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Distributed deep learning frameworks facilitate large deep learning workloads. These frameworks support 
sharing one GPU device among multiple jobs to improve resource utilization. Modern deep learning training 
jobs consume a large amount of GPU memory. Despite that, sharing GPU memory among jobs is still possible 
because a training job has iterative steps that its memory usage fluctuates over time. However, resource sharing 
also introduces the risk of job performance degradation. Co-located jobs sharing a GPU device may suffer from 
different levels of interference, mainly caused by memory oversharing. How to improve resource utilization 
while maintaining good job performance is a novel challenge for job placement strategies. This paper studies the 
job placement problem. We propose an opportunistic memory sharing model to describe the time-varying job 
memory requirements. Based on this model, we introduce an Opportunistic Job Placement Problem (OJPP) 
for shared GPU clusters that seek job placement configurations using a minimum number of GPU devices 
and guarantee user-defined performance requirements at the same time. We propose a greedy algorithm and 
a heuristic algorithm with computational complexities of 𝑂(𝑛 log𝑛) and 𝑂(𝑛2 log𝑛), respectively, to solve the 
problem. We also propose an online adjustment algorithm with the computational complexity of 𝑂(𝑛 log𝑛) to 
perform updates to job placement configurations in runtime. A machine-learning-based interference prediction 
method is used to prepare accurate interference estimations. Extensive experiments are conducted on a GPU 
cluster to verify the correctness and effectiveness of our algorithms. Compared with standalone training jobs 
on dedicated clusters, the proposed approach reduces resource consumption by 46% in a shared cluster, while 
guaranteeing over 92.97% of the job performance, in terms of average job completion time.
1. Introduction

In recent years, rapidly developing artificial intelligence applica-

tions have sparked state-of-art Deep Learning (DL) technologies [19,13]

to solve novel big data analysis problems, such as machine transla-

tion [14,15], computer vision [19,6], speech recognition [41,35], etc. 
In the meantime, deep learning networks keep developing, in terms of 
both model complexity and dataset size. It has spurred a new wave of 
Distributed Deep Learning (DDL) frameworks.

These frameworks are scalable in nature that they can efficiently 
host large DL jobs on GPU clusters [38]. Examples of such frameworks 

✩ A preliminary version of the paper was published in 2020 IEEE 22nd International Conference on High Performance Computing and Communications (HPCC 
2020) [29].
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include TensorFlow [1], BigDL [11]. Large DDL training jobs are di-

vided into two main parallel schemes, namely data parallelism and model 
parallelism [32,38]. The former divides large datasets into small subsets 
as chunks and trains models in SIMD fashion to deal with large datasets, 
while the latter splits a large model that is hard to host in one GPU de-

vice into subsets that are trained in MIMD fashion. These two schemes 
can be mixed to solve more complicated applications.

In data parallelism scheme, DL job starts multiple model instances, 
called workers. Each worker is fed a chunk of the dataset every iteration. 
Workers periodically perform allreduce communication to update their 
https://doi.org/10.1016/j.jpdc.2023.104776
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Table 1

Comparison of different distributed deep learning clusters.

System Tpe 1: Dedicated Cluster 2: Shared Cluster 3: Non-dedicated Cluster

Allocation exclusive shared uncertain

Utilization poor medium high

Availability high predictable or controlled unpredictable

Performance guaranteed partial guaranteed no guarantees
local parameters, using optimization algorithms, e.g., Stochastic Gra-

dient Descent (SGD) [12]. Such allreduce operations can be performed 
with different communication patterns, e.g., with Parameter Server (PS) 
[32] or Ring All-Reduce [1], both synchronously and asynchronously. 
This paper focuses on data parallelism. It is widely applied in various ap-

plication scenarios and supported by both commodity and commercial 
frameworks.

Deep learning algorithms are floating point computation intensive, 
these workloads rely on hardware accelerators like GPUs to achieve 
high training efficiency. In terms of how resources are shared and man-

aged, DDL clusters can be categorized into three types, as listed in 
Table 1. (1) Dedicated cluster [16,25], that provides resources (mostly 
GPU) for one DL job or one user group exclusively. While it guarantees 
training performance and provides high resource availability at almost 
all times, it suffers from poor resource utilization. (2) Shared cluster

[37,8], such as multi-tenant GPU clusters and GPU clouds, designed 
specifically for deep learning jobs. These clusters usually have multi-

ple high-end GPU accelerators on a server to host multiple DL training 
jobs at once. Such infrastructures provide better resource utilization 
than dedicated clusters. The resource availability is usually predictable, 
therefore it can guarantee training performance in some scenarios. (3) 
Non-dedicated clusters [5], such as public clouds, usually host mixed 
workloads with both GPU-heavy DL jobs and other traditional CPU-

heavy jobs. These clusters are designed in pursuit of high resource 
utilization but usually cannot provide performance guarantees for DL 
jobs. Overall, shared DDL clusters are able to achieve moderate re-

source utilization while providing decent training performance. It is 
the most efficient and widely applied environment for DL jobs on the 
market. However, it also introduces novel efficiency and performance 
challenges [24,40].

DDL cluster schedulers allocate resources, mostly GPU devices, for 
multiple DL jobs in a shared cluster, with the objectives of better re-

source utilization and higher job throughput than exclusive clusters. 
However, studies show that the resource utilization of individual GPUs 
can sometimes be quite poor, e.g., 52% on average in production sys-

tems [24]. This is mainly caused by the increased overhead brought 
by synchronizations among distributed training workers, and it can get 
even worse when jobs scale up. A straightforward solution is to pack 
more workers on one GPU device. The reason is (1) to achieve better 
worker locality and reduce synchronization cost, and (2) to improve 
device utilization. While it improves the system efficiency, it also intro-

duces another significant problem.

It has been reported in recent works that workers sharing a sin-

gle GPU may experience noticeable interference that adversely causes 
training performance downgrades [2,40,24]. As exampled in Fig. 1(a), 
we observe that the overall performance degradation can be as much 
as 113% when sharing a GPU device with workers of multiple deep 
learning jobs, compared with standalone resource allocation. It is ob-

served for co-located workers from the same job and from different jobs 
[2,40,29]. Moreover, a DL job can suffer from different levels of in-

terference [2] when paired with different DL jobs. For example, we 
observed that a ResNet worker suffers from significant performance 
slowdown (up to 122% slower) when sharing a host with a VGG19 
worker. A LeNet worker achieves decent performance (18% slower) 
when sharing a device with an LSTM worker.

This is mainly caused by resource competition when sharing under-

lying resources besides GPU, such as CPU caches, disk I/O, network 
2

Fig. 1. Performance degradation and memory oversharing of co-located DL jobs 
(LeNet and ResNet).

I/O, and buses (e.g., QPI, PCIe) [2,40]. Experiments in study [29] have 
shown that the dominant factor is GPU RAM overload. Specifically, DL 
jobs are iterative in nature. The GPU RAM usage of a worker of a DL 
training job usually fluctuates and follows a cyclic pattern [47]. Mem-

ory operations from multiple DL jobs can cause memory oversharing, as 
exampled in Fig. 1(b) when two memory usage curve peaks collide. We 
called this GPU memory oversharing among multiple jobs. We observe 
noticeable performance interference among co-located jobs under this 
circumstance. Given enough job and device data, the interference can 
be predicted [29], as demonstrated in Section 5.

Sharing GPU devices among multiple DL jobs presents an opportu-

nity for higher system efficiency and job throughput, while interference 
among DL jobs significantly affects their training performance. How to 
efficiently place DL training jobs on a shared distributed GPU cluster, 
guaranteeing training performance in spite of the interference, is a chal-

lenging problem. This paper seeks a comprehensive solution and makes 
four main contributions.

1. We introduce a model to describe memory oversharing on a shared 
device and based on this, we introduce a novel Opportunistic Job 
Placement Problem (OJPP) for distributed deep learning clusters.

2. We propose greedy and heuristic algorithms to compute efficient 
job placement configurations with memory oversharing and inter-

ference constraints to guarantee job performance.

3. We propose an online adjustment algorithm to dynamically update 
job configurations according to real-time status and job interfer-

ence.

4. We conduct extensive experiments on a GPU cluster with typical 
deep learning training workloads to verify the correctness and ef-

fectiveness of our approach.

The rest of the paper is organized as follows. In the next section, we 
summarize related work. Section 3 presents problem formulation and 
analysis. We propose our approaches for static placement and online 
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adjustment in Section 4. Section 5 discusses the experimental results. 
Section 6 concludes the paper.

2. Related work

2.1. Distributed model training

A deep learning algorithm generally consists of two stages, the train-

ing stage, and the inference stage. A deep learning training job trains 
a learning model, such as a Deep Neural Network (DNN), with a large 
number of examples (e.g., images with labeled objects). The training 
process is an approximate function for input-output mapping. We use 
the quality of the mapping to measure how well the model maps input 
to the correct output. Deep learning training job works in an iterative 
way to explore feature validity and tune hyperparameters [49]. The 
inference stage uses the trained model to make predictions on future 
inputs.

Compared to the lightweight inference stage that runs in real-time, 
the training stage is highly resource-consuming. This is mostly caused 
by the complexity of DNN and the size of training datasets. A large 
dataset is usually divided into data chunks and then mini-batches. Each 
training iteration trains one mini-batch of dataset and tunes model pa-

rameters to improve the model. A training job may generate a low-

quality model at the beginning and improve the model’s quality through 
a sequence of training iterations (usually tens of thousands or even mil-

lions) until it converges or reaches user-defined termination conditions.

In recent years, distributed model training frameworks, such as Ten-

sorFlow [1], BigDL [11], and MXNet [7], are developed to shorten 
training time for both large dataset and large models, following data 
parallelism and model parallelism [32,38] respectively. Data parallelism is 
more popular in recent years, because of the large dataset modern DL 
applications are dealing with. Data parallelism divides large datasets into 
small subsets as chunks and trains models in SIMD fashion. Distributed 
frameworks launch multiple instances (workers) for a DL training job 
so that workers train the model with different data chunks in parallel 
to accelerate the process. Workers perform all-reduce fashion updates 
to maintain global model parameters in between training iterations. 
Multiple communication patterns are used to implement the all-reduce 
update operation, such as Parameter Server [32] and Ring All-Reduce 
[48].

This paper focuses on the more popular data parallelism, and the 
placement of worker instances in the DDL cluster. The proposed ap-

proaches can adapt to different all-reduce implementations.

2.2. Resource sharing strategies

A DDL cluster hosting DL jobs is a typical multi-job distributed sys-

tem. Jobs placed on the same server share physical resources, such 
as GPU, CPU, caches, disk I/O, network I/O, etc. DL job users spec-

ify resource requirements, e.g., the numbers and types of resources 
required during job submission. A cluster scheduler, e.g., Mesos [21], 
Yarn [43], and Kubernetes [4], is in charge of managing resources and 
placing workers of jobs. Most existing works [24] [26] formulate the job 
placement problem in the DDL cluster considering some of the most im-

portant types of resource, such as GPU and CPU, for two reasons, (1) 
the problem complexity, and (2) the fact that GPU resource partition 
mechanism is not clear, or not fully supported. Most related works as-

sign resources to DL jobs in a coarse-grain fashion that the scheduler 
focuses on the number of workers to be launched and their locations.

Optimus [37] is an online scheduler for DL training jobs that adjusts 
job placement based on real-time training progress. By allocating bet-

ter resources for jobs in their early training stage, Optimus shortens the 
completion time of these jobs. This is implemented by dynamic adjust-

ment of the numbers of workers in runtime. TetriSched [42] dynamically 
allocates resources and supports specified job deadlines. Tiresias [17], 
is another DL job scheduler adjusting resource allocation online based 
3

on running status. It performs well when the remaining training time of 
jobs is hard to estimate. It is quite important for exploratory jobs, such 
as hyper-parameter tuning jobs.

With the development of a large shared DDL cluster, recent related 
works started to focus on interference issues caused by co-located train-

ing jobs [24,29]. Xiao et al. observed performance drops caused by GPU 
memory oversharing in [47], and proposed a scheduling framework 
called Gandiva to enable time-share GPUs to avoid the oversharing 
issue. However, switching contexts between training jobs on a GPU 
device or migrating training jobs between GPUs can be very expen-

sive. Harmony [2] is a deep learning-driven DDL cluster scheduler that 
places training jobs in a manner that minimizes interference and maxi-

mizes performance. The black-box approach uses deep reinforcement 
learning (DRL) to predict job interference, and make job placement 
decisions. Jeon et al. made a comprehensive analysis of Shared GPU 
clusters and studied the correlations between worker locality and inter-

ference to mitigate inter-job interference. These approaches either avoid 
or ignore the GPU RAM overload issue, which is the main reason for in-

terference. To the best of our knowledge, our work is the first study 
to explore a model-based approach to address the GPU RAM overload 
issue that leads to interference among co-located training jobs.

2.3. Load balance

Load balance is a classic issue in the distributed system. DDL clus-

ters also face this issue when hosting DL jobs. This is usually caused by 
the unbalanced load-to-resource ratio among workers and fluctuated re-

source availability. Load balance issues in asynchronous DL jobs may 
cause inaccurate results and eventually affect the model convergence. 
In synchronous DL jobs can cause long synchronization time, increase 
job completion time, and reduce job throughput and resource utiliza-

tion.

There are both coarse-grain and fine-grain methods to solve the load 
balance problem. Chen et al. adjust parameter distribution among PS 
workers and dynamically scale in and out parameter servers to mitigate 
straggler issues [8]. Chen et al. [5] proposed an integrated worker co-

ordination mechanism that adapts worker load at the synchronization 
barriers in between training iterations. They proposed weighted gra-

dient aggregation to ensure the model training process still converges 
correctly even with inconsistent batch size.

Another important mechanism to deal with the online workload 
and resource availability fluctuations is job migration. The fundamental 
checkpoint/restore operations for DL jobs are supported by a few frame-

works [1,24,45]. For example, TensorFlow [1] provides user-level saver

to preserve and resume the training progress and data for a DL job. 
These operations can be triggered in between iterations and are not 
transparent to users.

2.4. Job placement model

The job placement problem in distributed systems is a classic issue. 
They are usually modeled as the Bin Packing Problem (BPP), a special 
case of 0-1 integer linear programming. In the classic Bin Packing Prob-

lem (BP), the goal is to pack a list of given items into a minimal number 
of bins, satisfying resource constraints, such as item dimensions. For the 
general BPP, please refer to surveys [9,10].

If we consider the GPU resources requirements of a DL job as the 
first dimension of the bin packing problem, and the GPU memory re-

quirement as the second dimension, the problem we are facing is closely 
related to the two-dimensional Vector Bin Packing problem (2D VBP) 
[9]. 2D VBP problem is strongly NP-hard. All the heuristics for the ge-

ometric packing problem, such as Next-Fit Decreasing Height (NFDH), 
First-Fit Decreasing Height (FFDH), and Best-Fit Decreasing Height (BFDH), 
can be used as a reference to solve 2D VBP. These algorithms sort items 
according to their sizes, representing the packing difficulty. They differ 
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Table 2

Notations.

Description

𝑉 Set of n queued jobs, 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}}.
𝐵 Set of 𝑚 devices, 𝐵 = {𝑏𝑘|𝑘 ∈ {1, ..,𝑚}}.
𝑣𝑖𝑗 A worker of job 𝑣𝑖, where 𝑣𝑖 = {𝑣𝑖𝑗 |𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1, ..,𝜔𝑖}}.
𝜔𝑖 Number of workers of job 𝑣𝑖.

𝛼𝑖 Computing resource requirement of workers of job 𝑣𝑖.

𝛽𝑖 Memory resource requirement of workers of job 𝑣𝑖.

Φ Job Placement Configuration, Φ= {𝜙𝑖|𝑖 ∈ {1, .., 𝑛}}.
𝛾𝑖 Basic memory requirement of job 𝑣𝑖.

𝛿𝑖 Variable memory requirement of job 𝑣𝑖.

𝑝𝑖 Memory usage volatility probability of job 𝑣𝑖.

𝜃𝑖 Interference of job 𝑣𝑖.

𝜃𝑘 Interference of a device 𝑏𝑘.

�̄� User-defined upper bound of interference.

𝜃′ Difference upper bound of interference.

𝜏𝑘 Collision probability among jobs on device 𝑏𝑘 ∈𝐵.

𝜏 User-defined upper bound of collision probability.

𝑐𝑖 Migration cost of job 𝑣𝑖.

𝑐 User-defined upper bound of migration cost.

in the ways of choosing a bin for an item to be put in. For details of 
these heuristics, please refer to survey [33].

3. Problem formulation

3.1. Resource allocation

We consider a typical application scenario for distributed model 
training. Multiple DL training jobs are queued in a shared distributed 
cluster of GPU servers. Each DL job has various resource requirements 
[2]. GPU resource is the most important for a DL training job. There-

fore, we simplify the resource requirement of a DL job into two main 
aspects that affect the training performance the most, namely comput-

ing resource (e.g., GPU) and memory resource (GPU memory). Each 
server in a DDL cluster can provide one or multiple GPU cards. GPU 
cards are the resource unit in our model.

The placement of jobs is essentially the placement of workers in the 
DDL cluster since they are the most resource-consuming part of a DL job 
and the smallest unit of scheduling. Let 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}} be a queue 
with 𝑛 DL training jobs, and job 𝑣𝑖 has 𝜔𝑖 workers, 𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ 1, .., 𝜔𝑖}.

Let (𝛼𝑖, 𝛽𝑖) be the resource requirements of job 𝑣𝑖, where 𝛼𝑖 and 𝛽𝑖
are the computing resource and memory resource requirements, respec-

tively. Note that workers of a job have identical resource requirements 
in a data-parallel scheme. Additionally, 𝐵 = {𝑏𝑘|𝑘 ∈ {1, ..,𝑚}} represents 
𝑚 candidate devices (e.g., GPU cards) to host DL jobs. Table 2 summa-

rizes important notation.

Definition 1 (Job Placement Configuration, JPC). Given a set of 𝑛 deep 
learning training jobs 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}}, job 𝑣𝑖 has 𝜔𝑖 workers 𝑣𝑖 =
{𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}} with identical resource requirement (𝛼𝑖, 𝛽𝑖), and a set 
of 𝑚 GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ {1, .., 𝑚}}, a JPC Φ is a set of 𝑛 mappings 
from workers to devices as 𝜙𝑖(𝑣𝑖 → 𝐵).

When we assign a worker 𝑣𝑖𝑗 to a device 𝑏𝑗 , 𝑣𝑖𝑗 allocates a portion 
of resource from 𝑏𝑗 . Without loss of generality, we normalize the de-

vice capacity to 1 and set 𝛼𝑖 ∈ (0, 1], 𝛽𝑖 ∈ (0, 1]. We seek a valid JPC that 
satisfies basic resource allocation principles that the total resource as-

signed to all workers on device 𝑏𝑘 do not exceed the capacity of its total 
resources, ∑

𝜙𝑖(𝑣𝑖𝑗 )=𝑏𝑘

𝛼𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔𝑖}, 𝑘 ∈ {𝑖, ...,𝑚},
(1)

∑
𝜙𝑖(𝑣𝑖𝑗 )=𝑏𝑘

𝛽𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔 }, 𝑘 ∈ {𝑖, ...,𝑚}.
(2)
𝑖

4

Fig. 2. Time-varying memory usage of a worker of ResNet training job.

3.2. Opportunistic memory sharing

DL training process is iterative, and we observe workers of DL jobs 
trained on the device have time-varying memory usage. Each training 
iteration causes a memory usage peak. Gaps between iterations leave 
memory idle. The GPU memory usage of a worker usually fluctuates and 
follows a cyclic pattern [47]. As exampled in Fig. 2, the memory usage 
of a worker of ResNet shows a clear cyclic pattern. However, current 
resource allocation models use fixed memory requirements which are 
not suitable for clearly time-varying memory usage. Moreover, using the 
minimum or maximum resource usage as a requirement would mean 
either under-allocation or over-allocation, respectively. It is not suitable 
to use average usage value either.

This issue becomes more serious when sharing a GPU among multi-

ple DL jobs. Even if the total memory occupied by all workers on the 
device is within the limit. Memory usage surges from one or more 
workers on the same device may cause GPU memory oversharing, and 
potentially slow down all co-located jobs.

We present a stochastic model to formulate the time-varying mem-

ory requirement of workers of training jobs. In this model, the memory 
requirement of workers of job 𝑣𝑖 consists of two parts, a basic sub-

requirement 𝛾𝑖, which represents the average memory usage of work-

ers of job 𝑣𝑖, and a variable sub-requirement 𝛿𝑖, which occurs with a 
probability 𝑝𝑖. We therefore replace the 𝛽𝑖 in formulation (2) with tu-

ple 𝛽′
𝑖
=< 𝛾𝑖, 𝛿𝑖, 𝑝𝑖 >. Take the worker in Fig. 2 for example, we model 

the memory requirement as < 𝛾𝑖, 𝛿𝑖, 𝑝𝑖 >=< 0.3, 0.62, 0.2 >. It means the 
worker requests 30% and 92% of the total capacity of a device with a 
probability of 0.8 and 0.2, respectively.

According to the time-varying memory requirement model, we mod-

ify the memory allocation constraint (2) as∑
𝜙𝑖(𝑣𝑖𝑗 )=𝑏𝑘

𝛾𝑖 + max
𝜙𝑖(𝑣𝑖𝑗 )=𝑏𝑘

𝛿𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔𝑖}, 𝑘 ∈ {𝑖, ...,𝑚}.
(3)

The stochastic memory sharing model benefits the DDL scheduler 
with more opportunities to share multiple jobs on one device. This 
would dramatically increase the resource utilization of a DDL cluster. 
However, there is also a risk that workers of multiple jobs would use the 
variable part of their resource requirements at the same time, and pos-

sibly lead to memory usage collisions [50]. This will significantly drag 
down the training performance of the affected jobs. Let 𝐷𝑘 be the set of 
workers with time-varying memory requirements on device 𝑏𝑘, 𝑋𝑖 indi-

cates whether the variable sub-requirement of workers of job 𝑣𝑖 occurs, 
i.e., 𝑃𝑟[𝑋𝑖 = 1] = 𝑝𝑖. Then, the collision probability of memory on 𝐷𝑘 is 
denoted by 𝜏𝑗 :

𝜏𝑘(𝐷𝑘) = 𝜏

[ ∑
𝑣𝑖𝑗∈𝐷𝑘

𝑋𝑖 > 1
]
= 1 −

∏
𝑣𝑖𝑗∈𝐷𝑘

(1 − 𝑝𝑖)

−
∑

𝑣 ∈𝐷

(
𝑝𝑖

∏
𝑣 ∈𝐷 ,𝑣 ≠𝑣

(1 − 𝑝𝑠)
)
.

(4)
𝑖𝑗 𝑘 𝑠𝑔 𝑘 𝑠𝑔 𝑖𝑗
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Fig. 3. Examples of DL training job interference.

In order to guarantee training performance, we introduce a user-

defined collision probability threshold 𝜏 to manage the risk of memory 
oversharing when sharing a GPU device among DL jobs,

𝜏(𝐷𝑘) ⩽ 𝜏, ∀𝑏𝑘 ∈ 𝐵. (5)

3.3. Interference among co-located training jobs

Interference is defined as performance degradation when sharing 
resources among workers of training jobs, compared to standalone exe-

cution. Memory oversharing is one of the main causes of interference. 
However, co-located workers experience different levels of interference 
[40], even without memory oversharing. We have tested workers of 
different DL training jobs with different combinations, and recorded 
various levels of interference, as shown in Fig. 3.

Moreover, the interference effects on co-located workers are not nec-

essarily equal. For example, when a ResNet worker shares a GPU card 
with a VGG19 worker, the ResNet worker would experience a 122% 
slowdown in completion time, compared to when using a GPU device 
alone, while the VGG19 worker would be less affected and perform 
18.7% slower than a standalone execution.

Let 𝑡𝑖 be the standalone completion time for workers of job 𝑣𝑖, 𝑡′𝑖 the 
influenced co-located completion time, we use the slowdown percent-

age 𝜃𝑘 to represent the interference on a GPU device,

𝜃𝑘 ∶= max
𝜙(𝑣𝑖𝑗 )=𝑏𝑘

{
𝑡′
𝑖
− 𝑡𝑖

𝑡𝑖

}
. (6)

The interference among co-located workers of jobs can be obtained 
by testing ahead of time as discussed earlier. However, this method 
is best suited for scenarios with only a few types of DL training jobs 
submitted and limited combinations. As the scale of job submissions in-

creases, the number of possible combinations becomes infinite and it 
becomes impractical to obtain interference predictions through testing. 
To overcome this challenge, we introduce an adaptive interference pre-

diction algorithm (AIP) [31], which is discussed in detail in Section 4.5.

Interference among co-located workers can be predicted ahead of 
time by testing, as discussed earlier. However, this method is best 
suited for scenarios with only a few types of DL training jobs submit-

ted and limited combinations. As the scale of job submissions increases, 
the number of possible combinations becomes infinite and it becomes 
impractical to obtain interference predictions through testing. To over-

come this challenge, we introduce an adaptive interference prediction 
algorithm (AIP), which is discussed in detail in Section 4.

To keep the interference on a device below a certain level, we set 
a pre-defined upper bound of interference as a constraint when placing 
multiple workers onto a device 𝑏𝑘 as

max
𝑏𝑘∈𝐵

{𝜃𝑘} ⩽ �̄�. (7)

Moreover, for multiple workers of a single job, we must also consider 
the challenge of balancing worker performance. Significant different 
training speeds of different workers in a job would jeopardize the over-
5

all job performance. Unbalanced workers, especially stragglers, would 
slow down training speed for jobs using synchronous parameter update 
scheme [3,30]. With an asynchronous scheme, [51], unbalanced work-

ers would cause model state inconsistency that puts training accuracy 
at risk. Thus, in addition to limiting maximum worker interference, we 
also limit performance discrepancies between workers in the same job 
to ensure optimal training outcomes. To leave the option open for users 
when they can tolerate some level of interference (e.g. asynchronous 
model updates in data-parallel DL jobs), we use another constraint 
as

max(𝑣𝑖) − min(𝑣𝑖) ⩽ 𝜃′, ∀𝑣𝑖 ∈ 𝑉 . (8)

Here, we use max(𝑣𝑖) and min(𝑣𝑖) to represent the maximum and 
minimum interference among all workers of job 𝑣𝑖.

3.4. Job placement problem with opportunistic sharing

The opportunistic memory sharing model describes the time-varying 
memory usage of a GPU device shared by multiple DL training jobs. It 
helps us to control the risk of sharing GPU devices among DL jobs. More 
importantly, it provides opportunities in pursuit of the high device and 
system utilization, while still maintaining a certain level of performance 
guarantee. We introduce a novel DL training job placement problem 
based on the opportunistic memory sharing models and job interference 
matrix.

Definition 2 (Opportunistic Job Placement Problem, OJPP). Given a set of 
𝑛 deep learning training jobs 𝑉 = {𝑣𝑖|{𝑖 ∈ {1, .., 𝑛}}, job 𝑣𝑖 has 𝜔𝑖 workers

(𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}}) with identical resource requirement (𝛼𝑖, 𝛽𝑖), and 
a set of 𝑚 GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ {1, .., 𝑚}}, find a valid JPC (Φ) that 
uses a minimum number of devices.

𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚∑
𝑘=1

𝑥𝑘 (9)

subject to:

𝑚∑
𝑘=1

𝑧𝑖𝑗𝑘 = 1, 𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1, ..,𝜔𝑖} (10)

𝑛∑
𝑖=1

𝜔𝑖∑
𝑗=1

𝛼𝑖𝑧𝑖𝑗𝑘 ≤ 1, 𝑘 ∈ {1, ..,𝑚} (11)

∑
𝜙𝑖(𝑣𝑖𝑗 )

𝛾𝑖𝑧𝑖𝑗𝑘 + max
𝜙𝑖(𝑣𝑖𝑗 )

𝛿𝑖𝑧𝑖𝑗𝑘 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1...,𝜔𝑖}, 𝑘 ∈ {1, ..,𝑚}
(12)

𝜏(𝐷𝑘) ⩽ 𝜏, 𝑘 ∈ {1, ..,𝑚} (13)

max
𝑏𝑘∈𝐵

{𝜃𝑘} ⩽ �̄�, 𝑘 ∈ {1, ..,𝑚} (14)

max(𝑣𝑖) − min(𝑣𝑖) ⩽ 𝜃′, 𝑖 ∈ {1, ..., 𝑛} (15)

𝑥𝑘 = 0∕1, 𝑘 ∈ {1, ..,𝑚} (16)

𝑧𝑖𝑗𝑘 = 0∕1, 𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1...,𝜔𝑖}, 𝑘 ∈ {1, ..,𝑚} (17)

The decision variable 𝑧𝑖𝑗𝑘 = 1 when worker 𝑣𝑖𝑗 is placed onto device 
𝑏𝑘. Binary variable 𝑥𝑘 represents the usage of a device. 𝑥𝑘 = 1 indicates 
that there is at least one worker of job placed on device 𝑏𝑗 . The objective 
function seeks to minimize the number of the occupied device while 
satisfying the collision probability and interference constraints. Note 
that we focus on computing resource requirements and do not consider 
communication cost between workers in this paper. We will take into 
account the communication issues in future work.

3.5. Online job placement problem adjustment with opportunistic sharing

When the real-time interference to a DL job exceeds the predefined 
threshold, as Eq. (7), we cannot guarantee training performance any-
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more. In this case, it is necessary to adjust JPC and rearrange resource 
allocations.

Frequent adjustments of JPC may cause high system overhead, such 
as migration cost and worker synchronization cost. According to the 
observation of hardware configuration, some “violations”(i.e., interfer-

ence exceeds the pre-defined upper bound) are instantaneous and then 
back to the normal level due to the abnormal use of some resources 
(e.g., startup of jobs). Thus, we wish to use Exponentially Weighted Av-

erage (EWMA) [23] to capture the continuously “violations” in order to 
avoid overreactions to accidental fluctuations.

Let 𝑎 ∈ [0, 1] be a coefficient and 𝜃𝑘,𝑡 be the observed interference on 
𝑏𝑘 at a moment, the exponentially weighted average of interference is

𝜃′
𝑘,𝑡

= 𝑎 𝜃′
𝑘,𝑡−1 + (1 − 𝑎) 𝜃𝑘,𝑡. (18)

The EWMA of interference 𝜃′
𝑘,𝑡

can be used as a trigger to perform 
JPC adjustment and calculate adjustment plans. Another important is-
sue we need to consider is the migration cost.

A few DDL frameworks provide job migration mechanisms, such as 
checkpoint/restore operations for DL jobs [1,24,45]. For example, Ten-

sorFlow [1] provides user-level saver API to preserve and resume the 
training progress and data for a DL job. These operations can be trig-

gered in between iterations but are not transparent to users. Besides 
the fact the checkpoint/restore functions are user-level, both operations 
introduce noticeable overhead, depending on the size of model param-

eters. Since the parameter size of a model does not change in runtime, 
the migration cost of a worker of a job is relatively stable, and it can be 
estimated offline. We assume for workers of job 𝑣𝑖, the migration cost 𝑐𝑖
is estimated beforehand.

We add another constraint to the online adjustment problem to con-

trol the overall system overhead caused by job migrations as follows,

∑
𝑐𝑖 ⩽ 𝑐. (19)

Besides controlling individual job interference to guarantee user-

defined training performance, the proposed online adjustment problem 
also seeks load-balanced JPC to avoid frequent adjustments.

Definition 3 (Online Opportunistic Job Placement Adjustment Problem, OJ-

PAP). Given a set of 𝑛 deep learning training jobs 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}}, 
job 𝑣𝑖 has 𝜔𝑖 workers (𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}}) with resource requirement 
(𝛼𝑖, 𝛽𝑖), a set of available GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ 1, ..,𝑚}, and a JPC Φ, 
find a valid JPC (Φ′) that causes the least device-level interference.

4. Opportunistic job placement algorithms

4.1. Overall discussion

The proposed job placement problems are closely related to the 2D-

VBP problem. Besides GPU resource and GPU memory constraints as 
two dimensions in the 2D-VBP problem, the solution to the proposed 
problems also needs to satisfy both collision probability and interfer-

ence thresholds, and try to balance the interference between workers of 
the same job. As exampled in Fig. 4, Case I and II are both valid JPCs, 
from the resource stand of point, Case I is the better one. However, 
more training jobs suffer from severe performance slowdown in Case I 
than in Case II. Therefore, Case II is a better solution for OJPP.

The proposed memory sharing model provides more opportunities 
to pack multiple workers on a device, and improve device utilization, 
but also introduces new risks of memory oversharing and interference 
that affects training performance. The main objective of our approach 
is to seek a JPC that satisfies the collision probability, interference 
constraint, and balance constraints to guarantee training performance, 
using as few devices as possible.

In this section, we first propose a best-fit-based greedy algorithm for 
OJPP. It is an efficient algorithm that we can use as a baseline. Then we 
6

Fig. 4. Example of the different job placement configurations.

Algorithm 1 𝐺𝑟𝑒𝑒𝑑𝑦 (𝑉 , 𝐵, �̄�, ̄𝜏, 𝜃′).
Input: Job set 𝑉 , device set 𝐵, collision probability 𝜏, and interference bounds �̄� and 𝜃′
Output: JPC Φ
1: sort jobs 𝑉 according to the resource requirements of their workers in descending 

order, and put jobs into a queue;

2: while there is job remaining in queue; do

3: take the front job;

4: 𝜙 = 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑖, 𝐵, ̄𝜃, ̄𝜏, 𝜃′)
5: add 𝜙 into Φ;

6: remove 𝑣𝑖 from job queue;

7: end while

8: return Φ

propose a comprehensive heuristic algorithm considering all constraints 
to solve the problem.

4.2. Greedy algorithm

We propose a greedy algorithm based on the classic BPP algorithm 
Best-fit Decreasing (BFD). In Algorithm 1, the algorithm sorts jobs in 
descending order according to the computing resource requirements 
of their workers. Then, it takes the first job from the queue and calls 
the function Placement to place this job. Function Placement returns the 
placement configuration of workers of job 𝑣𝑖. The algorithm ends un-

til there are no jobs in the queue, and returns the overall JPC Φ (steps 
2-8). This greedy algorithm ensures user-defined thresholds to guaran-

tee training performance. As traditional best-fit algorithms, the greedy 
algorithm has a time complexity of 𝑂(𝑚𝑛).

The function Placement as shown in Algorithm 2 handles worker

placement for a job. The first question Placement needs to answer is 
whether all workers of job 𝑣𝑖 can be placed within active devices (lines 
1- 3). If not, a flag is set to False, permitting the use of new bins.

The function tries to allocate resources for worker 𝑣𝑖𝑗 on active de-

vices. It checks all the constraints (lines 5 - 6), including the available 
resources (Eq. (11)), (Eq. (12)), the maximum slowdown ratio on de-

vice 𝑏𝑘 (Eq. (13)), the collision probability of jobs co-located on 𝑏𝑘
(Eq. (14)), and the difference between the maximum and minimum in-

terference of workers of job 𝑣𝑖 (Eq. (15)). Otherwise, Placement tries to 
finish worker placement with both active and inactive devices (line 17). 
Finally, Placement returns the placement of all workers of job 𝑣𝑖.

4.3. Heuristic algorithm

A worker of a DL training job occupies a basic memory space to store 
the model and data at the beginning after execution. Then subsequent 
operations, including calculating intermediate variables and passing pa-

rameters, will cause the memory usage to change regularly during the 
training process. We consider the varying memory requirement Eq. (3)

according to condition Eq. (12).

As observed in our experiments, memory oversharing among co-

located jobs significantly affects the execution time of each DL training 
job. The proposed heuristic seeks to reduce the collision probability of 
co-located jobs, in order to reduce memory oversharing.

Let 𝜏(𝑖, 𝑞) be the collision probability of workers of job 𝑣𝑖 and job 𝑣𝑞 , 
should they be assigned to the same device. We define the gregariousness
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Algorithm 2 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑣, 𝐵, �̄�, 𝜃′, ̄𝜏).
Input: Job 𝑣, device set 𝐵, collision probability bound 𝜏, and interference bounds �̄� and 

𝜃′

Output: 𝜙 Placement of workers of job 𝑣𝑖
1: Flag = True, 𝜙 =𝑁𝑢𝑙𝑙

2: loop: { *label for jumping* }
3: while 𝜙 is Null do

4: for all workers of job 𝑣𝑖 do

5: for all active 𝑏 ∈𝐵 do

6: find device 𝑏 that satisfies the following:

(𝛼𝑖 , 𝛽𝑖) ≥ R && 𝜏(𝐷𝑘) ⩽ 𝜏 &&

potential 𝜃𝑘 is the lowest among active devices &&

𝜃𝑘 ≤ �̄� && max(𝑣𝑖) - min(𝑣𝑖) ⩽ 𝜃′ &&

place worker 𝑣𝑖𝑗 on device 𝑏𝑘 does not break the balance of other workers on 
𝑏𝑘 ;

7: if Flag == True then {*only use active devices*}

8: if 𝑏 is not found then

9: Flag = False

10: 𝜙 =𝑁𝑢𝑙𝑙 {*reset the mapping*}
11: min(𝑣𝑖) = 0
12: goto loop;

13: end if

14: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

15: else {*active devices combined with new devices*}

16: if 𝑏 is not found then

17: open a new bin 𝑏′ , add 𝑏′ into 𝐵;

18: end if

19: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

20: end if

21: end for

22: end for

23: end while

24: return 𝜙

of a job 𝑣𝑖 in a group 𝑉 as

𝜏(𝑖, 𝑉 ) = max
𝑣𝑞∈𝑉

{𝜏(𝑖, 𝑞)}. (20)

The fitness of a job indicates its potential correlations to the other 
jobs in a group. In Algorithm 3, we first sort the job queue accord-

ing to 𝜏(𝑖, 𝑉 ) in ascending order. The first job in order would be the 
most easygoing one, it has the least potential to affect the other jobs. 
This gives the other queuing jobs more opportunities to be assigned 
in an active device, instead of a vacant one. Then 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 performs 
the same steps as 𝐺𝑟𝑒𝑒𝑑𝑦 to place workers of this job. In each round, 
the queue is changed and therefore requires an update. Adding an ex-

tra sorting procedure with a computational complexity of 𝑂(𝑛 log𝑛), the 
computational complexity of this heuristic is 𝑂(𝑛2 log𝑛).

Algorithm 3 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑉 , 𝐵, �̄�, ̄𝜏, 𝜏(𝑖, 𝑉 ), 𝜃′).
Input: Job set 𝑉 , device set 𝐵, collision probability 𝜏, gregariousness 𝜏(𝑖, 𝑉 )(𝑖 ∈ {1, .., 𝑛}), 

interference bounds �̄� and 𝜃′
Output: JPC Φ
1: sort job queue according to the resource requirements in descending order;

2: while there is job remaining in queue; do

3: take the front job;

4: sort job queue according to collision potential 𝜏(𝑖, 𝑉 ) in ascending order;

5: 𝜙 = 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑖, 𝐵, ̄𝜃, ̄𝜏, 𝜃′)
6: add 𝜙 into Φ;

7: remove 𝑣𝑖 from job queue;

8: end while

9: return Φ

4.4. Online job placement adjustment

Interference among co-located workers of jobs fluctuates over time. 
On one hand, the iterative nature of DL jobs makes the resource usages 
change in the runtime. The initial interference may not be accurate 
all the time. On the other hand, resource availability of a DDL cluster 
changes dynamically, caused by completed jobs leaving the system and 
the arrival of new jobs. Therefore, an online adjustment mechanism is 
7

needed to rearrange JPC. The OJPAP problem seeks to adjust job place-

ment configuration and balance interference among devices. Besides all 
the constraints in OJPP, OJPAP adds another one to keep the migration 
cost within control as Eq. (19).

First, we keep two device queues for the adjustment process. The 
first queue, named priority queue, keeps devices in descending order 
according to their interference 𝜃𝑘 (Eq. (6)). Devices suffering from the 
most severe performance degradation will have the highest priority in 
the adjustment process. The second queue, named resource queue, keeps 
devices in descending order of available resources.

Then we pick a worker of job 𝑣𝑖 on the first device in priority queue

with the least migration cost among co-located jobs. Then, we try to 
place this worker onto a new device, in order from resource queue. Fi-

nally, we update JPC if such a migration plan can be found.

All the constraints, including resource requirements, interference, 
collision probability, and balance between workers of job and migration 
cost should be satisfied for an updated JPC.

The process finishes when the first half of devices in priority queue

get rearranged. The algorithm with computational complexities of 
𝑂(𝑛 log𝑛).

Algorithm 4 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 (𝑉 , 𝐵, �̄�, ̄𝜏, ̄𝑐, 𝜃′, 𝑐𝑚
𝑖
, Φ).

Input: Job set 𝑉 , device set 𝐵, constraints 𝜏, �̄�, 𝜃′ , 𝑐, migration cost for jobs 𝑐𝑖 , and 
original JPC Φ

Output: JPC Φ′

1: sort devices 𝐵 according to their interference in descending order, and put the first 
half of the devices into priority queue;

2: sort devices 𝐵 according to their available resource in descending order, and put 
them into resource queue;

3: Φ′ = Φ;

4: while there has devices remaining in priority queue; do

5: take the worker 𝑣𝑖𝑗 with least 𝑐𝑖 in the front device and remove the device from 
priority queue;

6: if 𝑐𝑖 > 𝑐 then

7: continue;

8: end if

9: for all 𝑏 ∈ resource queue do

10: find device 𝑏 that satisfies the following:

(𝛼𝑖 , 𝛽𝑖) ≥ R && 𝜏(𝐷𝑘) ⩽ 𝜏 &&

potential 𝜃𝑗 is the lowest among active devices &&

𝜃𝑘 ≤ �̄� && max(𝑣𝑖)-min(𝑣𝑖) ⩽ 𝜃′ &&

place worker 𝑣𝑖𝑗 on device 𝑏𝑗 does not break the balance of other workers on 𝑏𝑘 ;

11: end for

12: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

13: add 𝜙 into Φ′ ;

14: Update priority and resource queue;

15: end while

16: return Φ′

4.5. Interference analysis and prediction

To compute efficient job placement configurations, we need to ob-

tain good perspectives of the potential interference among co-located 
𝑤𝑜𝑟𝑘𝑒𝑟𝑠. The interference is mainly caused by resource competition of 
shared resources, such as CPU caches, disk I/O, network I/O, and buses 
(e.g., QPI, PCIe) [2,40], and the interference level closely depends on 
the job types as well as the underlying system parameters.

We apply an adaptive interference prediction algorithm AIP [31] to 
prepare accurate interference estimations. AIP is our previous work, and 
it is a machine-learning-based interference prediction method. Given a 
set of jobs, AIP firstly collects the system configurations (GPU info, main 
memory, disk I/O, network I/O) as input, then chooses proper predic-

tion technology by going over a set of methods (Linear Regression [36], 
SVR [44], Decision Tree Regression [34] and K-Neighbors [18]) to pre-

dict interference. The mean absolute error between the real interference 
and the predicted interference is taken as the metric to evaluate each 
method. Extensive experiments show that the average error of interfer-

ence prediction of AIP is under 7% [31].
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Table 3

Testing deep learning models and datasets.

DATA CIFAR10 [20], MNIST [46]

DL Network LeNet [28] , ResNet [19], VGG [39],

AlexNet [27], LSTM [22], CNN

Table 4

Comparing approaches.

Algorithm Description

Best-fit Best-fit strategy.

I-Greedy Greedy algorithm with interference constraint.

B-Greedy Greedy algorithm with balance constraint.

C-Greedy Greedy algorithm with collision constraint.

OJPP Heuristic with opportunistic job placement.

OJPAP Online adjust with opportunistic job placement.

5. Evaluations

5.1. Evaluation methodology

Training Model Setting. We generate workloads from six repre-

sentative DL networks which are trained by two image datasets. The 
models and datasets we used are listed in Table 3.

Collision Probability Calculation. We set up a TensorFlow [1] sys-

tem to test and collect data for formulating collision probabilities. First, 
the stand-alone execution time is obtained when each job uses a GPU 
(NVIDIA Tesla P40 with 24 GB memory) exclusively. In this process, 
we randomly choose 100 sampling points to gather memory usage and 
performance info of a job. These data are used to calculate collision 
probability as Eq. (4) for candidate training jobs and as the input pa-

rameter for our algorithms.

Interference Constraint. We use the TensorFlow system to gather 
interference data for different training jobs. We have tested 6 types of 
training jobs and put the data into an interference matrix, as shown in 
Fig. 3. Moreover, we also use AIP [31] to predict the interference. The 
collision probability and interference thresholds are user-defined to suit 
different application scenarios. We will discuss some options later.

Job Migration Mechanism. We use the TensorFlow framework to 
collect the migration cost of different training jobs. The checkpoint and 
resume operations are implemented with user-level interface saver. The 
data collected are used as an input value in the scheduling algorithm. 
Dynamic JPC adjustment process is triggered by users in runtime, which 
leaves room to explore more comprehensive migration triggering strate-

gies.

5.2. Experimental settings

To evaluate the effectiveness of the placement and adjustment al-

gorithm proposed by us, we simulate the environment of the cluster 
system. The capacity of each GPU is 11 GB (according to ASUS TURBO-

GTX1080Ti GPUs), and for the jobs submitted to the simulated cluster, 
we use the info collected from real-world measurements.

Workloads. We generate four workload queues, each with 20 DL 
training jobs, and each job has 1-10 workers. In addition, we set the 
constraint parameters as (𝜏, �̄�, 𝜃′) = (0.1, 0.2, 0.1). Detailed informa-

tion about the DL jobs is listed in Table 3. The workloads are divided 
into three types: (a) Mixed workload that 50% jobs either have high 
collision potential or high interference potential; (b) C-high workload 
that jobs have high collision potential (e.g., ResNet); (c) I-high that jobs 
have high interference potential (e.g., LeNet) (d) Average workload that 
jobs have neither high collision potential nor high interference poten-

tial).

Baseline. As listed in Table 4, we compare the proposed two oppor-

tunistic algorithms with the following approaches,
8

Fig. 5. Performance degradation.

Fig. 6. Performance improvement.

• Best-fit strategy. Traditional Best-fit two-dimensional bin packing 
algorithm as a baseline.

• I-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering interference constraint.

• B-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering balance constraint between workers of job.

• C-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering collision probability constraint.

5.3. Results and analysis

5.3.1. Static placement

Job completion time Job completion time is the most important metric 
for user experience and service quality. We have tested all four dif-

ferent workloads with five job placement strategies. In all cases, the 
average co-located job completion time is longer than those of stand-

alone execution. Compared to the job completion time stand-alone, the 
performance degradation and performance improvement are shown in 
Fig. 5 and Fig. 6.

The strategy that performs the worst is the traditional Best-fit algo-

rithm, which causes a 54.39% slowdown in execution time on average. 
Compared to the baseline, I-Greedy, B-Greedy, and C-Greedy introduce 
additional constraints to ensure performance quality and achieved a 
smaller average job completion time. The proposed heuristic algorithm 
performs the best, it ensures training performance with all four types 
of workloads. It has over 228.34% of improvements compared to the 
baseline on average.

We illustrate detailed data with six types of training jobs. Fig. 7

shows the performance degradation of each type of job in mixed work-

load. We could see that some algorithms performed poorly dealing with 
ResNet jobs. It is because ResNet jobs are susceptible to other training 
jobs. Only I-greedy and OJPP deal with ResNet jobs well due to their 
constraint for interference, which causes ResNet jobs to end up being 
placed on a device alone, and they do not have performance degrada-

tion. On the other hand, by using the C-greedy algorithm, all types of 
jobs except ResNet have a low-performance degradation. It indicates 
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Fig. 7. Different job performance degradation comparison.

Fig. 8. Resource consumption.

that the opportunistic memory sharing model proposed by us is effec-

tive. But because there is no interference constraint in C-greedy, which 
causes ResNet jobs co-located with other training jobs and suffer ter-

rible performance degradation. Here, we could see that all algorithms 
cannot handle LeNet and LSTM well except C-greedy and OJPP. This 
is because they are high memory collision jobs. The proposed heuristic 
sorts jobs according to their collision potential and takes all constraints 
into account. This greatly improved the job completion time. Note that 
B-greedy has little improvement compared to the baseline because it 
only uses the balance strategy and it results in workers of the same job 
being placed together regardless of interference and collision.

Number of bins This test illustrates the performance of the proposed al-

gorithms in terms of the number of devices consumed in Fig. 8. Among 
all five algorithms, the traditional Best-fit algorithm uses the least num-

ber of devices. This is because it tries to pack all the jobs together, 
without considering any constraints, which leads to poor execution 
performance, as mentioned earlier. On the other hand, the proposed al-

gorithms use 82.9% extra devices to improve 202.9% job performance 
in the mixed type of workload.

Influence of balance To verify the effectiveness of balance in the case of 
multi-workers jobs, we compare OJPP with OJPP without considering 
the balance between workers of jobs. Fig. 9 shows that the perfor-

mance degradation of these two strategies with the number of workers

of jobs changes. We could see as the number of workers of jobs in-

creases, OJPP without balance constraint performs worse and worse, 
while the performance of OJPP is relatively steady. It is because the 
cost of synchronization between workers of a job is expensive if ignor-

ing the balance constraint. As the number of workers of a job increases, 
the synchronization cost is getting higher. Here, to make results intu-

itive, we assume the communication between workers is synchronous. 
Even in asynchronous communication, a large gap between workers will 
also result in a loss of accuracy of the model.
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Fig. 9. Performance degradation comparison between OJPP and OJPP without 
balance constraint.

Fig. 10. Interference fluctuation.

5.3.2. Online adjustment

Dynamic change First, we tested the interference fluctuation in the run-

time with average workload. As shown in Fig. 10. During the first half 
part of the test, we observed interference fluctuation and a minor vi-

olation of the interference threshold �̄�. There is no adjustment at time 
𝑡2 due to the condition (EWMA of interference 𝜃′

𝑡𝑗
) of the trigger of the 

adjustment algorithm not being met. Then completed jobs kept leaving 
the system and new jobs are submitted to the cluster, we experienced 
some large interference raise. We performed an online adjustment al-

gorithm OJPAP at time 𝑡6 and brought the interference level back to 
healthy.

Benefits and costs The subfigure of Fig. 10 illustrates the detailed 
results of the adjustment algorithm. As shown, the proposed adjust-

ment algorithm significantly reduced the average interference level 
among jobs in the cluster. Compared with high performance degrada-

tion (122% at most), the migration cost is negligible (5%).

5.3.3. Interference prediction

This test is designed to verify the effectiveness of AIP [31] as an in-

terference prediction method. As mentioned in Section 5.1, we prepare 
two interference matrices, in Fig. 11, the first matrix records the inter-

ference between jobs in real-world cluster, and the anther interference 
matrix is predicted by AIP. The predicted matrix has an average 7% er-

ror. As shown in Fig. 11, we use these two matrices to complete the job 
placement independently, and compare the results. AIP works well with 
OJPP in that the predicted matrix only suffers from 7.8% performance 
drop on average, compared with ideal application setting which use the 
first matrix. The performance of other algorithms has a difference by 
using both matrices, while the difference is negligible, especially for 
OJPP.

5.3.4. Trade-off

The proposed job placement algorithms are controlled by three user-

defined parameters, which are collision probability 𝜏 and interference 
�̄� and 𝜃′. These parameters ensure user-defined service quality and 
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Table 5

Algorithm performance under different control parameters.

(𝜏, 𝜃′, �̄�) (0.05,0.1,0.1) (0.05,0.2,0.1) (0.05,0.4,0.1) (0.1,0.2,0.1) (0.1,0.2,0.2) (0.1,0.4,0.2)

Guaranteed Performance 99.96% 94.23% 84.37% 92.97% 87.96% 83.17%

Reduced Resource Consumption 17% 39% 57% 46% 52% 61%
Fig. 11. Performance degradation comparison among algorithms by using pre-

dicted and measured interference.

provide guaranteed performance. Changing the parameter settings will 
affect both job performance and resource utilization. We list six repre-

sentative parameter settings in Table 5. The corresponding guaranteed 
performance and reduced resource consumption are compared with jobs 
in the dedicated cluster which execute stand-alone. When we adjust the 
parameter constraint to make them larger, fewer resources are used 
and a lower performance is guaranteed (e.g., (𝜏, 𝜃′, �̄�) = (0.05, 0.1, 
0.1), 17% resources consumption is reduced and 99.96% performance 
is guaranteed, when we adjust the 𝜃′ to 0.2, 39% resources consumption 
is reduced and 94.23% performance is guaranteed). Thus, for different 
workloads and requirements, we need to adjust to find a proper set 
of parameters. Specifically, when we set the parameters to (𝜏, 𝜃′, �̄�) = 
(0.1, 0.4, 0.2), the heuristic uses 61% less resources but only guarantees 
83.17% of the training performance. This setting can be used to reserve 
resources. On the other hand, with (𝜏, 𝜃′, �̄�) = (0.05, 0.1, 0.1), the algo-

rithm achieves 99.96% training performance with less 17% resources. 
It is the most aggressive setting that is suitable for users seeking high 
performance. In this experimental setting, we think the most efficient 
and balanced setting would be (𝜏, 𝜃′, �̄�) = (0.1, 0.2, 0.1), the heuris-

tic maintains over 92.97% of the standalone performance and uses more 
than 46% less resources. Therefore, there is a trade-off between resource 
consumption and performance, users could set these parameters to meet 
their own requirements.

5.4. Application scenario

The proposed job placement algorithm OJPP can be used as a 
scheduling strategy for deep learning clusters. OJPP is capable of com-

puting job placement configurations with high device utilization while 
satisfying user-defined performance bounds (collision probability 𝜏 and 
interference �̄�). Our heuristic algorithm opportunistically puts multi-

ple jobs on one device to improve resource utilization and keep the 
risk of performance downgradation in control. In order to deal with 
online interference fluctuations, an OJPAP algorithm is proposed to 
rearrange job placement configurations. OJPAP can be performed pe-

riodically or triggered when the device interference level reaches a 
certain level.

6. Conclusions

This paper focuses on novel challenges for distributed deep learning 
clusters, especially shared GPU clusters. In this type of environment, 
training jobs share one GPU device to improve resource utilization. 
10
However, interference among these co-located jobs brings significant 
performance slowdowns. We first analyze the interference issue in 
shared GPU clusters and identify the main reason, GPU memory over-

sharing caused by training jobs’ fluctuating memory usage. We propose 
an opportunistic memory sharing model to formulate the time-varying 
memory usage for co-located jobs. With this model, we introduce an Op-

portunistic Job Placement Problem (OJPP) for distributed DL clusters. 
We seek opportunities to place jobs on shared GPU devices in pursuit 
of high device utilization while managing the risk of interference by 
supporting user-defined parameters. We propose a greedy algorithm 
and a heuristic algorithm with computational complexities of 𝑂(𝑛 log𝑛)
and 𝑂(𝑛2 log𝑛), respectively. Moreover, we propose an online adjust-

ment algorithm with computational complexities of 𝑂(𝑛 log𝑛) to update 
job placement configurations according to the same principle and con-

straints as OJPP. We conduct extensive experiments on a GPU cluster 
in the HPC Center of Jilin University to verify the correctness and the 
efficiency of our approach. Compared with standalone training jobs on 
dedicated clusters, the interference-aware opportunistic job placement 
approach reduces resource consumption by 46% in a shared cluster, 
while guaranteeing over 92.97% of the job performance, in terms of 
average job completion time. We also make suggestions on how to set 
user-defined parameters for different application scenarios to achieve 
better system efficiency.
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