameters are the same as Experiment 5.

When the sensitivity fault rate dj is randomly generated within
the range of (0, 1], (0, 2], (0, 3], (0, 4], and (0, 5] respectively, the
energy consumption, actual reliability, and the scheduling length
with different algorithms are shown in Fig. 9.

Experiment 6 is different from Experiment 5, In Experiment
6, the sensitivity fault rate dj has a wider range of values, and some
of the processor’s dj may be smaller. As a result, the execution
frequency of these processors may be reduced to improve energy
efficiency.

As shown in Fig. 9(a), the energy consumption of DERG is the
lowest among all algorithms. In addition, the energy consumptions
of ESRG and DERG are lower than that in Experiment 5. The main
reason is that the sensitivity fault rate dj of some processors may
be very small, these two algorithms can reduce task execution
frequency to improve energy efficiency, which demonstrates the
performance of these algorithms in terms of energy efficiency.

Fig. 9(b) is similar to Fig. 8(b), all algorithms can make the
application satisfy the reliability goal.

As shown in Fig. 9(c), the scheduling lengths generated by the
MRCRG and NDERG algorithms remain unchanged. Among all al-
gorithms, the NDERG algorithm generates the smallest scheduling
length.

The results of Experiment 1 to Experiment 6 are summarized
as follows:

(1) In general, for the algorithmwith DVFS technique, the DERG
algorithm generates the less energy consumption thanMECRG and



56 H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57

ESRG. For the algorithmwithout using DVFS technique, the NDERG
algorithm generates the less energy consumption than MRCRG.

(2) When the reliability goal of the application must have to be
satisfied, using DVFS technique to reduce the execution frequency
of some tasks may increase the energy consumption of the system.
However, the energy consumption of DERG is less than that of
NDERG for the general case.

(3)When the sensitivity fault rates of all processors are too high,
and all algorithms would hardly reduce the processor execution
frequency, the NDERG algorithm generates the least energy con-
sumption.

7. Conclusions

Embedded heterogeneous systems are widely used in many
fields, reducing the energy consumption of the system is an impor-
tant research topic. There aremany solutions that reduce processor
execution frequency to improve energy efficiency by using DVFS
technique. However, as the execution frequency of the processor
reduces, the probability of failure in the processor will increase,
and the reliability of the application will be weakened. Reliability
is an important quality targets for many embedded applications,
which should be satisfied. Based on the heterogeneous embedded
system, the problem of satisfying the reliability goal of the DAG-
based parallel application andminimizing the energy consumption
of the system is studied in this paper. NDERG and DERG algo-
rithms are proposed to minimize the energy consumption while
satisfying the reliability goal. The reliability goal of the application
is transformed to the reliability goal of each task, two schemes
for predetermining the reliability goal of the task are proposed
for above two algorithms, respectively. The experimental results
show that the proposed algorithms have significant improvements
in terms of energy efficiency compared with the state-of-the-art
algorithms.

Acknowledgment

The research was partially funded by the National Natural Sci-
ence Foundation of China (Grant No. 61173036).

References

[1] H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2014)
682–694.

[2] H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2014)
682–694.

[3] I. Assayad, A. Girault, H. Kalla, Scheduling of real-time embedded systems
under reliability and power constraints, in: Complex Systems (ICCS), 2012
International Conference on, IEEE, 2012, pp. 1–6.

[4] Y. Ding, X. Qin, L. Liu, T.Wang, Energy efficient scheduling of virtual machines
in cloud with deadline constraint, Future Gener. Comput. Syst. 50 (2015)
62–74.

[5] M. Fan, Q. Han, X. Yang, Energyminimization for on-line real-time scheduling
with reliability awareness, J. Syst. Softw. 127 (2017) 168–176.

[6] M.A. Haque, H. Aydin, D. Zhu, On reliability management of energy-aware
real-time systems through task replication, IEEE Trans. Parallel Distrib. Syst.
28 (3) (2017) 813–825.

[7] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
ccgrid 2012, IEEE Computer Society, 2012, pp. 781–786.

[8] C. Kuo, Y. Lu, Task assignment with energy efficiency considerations for non-
DVS heterogeneous multiprocessor systems, SIGAPP Appl. Comput. Rev. 14
(4) (2015) 8–18.

[9] K. Li, Energy-efficient task scheduling onmultiple heterogeneous computers:
Algorithms, analysis, and performance evaluation, IEEE Trans. Sustain. Com-
put. 1 (1) (2016) 7–19.

[10] K. Li, Power and performance management for parallel computations in
clouds and data centers, J. Comput. System Sci. 82 (2) (2016) 174–190.

[11] K. Li, Optimal task dispatching on multiple heterogeneous multiserver sys-
tems with dynamic speed and powermanagement, IEEE Trans. Sustain. Com-
put. 2 (2) (2017) 167–182.

[12] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.

[13] M. Lin, Y. Pan, L.T. Yang, M. Guo, N. Zheng, Scheduling co-design for reliability
and energy in cyber-physical systems, IEEE Trans. Emerg. Top. Comput. 1 (2)
(2013) 353–365.

[14] S. Liu, J. Lu, Q. Wu, Q. Qiu, Harvesting-aware power management for real-
time systemswith renewable energy, IEEE Trans. Very Large Scale Integration
(VLSI) Syst. 20 (8) (2012) 1473–1486.

[15] A. Mishra, A.K. Tripathi, Energy efficient voltage scheduling for multi-core
processors with software controlled dynamic voltage scaling, Appl. Math.
Model. 38 (14) (2014) 3456–3466.

[16] T. Mladenov, S. Nooshabadi, K. Kim, Implementation and evaluation of Raptor
codes on embedded systems, IEEE Trans. Comput. 60 (12) (2011) 1678–1691.

[17] A. Naithani, S. Eyerman, L. Eeckhout, Reliability-aware scheduling on het-
erogeneous multicore processors, in: 2017 IEEE International Symposium on
High Performance Computer Architecture, HPCA, 2017, pp. 397–408, http:
//dx.doi.org/10.1109/HPCA.2017.12.

[18] X. Tang, K. Li, R. Li, B. Veeravalli, Reliability-aware scheduling strategy for
heterogeneous distributed computing systems, J. Parallel Distrib. Comput. 70
(9) (2010) 941–952.

[19] Z. Tang, L. Qi, Z. Cheng, K. Li, S.U. Khan, K. Li, An energy-efficient task schedul-
ing algorithm in DVFS-enabled cloud environment, J. Grid Comput. 14 (1)
(2016) 55–74.

[20] H. Topcuoglu, S. Hariri, M.y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib.
Syst. 13 (3) (2002) 260–274.

[21] Y. Xiang, S. Pasricha, Soft and hard reliability-aware scheduling for multicore
embedded systems with energy harvesting, IEEE Trans. Multi-Scale Comput.
Syst. 1 (4) (2015) 220–235.

[22] G. Xie, Y. Chen, Y. Liu, Y.Wei, R. Li, K. Li, Resource consumption costminimiza-
tion of reliable parallel applications on heterogeneous embedded systems,
IEEE Trans. Ind. Inf. 13 (4) (2017) 1629–1640.

[23] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, K. Li, Energy-efficient fault-tolerant
scheduling of reliable parallel applications on heterogeneous distributed
embedded systems, IEEE Trans. Sustain. Comput. 3 (3) (2018) 167–181.

[24] G. Xie, J. Jiang, Y. Liu, R. Li, K. Li, Minimizing energy consumption of real-time
parallel applications using downward and upward approaches on heteroge-
neous systems, IEEE Trans. Ind. Inf. 13 (3) (2017) 1068–1078.

[25] G. Xie, R. Li, K. Li, Heterogeneity-driven end-to-end synchronized scheduling
for precedence constrained tasks and messages on networked embedded
systems, J. Parallel Distrib. Comput. 83 (2015) 1–12.

[26] G. Xie, G. Zeng, X. Xiao, R. Li, K. Li, Energy-efficient scheduling algorithms
for real-time parallel applications on heterogeneous distributed embedded
systems, IEEE Trans. Parallel Distrib. Syst. 28 (12) (2017) 3426–3442.

[27] H. Xu, R. Li, L. Zeng, K. Li, C. Pan, Energy-efficient scheduling with reliability
guarantee in embedded real-time systems, Sustain. Comput.: Inf. Syst. 18
(2018) 137–148.

[28] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster, Inform.
Sci. 319 (2015) 113–131.

[29] Y. wen Zhang, H. zhen Zhang, C. Wang, Reliability-aware low energy schedul-
ing in real time systems with shared resources, Microprocess. Microsyst. 52
(2017) 312–324.

[30] B. Zhao, H. Aydin, D. Zhu, Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints, ACM
Trans. Des. Autom. Electron. Syst. 18 (2) (2013) 23.

[31] L. Zhao, Y. Ren, K. Sakurai, Reliable workflow scheduling with less resource
redundancy, Parallel Comput. 39 (10) (2013) 567–585.

[32] L. Zhao, Y. Ren, Y. Xiang, K. Sakurai, Fault-tolerant scheduling with dynamic
number of replicas in heterogeneous systems, in: High Performance Comput-
ing andCommunications (HPCC), 2010 12th IEEE International Conference on,
IEEE, 2010, pp. 434–441.

[33] N. Zheng, Z. Wu, M. Lin, L.T. Yang, Enhancing battery efficiency for pervasive
health-monitoring systems based on electronic textiles, IEEE Trans. Inf. Tech-
nol. Biomed. 14 (2) (2010) 350–359.

[34] D. Zhu, Reliability-aware dynamic energy management in dependable em-
bedded real-time systems, ACM Trans. Embedded Comput. Syst. (TECS) 10 (2)
(2010) 26.

[35] D. Zhu, H. Aydin, Reliability-aware energymanagement for periodic real-time
tasks, IEEE Trans. Comput. 58 (10) (2009) 1382–1397.

http://refhub.elsevier.com/S0743-7315(19)30024-3/sb1
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb1
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb1
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb1
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb1
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb2
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb2
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb2
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb2
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb2
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb3
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb3
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb3
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb3
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb3
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb4
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb4
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb4
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb4
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb4
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb5
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb5
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb5
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb6
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb6
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb6
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb6
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb6
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb7
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb8
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb8
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb8
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb8
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb8
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb9
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb9
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb9
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb9
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb9
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb10
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb10
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb10
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb11
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb11
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb11
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb11
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb11
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb13
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb13
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb13
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb13
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb13
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb14
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb14
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb14
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb14
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb14
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb15
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb15
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb15
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb15
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb15
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb16
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb16
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb16
http://dx.doi.org/10.1109/HPCA.2017.12
http://dx.doi.org/10.1109/HPCA.2017.12
http://dx.doi.org/10.1109/HPCA.2017.12
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb18
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb18
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb18
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb18
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb18
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb19
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb19
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb19
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb19
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb19
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb20
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb20
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb20
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb20
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb20
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb21
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb21
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb21
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb21
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb21
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb22
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb22
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb22
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb22
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb22
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb23
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb23
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb23
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb23
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb23
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb24
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb24
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb24
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb24
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb24
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb25
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb25
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb25
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb25
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb25
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb26
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb26
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb26
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb26
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb26
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb27
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb27
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb27
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb27
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb27
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb28
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb28
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb28
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb28
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb28
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb29
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb29
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb29
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb29
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb29
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb30
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb30
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb30
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb30
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb30
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb31
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb31
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb31
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb32
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb33
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb33
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb33
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb33
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb33
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb34
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb34
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb34
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb34
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb34
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb35
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb35
http://refhub.elsevier.com/S0743-7315(19)30024-3/sb35


H. Xu, R. Li, C. Pan et al. / Journal of Parallel and Distributed Computing 127 (2019) 44–57 57

Hongzhi Xu is currentlyworking toward the Ph.D. degree
in computer science and engineering at Hunan Univer-
sity, Changsha, China. He is an Associate Professor in the
College of Software, Jishou University, Zhangjiajie, China.
His research interests include embedded computing sys-
tems and cyber–physical systems.

Renfa Li is a Professor of computer science and electronic
engineering, and theDean of College of Computer Science
and Electronic Engineering, Hunan University, China. He
is the Director of the Key Laboratory for Embedded and
Network Computing of Hunan Province, China. He is also
an expert committee member of National Supercomput-
ing Center in Changsha, China. Hismajor interests include
computer architectures, embedded computing systems,
cyber–physical systems, and Internet of things. He is a
member of the council of CCF, a senior member of IEEE,
and a senior member of ACM.

ChenPan received theM.S. degree in Telecommunication
Engineering from Hunan University, Changsha, China, in
2012. He received M.S. degree in Electrical Engineer-
ing from Oklahoma State University, Stillwater, OK, USA,
in 2017. He is currently a fifth-year Ph.D. student in
Electrical and Computer Engineering at Swanson School
of Engineering, University of Pittsburgh, PA, USA. His
current research interests include low-power embedded
systems, non-volatile memory optimization, low-power
IoT edge computing, wireless sensor network, energy
harvesting, and game theory.

Keqin Li is a SUNY Distinguished Professor of com-
puter science. His current research interests include
parallel computing and high-performance computing,
distributed computing, energy-efficient computing and
communication, heterogeneous computing systems,
cloud computing, big data computing, CPU–GPU hybrid
and cooperative computing, multicore computing, stor-
age and file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing systems, mo-
bile computing, service computing, Internet of things
and cyber–physical systems. He has published over 485

journal articles, book chapters, and refereed conference papers, and has received
several best paper awards. He is currently or has served on the editorial boards of
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing, IEEE
Transactions on Sustainable Computing. He is an IEEE Fellow.


	Minimizing energy consumption with reliability goal on heterogeneous embedded systems
	Introduction
	Background
	Motivation
	Main Contributions

	Related Work
	System Model and Problem Formulation
	Power Model
	Application Model
	Energy Consumption
	Reliability Model
	Problem Description

	Preliminaries
	Reliability Goal
	Task Priority 
	Earliest Start Time and Earliest Finish Time

	Proposed Algorithms
	The Reliability Goal of NDERG
	The NDERG Algorithm
	Example of the NDERG Algorithm
	The Reliability Goal of DERG
	The DERG Algorithm
	Example of the DERG Algorithm

	Experimental Performance Evaluation
	Experimental Parameters
	Comparison Algorithms
	Experimental Evaluation
	Varying The Application Scales
	Varying The Reliability Goals
	Varying The Sensitivity Fault Rates


	Conclusions
	Acknowledgment
	References


