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a b s t r a c t 

In the social data transaction model, online social networks sell their collected social data to 

a third-party data service provider, which commonly resells such social data to data users 

for further mining potential information. However, the data service provider may not be 

trustworthy and collude with others to return fake data to users. To prevent such malicious 

activities, data users should verify the correctness and completeness of social data purchased 

from the data service provider to make sure that no data would tamper and no qualifying 

results would be omitted. Accordingly, we first propose an authenticity verification scheme, 

called FakeDetection , for one-dimensional data query. To make our scheme becoming effi- 

cient, we further devise an enhanced probabilistic scheme FakeDetection + , which takes par- 

tial vertices and neighbors with the identical profile value to generate auxiliary information. 

To evaluate the efficiency of our schemes, we utilize the real Twitter datasets with 1.6M twit- 

ters to perform the experiments. The Twitter with FakeDetection + , takes 69K edges (47M in 

FakeDetection ) into account to detect fake activities with a probability of more than 99%. For 

the computation overhead, the FakeDetection + scheme only consumes 27.9s (3.8% of that in 

FakeDetection ) to generate auxiliary information for a social graph with 1.6M twitters and 

their social network. 

© 2020 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the development of online social networks (OSNs), we
are facing a revolutionary way of social interactions and com-
munications. Notably, the Twitter , as a kind of OSN, is be-
coming pervasive because of its effectiveness. The Twitter
possesses a significant amount of social data, which can be
viewed as a social network with the particular graph struc-
ture composed of individuals (or organizations) and connec-
tions among these individuals. In this graph, each individual
or organization possesses its profile, like gender, age, and po-
∗ Corresponding author. 
E-mail addresses: hwchen@hnu.edu.cn (H. Chen), quqiang@hnu.edu.

Chen), lik@newpaltz.edu (K. Li). 
https://doi.org/10.1016/j.cose.2020.102077 
0167-4048/© 2020 Published by Elsevier Ltd. 
litical affiliation for personal, and band, features, and special-
ized services for organizations, etc. 

Massive social media data have a critical potential
economic valuation for many real-world applications.
Puschmann and Burgess (2013) proposed a social data
selling model, in which the Twitter first sells social data to
the third-party data service provider (like Gnip and DataSift ),
which then resells such data to data users for commercial or
academic data mining. 

However, many black stores show that the data ser-
vice provider may collude with advertising companies to
add / delete / modify its social data to achieve business profits. For
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nstance, Google was deemed to manipulating search 

uggestions to support Democratic presidential hopeful 
illary Clinton when she was stuck in “Email Controversy”

 Richardson, 2016 ). Specifically, when someone types “Hillary 
linton cri”, Google provides search suggestions, like “Hillary 
linton crime reform” and “Hillary Clinton crisis”, while 
ahoo or Bing suggests “Hillary Clinton crimes”. Another 
xample is that the famous review website Yelp forced 

usinesses to manipulate reviews to achieve business prof- 
ts ( Richardson, 2013 ). Similarly, the data service provider 
n this paper also may tamper social data by launching 
dding/deleting/modifying attacks or returning fake query- 
esults. These behaviors violate the interests of data users 
nd have severe effects on our daily lives and our legal 
ight seriously. To guarantee the integrity of query results,
ome methods have been proposed to verify the correctness 
nd completeness of query results, like Merkle hash tree 
 Bertino et al., 2004; Li et al., 2007; Mouratidis et al., 2009a; 
ang and Mouratidis, 2008; Papadopoulos et al., 2007; Yang 
t al., 2008; Zhang et al., 2012 ) and signature aggregation 

 Narasimha and Tsudik, 2006; Pang and Tan, 2008; Pang et al.,
009 ). However, such schemes did not take into consideration 

riendships among vertices in social networks. To verify the 
ompleteness of query graphs, Goodrich et al. (2003) pro- 
osed a scheme to verify whether two nodes are connected 

n the graph, and Yiu et al. (2010) proposed the landmark- 
ased verification method (LDM) to verify whether the 
uery result is the shortest path on the original graph.
evertheless, these previous studies focus on the com- 
leteness of social networks while ignoring the profiles of 
ertices. 

In this study, we are among the first to describe the defini- 
ions of correctness and completeness of social data. For the 
orrectness aspect, social data, received by users, are all correct 
refer to Definition 1 ). While for the completeness of social data,
e define it as the following three aspects: Vertex Complete- 
ess, Profiles Completeness , and Friendships Completeness (refer 
o Definition 2 ). To verify social data, we first propose a deter- 

inistic basic scheme FakeDetection to implement the above 
orrectness and completeness verification. However, the Twitter 
eeds to take a large overhead to generate auxiliary informa- 
ion. To further make our scheme efficent, we propose a prob- 
bilistic scheme FakeDetection+ to check whether the data ser- 
ice provider tampers the original social data before selling to 
ata users. 

Here, our contributions are listed as follows: 

• Aiming at real applications, we consider the correctness 
and completeness verification of social data. 

• To address the verifiable problem, we first propose a deter- 
ministic verifying method, FakeDetection , which can detect 
fake activities. 

• To further reduce the computation overhead, we propose 
a probabilistic scheme FakeDetection + , which takes nearly 
3.8% computation overhead of the FakeDetection to achieve 
the detection probability of 99% for 1.6M twitters. 

• To demonstrate the performance of our schemes, we con- 
duct the experiment on real social data ( Twitter data), and 

the results demonstrate our schemes are very efficient for 
the current data size. 
The rest of this paper is organized as follows. We first de- 
cribe related work in Section 2 . We then introduce the sys- 
em and adversary models in Section 3 . Section 4 presents 
he problem definitions. Next, we present our basic scheme in 

ection 5 and our enhanced scheme in Section 6 . In Section 7 ,
e analyze the detection results. Section 8 analyzes the per- 

ormance of our proposed methods. Sections 9 and 10 present 
ur experimental results and conclude our study. 

. Related work 

ur work is the most similar to data outsourcing 
 Hacigümüs et al., 2002 ), for which we can discuss state- 
f-the-art. The framework of data outsourcing, including data 
wner, service provider, and other users, was first introduced 

n Hacigümüs et al. (2002) . A data owner outsources its data 
o a third-party service provider who is responsible for an- 
wering the data queries from either the data owner or other 
sers. Generally, query result verification is the main security 
oncern in data outsourcing ( Ku et al., 2009 ). 

To ensure the query integrity, the service provider returns a 
erification Object ( VO ) with the answer to each query, which 

ermits other users to verify the correctness and complete- 
ess of the answer. Many techniques were proposed for sig- 
ature and VO generations, such as those ( Narasimha and 

sudik, 2006; Pang and Tan, 2008; Pang et al., 2009 ) based on
ignature chaining and those ( Bertino et al., 2004; Li et al.,
007; Mouratidis et al., 2009a; Pang and Mouratidis, 2008; Pa- 
adopoulos et al., 2007; Yang et al., 2008 ) based on the Merkle
ash tree (MHT) ( Merkle, 1989 ) or its variants. 

Signature chaining : The data owner first sorts the data tuples 
nd generates the signature with its details and the tuples im- 
ediately to its predecessor and to its successor. For the proof 

f a query result, it contains the signature of every returned 

uple. The chain generated by signing consecutive triples of 
uples ensures the completeness of the result and the au- 
henticity of each returned tuple. Mykletun et al. (2006) first 
roposed a signature-based method for range query authen- 
ication. Narasimha and Tsudik (2006) proposed an approach 

ased on a signature chain (named DSAC ), which provided 

he correctness and completeness for the more challenging 
ase of dynamic databases. However, Pang et al. (2009) pointed 

ut that the DSAC either costs huge correctness proofs due 
o requiring a pair of boundary values for each unmatched 

ecord or materializes the join result. In order to reduce the 
verhead of the proof construction, they proposed a novel 
ignature caching scheme, called SigCache . Besides, Pang and 

an (2008) first introduced the range query scheme, and pro- 
osed efficient authentication schemes for single- and multi- 
ttribute range aggregate queries. However, each element, un- 
er signature chain schemes, should be with a large overhead 

ignature operation and it is intuitive. We focus on how can 

he Merkle hash trees effectively applied to solve the problem 

entioned above, and the amount of the profile of the users,
irect use of the Merkle hash tree is expensive and inefficient.
hus, we do not adopt the signature chaining schemes in this 
tudy. 

MHT authentication : The original designation is that an 

HT with an identity structure is embedded into the data 
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Table 1 – Notations and Explanations. 

Notation Explanation 

SSP Social Service Provider 
DSP Data Service Provider 
DUs Data Users 
G Graph 
e i,j Edge 
v i, j Vertex 
a i,j Profiles values 
E The edge set 
V The vertex set 
A Profiles 
VI Auxiliary information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 In this paper, we only focus on the twitters’ data, and further 
address the tweets completeness in our future research. If not spe- 
cific statement, social data means the twitters’ data. 
index. Such an index is typically a B + -tree ( Mouratidis et al.,
2009b ) for one-dimensional data; for multi-dimensional data,
the R -tree ( Guttman, 1984 ) and the KD -tree ( Bentley, 1975 ) have
both been considered. For the proof of a query result, it recon-
structs the MHT root digest and tests whether it matches the
owner’s root signature. MHT techniques have been utilized to
verify spatial ( Mouratidis et al., 2009a; Mykletun et al., 2003;
Niaz and Saake, 2015; Yang et al., 2008 ), continuous ( Li et al.,
2007; Papadopoulos et al., 2007 ), XML ( Devanbu et al., 2003 ) and
text search ( Pang and Mouratidis, 2008 ) queries. Though MHT
suffers from the limitations in coping with updates because
every data modification must propagate from the leaf to the
root of the index, which generates multiple I/Os if the index
resides on disk, the update for the twitters’ profiles is limited,
so we do adopt the MHT in this study. 

3. System and adversary models 

3.1. System model 

Here, we describe the overall system model for social data
transactions, including three entities: Social Service Provider,
Data Service Provider and Data Users . 

• Social Service Provider (called SSP ): It is well-known as the
service provider to provide social data service, e.g., Twitter,
Facebook and LinkedIn . On these platforms, social users ful-
fill their own profiles to let other users know them easily.
Hence, the SSPs commonly contain a large amount of so-
cial data, e.g., users ’ profiles and postings . Here, we take the
Twitter as an specific example of the SSP , and define it as
social data selling entity to sell its data to the Data Service
Provider . To simplify our discussion here, we only consider
the static data. Dynamic data is left for the future work. 

• Data Service Provider (termed DSP ): In social data market, the
DSP commonly exists as an data reseller to resell social
data, including Gnip and DataSift, etc . In general, the DSP
first buys the original social data (“firehose ”) from the Twit-
ter , and then resell specific social data to users according
to their demands. 

• Data Users (called DUs ): With the massive potential eco-
nomic valuations of social data, DUs , like personnel, com-
panies and academic institutes, wish to mine such poten-
tial information with the data mining methods. For such
cases, DUs first buy social data from the DSP , and then
analyze these data. For example, a localized consulting
company, to investigate the following situations in “New
York” area, such as “How many citizens will go to Target to
buy gift cards in Christmas Day ?” or “What are the top-k pop-
ular restaurants in the New York area ?”, sends the query˜ Q ( location = “New York”) to the DSP , and buys the corre-
sponding social data. 

3.2. Adversary model 

Based on the system model, we further design our adver-
sary model to meet the requests of efficient applications.
As an original social data provider, the Twitter is assumed
as a trusted entity. In other words, it does not maliciously
add / delete / modify the original social data, and honestly runs
our designed verification protocols. Notice that, the Twitter
may preprocess social data before selling for guaranteeing the
twitters ’ privacy, we state that such pre-processing, differing
from the above malicious activities, does not affect the final
results of data mining on the side of the DUs . Thus, we de-
note social data after such pre-processing as the original so-
cial data. 

While the DSP , in our adversary model, is assumed as
an untrusted entity. To pursue economic profits, the DSP
may collude with personnel or advertisement companies to
add / delete / modify social data, hence leading to change data
analysis results. Obviously, such malicious activities directly
affect the profits of DUs . 

To prevent such malicious activities, the DUs should verify
the correctness and completeness of the social data bought from
the DSP . To achieve such goals, the Twitter generates auxiliary
information and attaches this information with the original
social data before selling to the DSP . Aiming at buying requests
from the DUs , the DSP returns not only the social data satis-
fying their demands, but also the corresponding verification
information. Then, the DUs verify the correctness and complete-
ness of the purchased data according to the verification infor-
mation. 

4. Problem definitions 

In this section, we formally depict the definition of our prob-
lem based on the system and adversary models. Before that,
we first introduce the representations of social data on the
Twitter platform. For convenience, all the notations used in this
paper are listed in Table 1 . 

Social data in Twitter can be classified into two categories:
the twitters’ data (e.g., the twitters’ profiles and the friend-
ships among the twitters) and social information (such as
tweets 1 with contextual, image or short video). Generally
speaking, the twitters’ data is considered as a social net-
work, which can be represented as a graph G . In the so-
cial graph G , it also consists of two element sets as well as
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Fig. 1 – Sending queries. 

Fig. 2 – Getting the query results. 
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ther graphs: the vertex set V = { v 1 , · · · , v n }, and the edge set
 = { e 1 , 2 , · · · , e i , j , · · · , e n-1,n } ( i � = j ), where n denotes the number
f vertices, and e i , j = 1 if there is a friendship between vertices 
 i and v j , otherwise 0. Here, we focus on mutual friendships 
mong twitters for brevity, and then expand our schemes to 
he more efficient friendships (i.e., follower/followee relation- 
hip). Therefore, the social graph G = ( V,E ) can be viewed as an
ndirected graph. 

For each twitter in social data, we assume that he/she has 
he same number of attributes, from A 1 to A w 

( w means the 
umber of the profiles). More specifically, each vertex in the 
ocial graph G has specific profile values, namely, the vertex v i 
as the profiles values ( a i , 1 , · · · , a i , w 

). 
In our system model, the DSP returns specific social data 

o the DUs according to their demands. Based on the previous 
epresentations of social data, the returned social data is ac- 
ually an specific isomorphism subgraph G ’ = ( V ’,E ’) of the social
raph G . However, the DSP , as an untrusted entity, may tam- 
er with the subgraph G ’, such as adding / deleting / modifying the 
witters’ profile values (for vertices) or the friendships among 
he twitters (for edges). To detect such malicious activities sys- 
ematically, we formally define the correctness and completeness 
f the subgraph G ’ as follows. 

efinition 1. For a value a s of the profile A k in a subgraph G 

′ ,
f and only if all vertices in the V ’ are with the identical profile
alue a s of the profile A k , the subgraph G ’ satisfies the correct- 
ess . Mathematically, ∀ v i ′ ∈ V ’, s.t. a i ′ ,k = a s . 

efinition 2. The completeness of the subgraph G ’ is defined 

n three following perspectives: 1) vertexcompleteness : for a 
rofile A k = a s , the subgraph G ’ should contain all vertices 
ith such profile value a s in the original graph G , namely,

 V G −G ′ ∩ V G ′ | A k = a s = ∅ ; 2) profilecompleteness : for the profile of
ll vertices in the subgraph G ’, its values should be the same 
s those in the original social graph G , i.e., ∀ v i ′ ∈ V ’, ∃ v i ∈ V , s.t.
 i ′ ,k = a i,k , k ∈ [1,w ]; 3) friendshipscompleteness : the friendships 
mong the vertices in the subgraph G ’ should be the same as 
hose in the graph G , i.e., ∀ v i ′ , v j ′ ∈ V ’, ∃ v i , v j ∈ E , s.t. e i ′ , j ′ = e i, j .
f and only if all these perspectives happen on simultaneously,
he subgraph G ’ can be considered as satisfying the complete- 
ess . 

. Basic scheme 

o guarantee the correctness and completeness of the subgraph 

 ’, we first propose a naïve scheme FakeDetection for single pro- 
le query in this section. 

.1. Overview of basic scheme 

or the social graph G , we assume that it consists of n ver- 
ices, corresponding to n twitters. The x -th vertex v x is with 

he profile values ( a x , 1 , · · · , a x , w 

), and m 

s 
x neighbors (from vn x , 1 

o vn x , m 

s 
x 
). In our basic scheme, the Twitter first generates aux- 

liary information, and attaches this information with the 
riginal graph G to form a verification graph G veri (refer to 
ection 5.2 ). To buy social data, the DUs send queries on- 
emand to the DSP and the Twitter . This procedure is shown 

n Fig. 1 . After receiving these queries, the DSP and the Twitter 
earch the social graph, and returns corresponding feedbacks 
o DUs , respectively (as described in Section 5.3 ). Finally, the 
Us verify the correctness and completeness of the query results 

as shown in Sect. 5.4 ). This procedure is shown in Fig. 2 . 

.2. Generating a verifiable social graph 

or an arbitrary social graph G , the Twitter leverages the 
lgorithm 1 to generate a verifiable graph G veri . Before detail- 

ng the algorithm Gen _ Verinfo , we first define the profile rela- 
ionship between two vertices as follows. 

efinition 3. For two neighbors v 1 and v 2 , consisting of w pro- 
le values (i.e., ( a 1 , 1 , ���, a 1 , w 

) and ( a 2 , 1 , ���, a 2 , w 

)), we define
v k as the difference value between the profile values of v 1 and 

 2 on the profile A k , e.g., dv 1 −2 , k and dv 2 −1 , k are equivalent to 
 1 , k − a 2 , k and a 2 , k − a 1 , k , respectively. Apparently, the value 
f dv 1 −2 , k is opposite to that of dv 2 −1 , k . 

In algorithm Gen _ Verinfo , the original graph G , and a pri-
ate key sk for signatures are taken as the input. Firstly, the 
lgorithm initializes an array set { �k }, k ∈ [1 , w ] . Each element
n the array �k contains two parts: prefix and suffix. The ini- 
ial array �k consists of two boundary elements, the prefix of 
he first element is the defined public minimum value ξmin 

k for 
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Algorithm 1: Gen _ Verinfo . 

Input: G , private key sk 
Output: G veri 

1 Initialize an array set { �k }, k ∈ [1 , w ] ; 
2 for Traverse each vertex v x do 
3 Generate the auxiliary information VI x , 0 = 

S sk ( h (a x , 1 ) � · · · � h ( a x ,w 

) � r x ); 
4 for Traverse each profile A k do 
5 Find the corresponding position ν via comparing 

the prefix values of the elements of the �k with 

the profile value a x , k with the 
alphabetical/numerical order; 

6 if The value a x , k is equivalent to the prefix value of 
�k (ν) then 

7 Update the suffix of the �k (ν) with the Bit-XOR 

value between the suffix and h ( ID x ); 

8 else 
9 Insert a new element at the position ν of the 

array �, and setting the prefix as a x , k , and the 
suffix as h ( ID x ); 

10 VI x , k = Compute _ VIA ( v x , vn x , y , A k ), y ∈ [1 , m 

s 
x ]; 

11 Sign suffixes of the array �k with the private key sk of 
Twitter , and calculate all internal nodes of MHT and 

the root node signed by the key sk with the input of 
the prefixes of the �k ; 

12 Attach VI x ={ VI x , 0 , · · · , VI x , w 

} with the original vertex 
v x to form verifiable vertex v ′ x = v x || VI x ; 

13 Return the verifiable graph G veri ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Compute _ VIA . 

Input: v x , vn x , y , A k 

Output: VI x , k 
1 Initialize an array �; 
2 for Traverse each neighbor vertex vn x , y do 
3 Calculate the difference value dv between the vertex v x 

and vn x , y for the profile A k ; 
4 Find the corresponding position τ via comparing the 

prefix values of the elements of the �k with the value 
dv ; 

5 if The value dv is equivalent to the prefix value of �(τ ) 
then 

6 Update the suffix with the Bit - XOR value between 

the previous suffix of the �(τ ) and h ( ID vn x , y ); 

7 else 
8 Insert a new element at the position τ of the array 

�, and setting the prefix as dv , and the suffix as 
h ( ID vn x , y ) �h ( a x , k ) � r x ; 

9 Sign suffixes of the array � with the private key sk of 
Twitter , and calculate the root with the prefixes of the 
array � as inputs of the MHT scheme, and signing its 
value; 

10 Return all internal nodes of Merkle Hash Tree, and the 
array � denoted as VI x , k ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the profile A k , and that of the second element is the defined
public maximum value ξmax 

k . For the suffixes of the first and
second elements, we randomly set their values. For generat-
ing auxiliary information, the algorithm traverses all vertices
in the graph G . For each vertex v x , the Twitter generates the
first auxiliary information VI x , 0 as shown in Line 3. Here, the
algorithm calculates hash values for all profile values of the
current vertex, and the Bit - XOR value for these hash values. To
resist known plaintext attack, we introduce a disturbing part
r x = h ( ID x ). Finally, the Twitter utilizes its private key sk to sign
the Bit - XOR value. After generating the auxiliary information
VI x , 0 , the algorithm traverses each profile value a x , k of the ver-
tex v x . Based on the comparing between the profile value a x , k
and the prefixes in the array �k , the algorithm first finds the
corresponding position ν. If the profile value a x , k is identical
with the prefix of �k (ν), the suffix of the �k (ν) is updated with
the Bit-XOR value between the suffix and h ( ID x ); Otherwise, the
algorithm inserts a new element at the position ν of the array
�, and sets the prefix as a x , k , and the suffix as h ( ID x ). Subse-
quently, the Twitter calls Algorithm 2 to generate the auxiliary
information VI x , k . Finally, the algorithm signs all suffixes of
the array �k with the private key sk , and utilizes the prefixes
of the array �k to generate all internal nodes of Merkle Hash
Tree, and the root node signed with the key sk . Meanwhile,
the algorithm attaches auxiliary information with the origi-
nal vertex v x to form the verifiable vertex v ′ x , i.e., v x || VI x . Here,
we denote ( V veri , E ) as the verifiable graph G veri . In the following
paragraph, we detail the algorithm Compute _ VIA . 
In Algorithm 2 , it first initializes an array � as well as the ar-
ray �k containing the prefix and suffix for each element, and
two boundary elements. Then, the algorithm traverses each
neighbor vertex vn x , y , and calculates the difference value dv
between the vertex v x and the neighbor vertex vn x , y for pro-
file A k . Note that if the profile value a x , k at the vertex v x is
larger than that at vn x , y , dv is positive; If they are equal, dv is
zero; Otherwise, negative. After finding the position ν, the al-
gorithm finds the corresponding position τ by comparing the
prefix values of the elements of the �k with the value dv . While
the value dv is the same with the prefix value of �( τ ), the al-
gorithm updates the suffix of the �( τ ) with the Bit-XOR value
between the suffixes of the �( τ ) and h ( ID vn x , y ). Otherwise, the
algorithm inserts a new element at position τ of the array �,
and sets the prefix as dv , and the suffix as h ( ID vn x , y ) �h ( a x , k ) �r x .
After traversing all neighbors, the Twitter signs the suffixes in
the array � with its private key sk , and generates all internal
nodes of Merkle Hash Tree, and the root node also signed with
the key sk . Hence, the auxiliary information VI x , k includes two
perspectives: all internal nodes of Merkle Hash Tree, and the
array �. 

5.3. Query processing 

Social data contains the massive economic valuations, but
the DUs commonly request a specific part of data instead of
the whole social data. For instance, an investigation company
investigates the living habits of the citizen located in “New
York”, it may only request social data with the profile value
“New York” from the DSP . 

Recall that each twitter has w profiles, from A 1 to A w 

. Un-
der this circumstance, the query can be divided into two cat-
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T

gories: single-profile query and multi-profiles query. For the for- 
er query, the DUs only focus on one profile for each query 

e.g., ˜ Q ( q )), while the multi-profiles query means the DUs can 

ombine any profiles with intersection and union operations. In 

his study, we only focus on the single-profile query, and the 
ulti-profiles query is beyond our discussion. For the single- 

rofile query, it commonly consists of three basic query styles: 
qual query (e.g., q = “New York”), range query (e.g., q = “20 < 

ge < 30 ”), and subset query (e.g., q = {“Temp”, “New York”}).
enerally, DUs generate the query based on their demands,
nd send the query to the DSP . 

For each query from the DUs , the DSP searches all vertices 
n the verifiable social graph G veri , and returns the subgraph G ’ 
atisfying the query condition q , and the corresponding aux- 
liary information. During the query processing, the DSP first 
nds out all elements on the array �k , whose prefix satisfies 
he query condition q . To verify the completeness of the pre- 
x, the DSP also needs to consider the boundary data. Based 

n these prefixes and the boundary data, the DSP extracts all 
nternal nodes to generate the root of Merkle Hash Tree, and 

he corresponding suffix. Hence, the verification object VO 

q 
0 

onsists of two parts: all internal nodes, and the correspond- 
ng suffixes. Subsequently, the DSP traverses all vertices in 

he social graph, and judges whether the value of each ver- 
ex satisfies the query condition q or not. If false , the DSP con- 
inues to search next vertex until all vertices have been tra- 
ersed; Otherwise, the DSP first extracts the signature VI x , 0 as 
he verification object VO 

q 
x , 1 , and then calculates a difference 

alue dv between the profile value a x , k and the query condi- 
ion q , i.e., dv = a x , k - q 

2 For the value dv , the DSP finds out all el-
ments, whose prefixes satisfy the dv . As previously described,
he boundary values also need to be considered, and all inter- 
al nodes are extracted to generate the root of Merkle Hash 

ree, and the corresponding suffixes. Therefore, the verifica- 
ion object VO 

q 
x , 2 is defined as two parts: all internal nodes,

nd the corresponding suffixes. As a result, the final verifica- 
ion object VO q can be defined as { VO 

q 
0 , { VO 

q 
x , 1 }, { VO 

q 
x , 2 }}, where 

 denote the IDs of the vertices whose profile value satisfy the 
uery condition q . Finally, the verification object VO q and the 
ubgraph G ’ are returned to the DUs . 

.4. Correctness and completeness verification 

s assumed in the adversary model, the DSP may return the 
ake query results with adding, deleting or modifying opera- 
ions. To prevent such malicious activities and guarantee the 
ights of the DUs , the subgraph G ’ should satisfy the correctness 
nd completeness , as described in Section 4 . In this section, we 
ainly address the following two problems step by step: 

• How to verify the correctness of the subgraph G ’ according 
to the auxiliary information? 

• How to verify the completeness of the subgraph G ’ according 
to the auxiliary information? 

Recall that the correctness of the subgraph means that all 
ertices in the subgraph contain a profile value identical with 
2 Note that, when the query q is equal, range or subset query, the 
alue dv is a determine, range , or set value, respectively. 

d

he query condition q . To implement such verification, for the 
ubgraph G 

′ with m vertices, the DUs needs to take the compu- 
ation overhead of O ( m ) 3 to check whether all vertices in sub-
raph G ’ contain the profile value identical with the query con- 
ition q or not. If False , the DUs can consider the subgraph G ’

ssued from the DSP as fake; If True , according to Definition 1 ,
he subgraph G ’ can be considered as satisfying correctness . 

For the completeness of the subgraph G ’, Definition 2 depicts 
hree perspectives, vertex completeness, profile completeness and 

riendship completeness . Here, the DUs separately verify these 
erspectives. 

Firstly, to verify the completeness of the vertices , the DUs first 
e-construct the root node according to the internal nodes of 
erkle Hash Tree in the verification object VO 

q 
0 . With the root 

alue, the public key of the Twitter , and the root signature, the
Us can verify the completeness of the prefixes in the array �.

f the result of the verification is true, the DUs continue to ver- 
fy the completeness of the suffixes in the array �, and calcu- 
ate hash values for the ID information of all vertices in the 
ubgraph G ’. With the Bit - XOR value of these hash values, and
he public key of the Twitter , the DUs can verify the vertex com-
leteness according to verify its value and the verification ob- 
ect VO 

q 
0 . If the signature verification can pass, the vertices of 

he subgraph G ’ can be viewed as complete ; Otherwise, the sub-
raph G ’ includes fake vertices. 

Secondly, for verifying the profiles completeness , the DUs cal- 
ulate the hash values for all profile values and the ID in- 
ormation of each vertex in the subgraph G ’, and utilize the 
it - XOR operation to these hash values. With the final Bit - XOR
alue, the public key of the Twitter , and the verification object 
O 

q 
x , 1 as the inputs, the DUs can verify the completeness of the 

ignature of VI x , 0 . If the signature VI x , 0 of each vertex in the 
ubgraph G ’ can be verified, the DUs consider the subgraph as 
he profile completeness . 

Thirdly, to implement the verification of friendships com- 
leteness , the DUs also traverse all vertices in the subgraph G ’
ith the following processes. For the vertex v x , they first cal- 

ulate the difference values, and utilize these values with the 
nternal nodes of Merkle Hash Tree in the VO 

q 
x , 2 to re-construct 

he root node. With this root value, the public key of the Twit-
er , and the signature of the root, the DUs can verify the correct-
ess and the completeness of the prefixes in the array �. If such
erification can pass, the DUs generate the suffixes for vari- 
us difference values with the same method in Algorithm 2 .
s the same with the verification for signature, the DUs take 

he generated suffixes, the public key of the Twitter , and the 
igned suffixes in the VO 

q 
x , 2 as the input, and verify the com- 

leteness of the suffixes. Likewise, if all suffixes of all vertices 
an pass, the subgraph G ’ satisfies the friendships completeness .

In summary, to guarantee the right of the DUs , the sub- 
raph G ’ should be verified the correctness and three perspec- 
ives of the completeness . 

.5. Security analysis 

o formally analyze the security of the basic scheme, we first 
escribe the following three malicious activities: 1) Firstly, the 
3 m denotes the number of vertices in subgraph G . 
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4 Notation that a x , k denote the profile value of the profile A k of 
the vertex v x , while a k , i means the i -th profile value for the profile 
A k . 
DSP may add / delete vertices of the subgraph. In this case, some
fake vertices and corresponding edges may be inserted into
the original subgraph; some true vertices and corresponding
edges may be removed from the subgraph. 2) Secondly, the
DSP may modify the profile values of vertices in the subgraph
G ’. The profile values of the twitters as one aspect of social
data, may be changed, e.g., modifying age, political affiliation
or gender of the twitters . 3) The DSP may modify the friend-
ships among vertices of the subgraph. In this activity, some
fake/true friendships among vertices may be added / deleted
to/from the subgraph. Even though, both the first and third
malicious activities affect edges in the original subgraph, we
state that they are different since the change of edges in the
first case relies on adding or deleting vertices, while the third
case only changes the friendships among the vertices while
keeping on the original vertices. 

For the first malicious activity, the DUs only need to check
whether the vertices in the subgraph are correct and complete
for a specific query condition. Recall that the Twitter gener-
ates the signatures for vertices with various profile values, and
stores them in the array �. In the verification phase as shown
in Section 5.4 , the DUs can easily verify whether the vertices in
the subgraph are correct and complete with the verification ob-
ject VO 

q 
0 . For the second malicious activity, the Twitter in the

algorithm Gen _ Verinfo generates the auxiliary information of
the profiles, i.e., VI x , 0 . Obviously, any modifications on the pro-
file values can be detected by the DUs with the auxiliary infor-
mation VI x , 0 . For the third malicious activity, the Twitter gener-
ates the auxiliary information for the friendships between the
current vertex and its neighbors based on their difference val-
ues of the profile values. When receiving the query results, the
DUs first verify the completeness of the difference values, and
further verify the completeness of the suffixes. To summarize,
the FakeDetection scheme is an effective method to guarantee
the correctness and completeness of the subgraph G ’. 

According to the above security analysis, we conclude that
when the auxiliary information is not compromised, all ma-
licious activities for vertices or edges can be detected. Sub-
sequently, we analyze the security of the auxiliary informa-
tion, which consists of four operations: hash, Bit - XOR, Merkle
Hash Tree , and Signature . For the Bit - XOR operation, the attack-
ers can infer the two values with a very small probability ac-
cording to the result of the Bit - XOR . In this study, we utilize
256-bit for hash function, so the attackers infer the two val-
ues with the probability 2/(2 256 -1). From Algorithms 1 and 2 ,
we can conclude that the security of the auxiliary information
can be deduced to the security of Merkle Hash Tree , and Signa-
ture schemes, which are proved to be secure in the previous
work (MHT and RSA ( Rivest et al., 1978 )). Since the hash func-
tions are the one-way functions, and the attackers do not know
the private key sk of the Twitter , they cannot compromise the
security of the auxiliary information. 

6. Enhanced scheme 

6.1. Overview of enhanced scheme 

For the profile A k , we introduce some notations. For instance,
the number of various profile values is m k (i.e., from a k , 1 to
a k , m k 
) 4 , and the number of twitters with profile value a k , i is

ψ k , i ( i ∈ [1, m k ]). In other words, the value of 
∑ m k 

i =1 ψ k , i is equal
to n . For neighbors of the vertex with the profile value a k , i , we
assume that the number of neighbors is μj , the number of var-
ious profile values is δj ( j ∈ [1, ψ k , i ]), and the number of neigh-
bors with this profile value is χj , z ( z ∈ [1, δj ]). Therefore, the

value of 
∑ δj 

z =1 χj , z is equal to μj . 
In the FakeDetection scheme, we mainly focus on the com-

putation overhead of the signature and the memory overhead
of Merkle Hash Tree. Intuitively, either the computation over-
head or the memory overhead is very huge, because there
are many signatures and a Merkle Hash Tree for each vertex.
Next, we formally analyze the computation overhead and the
memory overhead in the FakeDetection scheme. For computa-
tion overhead, the Twitter takes 

N sign = 

w ∑ 

k =1 

m k + 1 + 

w ∑ 

k =1 

m k ∑ 

i =1 

ψ k,i ∑ 

j=1 

(δ j + 1) 

signatures. While, for memory overhead, the Twitter takes 

Mem sign = 

⎛ ⎝ 

w ∑ 

k =1 

m k + 1 + 

w ∑ 

k =1 

m k ∑ 

i =1 

ψ k,i ∑ 

j=1 

(δ j + 1) 

⎞ ⎠ · sizeof (sign ) 

and 

Mem MHT = 

⎛ ⎝ log 2 ( 
w ∑ 

k =1 

m k ) + log 2 

⎛ ⎝ 

w ∑ 

k =1 

m k ∑ 

i =1 

ψ k,i ∑ 

j=1 

δ j 

⎞ ⎠ 

⎞ ⎠ · sizeof (hash ) 

for the social graph G . Since the amount of the twitters are
large and increase quickly, the computation overhead and
memory overhead of the auxiliary information is impractical.
Thus, we propose an enhanced scheme based on the following
observations to make our scheme more efficient. 

• Observation 1. To guarantee the friendship completeness be-
tween the current vertex and its neighbors, for each vertex
a Merkle Hash Tree is built, and all suffixes in the array �
are assigned. 

• Observation 2. For the assumption of single-profile query, we
can directly consider the vertices with the same profile
value as a whole to guarantee the friendships completeness . 

According to the observations 1 and 2, we propose an en-
hanced scheme FakeDetection + , where the Twitter takes the ver-
tices with the identical profile into account as a whole. In
the following, we first depict the generation of auxiliary in-
formation and query processing (refer to Sections 6.2 and 6.3 ),
and then discuss the query-result verification (as described in
Section 6.4 ). 

6.2. Generating verifiable social graph 

In the FakeDetection + scheme, we also leverage the identical
notations as in Section 5 . Algorithms 3 and 4 show how to
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Algorithm 3: Gen _ Verinfo + . 
Input: G , private key sk , the thresholds t k , i and t j , z 
Output: G veri 

1 Initialize a dictionary dic ; 
2 for Traverse each vertex v x do 
3 Generate the auxiliary information VI x , 0 as described 

in Alg. 1; 
4 for Traverse each profile A k , k ∈ [1 , w ] do 
5 if The a x , k is in dic then 

6 Update the element dic ( a x , k ) with the Bit-XOR 

value between the element and h ( ID x ); 

7 else 
8 Set the element dic ( a x , k ) as h ( ID x ); 

9 VI x,k = Compute _ VIA 

+ ( v x , vn x , y , A k , t k , i , t j , z ), y ∈ [1 , m 

s 
x ]; 

10 Sign all elements of the dictionary dic , and attach 

VI x ={ VI x , 0 , · · · , VI x , w 

} with the original vertex v x to 
form verifiable vertex v ′ x = v x || VI x ; 

11 Return the verifiable graph G veri ; 

Algorithm 4: Compute _ VIA 

+ . 
Input: v x , vn x , y , A k , t k , i , t j , z 
Output: VI x , k 

1 Initialize an empty array �; 
2 for Traverse each neighbor vertex vn x , y do 
3 Calculate difference value dv between the vertex v x 

and vn x , y on the profile A k ; 
4 Find the corresponding position τ based on the value 

dv ; 
5 if The number of traversed vertices with profile value a x , k 

is less than t k , i +1 and the number of traversed neighbors 
for difference value dv is less than t j , z +1 then 

6 if The element in position τ is identical with dv then 

7 Update the suffix with the Bit - XOR value 
between the previous suffix of the �(τ ) and 

h ( ID vn x , y ); 

8 else 
9 Insert dv as the prefix of �(τ ), and h ( ID vn x , y ) �

h ( a x , k ) �r x as the suffix; 

10 else 
11 if The element in position τ is not identical with dv 

then 

12 Insert the prefix of �(τ ) as dv , and the suffix as 
an random value; 

13 Sign suffixes of the array � with the private key sk of 
Twitter , and calculate the root with the prefixes of the 
array � as inputs of the MHT scheme, and signing its 
value; 

14 Return signature and the suffixes of the array � denoted 

as VI x , k ; 
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enerate the auxiliary information for the social graph with 

ur probabilistic scheme. 
Compared with the FakeDetection scheme, we take two addi- 

ional parameters as the input, i.e., two thresholds t k , i and t j , z , 
enoting t k , i vertices with the profile value a k , i , and t j , z neigh- 
ors with the identical profile value. In Algorithm 3 , apart 
rom calling for algorithm Compute _ VIA 

+ , the Twitter generates 
he auxiliary information as the almost identical method in 

lgorithm 1 . 
In FakeDetection + scheme, Algorithm 4 takes two other pa- 

ameters t k , i and t j , z as inputs compared with Algorithm 2 .
irstly, the algorithm initializes an empty array � to record the 
ifference values between the current vertex and its neigh- 
ors. Secondly, the algorithm traverses neighbors following 
he descending-order permutated ID set. For a neighbor ver- 
ex vn x , y , the Twitter calculates the difference value dv for the 
rofile A k , and finds the corresponding position τ of the ar- 
ay DV following with ascending-order. If the number of tra- 
ersed vertices with profile value a x , k is less than t k , i + 1, and 

he number of traversed neighbors for difference value dv is 
ess than t j , z + 1, the algorithm judges whether � contains the 
lement dv . If true, the suffix of the current position is updated
ith the Bit - XOR value between the previous suffix of the posi-

ion τ and h ( ID vn x , y ). Otherwise, the algorithm inserts the new 

refix and suffix into the array �. If the condition in Line 5 of
lgorithm 4 is not satisfied, the algorithm judges whether �
oes not contain the element dv . If true, the algorithm inserts 
v and a random value as the prefix and suffix, respectively.
n Section 7 , we discuss how to determine the parameters t k , i 
nd t j , z for various distributions. 

.3. Query 

n FakeDetection + scheme, we also leverage the identical query 
eneration as that in FakeDetection scheme. The DUs can gener- 
te three basic queries, i.e., equal query (e.g., q = “New York”),
ange query (e.g., q = “20 < age < 30 ”), and subset query (e.g.,
 = {“Temp”, “New York”}). Then, the DUs send these queries to 
he DSP . 

The DSP also finds out all social information(i.e., vertices 
nd edges) satisfying the query condition, and generates aux- 
liary information VO q including three kinds of information: 
ash values to re-construct the root MHT for each vertex, the 
uffix array for each vertex, signature dic ( q ). 

.4. Correctness and completeness verification 

n this section, we describe the correctness and completeness ver- 
fication for the query results. As in Section 5.4 , the DUs just
eeds to test whether all vertices of the query results satisfy 
he query condition q . If this test can be passed, the query re-
ults are viewed as satisfying the correctness . Otherwise, the 
SP returns fake query results. 

Likewise, the completeness verification consists of three per- 
pectives as described in Definition 2 , i.e., vertex completeness,
rofile completeness and friendship completeness . 

To verify the vertex completeness , the DSP , in either FakeDe- 
ection or FakeDetection + scheme, returns the signature dic ( q ) 
bout the ID information of all vertices satisfying the query 
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condition. Thus, the DUs only need to generate a auxiliary in-
formation for the ID information of all returned vertices with
the identical rule of the Twitter , and verify the signature dic ( q )
with the inputs of the public key of the Twitter , and the above
auxiliary information. If the signature can be accepted, the
vertices are complete ; Otherwise, the DSP does not guarantee
the vertex completeness . 

To prevent the DSP from modifying the profile values of
twitters, the Twitter generates the auxiliary information VI * , 0 
for each vertex. Thus, to verify the completeness of profiles , the
DUs only need to generate the auxiliary information with the
identical method for all vertices, and compare the results. Ob-
viously, if such comparisons can be passed, the profile complete-
ness of the query results can be guaranteed. 

Last but not least, the DUs verify the friendship completeness .
As in Section 6.2 , the DUs traverse all vertices. If the number
of traversed vertices is less than t k , i and the number of tra-
versed neighbors is less than t j , z , the DUs construct the root
of the MHT scheme according to the VO x , q , and generate the
auxiliary information for the suffixes. Then, the DUs compare
its signature and suffixes with the returned signature and suf-
fixes. If they are identical, it can verify the difference values and
suffix completeness . If the number of traversed vertices is larger
than t k , i and the number of traversed vertices is larger than t j , z ,
the DUs only need to construct the root of the MHT scheme,
and compare its signature and the returned signature. If they
are also identical, it can verify the difference values complete-
ness . When the above two tests have both passed, the DUs can
consider the query results are friendships completeness with a
possibility p . 

Intuitively, when t k , i and t j , z are closer to ψ k , i and χj , z , the
DUs detect the fake activities with a higher possibility p , but
the overhead is also closer to that in our basic scheme. Thus,
how to choose t k , i and t j , z directly affects the performance of our
enhanced scheme, either the computation overhead or detec-
tion possibility p . Next, we discuss about the analysis of se-
lecting t k , i and t j , z for various distributions, e.g., random distri-
bution and power - law distribution. 

7. Detection analysis 

The auxiliary information in the basic and enhanced schemes
chains the authentic nodes, attribute values, and edges with
cryptographic methods. As long as the hash operation and sig-
nature operation used for constructing the MHTs are secure,
the SDP cannot modify the authentic query result. 

We assume the DSP knows the number of leaf nodes and
the value of the root node in the MHT. After DSP modifies
the data, to pass the validation, they must find a preimage of
the root node with twice of bit-length of the hash value. And
the adversary has to recursively search for preimage of each
half until the preimage corresponds to the leaves. It needs

 log ( n ) � times, where n is the number of leaf nodes in the tree.
However, each hash value is an output of the cryptographic
hash function, it is unpreimageable Merkle (1980, 1990) . There-
fore, the probability of the DSP forging a valid proof is
negligible. 

Next, we check the validity of this algorithm. 
In our FakeDetection + scheme, the Twitter only takes partial
vertices and neighbors to generate auxiliary information ( t k , i
vertices and t j , z neighbors). In this section, we mainly address
the following problem: 

• What is the relationship between the detection probability p
and the parameters t k , i and t j , z ? 

• How to select the parameters t k , i and t j , z for various sub-
graphs? 

Based on the notations in Section 6.1 , we first evaluate
the relationships between the parameters t k , i and t j , z and the
probability p for the single profile value query. For a specific
query ˜ Q ( q = a k , i ), we assume that the DSP deletes/adds c j edges
for each vertex with the profile value a k , i , and t e is the number
of various edges for which the DUs ask proof in a challenge. Be-
sides, let X be a discrete random variable that is defined to be
the number of edges chosen by the DUs that match the edges
deleted/added by the DSP . Next we compute p d X or p a X , the prob-
ability that at least one of the edges deleted/added by the DSP
should be detected. The p d X and p a X are presented as Eq. (1) and
Eq. (2) . 

p d X = P{ X ≥ 1 } = 1 − p{ X = 0 } 

= 1 − μs − c 
μs 

· μs − 1 − c 
μs − 1 

· · · · · μs − t e + 1 − c 
μs − t e + 1 

(1)

p a X = P{ X ≥ 1 } = 1 − p{ X = 0 } 

= 1 − μs 

μs + c 
· μs − 1 
μs − 1 + c 

· · · · · μs − t e + 1 
μs + c − t e + 1 

(2)

where μs = 

∑ ψ k , i 
j=1 μj and c = 

∑ ψ k , i 
j=1 c j . Since μs − j−c 

μs − j ≤ μs − j−1 −c 
μs − j−1 , it

follows that: 

1 −
(

μs − c 
μs 

)t e 
≤ p d X ≤ 1 −

(
μs − t e + 1 − c 

μs − t e + 1 

)t e 

and 

1 −
(

μs 

μs + c 

)t e 
≤ p a X ≤ 1 −

(
μs − t e + 1 

μs − t e + 1 + c 

)t e 
. 

Here, we utilize the minimal probability to denote the proba-
bility, i.e., 

p d X = 1 −
(

μs − c 
μs 

)t e 
(3)

and 

p a X = 1 −
(

μs 

μs + c 

)t e 
(4)

separately. 
To quantify these probabilities, we assume the DSP only

deletes/adds 1% edges (i.e., c = 0.01 ·μs ). We can easily conclude
that when t e is set larger than 459 or 463, the probability p d X and
p a X can achieve at least 99%, respectively. That is, for the fixed c ,
our scheme only needs to a fixed number of verification edges
to achieve the detection probability of 99%. The variant t e is
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he result of t k , i and t j , z . For further analysis, we then discuss 
ow the Twitter chooses t k , i vertices and t j , z neighbors for spe- 
ific subgraphs to generate auxiliary information for the fixed 

 e . Obviously, when the parameters t k , i and t j , z are closing to 
 k , i and χj , z , the FakeDetection + scheme is identical with the 
akeDetection scheme. 

Since no previous work point at which distributions the 
umber of neighbors ψ k , i and the number of neighbors for var- 

ous difference values χj , z belong to, we consider two common 

istributions, i.e., the random distribution and the power - law 

istribution. Next, we will discuss based on the following four 
ases: random and random 

5 , random and power - law, power - law 

nd random, power - law and power - law 

.1. Random and random 

n this section, we discuss the relationship between t e and the 
arameters t k , i and t j , z based on the assumption that both pa- 
ameters ψ k , i and χj , z are randomly selected from the range 
1,n ]. Here, we separately set t k , i and t j , z as α · ψ k , i and β · χj , z ( j 
 [1, ψ k , i ] and z ∈ [1, δj ]), where α and β are in the range (0,1].
hus, t e is presented as follows: 

 e = 

t k,i ∑ 

j=1 

·
δ j ∑ 

z =1 

t j,z = 

α·ψ k,i ∑ 

j=1 

δ j ∑ 

z =1 

β · χ j,z = 

α·ψ k,i ∑ 

j=1 

β · μ j 

nd the mean value of t e is displayed as follows: 

 t e 〉 = 

1 
4 

· α · β · ( n + 1) 2 

For a fixed value n , when the value of α and β are identical,
 e can reach the maximum value. In other words, the detection 

ate can reach the highest. Thus, mathematically, α and β can 

e set as: 

, β = 

√ 

4 · 〈 t e 〉 
(n + 1) 2 

(5) 

bviously, the bigger the value of n is, the smaller the value of 
and β is. 

.2. Random and power-law 

n this section, we discuss the relationship between t e and the 
arameters t k , i and t j , z based on the assumption that the pa- 
ameters ψ k , i is randomly selected from the range [1,n ], and the 
istribution of χj , z satisfies the power-law distribution. Here,
he parameters, either ψ k , i or χj , z , are discrete integers, but the 
uthors in Clauset et al. (2009) claimed that discrete power-law 

ehavior can be approximated with its continuous counter- 
art due to the mathematical convenience. Thus, we also uti- 

ize the formulas for continuous distributions, such as Eq. (6) ,
nstead of discrete distributions. 

p(x ) = 

γ − 1 
x 

·
(

x 
x 

)−γ

(6) 

min min 

5 The formal denote the distribution of ψ k , i , while the latter de- 
ote that of χj , z . 

χ

e
b

To make the computation brevity, we first compute the 
ean value as follows Newman (2005) 〈 x 〉 = 

∫ ∞ 

x min 
p ( x ) ·x ·dx =

 

γ−1 
2 −γ

· x γ−1 
min · x 2 −γ | ∞ 

x min 
. Here we utilize n approximately to de- 

ote ∞ , and assume the parameter γ 2 to denote the power- 
aw distribution of the parameter χj , z , so 〈 x 〉 ≈ | γ2 −1 

2 −γ2 
· x γ2 −1 

min ·
 

2 −γ2 | n x min 
. As it is well known, the power - law distribution con-

ains a heavy tail. Intuitively, the values t j , z for the head and 

eavy-tailed should be different. To separate the head and 

eavy-tail, we assume the separating point as x s . Thus, we 
esign a method to select t j , z for the power - law distribution.
ere, we utilize β1 · χj , z for the top part of the power - law part,
hile we randomly extract β2 · (δ j − x s − 1) difference val- 
es for the heavy-tailed part. Thus, the t e is presented as 
ollows: 

 e = 

t k,i ∑ 

j=1 

·
δ j ∑ 

z =1 

t j,z = 

α·ψ k,i ∑ 

j=1 

⎛ ⎜ ⎝ 

δx s ∑ 

z =1 

β1 · χ j,z + 

β2 ·(δ j −δx s −1) ∑ 

z = δx s +1 

χ j,z 

⎞ ⎟ ⎠ 

Likewise, the mean value of t e can be displayed as follows: 

 t e 〉 = α · n + 1 
2 

·
(

β1 · δx s · | γ2 − 1 
2 − γ2 

· x γ2 −1 
min · x 2 −γ2 | n x min 

+ β2 · (δ j − δx s − 1) · | γ2 − 1 
2 − γ2 

· x γ2 −1 
min · x 2 −γ2 | n x min 

)
(7) 

Then, we discuss how to set the separating point x s . The 
raction of the total edges is 

(x s ) = 

∫ n 
x s 

x · p(x ) dx ∫ n 
x min 

x · p(x ) dx 
= 

n 2 −γ2 − x 2 −γ2 
s 

n 2 −γ2 − x 2 −γ2 
min 

In this study, we set W ( x s ) as 50% at least to compute the
eparating point x s for a fixed n . Thus, we can get another de-
ermining condition, i.e., 

β1 · δx s · | γ2 −1 
2 −γ2 

· x γ2 −1 
min · x 2 −γ2 | n x min 

β2 · (δ j − δx s − 1) · | γ2 −1 
2 −γ2 

· x γ2 −1 
min · x 2 −γ2 | n x min 

= 50% . (8) 

rom Section 7 , we can set the mean value of t e as 463, and
alculate the parameters α, β1 and β2 based on Eqs (7) and (8) .

.3. Power-law and random 

n this section, we assume that the parameter χj , z are ran- 
omly selected from the range [1,n ], while the distribution of 
 k , i satisfies the power-law distribution with the parameters 

1 and x min . As such, we can obtain the identical conclusion 

y replacing γ 2 with γ 1 in Section 7.2 . However, according to 
he following experiment, we set the fraction of the total edges 
or γ 1 as 80%. 

.4. Power-law and power-law 

n this section, we assume that both the parameters ψ k , i and 

j , z satisfy the power-law distribution with their own param- 
ters γ 1 and γ 2 . The separating points x 1 s and x 2 s for the distri- 
utions of ψ k , i and χj , z . Here, we present t e as follows: 
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 e = 

ψ 
x 1 s ∑ 

j=1 

α1 ·

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χ j,z + 

β2 ·(δ j −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χ j,z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k,i −ψ 
x 1 s 

−1) ∑ 

j= ψ 
x 1 s 

+1 

δ j ∑ 

z =1 

χ j,z 

In this study, we first compute the separating points x 1 s and
x 2 s , and accordingly set the fractions W ( x s ) as 80% and 50% for
the distributions of ψ k , i and χj , z , respectively. Furthermore, we
can get the values α1 , α2 , β1 and β1 according to Eq (8) . 

8. Performance analysis 

In this section, we analyze the performance for our designed
FakeDetection and FakeDetection + scheme. 

8.1. Generating verification information 

In Section 6.1 , we list the computation overhead in the Twitter
side to generate auxiliary information for the social graph, e.g.,
hash computations, signatures, HMAC operations and Bit - XOR
operations. 

Due to space constraints, we only consider the per-
formance of the case of power - law and power - law in the
FakeDetection + scheme. For each profile value, the Twitter takes∑ ψ k , i 

j=1 (2 ·δj -1) hash computations and one signature. While, for
HMAC and Bit - XOR operations, it takes 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χj , z 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z 

and 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

( 

δ
x 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z 

, respectively. Thus, the computation overhead of HMAC and
Bit - XOR operations can be computed as follows 

N 

+ 
HMAC = 

w ∑ 

k =1 

m k ∑ 

i =1 

⎛ ⎜ ⎝ 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ (w + 1) · n 

and 

N 

+ 
Bit-XOR = 

w ∑ 

k =1 

m k ∑ 

i =1 

⎛ ⎜ ⎝ 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ (w + 1) · n 

respectively. Obviously, the overhead for hash computations
and signatures in the FakeDetection + scheme are equivalent
to that in the FakeDetection scheme, while the overhead for
HMAC and Bit - XOR operations, compared with the FakeDetec-
tion are decreased. Here, we further discuss the number of
edges utilized to generate auxiliary information. In FakeDetec-
tion scheme, the number of edges utilized to generate auxiliary

information for the profile value a k , i is 
∑ ψ k , i 

j=1 

∑ δj 
z =1 χj , z . While

in the FakeDetection + scheme, the number of edges is 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z 

In Table 4 , we list the concrete number of edges for various
samples. 

8.2. Query 

For the performance of the query, there is no difference be-
tween the FakeDetection scheme and FakeDetection + scheme.
For a specific query ˜ Q ( A k = a k , i ), the DSP takes O ( n ) to traverse
all vertices in the social graph to find out vertices satisfying
the query condition. For each vertex satisfying the query con-
dition, the DSP takes O ( δj ) to search difference values satisfying
the query condition, and O ( log (δj )) to construct the auxiliary
information. 

8.3. Verification 

In this section, we analyze the performance of verifications.
For a query ˜ Q ( A k = a k , i ), the DUs take O ( ψ k , i ) to traverse all
returned vertices. For verifying the prefix of the auxiliary in-
formation of each vertex, the DUs take log (δj ) hash to construct
the root of the MHT, and one signature to sign the root. More-
over, the DUs take χj , z HMAC and χj , z -1 Bit - XOR operations to
verify the suffixes of the auxiliary information. Thus, the total
overhead of verifying one query contains 

∑ ψ k , i 
j =1 log (δj ) hashes,

ψ k , i signatures, 

α1 ·
ψ 

x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δ
x 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δ
x 2 s 

−1) ∑ 

z = δ
x 2 s 

+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ 
x 1 s 

−1) ∑ 

i = ψ 
x 1 s 

+1 

χj , z + w + 1

HMAC operations and 

α1 ·
ψ x 1 s ∑ 

i =1 

⎛ ⎜ ⎝ 

δx 2 s ∑ 

z =1 

β1 · χj , z + 

β2 ·(δj −δx 2 s 
−1) ∑ 

z = δx 2 s 
+1 

χj , z 

⎞ ⎟ ⎠ 

+ 

α2 ·(ψ k , i −ψ x 1 s 
−1) ∑ 

i = ψ x 1 s +1 

χj , z + w Bit − XOR 

operations. 

9. Experimental results 

In this section, we thoroughly evaluate the efficiency of
FakeDetection and FakeDetection + schemes. Firstly, we introduce
some implementation details, followed by the datasets used in
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Table 2 – Rate of γ located in the range [1,2]. 

Sample -100K Sample -1M Sample -Original 
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ur evaluations. Secondly, we explore the distributions for the 
arameters ψ k , i , μj and χj , z . Finally, we evaluate and compare 
he performance of FakeDetection and FakeDetection + schemes 
nder our datasets. 

.1. Experiment setup 

ur experiments are carried out on a commodity PC, with 

.4GHz Intel-i7 3770 CPU, 16GB Memory, a 7200RPM hard disk,
nd OS Windows 10. Besides, we utilize Python 2.7 to im- 
lement the code with 1500+ lines for exploring the distri- 
utions and the performance between the FakeDetection and 

akeDetection + scheme. 

.2. Datasets 

e utilize the real Twitter datasets, which have been used in 

he previous research for inferring home locations ( Li et al.,
012 ). This data set randomly selected 100,000 twitters as 
eeds to crawl in May 2011. For each user, they crawled 

is profile, followers, and friends. They obtained nearly 4M 

witters’ profiles and their social network. In this study, we 
xtracted their registered ID and locations. Specifically, we 
xtracted location with city-level labels with the form of 
cityName, stateName” and “cityName, stateAbbreviation”, 
here we considered all cities listed in the file of “List 
f Valid U.S. cities” downloaded from the White House 6 

More than 37,000 cities). Among them, we found 1,640,146 
witters and more than 51M edges. We used these twit- 
ers with their following relationships as our data set. We 
ote that these twitters had at least one labeled friend or 

ollower. 
To evaluate the performance of our schemes for vari- 

us number of twitters, we randomly sample three sam- 
les ( Sample -100K, Sample -1M, Sample -Original) from the above 
atasets, i.e., 100K, 1M, 1.6M twitters and their social network.
he size of sampled social data for Sample -100K, Sample -1M 

nd Sample -Original are 90MB (2MB twitters’ profile, 88MB so- 
ial network), 904MB (20MB twitters’ profile, 884MB social net- 
ork), 1.48GB (32MB twitters’ profile, 1.44GB social network). 

.3. Exploring the distribution of ψ k,i 

n this section, we first explore the distribution of the number 
f twitters with the identical location profile value. In Fig. 3 a,
 b and 3 c, we show that the probability density function (PDF) 
or the number of twitters with the identical location profile 
alue in three samples are identical. Moreover, we present the 
og-log cumulative distribution function (CDF) of the param- 
ter ψ k , i in Fig. 3 d. We can conclude that the CDF curve in
he Sample -100K is close to the left dot line with the slopes 
rom -2 to -1 for the number of twitters smaller than 10 3 ; 
hile the CDF curves in the Sample -1M and Sample -Original 

re all close to the right dot line with the slopes also from - 
 to -1 for the number of twitters smaller than 10 4 . Accord- 
ng to the previous description, a power-law distribution with 
6 https://www.whitehouse.gov/sites/default/files/omb/assets/ 
rocurement _ fair/usps _ city _ state _ list.xls . 

a
(  

o
c

DF 

p(x ) = 

γ1 − 1 
x min 

·
(

x 
x min 

)−γ1 

as a CDF 

 ̄(x ) = 

(
x 

x min 

)1 −γ1 

, 

he number of twitters living in various cities follow a power- 
aw distribution with parameter γ 1 between 2 and 3. Besides,
e get the minimal value of x min = 15. 

.4. Exploring the distribution of μj and χj,z 

n this section, we first explore the distribution of the number 
f neighbors μj for a specific subgraph, and then we further ex- 
lore the distribution of χ j,z . However, it is infeasible to explore 
ll possible subgraphs. Thus, for our data set, we briefly as- 
ume that the subgraph contains all twitters with the identi- 
al location profile value, and their social network. For instance,
he group of twitters with the location profile value “New York,
Y” and their social network can be regarded as a subgraph.
ased on such an assumption, we finally get 156, 760, 974 sub- 
raphs for various samples. 

For each subgraphs, we calculate the parameter γ for the 
umber of neighbors for various subgraphs. As depicted in 

ig. 3 f, we conclude that the parameter μj in most of cities fol-
ows the power-law distribution with parameter γ located in 

he range [1.5,2.5], and with the minima x min = 5. Table 2 shows 
hat the parameter γ for more than 98% subgraphs is located 

n the range [1.5,2.5]. Furthermore, the mean value of γ for all 
ubgraphs is 1.7. Likewise, we show the values of γ 2 of χj , k in 

ig. 3 g. According to the figure, we conclude that more than 

9% cases γ 2 locates in the range [1.4, 2.3]. Thus, the distri- 
ution of χj , k also follows power - law distribution with a mean 

alue of γ 2 = 1.6 and a minimal value x min = 2. 

.5. Generating verification information 

n this section, we detail the performance for generating 
uxiliary information of our FakeDetection and FakeDetection + 

chemes. Next, we separately consider the computation 

nd memory overhead for various samples. According to 
ections 9.3 and 9.4 , we conclude that the distributions of μj 

nd χj , z in our data set both follow power-law distribution.
hus, we will first determine the separating points x s for ψ k , j 

nd μj . Here, we set the separating point x μs and x χs as the 
 x min + n ) ·0 . 8 and ( x min + n ) ·0 . 5 . Fig. 3 e and 3 g show the fraction
f the total edges for μj and χj , z . According to these figures, we 
an conclude that 90% of the total edges are contained by 20% 

https://www.whitehouse.gov/sites/default/files/omb/assets/procurement_fair/usps_city_state_list.xls
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Fig. 3 – Fig. 3 (a), 3 (b) and 3 (c) depict the PDF of ψ k , i . Besides, the CCDF of the ψ k , i are shown in Fig. 3 (d), respectively. 
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Table 3 – Performance Comparison between FakeDetection 

scheme and FakeDet ect ion 

+ scheme. 

FakeDetection FakeDet ect ion + 

HMAC Bit - XOR HMAC Bit - XOR 

Sample -100K 2.55M 2.48M 0.14M 0.079M 

Sample -1M 31.18M 30.32M 1.76M 0.910M 

Sample -Original 50.53M 49.13M 2.86M 1.46M 

Table 4 – Number of Edges for Generating Verification In- 
formation. 

FakeDetection FakeDetection + 

Sample -100K 2,413,257 10,755 
Sample -1M 29,469,776 52,760 
Sample -Original 47,738,327 69,103 

Table 5 – Time Overhead. 

FakeDetection FakeDetection + 

Sample -100K 37.27s 1.45s 
Sample -1M 454.84s 17.37s 
Sample -Original 740.35s 27.9s 
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Table 6 – Memory Overhead. 

FakeDetection FakeDetection + 

Sample -100K 43.44MB 43.44MB 
Sample -1M 424.44MB 424.44MB 
Sample -Original 679.97MB 679.97MB 
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witters for μj , while only 50% of the total edges are contained 

y 50% twitters for χj , z 

Computation Overhead . To evaluate the computation over- 
ead detail, we separately compare the following three as- 
ects: number of HMAC and Bit - XOR operations, number of 
dges to generate auxiliary information, and computation 

ime. Table 3 lists the number of HMAC and Bit - XOR operations.
rom the table, we can conclude that the number of HMAC 

perations in the FakeDetection scheme are 17 × at least and 

8 × at most more than that in the FakeDetection + scheme 
or our samples, while the number of Bit - XOR operations in 

he FakeDetection scheme are 31 × at least and 33 × at most 
ore than that in the FakeDetection + scheme. Furthermore, we 

ist the number of edges for generating auxiliary information 

or various samples in Table 4 . According to these experimen- 
al data, the number of edges in the FakeDetection + scheme 
nly takes 0.44%, 0.17%, and 0.14% of those in the FakeDe- 
ection scheme for samples Sample -100K, Sample -1M, Sample - 
riginal, respectively. In other words, the computation over- 
ead with FakeDetection scheme is 224 × , 558 × and 690 × than 

hose with FakeDetection + scheme. Finally, Table 5 lists the to- 
al computation time of generating auxiliary information for 
arious samples. The computation time for generating auxil- 
ary information in the FakeDetection scheme takes 26 × more 
han that in FakeDetection + scheme. Obviously, these times are 
ess than that of number of edges, HMAC and Bit - XOR op- 
rations. This is the reason that the computation of gener- 
ting MHT between FakeDetection and FakeDetection + are no 
ifference. 

Memory Overhead . Another highlight point to evaluate the 
erformance of our schemes is memory overhead. Here, we 
eparately generate auxiliary information and list the mem- 
ry overhead of the suffix in Table 6 . From the table, we can
onclude that the memory overhead of the suffix in FakeDe- 
ection scheme is identical with that in FakeDetection + scheme 
or various samples. For instance, the memory size for Sample - 
00K and Sample -Original with either FakeDetection scheme or 
akeDetection + scheme are 43.44MB and 679.97MB. For mem- 
ry overhead, it can be seen that our schemes are efficient for 
urrent applications. 

.6. Query 

n this section, we evaluate the query efficiency. To evaluate 
he query efficiency for various query size, we generate var- 
ous number query conditions ( ̃  Q 10 , 

˜ Q 50 and 

˜ Q 100 ), where the 
uery condition 

˜ Q 10 means that we randomly choose 10 cities 
s the query condition. Since the number of twitters with the 
dentical profile value follows the power - law distribution, we 
rocess the query 100 times repeatedly and compute the aver- 
ge time as the query overhead. As shown in Fig. 4 a, the aver-
ge query time for the Sample -Original is 8ms per query, which 

s efficient to real applications. 

.7. Verification 

he verification performance on the side of data users is also 
 highlighting point to evaluate our schemes, so we evalu- 
te the verification performance in this section. As such, we 
ssume that DUs obtain the query results for the previous 
epeatedly query conditions ˜ Q 10 , 

˜ Q 50 and 

˜ Q 100 . We calculate 
he average verification time for the query results, and depict 
he verification overhead in Fig. 4 (b), 4 (c) and 4 (d). Obviously,
he verification overhead with the FakeDetection + scheme is 
ess than that with the FakeDetection scheme. Especially, for 
he data set Sample -Original, the average verification time 
ith the FakeDetection + scheme for 100 queries takes only 

.9s and 3.5% of that with the FakeDetection scheme. Further- 
ore, to evaluate the detection probability, we account into 

he number of edges for generating auxiliary information,
nd utilize Eqs. (3) and (4) to calculate the detection prob- 
bility p shown in Figs. 4 (e). Obviously, all detection proba- 
ilities are over 99%, which satisfies the requirement of our 
chemes. 
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Fig. 4 – Fig. 4 (a) depicts the average query overhead. The verification overhead for various data set are listed in Fig. 4 (b), 4 (c) 
and 4 (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Conclusions 

In social data transaction model, the DSP may resell fake data
to the DUs . To guarantee the correctness and completeness
of social data, we proposed a deterministic scheme FakeDetec-
tion to detect any malicious activities for vertices, profile val-
ues, and friendships. However, it is unrealistic to consider all
vertices and friendships due to a large volume of social data.
Therefore, we proposed a probability scheme FakeDetection + ,
in which partial vertices and neighbors with identical pro-
file values are taken into account to reduce the computation
overhead. Under the real social data with 1.6M twitters and
their social network, we conduct our experiments and demon-
strate that the enhanced scheme FakeDetection + takes only
27.9s (3.8% computation overhead of FakeDetection ) to gener-
ate auxiliary information. Besides, the DSP only takes 8ms to
process a query averagely. 
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But in fact, there are many users sign up every day, add 

riends and delete friend. The data are changing dramati- 
ally, so we can not consider they are static. For future work,
e will continue authenticity verification on dynamic social 
ata. 
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