
Journal of Parallel and Distributed Computing 183 (2024) 104776

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Interference-aware opportunistic job placement for shared distributed deep

learning clusters ✩

Hongliang Li a,b, Hairui Zhao a, Ting Sun a, Xiang Li a,∗, Haixiao Xu c, Keqin Li d

a College of Computer Science and Technology, Jilin University, Changchun, China
b Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Changchun, China
c High Performance Computing Center of Jilin University, Changchun, China
d Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Deep learning cluster

Interference

Online adjustment

Opportunistic sharing

Job placement

Distributed deep learning frameworks facilitate large deep learning workloads. These frameworks support
sharing one GPU device among multiple jobs to improve resource utilization. Modern deep learning training
jobs consume a large amount of GPU memory. Despite that, sharing GPU memory among jobs is still possible
because a training job has iterative steps that its memory usage fluctuates over time. However, resource sharing
also introduces the risk of job performance degradation. Co-located jobs sharing a GPU device may suffer from
different levels of interference, mainly caused by memory oversharing. How to improve resource utilization
while maintaining good job performance is a novel challenge for job placement strategies. This paper studies the
job placement problem. We propose an opportunistic memory sharing model to describe the time-varying job
memory requirements. Based on this model, we introduce an Opportunistic Job Placement Problem (OJPP)
for shared GPU clusters that seek job placement configurations using a minimum number of GPU devices
and guarantee user-defined performance requirements at the same time. We propose a greedy algorithm and
a heuristic algorithm with computational complexities of 𝑂(𝑛 log𝑛) and 𝑂(𝑛2 log𝑛), respectively, to solve the
problem. We also propose an online adjustment algorithm with the computational complexity of 𝑂(𝑛 log𝑛) to
perform updates to job placement configurations in runtime. A machine-learning-based interference prediction
method is used to prepare accurate interference estimations. Extensive experiments are conducted on a GPU
cluster to verify the correctness and effectiveness of our algorithms. Compared with standalone training jobs
on dedicated clusters, the proposed approach reduces resource consumption by 46% in a shared cluster, while
guaranteeing over 92.97% of the job performance, in terms of average job completion time.
1. Introduction

In recent years, rapidly developing artificial intelligence applica-

tions have sparked state-of-art Deep Learning (DL) technologies [19,13]

to solve novel big data analysis problems, such as machine transla-

tion [14,15], computer vision [19,6], speech recognition [41,35], etc.
In the meantime, deep learning networks keep developing, in terms of
both model complexity and dataset size. It has spurred a new wave of
Distributed Deep Learning (DDL) frameworks.

These frameworks are scalable in nature that they can efficiently
host large DL jobs on GPU clusters [38]. Examples of such frameworks

✩ A preliminary version of the paper was published in 2020 IEEE 22nd International Conference on High Performance Computing and Communications (HPCC
2020) [29].

* Corresponding author.

E-mail addresses: lihongliang@jlu.edu.cn (H. Li), zhaohr21@mails.jlu.edu.cn (H. Zhao), sunting18@mails.jlu.edu.cn (T. Sun), lxiang@jlu.edu.cn (X. Li),
haixiao@jlu.edu.cn (H. Xu), lik@newpaltz.edu (K. Li).

include TensorFlow [1], BigDL [11]. Large DDL training jobs are di-

vided into two main parallel schemes, namely data parallelism and model
parallelism [32,38]. The former divides large datasets into small subsets
as chunks and trains models in SIMD fashion to deal with large datasets,
while the latter splits a large model that is hard to host in one GPU de-

vice into subsets that are trained in MIMD fashion. These two schemes
can be mixed to solve more complicated applications.

In data parallelism scheme, DL job starts multiple model instances,
called workers. Each worker is fed a chunk of the dataset every iteration.
Workers periodically perform allreduce communication to update their
https://doi.org/10.1016/j.jpdc.2023.104776

Received 25 December 2022; Received in revised form 6 May 2023; Accepted 18 Se

Available online 25 September 2023

0743-7315/© 2023 Elsevier Inc. All rights reserved.
ptember 2023

https://doi.org/10.1016/j.jpdc.2023.104776
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104776&domain=pdf
mailto:lihongliang@jlu.edu.cn
mailto:zhaohr21@mails.jlu.edu.cn
mailto:sunting18@mails.jlu.edu.cn
mailto:lxiang@jlu.edu.cn
mailto:haixiao@jlu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2023.104776

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776

Table 1

Comparison of different distributed deep learning clusters.

System Tpe 1: Dedicated Cluster 2: Shared Cluster 3: Non-dedicated Cluster

Allocation exclusive shared uncertain

Utilization poor medium high

Availability high predictable or controlled unpredictable

Performance guaranteed partial guaranteed no guarantees
local parameters, using optimization algorithms, e.g., Stochastic Gra-

dient Descent (SGD) [12]. Such allreduce operations can be performed
with different communication patterns, e.g., with Parameter Server (PS)
[32] or Ring All-Reduce [1], both synchronously and asynchronously.
This paper focuses on data parallelism. It is widely applied in various ap-

plication scenarios and supported by both commodity and commercial
frameworks.

Deep learning algorithms are floating point computation intensive,
these workloads rely on hardware accelerators like GPUs to achieve
high training efficiency. In terms of how resources are shared and man-

aged, DDL clusters can be categorized into three types, as listed in
Table 1. (1) Dedicated cluster [16,25], that provides resources (mostly
GPU) for one DL job or one user group exclusively. While it guarantees
training performance and provides high resource availability at almost
all times, it suffers from poor resource utilization. (2) Shared cluster

[37,8], such as multi-tenant GPU clusters and GPU clouds, designed
specifically for deep learning jobs. These clusters usually have multi-

ple high-end GPU accelerators on a server to host multiple DL training
jobs at once. Such infrastructures provide better resource utilization
than dedicated clusters. The resource availability is usually predictable,
therefore it can guarantee training performance in some scenarios. (3)
Non-dedicated clusters [5], such as public clouds, usually host mixed
workloads with both GPU-heavy DL jobs and other traditional CPU-

heavy jobs. These clusters are designed in pursuit of high resource
utilization but usually cannot provide performance guarantees for DL
jobs. Overall, shared DDL clusters are able to achieve moderate re-

source utilization while providing decent training performance. It is
the most efficient and widely applied environment for DL jobs on the
market. However, it also introduces novel efficiency and performance
challenges [24,40].

DDL cluster schedulers allocate resources, mostly GPU devices, for
multiple DL jobs in a shared cluster, with the objectives of better re-

source utilization and higher job throughput than exclusive clusters.
However, studies show that the resource utilization of individual GPUs
can sometimes be quite poor, e.g., 52% on average in production sys-

tems [24]. This is mainly caused by the increased overhead brought
by synchronizations among distributed training workers, and it can get
even worse when jobs scale up. A straightforward solution is to pack
more workers on one GPU device. The reason is (1) to achieve better
worker locality and reduce synchronization cost, and (2) to improve
device utilization. While it improves the system efficiency, it also intro-

duces another significant problem.

It has been reported in recent works that workers sharing a sin-

gle GPU may experience noticeable interference that adversely causes
training performance downgrades [2,40,24]. As exampled in Fig. 1(a),
we observe that the overall performance degradation can be as much
as 113% when sharing a GPU device with workers of multiple deep
learning jobs, compared with standalone resource allocation. It is ob-

served for co-located workers from the same job and from different jobs
[2,40,29]. Moreover, a DL job can suffer from different levels of in-

terference [2] when paired with different DL jobs. For example, we
observed that a ResNet worker suffers from significant performance
slowdown (up to 122% slower) when sharing a host with a VGG19
worker. A LeNet worker achieves decent performance (18% slower)
when sharing a device with an LSTM worker.

This is mainly caused by resource competition when sharing under-

lying resources besides GPU, such as CPU caches, disk I/O, network
2

Fig. 1. Performance degradation and memory oversharing of co-located DL jobs
(LeNet and ResNet).

I/O, and buses (e.g., QPI, PCIe) [2,40]. Experiments in study [29] have
shown that the dominant factor is GPU RAM overload. Specifically, DL
jobs are iterative in nature. The GPU RAM usage of a worker of a DL
training job usually fluctuates and follows a cyclic pattern [47]. Mem-

ory operations from multiple DL jobs can cause memory oversharing, as
exampled in Fig. 1(b) when two memory usage curve peaks collide. We
called this GPU memory oversharing among multiple jobs. We observe
noticeable performance interference among co-located jobs under this
circumstance. Given enough job and device data, the interference can
be predicted [29], as demonstrated in Section 5.

Sharing GPU devices among multiple DL jobs presents an opportu-

nity for higher system efficiency and job throughput, while interference
among DL jobs significantly affects their training performance. How to
efficiently place DL training jobs on a shared distributed GPU cluster,
guaranteeing training performance in spite of the interference, is a chal-

lenging problem. This paper seeks a comprehensive solution and makes
four main contributions.

1. We introduce a model to describe memory oversharing on a shared
device and based on this, we introduce a novel Opportunistic Job
Placement Problem (OJPP) for distributed deep learning clusters.

2. We propose greedy and heuristic algorithms to compute efficient
job placement configurations with memory oversharing and inter-

ference constraints to guarantee job performance.

3. We propose an online adjustment algorithm to dynamically update
job configurations according to real-time status and job interfer-

ence.

4. We conduct extensive experiments on a GPU cluster with typical
deep learning training workloads to verify the correctness and ef-

fectiveness of our approach.

The rest of the paper is organized as follows. In the next section, we
summarize related work. Section 3 presents problem formulation and
analysis. We propose our approaches for static placement and online

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
adjustment in Section 4. Section 5 discusses the experimental results.
Section 6 concludes the paper.

2. Related work

2.1. Distributed model training

A deep learning algorithm generally consists of two stages, the train-

ing stage, and the inference stage. A deep learning training job trains
a learning model, such as a Deep Neural Network (DNN), with a large
number of examples (e.g., images with labeled objects). The training
process is an approximate function for input-output mapping. We use
the quality of the mapping to measure how well the model maps input
to the correct output. Deep learning training job works in an iterative
way to explore feature validity and tune hyperparameters [49]. The
inference stage uses the trained model to make predictions on future
inputs.

Compared to the lightweight inference stage that runs in real-time,
the training stage is highly resource-consuming. This is mostly caused
by the complexity of DNN and the size of training datasets. A large
dataset is usually divided into data chunks and then mini-batches. Each
training iteration trains one mini-batch of dataset and tunes model pa-

rameters to improve the model. A training job may generate a low-

quality model at the beginning and improve the model’s quality through
a sequence of training iterations (usually tens of thousands or even mil-

lions) until it converges or reaches user-defined termination conditions.

In recent years, distributed model training frameworks, such as Ten-

sorFlow [1], BigDL [11], and MXNet [7], are developed to shorten
training time for both large dataset and large models, following data
parallelism and model parallelism [32,38] respectively. Data parallelism is
more popular in recent years, because of the large dataset modern DL
applications are dealing with. Data parallelism divides large datasets into
small subsets as chunks and trains models in SIMD fashion. Distributed
frameworks launch multiple instances (workers) for a DL training job
so that workers train the model with different data chunks in parallel
to accelerate the process. Workers perform all-reduce fashion updates
to maintain global model parameters in between training iterations.
Multiple communication patterns are used to implement the all-reduce
update operation, such as Parameter Server [32] and Ring All-Reduce
[48].

This paper focuses on the more popular data parallelism, and the
placement of worker instances in the DDL cluster. The proposed ap-

proaches can adapt to different all-reduce implementations.

2.2. Resource sharing strategies

A DDL cluster hosting DL jobs is a typical multi-job distributed sys-

tem. Jobs placed on the same server share physical resources, such
as GPU, CPU, caches, disk I/O, network I/O, etc. DL job users spec-

ify resource requirements, e.g., the numbers and types of resources
required during job submission. A cluster scheduler, e.g., Mesos [21],
Yarn [43], and Kubernetes [4], is in charge of managing resources and
placing workers of jobs. Most existing works [24] [26] formulate the job
placement problem in the DDL cluster considering some of the most im-

portant types of resource, such as GPU and CPU, for two reasons, (1)
the problem complexity, and (2) the fact that GPU resource partition
mechanism is not clear, or not fully supported. Most related works as-

sign resources to DL jobs in a coarse-grain fashion that the scheduler
focuses on the number of workers to be launched and their locations.

Optimus [37] is an online scheduler for DL training jobs that adjusts
job placement based on real-time training progress. By allocating bet-

ter resources for jobs in their early training stage, Optimus shortens the
completion time of these jobs. This is implemented by dynamic adjust-

ment of the numbers of workers in runtime. TetriSched [42] dynamically
allocates resources and supports specified job deadlines. Tiresias [17],
is another DL job scheduler adjusting resource allocation online based
3

on running status. It performs well when the remaining training time of
jobs is hard to estimate. It is quite important for exploratory jobs, such
as hyper-parameter tuning jobs.

With the development of a large shared DDL cluster, recent related
works started to focus on interference issues caused by co-located train-

ing jobs [24,29]. Xiao et al. observed performance drops caused by GPU
memory oversharing in [47], and proposed a scheduling framework
called Gandiva to enable time-share GPUs to avoid the oversharing
issue. However, switching contexts between training jobs on a GPU
device or migrating training jobs between GPUs can be very expen-

sive. Harmony [2] is a deep learning-driven DDL cluster scheduler that
places training jobs in a manner that minimizes interference and maxi-

mizes performance. The black-box approach uses deep reinforcement
learning (DRL) to predict job interference, and make job placement
decisions. Jeon et al. made a comprehensive analysis of Shared GPU
clusters and studied the correlations between worker locality and inter-

ference to mitigate inter-job interference. These approaches either avoid
or ignore the GPU RAM overload issue, which is the main reason for in-

terference. To the best of our knowledge, our work is the first study
to explore a model-based approach to address the GPU RAM overload
issue that leads to interference among co-located training jobs.

2.3. Load balance

Load balance is a classic issue in the distributed system. DDL clus-

ters also face this issue when hosting DL jobs. This is usually caused by
the unbalanced load-to-resource ratio among workers and fluctuated re-

source availability. Load balance issues in asynchronous DL jobs may
cause inaccurate results and eventually affect the model convergence.
In synchronous DL jobs can cause long synchronization time, increase
job completion time, and reduce job throughput and resource utiliza-

tion.

There are both coarse-grain and fine-grain methods to solve the load
balance problem. Chen et al. adjust parameter distribution among PS
workers and dynamically scale in and out parameter servers to mitigate
straggler issues [8]. Chen et al. [5] proposed an integrated worker co-

ordination mechanism that adapts worker load at the synchronization
barriers in between training iterations. They proposed weighted gra-

dient aggregation to ensure the model training process still converges
correctly even with inconsistent batch size.

Another important mechanism to deal with the online workload
and resource availability fluctuations is job migration. The fundamental
checkpoint/restore operations for DL jobs are supported by a few frame-

works [1,24,45]. For example, TensorFlow [1] provides user-level saver

to preserve and resume the training progress and data for a DL job.
These operations can be triggered in between iterations and are not
transparent to users.

2.4. Job placement model

The job placement problem in distributed systems is a classic issue.
They are usually modeled as the Bin Packing Problem (BPP), a special
case of 0-1 integer linear programming. In the classic Bin Packing Prob-

lem (BP), the goal is to pack a list of given items into a minimal number
of bins, satisfying resource constraints, such as item dimensions. For the
general BPP, please refer to surveys [9,10].

If we consider the GPU resources requirements of a DL job as the
first dimension of the bin packing problem, and the GPU memory re-

quirement as the second dimension, the problem we are facing is closely
related to the two-dimensional Vector Bin Packing problem (2D VBP)
[9]. 2D VBP problem is strongly NP-hard. All the heuristics for the ge-

ometric packing problem, such as Next-Fit Decreasing Height (NFDH),
First-Fit Decreasing Height (FFDH), and Best-Fit Decreasing Height (BFDH),
can be used as a reference to solve 2D VBP. These algorithms sort items
according to their sizes, representing the packing difficulty. They differ

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Table 2

Notations.

Description

𝑉 Set of n queued jobs, 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}}.
𝐵 Set of 𝑚 devices, 𝐵 = {𝑏𝑘|𝑘 ∈ {1, ..,𝑚}}.
𝑣𝑖𝑗 A worker of job 𝑣𝑖, where 𝑣𝑖 = {𝑣𝑖𝑗 |𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1, ..,𝜔𝑖}}.
𝜔𝑖 Number of workers of job 𝑣𝑖.

𝛼𝑖 Computing resource requirement of workers of job 𝑣𝑖.

𝛽𝑖 Memory resource requirement of workers of job 𝑣𝑖.

Φ Job Placement Configuration, Φ= {𝜙𝑖|𝑖 ∈ {1, .., 𝑛}}.
𝛾𝑖 Basic memory requirement of job 𝑣𝑖.

𝛿𝑖 Variable memory requirement of job 𝑣𝑖.

𝑝𝑖 Memory usage volatility probability of job 𝑣𝑖.

𝜃𝑖 Interference of job 𝑣𝑖.

𝜃𝑘 Interference of a device 𝑏𝑘.

�̄� User-defined upper bound of interference.

𝜃′ Difference upper bound of interference.

𝜏𝑘 Collision probability among jobs on device 𝑏𝑘 ∈𝐵.

𝜏 User-defined upper bound of collision probability.

𝑐𝑖 Migration cost of job 𝑣𝑖.

𝑐 User-defined upper bound of migration cost.

in the ways of choosing a bin for an item to be put in. For details of
these heuristics, please refer to survey [33].

3. Problem formulation

3.1. Resource allocation

We consider a typical application scenario for distributed model
training. Multiple DL training jobs are queued in a shared distributed
cluster of GPU servers. Each DL job has various resource requirements
[2]. GPU resource is the most important for a DL training job. There-

fore, we simplify the resource requirement of a DL job into two main
aspects that affect the training performance the most, namely comput-

ing resource (e.g., GPU) and memory resource (GPU memory). Each
server in a DDL cluster can provide one or multiple GPU cards. GPU
cards are the resource unit in our model.

The placement of jobs is essentially the placement of workers in the
DDL cluster since they are the most resource-consuming part of a DL job
and the smallest unit of scheduling. Let 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}} be a queue
with 𝑛 DL training jobs, and job 𝑣𝑖 has 𝜔𝑖 workers, 𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ 1, .., 𝜔𝑖}.

Let (𝛼𝑖, 𝛽𝑖) be the resource requirements of job 𝑣𝑖, where 𝛼𝑖 and 𝛽𝑖
are the computing resource and memory resource requirements, respec-

tively. Note that workers of a job have identical resource requirements
in a data-parallel scheme. Additionally, 𝐵 = {𝑏𝑘|𝑘 ∈ {1, ..,𝑚}} represents
𝑚 candidate devices (e.g., GPU cards) to host DL jobs. Table 2 summa-

rizes important notation.

Definition 1 (Job Placement Configuration, JPC). Given a set of 𝑛 deep
learning training jobs 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}}, job 𝑣𝑖 has 𝜔𝑖 workers 𝑣𝑖 =
{𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}} with identical resource requirement (𝛼𝑖, 𝛽𝑖), and a set
of 𝑚 GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ {1, .., 𝑚}}, a JPC Φ is a set of 𝑛 mappings
from workers to devices as 𝜙𝑖(𝑣𝑖 → 𝐵).

When we assign a worker 𝑣𝑖𝑗 to a device 𝑏𝑗 , 𝑣𝑖𝑗 allocates a portion
of resource from 𝑏𝑗 . Without loss of generality, we normalize the de-

vice capacity to 1 and set 𝛼𝑖 ∈ (0, 1], 𝛽𝑖 ∈ (0, 1]. We seek a valid JPC that
satisfies basic resource allocation principles that the total resource as-

signed to all workers on device 𝑏𝑘 do not exceed the capacity of its total
resources, ∑

𝜙𝑖(𝑣𝑖𝑗)=𝑏𝑘

𝛼𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔𝑖}, 𝑘 ∈ {𝑖, ...,𝑚},
(1)

∑
𝜙𝑖(𝑣𝑖𝑗)=𝑏𝑘

𝛽𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔 }, 𝑘 ∈ {𝑖, ...,𝑚}.
(2)
𝑖

4

Fig. 2. Time-varying memory usage of a worker of ResNet training job.

3.2. Opportunistic memory sharing

DL training process is iterative, and we observe workers of DL jobs
trained on the device have time-varying memory usage. Each training
iteration causes a memory usage peak. Gaps between iterations leave
memory idle. The GPU memory usage of a worker usually fluctuates and
follows a cyclic pattern [47]. As exampled in Fig. 2, the memory usage
of a worker of ResNet shows a clear cyclic pattern. However, current
resource allocation models use fixed memory requirements which are
not suitable for clearly time-varying memory usage. Moreover, using the
minimum or maximum resource usage as a requirement would mean
either under-allocation or over-allocation, respectively. It is not suitable
to use average usage value either.

This issue becomes more serious when sharing a GPU among multi-

ple DL jobs. Even if the total memory occupied by all workers on the
device is within the limit. Memory usage surges from one or more
workers on the same device may cause GPU memory oversharing, and
potentially slow down all co-located jobs.

We present a stochastic model to formulate the time-varying mem-

ory requirement of workers of training jobs. In this model, the memory
requirement of workers of job 𝑣𝑖 consists of two parts, a basic sub-

requirement 𝛾𝑖, which represents the average memory usage of work-

ers of job 𝑣𝑖, and a variable sub-requirement 𝛿𝑖, which occurs with a
probability 𝑝𝑖. We therefore replace the 𝛽𝑖 in formulation (2) with tu-

ple 𝛽′
𝑖
=< 𝛾𝑖, 𝛿𝑖, 𝑝𝑖 >. Take the worker in Fig. 2 for example, we model

the memory requirement as < 𝛾𝑖, 𝛿𝑖, 𝑝𝑖 >=< 0.3, 0.62, 0.2 >. It means the
worker requests 30% and 92% of the total capacity of a device with a
probability of 0.8 and 0.2, respectively.

According to the time-varying memory requirement model, we mod-

ify the memory allocation constraint (2) as∑
𝜙𝑖(𝑣𝑖𝑗)=𝑏𝑘

𝛾𝑖 + max
𝜙𝑖(𝑣𝑖𝑗)=𝑏𝑘

𝛿𝑖 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {𝑗, ...,𝜔𝑖}, 𝑘 ∈ {𝑖, ...,𝑚}.
(3)

The stochastic memory sharing model benefits the DDL scheduler
with more opportunities to share multiple jobs on one device. This
would dramatically increase the resource utilization of a DDL cluster.
However, there is also a risk that workers of multiple jobs would use the
variable part of their resource requirements at the same time, and pos-

sibly lead to memory usage collisions [50]. This will significantly drag
down the training performance of the affected jobs. Let 𝐷𝑘 be the set of
workers with time-varying memory requirements on device 𝑏𝑘, 𝑋𝑖 indi-

cates whether the variable sub-requirement of workers of job 𝑣𝑖 occurs,
i.e., 𝑃𝑟[𝑋𝑖 = 1] = 𝑝𝑖. Then, the collision probability of memory on 𝐷𝑘 is
denoted by 𝜏𝑗 :

𝜏𝑘(𝐷𝑘) = 𝜏

[∑
𝑣𝑖𝑗∈𝐷𝑘

𝑋𝑖 > 1
]
= 1 −

∏
𝑣𝑖𝑗∈𝐷𝑘

(1 − 𝑝𝑖)

−
∑

𝑣 ∈𝐷

(
𝑝𝑖

∏
𝑣 ∈𝐷 ,𝑣 ≠𝑣

(1 − 𝑝𝑠)
)
.

(4)
𝑖𝑗 𝑘 𝑠𝑔 𝑘 𝑠𝑔 𝑖𝑗

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Fig. 3. Examples of DL training job interference.

In order to guarantee training performance, we introduce a user-

defined collision probability threshold 𝜏 to manage the risk of memory
oversharing when sharing a GPU device among DL jobs,

𝜏(𝐷𝑘) ⩽ 𝜏, ∀𝑏𝑘 ∈ 𝐵. (5)

3.3. Interference among co-located training jobs

Interference is defined as performance degradation when sharing
resources among workers of training jobs, compared to standalone exe-

cution. Memory oversharing is one of the main causes of interference.
However, co-located workers experience different levels of interference
[40], even without memory oversharing. We have tested workers of
different DL training jobs with different combinations, and recorded
various levels of interference, as shown in Fig. 3.

Moreover, the interference effects on co-located workers are not nec-

essarily equal. For example, when a ResNet worker shares a GPU card
with a VGG19 worker, the ResNet worker would experience a 122%
slowdown in completion time, compared to when using a GPU device
alone, while the VGG19 worker would be less affected and perform
18.7% slower than a standalone execution.

Let 𝑡𝑖 be the standalone completion time for workers of job 𝑣𝑖, 𝑡′𝑖 the
influenced co-located completion time, we use the slowdown percent-

age 𝜃𝑘 to represent the interference on a GPU device,

𝜃𝑘 ∶= max
𝜙(𝑣𝑖𝑗)=𝑏𝑘

{
𝑡′
𝑖
− 𝑡𝑖

𝑡𝑖

}
. (6)

The interference among co-located workers of jobs can be obtained
by testing ahead of time as discussed earlier. However, this method
is best suited for scenarios with only a few types of DL training jobs
submitted and limited combinations. As the scale of job submissions in-

creases, the number of possible combinations becomes infinite and it
becomes impractical to obtain interference predictions through testing.
To overcome this challenge, we introduce an adaptive interference pre-

diction algorithm (AIP) [31], which is discussed in detail in Section 4.5.

Interference among co-located workers can be predicted ahead of
time by testing, as discussed earlier. However, this method is best
suited for scenarios with only a few types of DL training jobs submit-

ted and limited combinations. As the scale of job submissions increases,
the number of possible combinations becomes infinite and it becomes
impractical to obtain interference predictions through testing. To over-

come this challenge, we introduce an adaptive interference prediction
algorithm (AIP), which is discussed in detail in Section 4.

To keep the interference on a device below a certain level, we set
a pre-defined upper bound of interference as a constraint when placing
multiple workers onto a device 𝑏𝑘 as

max
𝑏𝑘∈𝐵

{𝜃𝑘} ⩽ �̄�. (7)

Moreover, for multiple workers of a single job, we must also consider
the challenge of balancing worker performance. Significant different
training speeds of different workers in a job would jeopardize the over-
5

all job performance. Unbalanced workers, especially stragglers, would
slow down training speed for jobs using synchronous parameter update
scheme [3,30]. With an asynchronous scheme, [51], unbalanced work-

ers would cause model state inconsistency that puts training accuracy
at risk. Thus, in addition to limiting maximum worker interference, we
also limit performance discrepancies between workers in the same job
to ensure optimal training outcomes. To leave the option open for users
when they can tolerate some level of interference (e.g. asynchronous
model updates in data-parallel DL jobs), we use another constraint
as

max(𝑣𝑖) − min(𝑣𝑖) ⩽ 𝜃′, ∀𝑣𝑖 ∈ 𝑉 . (8)

Here, we use max(𝑣𝑖) and min(𝑣𝑖) to represent the maximum and
minimum interference among all workers of job 𝑣𝑖.

3.4. Job placement problem with opportunistic sharing

The opportunistic memory sharing model describes the time-varying
memory usage of a GPU device shared by multiple DL training jobs. It
helps us to control the risk of sharing GPU devices among DL jobs. More
importantly, it provides opportunities in pursuit of the high device and
system utilization, while still maintaining a certain level of performance
guarantee. We introduce a novel DL training job placement problem
based on the opportunistic memory sharing models and job interference
matrix.

Definition 2 (Opportunistic Job Placement Problem, OJPP). Given a set of
𝑛 deep learning training jobs 𝑉 = {𝑣𝑖|{𝑖 ∈ {1, .., 𝑛}}, job 𝑣𝑖 has 𝜔𝑖 workers

(𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}}) with identical resource requirement (𝛼𝑖, 𝛽𝑖), and
a set of 𝑚 GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ {1, .., 𝑚}}, find a valid JPC (Φ) that
uses a minimum number of devices.

𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚∑
𝑘=1

𝑥𝑘 (9)

subject to:

𝑚∑
𝑘=1

𝑧𝑖𝑗𝑘 = 1, 𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1, ..,𝜔𝑖} (10)

𝑛∑
𝑖=1

𝜔𝑖∑
𝑗=1

𝛼𝑖𝑧𝑖𝑗𝑘 ≤ 1, 𝑘 ∈ {1, ..,𝑚} (11)

∑
𝜙𝑖(𝑣𝑖𝑗)

𝛾𝑖𝑧𝑖𝑗𝑘 + max
𝜙𝑖(𝑣𝑖𝑗)

𝛿𝑖𝑧𝑖𝑗𝑘 ≤ 1,

𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1...,𝜔𝑖}, 𝑘 ∈ {1, ..,𝑚}
(12)

𝜏(𝐷𝑘) ⩽ 𝜏, 𝑘 ∈ {1, ..,𝑚} (13)

max
𝑏𝑘∈𝐵

{𝜃𝑘} ⩽ �̄�, 𝑘 ∈ {1, ..,𝑚} (14)

max(𝑣𝑖) − min(𝑣𝑖) ⩽ 𝜃′, 𝑖 ∈ {1, ..., 𝑛} (15)

𝑥𝑘 = 0∕1, 𝑘 ∈ {1, ..,𝑚} (16)

𝑧𝑖𝑗𝑘 = 0∕1, 𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1...,𝜔𝑖}, 𝑘 ∈ {1, ..,𝑚} (17)

The decision variable 𝑧𝑖𝑗𝑘 = 1 when worker 𝑣𝑖𝑗 is placed onto device
𝑏𝑘. Binary variable 𝑥𝑘 represents the usage of a device. 𝑥𝑘 = 1 indicates
that there is at least one worker of job placed on device 𝑏𝑗 . The objective
function seeks to minimize the number of the occupied device while
satisfying the collision probability and interference constraints. Note
that we focus on computing resource requirements and do not consider
communication cost between workers in this paper. We will take into
account the communication issues in future work.

3.5. Online job placement problem adjustment with opportunistic sharing

When the real-time interference to a DL job exceeds the predefined
threshold, as Eq. (7), we cannot guarantee training performance any-

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
more. In this case, it is necessary to adjust JPC and rearrange resource
allocations.

Frequent adjustments of JPC may cause high system overhead, such
as migration cost and worker synchronization cost. According to the
observation of hardware configuration, some “violations”(i.e., interfer-

ence exceeds the pre-defined upper bound) are instantaneous and then
back to the normal level due to the abnormal use of some resources
(e.g., startup of jobs). Thus, we wish to use Exponentially Weighted Av-

erage (EWMA) [23] to capture the continuously “violations” in order to
avoid overreactions to accidental fluctuations.

Let 𝑎 ∈ [0, 1] be a coefficient and 𝜃𝑘,𝑡 be the observed interference on
𝑏𝑘 at a moment, the exponentially weighted average of interference is

𝜃′
𝑘,𝑡

= 𝑎 𝜃′
𝑘,𝑡−1 + (1 − 𝑎) 𝜃𝑘,𝑡. (18)

The EWMA of interference 𝜃′
𝑘,𝑡

can be used as a trigger to perform
JPC adjustment and calculate adjustment plans. Another important is-
sue we need to consider is the migration cost.

A few DDL frameworks provide job migration mechanisms, such as
checkpoint/restore operations for DL jobs [1,24,45]. For example, Ten-

sorFlow [1] provides user-level saver API to preserve and resume the
training progress and data for a DL job. These operations can be trig-

gered in between iterations but are not transparent to users. Besides
the fact the checkpoint/restore functions are user-level, both operations
introduce noticeable overhead, depending on the size of model param-

eters. Since the parameter size of a model does not change in runtime,
the migration cost of a worker of a job is relatively stable, and it can be
estimated offline. We assume for workers of job 𝑣𝑖, the migration cost 𝑐𝑖
is estimated beforehand.

We add another constraint to the online adjustment problem to con-

trol the overall system overhead caused by job migrations as follows,

∑
𝑐𝑖 ⩽ 𝑐. (19)

Besides controlling individual job interference to guarantee user-

defined training performance, the proposed online adjustment problem
also seeks load-balanced JPC to avoid frequent adjustments.

Definition 3 (Online Opportunistic Job Placement Adjustment Problem, OJ-

PAP). Given a set of 𝑛 deep learning training jobs 𝑉 = {𝑣𝑖|𝑖 ∈ {1, .., 𝑛}},
job 𝑣𝑖 has 𝜔𝑖 workers (𝑣𝑖 = {𝑣𝑖𝑗 |𝑗 ∈ {1, .., 𝜔𝑖}}) with resource requirement
(𝛼𝑖, 𝛽𝑖), a set of available GPU devices 𝐵 = {𝑏𝑘|𝑘 ∈ 1, ..,𝑚}, and a JPC Φ,
find a valid JPC (Φ′) that causes the least device-level interference.

4. Opportunistic job placement algorithms

4.1. Overall discussion

The proposed job placement problems are closely related to the 2D-

VBP problem. Besides GPU resource and GPU memory constraints as
two dimensions in the 2D-VBP problem, the solution to the proposed
problems also needs to satisfy both collision probability and interfer-

ence thresholds, and try to balance the interference between workers of
the same job. As exampled in Fig. 4, Case I and II are both valid JPCs,
from the resource stand of point, Case I is the better one. However,
more training jobs suffer from severe performance slowdown in Case I
than in Case II. Therefore, Case II is a better solution for OJPP.

The proposed memory sharing model provides more opportunities
to pack multiple workers on a device, and improve device utilization,
but also introduces new risks of memory oversharing and interference
that affects training performance. The main objective of our approach
is to seek a JPC that satisfies the collision probability, interference
constraint, and balance constraints to guarantee training performance,
using as few devices as possible.

In this section, we first propose a best-fit-based greedy algorithm for
OJPP. It is an efficient algorithm that we can use as a baseline. Then we
6

Fig. 4. Example of the different job placement configurations.

Algorithm 1 𝐺𝑟𝑒𝑒𝑑𝑦 (𝑉 , 𝐵, �̄�, ̄𝜏, 𝜃′).
Input: Job set 𝑉 , device set 𝐵, collision probability 𝜏, and interference bounds �̄� and 𝜃′
Output: JPC Φ
1: sort jobs 𝑉 according to the resource requirements of their workers in descending

order, and put jobs into a queue;

2: while there is job remaining in queue; do

3: take the front job;

4: 𝜙 = 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑖, 𝐵, ̄𝜃, ̄𝜏, 𝜃′)
5: add 𝜙 into Φ;

6: remove 𝑣𝑖 from job queue;

7: end while

8: return Φ

propose a comprehensive heuristic algorithm considering all constraints
to solve the problem.

4.2. Greedy algorithm

We propose a greedy algorithm based on the classic BPP algorithm
Best-fit Decreasing (BFD). In Algorithm 1, the algorithm sorts jobs in
descending order according to the computing resource requirements
of their workers. Then, it takes the first job from the queue and calls
the function Placement to place this job. Function Placement returns the
placement configuration of workers of job 𝑣𝑖. The algorithm ends un-

til there are no jobs in the queue, and returns the overall JPC Φ (steps
2-8). This greedy algorithm ensures user-defined thresholds to guaran-

tee training performance. As traditional best-fit algorithms, the greedy
algorithm has a time complexity of 𝑂(𝑚𝑛).

The function Placement as shown in Algorithm 2 handles worker

placement for a job. The first question Placement needs to answer is
whether all workers of job 𝑣𝑖 can be placed within active devices (lines
1- 3). If not, a flag is set to False, permitting the use of new bins.

The function tries to allocate resources for worker 𝑣𝑖𝑗 on active de-

vices. It checks all the constraints (lines 5 - 6), including the available
resources (Eq. (11)), (Eq. (12)), the maximum slowdown ratio on de-

vice 𝑏𝑘 (Eq. (13)), the collision probability of jobs co-located on 𝑏𝑘
(Eq. (14)), and the difference between the maximum and minimum in-

terference of workers of job 𝑣𝑖 (Eq. (15)). Otherwise, Placement tries to
finish worker placement with both active and inactive devices (line 17).
Finally, Placement returns the placement of all workers of job 𝑣𝑖.

4.3. Heuristic algorithm

A worker of a DL training job occupies a basic memory space to store
the model and data at the beginning after execution. Then subsequent
operations, including calculating intermediate variables and passing pa-

rameters, will cause the memory usage to change regularly during the
training process. We consider the varying memory requirement Eq. (3)

according to condition Eq. (12).

As observed in our experiments, memory oversharing among co-

located jobs significantly affects the execution time of each DL training
job. The proposed heuristic seeks to reduce the collision probability of
co-located jobs, in order to reduce memory oversharing.

Let 𝜏(𝑖, 𝑞) be the collision probability of workers of job 𝑣𝑖 and job 𝑣𝑞 ,
should they be assigned to the same device. We define the gregariousness

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Algorithm 2 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑣, 𝐵, �̄�, 𝜃′, ̄𝜏).
Input: Job 𝑣, device set 𝐵, collision probability bound 𝜏, and interference bounds �̄� and

𝜃′

Output: 𝜙 Placement of workers of job 𝑣𝑖
1: Flag = True, 𝜙 =𝑁𝑢𝑙𝑙

2: loop: { *label for jumping* }
3: while 𝜙 is Null do

4: for all workers of job 𝑣𝑖 do

5: for all active 𝑏 ∈𝐵 do

6: find device 𝑏 that satisfies the following:

(𝛼𝑖 , 𝛽𝑖) ≥ R && 𝜏(𝐷𝑘) ⩽ 𝜏 &&

potential 𝜃𝑘 is the lowest among active devices &&

𝜃𝑘 ≤ �̄� && max(𝑣𝑖) - min(𝑣𝑖) ⩽ 𝜃′ &&

place worker 𝑣𝑖𝑗 on device 𝑏𝑘 does not break the balance of other workers on
𝑏𝑘 ;

7: if Flag == True then {*only use active devices*}

8: if 𝑏 is not found then

9: Flag = False

10: 𝜙 =𝑁𝑢𝑙𝑙 {*reset the mapping*}
11: min(𝑣𝑖) = 0
12: goto loop;

13: end if

14: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

15: else {*active devices combined with new devices*}

16: if 𝑏 is not found then

17: open a new bin 𝑏′ , add 𝑏′ into 𝐵;

18: end if

19: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

20: end if

21: end for

22: end for

23: end while

24: return 𝜙

of a job 𝑣𝑖 in a group 𝑉 as

𝜏(𝑖, 𝑉) = max
𝑣𝑞∈𝑉

{𝜏(𝑖, 𝑞)}. (20)

The fitness of a job indicates its potential correlations to the other
jobs in a group. In Algorithm 3, we first sort the job queue accord-

ing to 𝜏(𝑖, 𝑉) in ascending order. The first job in order would be the
most easygoing one, it has the least potential to affect the other jobs.
This gives the other queuing jobs more opportunities to be assigned
in an active device, instead of a vacant one. Then 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 performs
the same steps as 𝐺𝑟𝑒𝑒𝑑𝑦 to place workers of this job. In each round,
the queue is changed and therefore requires an update. Adding an ex-

tra sorting procedure with a computational complexity of 𝑂(𝑛 log𝑛), the
computational complexity of this heuristic is 𝑂(𝑛2 log𝑛).

Algorithm 3 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑉 , 𝐵, �̄�, ̄𝜏, 𝜏(𝑖, 𝑉), 𝜃′).
Input: Job set 𝑉 , device set 𝐵, collision probability 𝜏, gregariousness 𝜏(𝑖, 𝑉)(𝑖 ∈ {1, .., 𝑛}),

interference bounds �̄� and 𝜃′
Output: JPC Φ
1: sort job queue according to the resource requirements in descending order;

2: while there is job remaining in queue; do

3: take the front job;

4: sort job queue according to collision potential 𝜏(𝑖, 𝑉) in ascending order;

5: 𝜙 = 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑖, 𝐵, ̄𝜃, ̄𝜏, 𝜃′)
6: add 𝜙 into Φ;

7: remove 𝑣𝑖 from job queue;

8: end while

9: return Φ

4.4. Online job placement adjustment

Interference among co-located workers of jobs fluctuates over time.
On one hand, the iterative nature of DL jobs makes the resource usages
change in the runtime. The initial interference may not be accurate
all the time. On the other hand, resource availability of a DDL cluster
changes dynamically, caused by completed jobs leaving the system and
the arrival of new jobs. Therefore, an online adjustment mechanism is
7

needed to rearrange JPC. The OJPAP problem seeks to adjust job place-

ment configuration and balance interference among devices. Besides all
the constraints in OJPP, OJPAP adds another one to keep the migration
cost within control as Eq. (19).

First, we keep two device queues for the adjustment process. The
first queue, named priority queue, keeps devices in descending order
according to their interference 𝜃𝑘 (Eq. (6)). Devices suffering from the
most severe performance degradation will have the highest priority in
the adjustment process. The second queue, named resource queue, keeps
devices in descending order of available resources.

Then we pick a worker of job 𝑣𝑖 on the first device in priority queue

with the least migration cost among co-located jobs. Then, we try to
place this worker onto a new device, in order from resource queue. Fi-

nally, we update JPC if such a migration plan can be found.

All the constraints, including resource requirements, interference,
collision probability, and balance between workers of job and migration
cost should be satisfied for an updated JPC.

The process finishes when the first half of devices in priority queue

get rearranged. The algorithm with computational complexities of
𝑂(𝑛 log𝑛).

Algorithm 4 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 (𝑉 , 𝐵, �̄�, ̄𝜏, ̄𝑐, 𝜃′, 𝑐𝑚
𝑖
, Φ).

Input: Job set 𝑉 , device set 𝐵, constraints 𝜏, �̄�, 𝜃′ , 𝑐, migration cost for jobs 𝑐𝑖 , and
original JPC Φ

Output: JPC Φ′

1: sort devices 𝐵 according to their interference in descending order, and put the first
half of the devices into priority queue;

2: sort devices 𝐵 according to their available resource in descending order, and put
them into resource queue;

3: Φ′ = Φ;

4: while there has devices remaining in priority queue; do

5: take the worker 𝑣𝑖𝑗 with least 𝑐𝑖 in the front device and remove the device from
priority queue;

6: if 𝑐𝑖 > 𝑐 then

7: continue;

8: end if

9: for all 𝑏 ∈ resource queue do

10: find device 𝑏 that satisfies the following:

(𝛼𝑖 , 𝛽𝑖) ≥ R && 𝜏(𝐷𝑘) ⩽ 𝜏 &&

potential 𝜃𝑗 is the lowest among active devices &&

𝜃𝑘 ≤ �̄� && max(𝑣𝑖)-min(𝑣𝑖) ⩽ 𝜃′ &&

place worker 𝑣𝑖𝑗 on device 𝑏𝑗 does not break the balance of other workers on 𝑏𝑘 ;

11: end for

12: assign 𝑣𝑖𝑗 to 𝑏 and add 𝑣𝑖𝑗 → 𝑏 into 𝜙;

13: add 𝜙 into Φ′ ;

14: Update priority and resource queue;

15: end while

16: return Φ′

4.5. Interference analysis and prediction

To compute efficient job placement configurations, we need to ob-

tain good perspectives of the potential interference among co-located
𝑤𝑜𝑟𝑘𝑒𝑟𝑠. The interference is mainly caused by resource competition of
shared resources, such as CPU caches, disk I/O, network I/O, and buses
(e.g., QPI, PCIe) [2,40], and the interference level closely depends on
the job types as well as the underlying system parameters.

We apply an adaptive interference prediction algorithm AIP [31] to
prepare accurate interference estimations. AIP is our previous work, and
it is a machine-learning-based interference prediction method. Given a
set of jobs, AIP firstly collects the system configurations (GPU info, main
memory, disk I/O, network I/O) as input, then chooses proper predic-

tion technology by going over a set of methods (Linear Regression [36],
SVR [44], Decision Tree Regression [34] and K-Neighbors [18]) to pre-

dict interference. The mean absolute error between the real interference
and the predicted interference is taken as the metric to evaluate each
method. Extensive experiments show that the average error of interfer-

ence prediction of AIP is under 7% [31].

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Table 3

Testing deep learning models and datasets.

DATA CIFAR10 [20], MNIST [46]

DL Network LeNet [28] , ResNet [19], VGG [39],

AlexNet [27], LSTM [22], CNN

Table 4

Comparing approaches.

Algorithm Description

Best-fit Best-fit strategy.

I-Greedy Greedy algorithm with interference constraint.

B-Greedy Greedy algorithm with balance constraint.

C-Greedy Greedy algorithm with collision constraint.

OJPP Heuristic with opportunistic job placement.

OJPAP Online adjust with opportunistic job placement.

5. Evaluations

5.1. Evaluation methodology

Training Model Setting. We generate workloads from six repre-

sentative DL networks which are trained by two image datasets. The
models and datasets we used are listed in Table 3.

Collision Probability Calculation. We set up a TensorFlow [1] sys-

tem to test and collect data for formulating collision probabilities. First,
the stand-alone execution time is obtained when each job uses a GPU
(NVIDIA Tesla P40 with 24 GB memory) exclusively. In this process,
we randomly choose 100 sampling points to gather memory usage and
performance info of a job. These data are used to calculate collision
probability as Eq. (4) for candidate training jobs and as the input pa-

rameter for our algorithms.

Interference Constraint. We use the TensorFlow system to gather
interference data for different training jobs. We have tested 6 types of
training jobs and put the data into an interference matrix, as shown in
Fig. 3. Moreover, we also use AIP [31] to predict the interference. The
collision probability and interference thresholds are user-defined to suit
different application scenarios. We will discuss some options later.

Job Migration Mechanism. We use the TensorFlow framework to
collect the migration cost of different training jobs. The checkpoint and
resume operations are implemented with user-level interface saver. The
data collected are used as an input value in the scheduling algorithm.
Dynamic JPC adjustment process is triggered by users in runtime, which
leaves room to explore more comprehensive migration triggering strate-

gies.

5.2. Experimental settings

To evaluate the effectiveness of the placement and adjustment al-

gorithm proposed by us, we simulate the environment of the cluster
system. The capacity of each GPU is 11 GB (according to ASUS TURBO-

GTX1080Ti GPUs), and for the jobs submitted to the simulated cluster,
we use the info collected from real-world measurements.

Workloads. We generate four workload queues, each with 20 DL
training jobs, and each job has 1-10 workers. In addition, we set the
constraint parameters as (𝜏, �̄�, 𝜃′) = (0.1, 0.2, 0.1). Detailed informa-

tion about the DL jobs is listed in Table 3. The workloads are divided
into three types: (a) Mixed workload that 50% jobs either have high
collision potential or high interference potential; (b) C-high workload
that jobs have high collision potential (e.g., ResNet); (c) I-high that jobs
have high interference potential (e.g., LeNet) (d) Average workload that
jobs have neither high collision potential nor high interference poten-

tial).

Baseline. As listed in Table 4, we compare the proposed two oppor-

tunistic algorithms with the following approaches,
8

Fig. 5. Performance degradation.

Fig. 6. Performance improvement.

• Best-fit strategy. Traditional Best-fit two-dimensional bin packing
algorithm as a baseline.

• I-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering interference constraint.

• B-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering balance constraint between workers of job.

• C-greedy strategy. Greedy job placement algorithm based on best-

fit, only considering collision probability constraint.

5.3. Results and analysis

5.3.1. Static placement

Job completion time Job completion time is the most important metric
for user experience and service quality. We have tested all four dif-

ferent workloads with five job placement strategies. In all cases, the
average co-located job completion time is longer than those of stand-

alone execution. Compared to the job completion time stand-alone, the
performance degradation and performance improvement are shown in
Fig. 5 and Fig. 6.

The strategy that performs the worst is the traditional Best-fit algo-

rithm, which causes a 54.39% slowdown in execution time on average.
Compared to the baseline, I-Greedy, B-Greedy, and C-Greedy introduce
additional constraints to ensure performance quality and achieved a
smaller average job completion time. The proposed heuristic algorithm
performs the best, it ensures training performance with all four types
of workloads. It has over 228.34% of improvements compared to the
baseline on average.

We illustrate detailed data with six types of training jobs. Fig. 7

shows the performance degradation of each type of job in mixed work-

load. We could see that some algorithms performed poorly dealing with
ResNet jobs. It is because ResNet jobs are susceptible to other training
jobs. Only I-greedy and OJPP deal with ResNet jobs well due to their
constraint for interference, which causes ResNet jobs to end up being
placed on a device alone, and they do not have performance degrada-

tion. On the other hand, by using the C-greedy algorithm, all types of
jobs except ResNet have a low-performance degradation. It indicates

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Fig. 7. Different job performance degradation comparison.

Fig. 8. Resource consumption.

that the opportunistic memory sharing model proposed by us is effec-

tive. But because there is no interference constraint in C-greedy, which
causes ResNet jobs co-located with other training jobs and suffer ter-

rible performance degradation. Here, we could see that all algorithms
cannot handle LeNet and LSTM well except C-greedy and OJPP. This
is because they are high memory collision jobs. The proposed heuristic
sorts jobs according to their collision potential and takes all constraints
into account. This greatly improved the job completion time. Note that
B-greedy has little improvement compared to the baseline because it
only uses the balance strategy and it results in workers of the same job
being placed together regardless of interference and collision.

Number of bins This test illustrates the performance of the proposed al-

gorithms in terms of the number of devices consumed in Fig. 8. Among
all five algorithms, the traditional Best-fit algorithm uses the least num-

ber of devices. This is because it tries to pack all the jobs together,
without considering any constraints, which leads to poor execution
performance, as mentioned earlier. On the other hand, the proposed al-

gorithms use 82.9% extra devices to improve 202.9% job performance
in the mixed type of workload.

Influence of balance To verify the effectiveness of balance in the case of
multi-workers jobs, we compare OJPP with OJPP without considering
the balance between workers of jobs. Fig. 9 shows that the perfor-

mance degradation of these two strategies with the number of workers

of jobs changes. We could see as the number of workers of jobs in-

creases, OJPP without balance constraint performs worse and worse,
while the performance of OJPP is relatively steady. It is because the
cost of synchronization between workers of a job is expensive if ignor-

ing the balance constraint. As the number of workers of a job increases,
the synchronization cost is getting higher. Here, to make results intu-

itive, we assume the communication between workers is synchronous.
Even in asynchronous communication, a large gap between workers will
also result in a loss of accuracy of the model.
9

Fig. 9. Performance degradation comparison between OJPP and OJPP without
balance constraint.

Fig. 10. Interference fluctuation.

5.3.2. Online adjustment

Dynamic change First, we tested the interference fluctuation in the run-

time with average workload. As shown in Fig. 10. During the first half
part of the test, we observed interference fluctuation and a minor vi-

olation of the interference threshold �̄�. There is no adjustment at time
𝑡2 due to the condition (EWMA of interference 𝜃′

𝑡𝑗
) of the trigger of the

adjustment algorithm not being met. Then completed jobs kept leaving
the system and new jobs are submitted to the cluster, we experienced
some large interference raise. We performed an online adjustment al-

gorithm OJPAP at time 𝑡6 and brought the interference level back to
healthy.

Benefits and costs The subfigure of Fig. 10 illustrates the detailed
results of the adjustment algorithm. As shown, the proposed adjust-

ment algorithm significantly reduced the average interference level
among jobs in the cluster. Compared with high performance degrada-

tion (122% at most), the migration cost is negligible (5%).

5.3.3. Interference prediction

This test is designed to verify the effectiveness of AIP [31] as an in-

terference prediction method. As mentioned in Section 5.1, we prepare
two interference matrices, in Fig. 11, the first matrix records the inter-

ference between jobs in real-world cluster, and the anther interference
matrix is predicted by AIP. The predicted matrix has an average 7% er-

ror. As shown in Fig. 11, we use these two matrices to complete the job
placement independently, and compare the results. AIP works well with
OJPP in that the predicted matrix only suffers from 7.8% performance
drop on average, compared with ideal application setting which use the
first matrix. The performance of other algorithms has a difference by
using both matrices, while the difference is negligible, especially for
OJPP.

5.3.4. Trade-off

The proposed job placement algorithms are controlled by three user-

defined parameters, which are collision probability 𝜏 and interference
�̄� and 𝜃′. These parameters ensure user-defined service quality and

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776

Table 5

Algorithm performance under different control parameters.

(𝜏, 𝜃′, �̄�) (0.05,0.1,0.1) (0.05,0.2,0.1) (0.05,0.4,0.1) (0.1,0.2,0.1) (0.1,0.2,0.2) (0.1,0.4,0.2)

Guaranteed Performance 99.96% 94.23% 84.37% 92.97% 87.96% 83.17%

Reduced Resource Consumption 17% 39% 57% 46% 52% 61%
Fig. 11. Performance degradation comparison among algorithms by using pre-

dicted and measured interference.

provide guaranteed performance. Changing the parameter settings will
affect both job performance and resource utilization. We list six repre-

sentative parameter settings in Table 5. The corresponding guaranteed
performance and reduced resource consumption are compared with jobs
in the dedicated cluster which execute stand-alone. When we adjust the
parameter constraint to make them larger, fewer resources are used
and a lower performance is guaranteed (e.g., (𝜏, 𝜃′, �̄�) = (0.05, 0.1,
0.1), 17% resources consumption is reduced and 99.96% performance
is guaranteed, when we adjust the 𝜃′ to 0.2, 39% resources consumption
is reduced and 94.23% performance is guaranteed). Thus, for different
workloads and requirements, we need to adjust to find a proper set
of parameters. Specifically, when we set the parameters to (𝜏, 𝜃′, �̄�) =
(0.1, 0.4, 0.2), the heuristic uses 61% less resources but only guarantees
83.17% of the training performance. This setting can be used to reserve
resources. On the other hand, with (𝜏, 𝜃′, �̄�) = (0.05, 0.1, 0.1), the algo-

rithm achieves 99.96% training performance with less 17% resources.
It is the most aggressive setting that is suitable for users seeking high
performance. In this experimental setting, we think the most efficient
and balanced setting would be (𝜏, 𝜃′, �̄�) = (0.1, 0.2, 0.1), the heuris-

tic maintains over 92.97% of the standalone performance and uses more
than 46% less resources. Therefore, there is a trade-off between resource
consumption and performance, users could set these parameters to meet
their own requirements.

5.4. Application scenario

The proposed job placement algorithm OJPP can be used as a
scheduling strategy for deep learning clusters. OJPP is capable of com-

puting job placement configurations with high device utilization while
satisfying user-defined performance bounds (collision probability 𝜏 and
interference �̄�). Our heuristic algorithm opportunistically puts multi-

ple jobs on one device to improve resource utilization and keep the
risk of performance downgradation in control. In order to deal with
online interference fluctuations, an OJPAP algorithm is proposed to
rearrange job placement configurations. OJPAP can be performed pe-

riodically or triggered when the device interference level reaches a
certain level.

6. Conclusions

This paper focuses on novel challenges for distributed deep learning
clusters, especially shared GPU clusters. In this type of environment,
training jobs share one GPU device to improve resource utilization.
10
However, interference among these co-located jobs brings significant
performance slowdowns. We first analyze the interference issue in
shared GPU clusters and identify the main reason, GPU memory over-

sharing caused by training jobs’ fluctuating memory usage. We propose
an opportunistic memory sharing model to formulate the time-varying
memory usage for co-located jobs. With this model, we introduce an Op-

portunistic Job Placement Problem (OJPP) for distributed DL clusters.
We seek opportunities to place jobs on shared GPU devices in pursuit
of high device utilization while managing the risk of interference by
supporting user-defined parameters. We propose a greedy algorithm
and a heuristic algorithm with computational complexities of 𝑂(𝑛 log𝑛)
and 𝑂(𝑛2 log𝑛), respectively. Moreover, we propose an online adjust-

ment algorithm with computational complexities of 𝑂(𝑛 log𝑛) to update
job placement configurations according to the same principle and con-

straints as OJPP. We conduct extensive experiments on a GPU cluster
in the HPC Center of Jilin University to verify the correctness and the
efficiency of our approach. Compared with standalone training jobs on
dedicated clusters, the interference-aware opportunistic job placement
approach reduces resource consumption by 46% in a shared cluster,
while guaranteeing over 92.97% of the job performance, in terms of
average job completion time. We also make suggestions on how to set
user-defined parameters for different application scenarios to achieve
better system efficiency.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work was supported by the Natural Science Foundation of Jilin
Province (Grant 20230101062JC), the National Key Research and De-

velopment Plan of China (Grant 2017YFC1502306), by the National
Natural Science Foundation of China (NSFC) (No. 61602205).

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, et al., TensorFlow: large-scale machine learning on hetero-

geneous distributed systems, in: USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[2] Y. Bao, Y. Peng, C. Wu, Deep learning-based job placement in distributed machine
learning clusters, in: IEEE International Conference on Computer Communications
(INFOCOM), 2019.

[3] S. Basu, V. Saxena, R. Panja, A. Verma, Balancing stragglers against staleness in
distributed deep learning, in: IEEE International Conference on High Performance
Computing (HiPC), 2018.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, Omega, and Kuber-

netes, Commun. ACM (2016).

[5] C. Chen, Q. Weng, W. Wang, B. Li, B. Li, Semi-dynamic load balancing: efficient
distributed learning in non-dedicated environments, in: ACM Symposium on Cloud
Computing (SoCC), 2020.

[6] M. Chen, A. Radford, J. Wu, H. Jun, P. Dhariwal, Generative pretraining from pixels,
in: International Conference on Machine Learning (ICML), 2020.

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang,
2015, MXNet: a flexible and efficient machine learning library for heterogeneous
distributed systems, ArXiv.

http://refhub.elsevier.com/S0743-7315(23)00146-6/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib30A3C2436EC3D4DFD577AFA8599C9C14s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib30A3C2436EC3D4DFD577AFA8599C9C14s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib30A3C2436EC3D4DFD577AFA8599C9C14s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib5A328FD7FD816047F9B58C3CEA9392C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib5A328FD7FD816047F9B58C3CEA9392C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib5A328FD7FD816047F9B58C3CEA9392C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3F0E83866A33A1082E683B6F1AC7D960s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3F0E83866A33A1082E683B6F1AC7D960s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9EE67F4ADA8199453F4D219CE1C78320s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9EE67F4ADA8199453F4D219CE1C78320s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9EE67F4ADA8199453F4D219CE1C78320s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib6E3255748FDE122D5B6A1CF8EE162479s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib6E3255748FDE122D5B6A1CF8EE162479s1

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
[8] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, C. Guo, Elastic parameter server load
distribution in deep learning clusters, in: ACM Symposium on Cloud Computing
(SoCC), 2020.

[9] H.I. Christensen, A. Khan, S. Pokutta, P. Tetali, Approximation and online algo-

rithms for multidimensional bin packing: a survey, Comput. Sci. Rev. (2017).

[10] E.G. Coffman, J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing approxima-

tion algorithms: survey and classification, in: Handbook of Combinatorial Optimiza-

tion, 2013.

[11] J.J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C.L. Zhang, Y. Wan,
Z. Li, et al., BigDL: a distributed deep learning framework for big data, in: ACM
Symposium on Cloud Computing (SoCC), 2019.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P.
Tucker, K. Yang, et al., Large scale distributed deep networks, in: Annual Conference
on Neural Information Processing Systems (NeuralPS), 2012.

[13] J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirec-

tional transformers for language understanding, in: The Annual Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL),
2019.

[14] C. Fan, Y. Tian, Y. Meng, N. Peng, X. Sun, F. Wu, J. Li, Paraphrase generation as
unsupervised machine translation, in: Computational Linguistics (COLING), 2021.

[15] C. Federmann, O. Elachqar, C. Quirk, Multilingual whispers: generating paraphrases
with translation, in: Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), 2019.

[16] P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tul-

loch, Y. Jia, K. He, 2017, Accurate, large minibatch SGD: training ImageNet in 1
hour, ArXiv.

[17] J. Gu, M. Chowdhury, K.G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu, C. Guo, Tiresias:
a GPU cluster manager for distributed deep learning, in: USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2019.

[18] G. Hamerly, C.P. Elkan, Learning the k in k-means, in: Annual Conference on Neural
Information Processing Systems (NeuralPS), 2003.

[19] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[20] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in:
European Conference on Computer Vision (ECCV), 2016.

[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.
Shenker, I. Stoica, Mesos: a platform for fine-grained resource sharing in the data
center, in: Symposium on Network System Design and Implementation (NSDI),
2011.

[22] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997)
1735–1780.

[23] A. Ingolfsson, E. Sachs, Stability and sensitivity of an EWMA controller, J. Qual.
Technol. (1993).

[24] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, F. Yang, Analysis
of large-scale multi-tenant GPU clusters for DNN training workloads, in: USENIX
Annual Technical Conference (ATC), 2019.

[25] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu,
T. Chen, G. Hu, S. Shi, X. Chu, Highly scalable deep learning training system with
mixed-precision: training ImageNet in four minutes, 2018, ArXiv.

[26] H. Jiang, Y. Chen, Z. Qiao, T.H. Weng, K.C. Li, Scaling up MapReduce-based big
data processing on multi-GPU systems, in: IEEE International Conference on Cluster
Computing (CLUSTER), 2015.

[27] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convo-

lutional neural networks, in: Annual Conference on Neural Information Processing
Systems (NeuralPS), 2012.

[28] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to docu-

ment recognition, Proc. IEEE 86 (1998) 2278–2324.

[29] H. Li, T. Sun, X. Li, H. Xu, Job placement strategy with opportunistic resource shar-

ing for distributed deep learning clusters, in: IEEE International Conference on High
Performance Computing and Communications, 2020, in: International Conference
on Smart City, 2020, in: International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2020.

[30] H. Li, D. Xu, Z. Xu, X. Li, Hybrid parameter update: alleviating imbalance impacts for
distributed deep learning, in: IEEE International Conference on High Performance
Computing and Communications (HPCC), 2022.

[31] H. Li, N. Zhang, T. Sun, X. Li, Performance interference analysis and prediction for
distributed machine learning jobs, J. Comput. Appl. 42 (6) (2022) 1649–1655.

[32] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed, V. Josifovski, J. Long, E.J.
Shekita, B.Y. Su, Scaling distributed machine learning with the parameter server, in:
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[33] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a survey, Eur.
J. Oper. Res. (2002).

[34] W.Y. Loh, 2008, Classification and regression tree methods.

[35] N. Moritz, T. Hori, J.L. Roux, Triggered attention for end-to-end speech recogni-

tion, in: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019.

[36] J. Neter, W. Wasserman, M.H. Kutner, Applied Linear Regression Models, 1983.

[37] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Guo, Optimus: an efficient dynamic resource
scheduler for deep learning clusters, in: European Conference on Computer Systems
(EuroSys), 2018.
11
[38] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.L. Shyu, S.C. Chen,
S.S. Iyengar, A survey on deep learning: Algorithms, techniques, and applications,
ACM Comput. Surv.

[39] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale im-

age recognition, in: International Conference on Learning Representations (CoRR),
2015.

[40] H. Tian, S. Li, A. Wang, W. Wang, T. Wu, H. Yang, Owl: performance-aware schedul-

ing for resource-efficient function-as-a-service cloud, in: ACM Symposium on Cloud
Computing (SoCC), 2022.

[41] Z. Tian, J. Yi, Y. Bai, J. Tao, S. Zhang, Z. Wen, Synchronous transformers for end-to-

end speech recognition, in: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020.

[42] A. Tumanov, T. Zhu, J.W. Park, M.A. Kozuch, M. Harchol-Balter, G.R. Ganger,
TetriSched: global rescheduling with adaptive plan-ahead in dynamic heterogeneous
clusters, in: European Conference on Computer Systems (EuroSys), 2016.

[43] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: yet another resource nego-

tiator, in: ACM Symposium on Cloud Computing (SoCC), 2013.

[44] M. Wauters, M. Vanhoucke, Support vector machine regression for project control
forecasting, Autom. Constr. (2014).

[45] Y. Wu, K. Ma, X. Yan, Z. Liu, Z. Cai, Y. Huang, J. Cheng, H. Yuan, F. Yu, Elastic deep
learning in multi-tenant GPU clusters, IEEE Trans. Parallel Distrib. Syst. (2021).

[46] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a novel image dataset for benchmark-

ing machine learning algorithms, 2017, ArXiv.

[47] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel, X.
Peng, H. Zhao, Q. Zhang, et al., Gandiva: introspective cluster scheduling for deep
learning, in: USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[48] M. Yu, B. Ji, H. Rajan, J. Liu, On scheduling ring-all-reduce learning jobs in multi-

tenant GPU clusters with communication contention, in: MobiHoc, 2022.

[49] H. Zhang, L. Stafman, A. Or, M.J. Freedman, SLAQ: quality-driven scheduling for
distributed machine learning, in: ACM Symposium on Cloud Computing (SoCC),
2017.

[50] S. Zhang, Z. Qian, J. Wu, S. Lu, L. Epstein, Virtual network embedding with oppor-

tunistic resource sharing, IEEE Trans. Parallel Distrib. Syst. (2013).

[51] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z. Ma, T.Y. Liu, Asynchronous
stochastic gradient descent with delay compensation, in: International Conference
on Machine Learning (ICML), 2016.

Hongliang Li is an associate professor of College of Com-

puter Science and Technology (CCST), Jilin University in
Changchun, China. He received the PhD degree in computer
application technologies from CCST, JLU, in 2012. He was a vis-

iting scholar with the Department of Computer and Information
Sciences, Temple University, Philadelphia. His research current
interests include resource scheduling and fault tolerance for dis-

tributed system, big data computing, user-level and system-level
HPC optimization.

Hairui Zhao received his B.S. degree from the College of
Computer Science and Technology, Jilin University, Changchun,
China, in 2019. He is currently pursing his Ph.D. degree in the
College of Computer Science and Technology, Jilin University.
His primary research interests include cloud computing, high per-

formance computing, resource management and job placement.

Ting Sun received the master degree from College of Com-

puter Science and Technology, Jilin University, Changchun,
China, in 2021. Her research interests include cloud computing
and high performance computing.

Xiang Li is an engineer and a Ph.D student of College of
Computer Science and Technology (CCST), Jilin University in
Changchun, China. Her research interests include computer net-

work, distributed deep learning system.

http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8F74EFDBC5AB6417FC7A036EF59082AEs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8F74EFDBC5AB6417FC7A036EF59082AEs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8F74EFDBC5AB6417FC7A036EF59082AEs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib6DD72595AB277DD52DC1351662BDB717s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib6DD72595AB277DD52DC1351662BDB717s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib09C2173440862A3D29B0F568A47F65C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib09C2173440862A3D29B0F568A47F65C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib09C2173440862A3D29B0F568A47F65C0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibEF483070AFE49C10DDB42ACFFBA5C3DDs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibEF483070AFE49C10DDB42ACFFBA5C3DDs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibEF483070AFE49C10DDB42ACFFBA5C3DDs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibFBC456E3C642580B0CCDEC1B78F8E29Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibFBC456E3C642580B0CCDEC1B78F8E29Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibFBC456E3C642580B0CCDEC1B78F8E29Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF88D49E1488BD64BF7FBB6CC422235ABs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF88D49E1488BD64BF7FBB6CC422235ABs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF88D49E1488BD64BF7FBB6CC422235ABs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF88D49E1488BD64BF7FBB6CC422235ABs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4BD63D6B507FABB513240B169E9652E8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4BD63D6B507FABB513240B169E9652E8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibE3E39C1ECC7E2759F1A514ED82F2D5D8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibE3E39C1ECC7E2759F1A514ED82F2D5D8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibE3E39C1ECC7E2759F1A514ED82F2D5D8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibB0118432AC420380581FEE2697DC2B9As1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibB0118432AC420380581FEE2697DC2B9As1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibB0118432AC420380581FEE2697DC2B9As1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib73DFBA30D41F3DF1501B894B55F8A729s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib73DFBA30D41F3DF1501B894B55F8A729s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibBB93725FB3A01792957392F0AED67851s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibBB93725FB3A01792957392F0AED67851s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib484DCA326B9408880A52B269A729C9C6s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib484DCA326B9408880A52B269A729C9C6s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib2E3C5D61845C9B6F88B54A8DD18597F4s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib2E3C5D61845C9B6F88B54A8DD18597F4s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibB6942B2ADA36A9A0E7B4D88381F2BBBAs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibB6942B2ADA36A9A0E7B4D88381F2BBBAs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3296484526469F58E12931A5D8F0D217s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3296484526469F58E12931A5D8F0D217s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3296484526469F58E12931A5D8F0D217s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibAAA942CEEA4A0CE4AE5DD5233A88A4E6s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibAAA942CEEA4A0CE4AE5DD5233A88A4E6s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibAAA942CEEA4A0CE4AE5DD5233A88A4E6s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9DFA3C7476BA8A9A8463385922CFC6E5s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9DFA3C7476BA8A9A8463385922CFC6E5s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib9DFA3C7476BA8A9A8463385922CFC6E5s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD1E265ACD98E46B099583CF65D860F6Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD1E265ACD98E46B099583CF65D860F6Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3734E2C6227D0A08EB8889807DAF0F7Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3734E2C6227D0A08EB8889807DAF0F7Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3734E2C6227D0A08EB8889807DAF0F7Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3734E2C6227D0A08EB8889807DAF0F7Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib3734E2C6227D0A08EB8889807DAF0F7Fs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC4253402B63E728D1B9D9E1294B49814s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC4253402B63E728D1B9D9E1294B49814s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC4253402B63E728D1B9D9E1294B49814s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4F6229CB80A8C1DF421E3E89FB614BCFs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4F6229CB80A8C1DF421E3E89FB614BCFs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF7AE02324B483BB3F030BB0DFBB40B21s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibF7AE02324B483BB3F030BB0DFBB40B21s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0E544575A1B8C0EBC3251295BFC45F5Cs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0E544575A1B8C0EBC3251295BFC45F5Cs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0E544575A1B8C0EBC3251295BFC45F5Cs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD702C5845C69C6CA1D9BECB64631B520s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8B790DE4EF0BEE284C8D59BA715E2249s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8B790DE4EF0BEE284C8D59BA715E2249s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib8B790DE4EF0BEE284C8D59BA715E2249s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4FD77B50C0768BDDEF754AC6B812487Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4FD77B50C0768BDDEF754AC6B812487Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4FD77B50C0768BDDEF754AC6B812487Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD3AF96C0B8FD3E5ADF7E5B7671EBB55Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD3AF96C0B8FD3E5ADF7E5B7671EBB55Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibD3AF96C0B8FD3E5ADF7E5B7671EBB55Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0DCA22033A5CB57BAA9C0D6AAAFC6311s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0DCA22033A5CB57BAA9C0D6AAAFC6311s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib0DCA22033A5CB57BAA9C0D6AAAFC6311s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib04898F45BC9B6C49AE9434505E3A25D3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib04898F45BC9B6C49AE9434505E3A25D3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib04898F45BC9B6C49AE9434505E3A25D3s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC1ECAB929FA673ED5D7E076035E97C08s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibC1ECAB929FA673ED5D7E076035E97C08s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibBDDA8B74EBEADB46B35931D3DA815B7Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibBDDA8B74EBEADB46B35931D3DA815B7Bs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCC2D733332F1977996896917F66BAE8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCC2D733332F1977996896917F66BAE8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCC2D733332F1977996896917F66BAE8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCC2D733332F1977996896917F66BAE8s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib470AE06E79DEC7E2C5D8F360D6882B4Ds1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib470AE06E79DEC7E2C5D8F360D6882B4Ds1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4CF7F5CC74A480B5E585D5E9BBE74FC0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4CF7F5CC74A480B5E585D5E9BBE74FC0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bib4CF7F5CC74A480B5E585D5E9BBE74FC0s1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCDB224C650AAFB5976EE14F5257E82As1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibDCDB224C650AAFB5976EE14F5257E82As1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9D91CF763A5A4F18BE36FBDA2D9B48Cs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9D91CF763A5A4F18BE36FBDA2D9B48Cs1
http://refhub.elsevier.com/S0743-7315(23)00146-6/bibA9D91CF763A5A4F18BE36FBDA2D9B48Cs1

H. Li, H. Zhao, T. Sun et al. Journal of Parallel and Distributed Computing 183 (2024) 104776
Haixiao Xu is a senior engineer in HPC center of Jilin Uni-

versity and a Ph.D student of College of Computer Science and
Technology (CCST), Jilin University, Changchun, China. His re-

search interests include high performance computing, resource
scheduling and fault-tolerant.

Keqin Li received the B.S. degree in computer science from
Tsinghua University in 1985 and the Ph.D. degree in computer
science from the University of Houston in 1990. He is currently
a SUNY Distinguished Professor with the State University of New
York and a National Distinguished Professor with Hunan Uni-

versity (China). He has authored or coauthored more than 940
journal articles, book chapters, and refereed conference papers.
He received several best paper awards from international confer-

ences including PDPTA-1996, NAECON-1997, IPDPS-2000, ISPA-

2016, NPC-2019, ISPA-2019, CPSCom-2022. He holds nearly 70
patents announced or authorized by the Chinese National Intellectual Property Admin-

istration. He is among the world’s top five most influential scientists in parallel and
distributed computing in terms of both single-year impact and career-long impact based
on a composite indicator of Scopus citation database. He was a 2017 recipient of the Al-

bert Nelson Marquis Lifetime Achievement Award for being listed in Marquis Who’s Who
in Science and Engineering, Who’s Who in America, Who’s Who in the World, and Who’s
Who in American Education for more than twenty consecutive years. He received the
Distinguished Alumnus Award of the Computer Science Department at the University of
Houston in 2018. He received the IEEE TCCLD Research Impact Award from the IEEE CS
Technical Committee on Cloud Computing in 2022 and the IEEE TCSVC Research Innova-

tion Award from the IEEE CS Technical Community on Services Computing in 2023. He is
a Member of SUNY Distinguished Academy. He is an AAAS Fellow, an IEEE Fellow, and
an AAIA Fellow. He is a Member of Academia Europaea (Academician of the Academy of
Europe).
12

	Interference-aware opportunistic job placement for shared distributed deep learning clusters
	1 Introduction
	2 Related work
	2.1 Distributed model training
	2.2 Resource sharing strategies
	2.3 Load balance
	2.4 Job placement model

	3 Problem formulation
	3.1 Resource allocation
	3.2 Opportunistic memory sharing
	3.3 Interference among co-located training jobs
	3.4 Job placement problem with opportunistic sharing
	3.5 Online job placement problem adjustment with opportunistic sharing

	4 Opportunistic job placement algorithms
	4.1 Overall discussion
	4.2 Greedy algorithm
	4.3 Heuristic algorithm
	4.4 Online job placement adjustment
	4.5 Interference analysis and prediction

	5 Evaluations
	5.1 Evaluation methodology
	5.2 Experimental settings
	5.3 Results and analysis
	5.3.1 Static placement
	Job completion time
	Number of bins
	Influence of balance

	5.3.2 Online adjustment
	Dynamic change
	Benefits and costs

	5.3.3 Interference prediction
	5.3.4 Trade-off

	5.4 Application scenario

	6 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

