
Journal of Parallel and Distributed Computing 181 (2023) 104741

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

IAP-SpTV: An input-aware adaptive pipeline SpTV via GCN on

CPU-GPU ✩

Haotian Wang a,b, Wangdong Yang a,b,∗, Rong Hu a,b, Renqiu Ouyang a,b, Kenli Li a,b,
Keqin Li a,b,c

a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
b The National Supercomputing Center in Changsha, Changsha, Hunan 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2022
Received in revised form 26 June 2023
Accepted 8 July 2023
Available online 17 July 2023

Keywords:
Format selection
GCN
Hybrid format
Pipeline model
SpTV

Sparse tensor-times-vector (SpTV) is the core computation of tensor decomposition. Optimizing the
computational performance of SpTV on CPU-GPU becomes a challenge due to the complexity of the
non-zero element sparse distribution of the tensor. To solve this problem, we propose IAP-SpTV, an input-
aware adaptive pipeline SpTV via Graph Convolutional Network (GCN) on CPU-GPU. We first design the
hybrid tensor format (HTF) and explore the challenges of the HTF-based Pipeline SpTV algorithm. Second,
we construct Slice-GCN to overcome the challenge of selecting a suitable format for each slice of HTF.
Third, we construct an IAP-SpTV performance model for pipelining to achieve the maximum overlap
between transfer and computation time during pipelining. Finally, we conduct experiments on two
CPU-GPU platforms of different architectures to verify the correctness, effectiveness, and portability of
IAP-SpTV. Overall, IAP-SpTV provides a significant performance improvement of about 24.85% to 58.42%
compared to the state-of-the-art method.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Tensors as a common form of high-dimensional representation
are widely used in Big Data [16]. Analyzing and utilizing these
tensor data is a fundamental problem in data analysis. Tensor de-
composition is one of the most commonly used data analysis tech-
niques, whose main performance bottleneck is SpTV.

Previous SpTV approaches adopt one of three strategies for
utilization. (1) The traditional way is to unfold a tensor into an
equivalent matrix and to make use of sparse matrix-times-vector
(SpMV) in Tensor Toolbox [14]. This approach takes full advantage
of existing matrix optimization methods but requires enormous
time-consuming conversion costs. (2) Element-wise operation uses

✩ The research was partially funded by the Key-Area Research and Development
Program of Guangdong Province (Grant no. 2021B0101190004), the National Key
R&D Program of China (Grant no. 2021YFB0300800), the Key Program of National
Natural Science Foundation of China (Grant nos. U21A20461, 92055213), the Re-
search Innovation Project for Postgraduate Students of Hunan Province (Grant no.
CX20220412), and the National Natural Science Foundation of China (Grant no.
61872127).

* Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan 410082, China.

E-mail address: yangwangdong@hnu.edu.cn (W. Yang).
https://doi.org/10.1016/j.jpdc.2023.104741
0743-7315/© 2023 Elsevier Inc. All rights reserved.
non-zero elements as computational granularity, avoiding other
additional overheads. The necessary atomic update operations [21]
in ParTI! [18] lead to unnecessary wait times. (3) The stream-
based and hybrid format computing model in HOCFS [39] sets the
number of streams by experience and uses a hybrid format con-
sisting of two formats. However, this method requires numerous
experiments to determine the optimal number of streams, and the
hybrid format has limited applicability. In contrast to the above
work, we consider introducing a new complex slice-based hybrid
format for SpTV to enhance the adaptability for sparse structures.
We overlap the execution time of data transfer and computing
via the pipeline technique. Naturally, deciding on the best format
for each slice and developing a pipeline SpTV algorithm are vital
concerns. Various sparse formats are appropriate for data with var-
ious sparse distributions. There will be a lack of data locality and
performance degradation if a tensor is selected in an inappropri-
ate sparse format. However, selecting a suitable format for various
types of sparse data still works.

The burgeoning popularity of deep learning gives new chances
to the format selection of sparse tensors [36]. SpTV iterations
amortize the additional costs associated with the implementation
of machine learning and deep learning. And repeated execution of
SpTV is common in large-scale linear systems and iterative pro-
cesses of tensor decomposition. The selection of the sparse format

https://doi.org/10.1016/j.jpdc.2023.104741
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104741&domain=pdf
mailto:yangwangdong@hnu.edu.cn
https://doi.org/10.1016/j.jpdc.2023.104741

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 1. Performance comparison of SpTV with different stream settings, where the maximum number of streams is limited to 32.
of a tensor using deep learning methods, such as convolutional
neural networks (CNN), as the recent research, requires first scal-
ing the tensor into a fixed size matrix [29]. For large scale tensors,
the preceding scaling method results in the loss of a significant
number of sparsely distributed features, resulting in an unsuit-
able format selection. Graph Convolutional Network (GCN) delivers
strong classification results for structured data [20,23,37] and is a
potential method for selecting the optimal sparse format for slices.

The pipelining technique is a skillful method for some com-
putation on the CPU-GPU [3]. This method covers communication
overhead by overlapping the computation time and data transfer
time on the CPU-GPU. The implementation of the pipeline comput-
ing paradigm depends on CUDA streams, and the optimal number
of streams is a topic worthy of investigation. Few streams cannot
completely overlap data transfer and computation time, whereas
a large number of streams will introduce a significant amount of
unnecessary overhead for launching streams.

Fig. 1 shows the performance comparison of SpTV with differ-
ent stream settings. It can be seen that using multiple streams
with just the suitable number of streams (Mulit-best) improves
performance compared to using only a single stream (Single) while
using too many streams (Mulit-worse) reduces performance. The
number of streams in the commonly used pipeline computation
paradigm is set empirically, while the high-dimensional and intri-
cate sparse structure of the tensor brings a new challenge to the
method of setting the number of streams empirically.

To address these issues while operating on three-mode tensors,
we present IAP-SpTV, an adaptive pipeline SpTV algorithm on CPU-
GPU. In this paper, we

• design a new sparse format called HTF and develop an adap-
tive pipeline SpTV algorithm. The algorithm uses different
types of formats for slices and adaptively set the optimal num-
ber of streams for the slice set of each format.

• construct Slice-GCN, a GCN which selects suitable sparse for-
mats for slices, and the model efficiently utilizes tensor fine-
grained sparse features to accelerate parallel computing.

• develop an IAP-SpTV performance model for pipelining. The
model is used to determine the ideal CUDA stream number
setting to maximize the overlap of transfer and computation
times during pipelining.

• perform experiments using real datasets, and the results show
that IAP-SpTV boosts performance on NVIDIA TITAN RTX
GPU by an average of 58.42% over the ParTI! library and
24.85% over HOCFS. Likewise, IAP-SpTV boosts performance
on NVIDIA Tesla V100 GPU by an average of 32.23% over the
ParTI! library and 24.87% over HOCFS.

The rest of the paper is organized as follows: Section 2 presents
the relevant definitions of tensors. Section 3 describes the hy-
brid format for tensors and a pipeline SpTV algorithm. Section 4
outlines our format selection method. Section 5 constructs a per-
2

Table 1
Table of symbols.

Symbol Definition

v A vectors or first-order tensors.
X , U , Y A matrices or second-order tensors.
X , Y A third-order tensor.
I, J , K Tensor mode sizes.
X::k The frontal slices of third-order tensor X .

sp The sparsity threshold of a tensor.
G A graph.
h, c A node of the graph G.
e An edge of the graph G.
H,C The set of nodes.
E The set of edges.

ξ The random variable.
ϒz The number of rows containing z nonzeros.
βi The size of an integer.
β f The size of a single-precision floating value.
H The threshold of HYB format.
He The maximum value of nonzeros of fibers.
Fn The number of fibers.
E The length of the fiber.
O The non-zero numbers of Fn fibers.
B The bandwidth of PCIe.
G v , Gs The storage size.
M The size of memory transaction.
R The clock rate of global memory.
N,n The number of concurrent streams.
Nsp The number of stream processors.
Nw The warp size.
Rfma The rate of FMA instruction on SM.
T The total execution time for SpTV.
TT,TTh2d,TTd2h PCIe transfer time.
CT Kernel computation time.
MA Memory accessing time.
CC Core computation time.
Ai , Av The index amount and the value amount.

formance analysis model for IAP-SpTV. Section 6 presents our ex-
perimental results and findings. Section 7 reviews the related work
on tensor operations and tensor sparse format selection. Finally,
Section 8 concludes the paper.

2. Notations and preliminaries

This section will introduce the basics of tensors and the com-
putation process of SpTV. Table 1 shows the definitions of symbols
used in this paper.

2.1. Background

A tensor is a multi-dimensional array. N-way or Nth-order
refers to the dimensions of the tensor. The vector is a first-order
tensor, denoted by italicized lowercase letters, e.g., v , and the ma-
trix is a second-order tensor, denoted by italicized capital letters,
e.g., U . The tensor of third-order or higher is a high-order ten-
sor, denoted by italicized capital calligraphic letters, e.g., X . And

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 2. The tensor X is of size 5 × 4 × 4 with five slices stored as HTF.
we use Xi jk to represent the element of the third-order tensor X
position (i, j, k).

For a third-order tensor X ∈RI× J×K , holding all but one of the
indices constant, such as holding all but one of the indices of mode
J constant, yields a vector that is called fiber. Holding all but two
of the indices constant, such as holding all but two of the indices
of mode J and K constant, yields a matrix that is called slice [13].

2.2. The n-mode (vector) product

The n-mode (vector) product is a tensor times vector in mode n.
If a tensor is sparse, it is called Sparse tensor-times-vector (SpTV).
Taking a tensor as an example, it is a product of multiplying the
tensor X ∈ RI× J×K by the vector v ∈ R J in mode J , denoted by
Y =X × J v . This results in Y ∈RI×K , where Y is two-order tensor,
and its operation is defined as

Yik+ =
J∑

j=1

Xi jk v j. (1)

As an example, let the frontal slices of X ∈R3×4×2 be

X::1 =
⎛
⎝1 7 13 19

3 9 15 21
5 11 17 23

⎞
⎠ ,X::2 =

⎛
⎝0 6 12 18

2 8 14 20
4 10 16 22

⎞
⎠ . (2)

Assume a vector v = [1 2 3 4]T, that the result of the 2-mode
product of X and v is Y , and Y ∈R3×2 is

Y =
⎛
⎝130 120

150 140
170 160

⎞
⎠ . (3)

2.3. Sparse format

A common parallel implementation of SpMV is to partition the
matrix into multiple segments in matrix operations. Typically, each
segment is independent of the others, which makes better reuse
of fetched matrix elements and decreases memory footprint. The
computation of a segment is performed by a CUDA thread (in
the rest of this paper, thread refers to CUDA thread unless oth-
erwise note) when SpMV is executed on GPU, where a thread is
the smallest unit of execution of NIVDIA GPU [9]. As a general-
ization of matrices, tensors are segmented naturally by slices to
utilize data parallelism. The sparse structure of tensors is prone
to problems such as discontinuous memory accesses and load im-
balance for parallel acceleration [33]. Several sparse tensor pattern
capture formats, including COO, CSR, ELL, HYB, and Dense, have
been proposed to accelerate the SpTV kernel. Therefore, slices can
be calculated in several sparse formats.
3

For COO format slices, three arrays cooVal, cooRowIdx, and
cooColIdx are employed to keep a list of its non-zero coordi-
nates and values. Each non-zero element is assigned to one thread
that evaluates some multiplications. Assuming that the storage size
of an integer is βi , and the storage size of a single-precision float-
ing value is β f . Then the total memory size of COO for O (nnz)
non-zero elements is (2 × βi + β f) × O (nnz). This only costs negli-
gible time, and no more operations are required to insert non-zero
elements.

For CSR format slices, the non-zero elements are stored with
three arrays csrRowPtr, csrColIdx, and csrVal. The csr-
ColIdx indicates the column indices of the non-zero elements,
and the array csrRowPtr stores the row pointers to the offsets
of each row. The last array, csrVal, represents the non-zero el-
ements [40]. The total memory size is βi × (Fn + 1 + O (nnz)) +
β f × O (nnz), where Fn is the number of fibers. Each thread takes
charge of one element in the result matrix, which means the dot
multiplication between one fiber and one vector.

For ELL format slices, array ellVal is set up to store values
of non-zero elements of each row, and array ellIdx is set up to
store the column indices of each non-zero element. These two ar-
rays store the values and column indices of each non-zero element
in the natural order. In Fig. 2, array ellIdx is {0, 2, 1, 3, 0, 1, 2, 3}.
The maximum number of non-zero elements in a single row is
denoted as He , which is 2. The memory size for one row is
(β f + βi) × He . As is still the case in CSR format, each fiber is
assigned to one thread.

For HYB format slices, ELL and COO store non-zero elements to-
gether [1]. The threshold H (usually set empirically) is used to de-
termine the format in which non-zeros are stored in the row. If the
number of non-zero elements in a row is greater than H , the parts
exceeding H are stored using COO, and the rest parts are stored
using ELL. Otherwise, all non-zero elements are stored in ELL. In
Fig. 2, H is set to 1. The total memory size is Ghybcoo + Ghybell . The
memory size cannot be expressed because it involves a different
number of non-zero elements per row so we will elaborate on the
memory size in Equations (15) and (16).

For Dense format slices, only one array dnsVal is used to store
the values of each element in a dense slice in a natural order. The
memory size of array dnsVal is β f × J × K . With one block as a
unit, each thread computes one block of the result matrix.

3. Hybrid tensor format

A single format to store the non-zero elements usually ignores
the spatial structure of tensors, resulting in huge memory access
delay [27]. The sparsity of the part in the whole tensor has not
been well exploited while there are many sparse storage formats.
To overcome the sparse locality, we propose a hybrid sparse format
that uses multiple formats to store slices and further design an
HTF-based pipeline SpTV algorithm.

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741
3.1. HTF storage structure

To address the sparsity of the segments, we propose a com-
pressed format called HTF. This hybrid format has several attractive
features: (1) it focuses on the local sparsity of slices instead of
the whole sparsity of tensors. (2) stores sparse tensor into vari-
ous slices with optimal formats, (3) implements optimal kernel to
obtain better data locality.

HTF format divides the whole tensor into several slices of the
same size. Each slice is available in CSR, COO, ELL, HYB, and dense
slice (Dense) formats. For simplicity of notation and space, we only
write HTF in terms of operating on the first mode such that the
size of one slice is J × K . Fig. 2 shows an example of a tensor with
size 5 × 4 × 4. We partition the whole tensor into 5 slices of size
4 × 4 compressing with the above formats.

HTF employs three arrays to record various slice formats, as
shown in Fig. 2. Array sliceIdx indicates the index of each slice.
Array sliceNnz represents the starting position of non-zero el-
ements of each slice (in Fig. 2, the starting positions of non-zero
elements of these five slices are {0, 3, 11, 19, 25}). The last entry
of this array is the total number of non-zero elements of all slices,
where this value in Fig. 1 is 41. Array format stores the corre-
sponding types of formats, which in Fig. 1 is {0, 1, 2, 3, 4}.

We will introduce the selection way of slice formats in Sec-
tion 4. Once the slice formats are decided upon, the non-zero
elements will be compressed into arrays. In this work, we pro-
vide the five formats listed in Section 2.3 to select and determine
the way each format is computed on the GPU, taking into consid-
eration the universality of the formats and their performance.

3.2. HTF-based pipeline SpTV algorithm

To improve the transfer bandwidth of GPU and the computa-
tional efficiency of SpTV, we design a pipeline SpTV algorithm with
HTF. Since our data is a sparse and high-dimensional tensor that
yields considerable transfer time, the computation process on the
GPU generates a lot of irregular computations and discontinuous
accesses. Based on this, we deploy CUDA streams to overlap the
transfer time and computation in a multi-pipeline fashion to re-
duce the overall processing time.

The HTF-based Pipeline SpTV algorithm is shown in Algo-
rithm 1. The main idea is to divide an entire tensor in HTF into
multiple sets of slices and transfer them from the CPU to the GPU
one batch at a time so that the current batch of data can be trans-
ferred while the previous batch is being computed.

Before presenting the specific algorithm, we need to determine
the splitting slice mode of SpTV to ensure that the algorithm per-
forms slicing that will result in performance benefits. Inspired by
[31], larger slice shapes, more non-zeros, and fewer slices can be
produced if the dimension with the smallest size is chosen as the
slice mode. More non-zeros in the slice, the higher the probabil-
ity of data reuse. And fewer slices, lower the overhead of format
selection. Thus, before performing SpTV, the algorithm selects the
smallest mode other than the computed mode as the split slice
mode. The algorithm has four inputs, which are the set of slices
in five formats in HTF, the vector of multiplication, the mode of
multiplication, and the number of CUDA streams to be started for
each of the five formats. Line 1 initializes the storage space of the
result matrix. Lines 2 to 4 pack each of the five formatted slice
sets, result sets, and stream number sets into a separate array for
subsequent traversal. Line 5 transfers the vector v from the CPU
to the GPU. Lines 6 and 7 initialize the number of CUDA streams
Nmax based on the maximum number of streams for each format,
which makes it easier to reuse CUDA streams. Lines 8 to 23 com-
pute the multiplication of the set of slices and vectors of different
formats in turn. The process is executed sequentially, meaning that
4

Algorithm 1 HTF-based Pipeline SpTV algorithm.
Input:

Five slice sets SC S R , SC O O , SE LL , SHY B , SDense of the tensor X in HTF format;
A vector v;
Mode J ;
Stream number NC S R , NC O O , NE LL , NHY B , NDense ;

Output:
A matrix Y ;

1: Let YC S R , YC O O , Y E LL , Y HY B , Y Dense is the result of five slice sets;
2: Let Y = [YC S R , YC O O , Y E LL , Y HY B , Y Dense];
3: Let S = [SC S R , SC O O , SE LL , SHY B , SDense];
4: Let N = [NC S R , NC O O , NE LL , NHY B , NDense];
5: Transfer v from CPU to GPU;
6: Let Nmax is the maximum value in the array N;
7: Create Nmax CUDA streams;
8: for t = 0 to 5 do
9: #pipeline parallel execution for

10: for n = 0 to N[t] do
11: Let Se is the subset of slices assigned to each stream in the slice set S[t];
12: Let Ye is the sub-matrix assigned to each stream in the result matrix Y [t];
13: Asynchronous transfer Se by stream n from CPU to GPU;
14: Let L is the number of slices in the subset Se ;
15: for l = 0 to L do
16: Let s[l] is the l-th slice of the Se set;
17: Let y[l] is the result of the l-th slice of Ye;
18: Multiply(s[l], v , J, y[l], n) on GPU;
19: end for
20: Asynchronous transfer Ye by stream n from GPU to CPU;
21: end for
22: cudaDeviceSynchronize();
23: end for
24: Stitch YC S R , YC O O , Y E LL , Y HY B , Y Dense to Y by slice number;
25: return Y ;

all slices of the current format are processed before moving on to
the slices of the following format. Lines 10 to 21 are executed by
N[t] pipelines in parallel. Lines 11 and 12 divide the slice set into
multiple subsets by the number of streams, which is equivalent to
fusing multiple slices into subsets to increase the execution time
of the kernel function. Line 13 calls the cudaMemcpyAsync function
to transfer the slices asynchronously from the page-locked mem-
ory on the CPU to the GPU. Line 14 gets the number of slices of the
set for this format. Lines 15 to 19 traverse each slice in the subset
of slices assigned to stream n and perform the multiplication com-
putation. Line 20 transfers the result asynchronously from the GPU
back to the CPU. Line 22 synchronizes waiting for all stream calcu-
lations to finish. Line 24 stitches the results of the five formats into
the result tensor. Line 25 returns and outputs the result tensor. The
format of output y[l] and the stitch tensor in Algorithm 1 is COO
format, which stores the indices and values of non-zero elements.

In general, two challenges are involved with the HTF-based
Pipeline SpTV algorithm. The first is the selection of a suitable for-
mat for each slice in the HTF. The second is adaptively setting the
optimal number of streams for each format. IAP-SpTV consists of
the HTF-based Pipeline SpTV algorithm and its solutions to these
challenges. Hence, we will present our proposed corresponding so-
lutions in the following two sections.

4. Input-aware format selection via Slice-GCN

To overcome the challenge of selecting a suitable format for
each slice in the HTF, in this section, we propose a two-stage for-
mat selection method to select the best format for slices during the
pre-processing stage. If the non-zero element sparsity of a slice is
greater than or equal to a threshold sp, the dense format has a
significant advantage over all sparse formats.

Thus, the first stage judges the sparsity of the slices and sets
some of the slices to the dense format. If the non-zero element
sparsity of slices is less than the threshold sp, as shown in detail in
Section 4.3, the format selection of slices becomes complicated, so
we construct Slice-GCN, a graph neural network model for format

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741
Fig. 3. The conversion result of a matrix to a bipartite graph.

selection of sparse slices. Hence, the second stage uses Slice-GCN
to select the suitable formats for slices.

4.1. Sparse structure representation

Selecting suitable formats for slices is a complex task that usu-
ally requires the analysis of a large amount of data. Hence, de-
signing an effective sparse feature extraction method is extremely
helpful for the format selection of slices. To achieve this goal,
a common approach is to statistically scale an arbitrary-sized slice
into a fixed-size matrix for use as an input to a CNN. Neverthe-
less, this scaling method tends to lose the sparse information of
larger slices, so we design a bipartite graph approach to express
the sparse features of slices. Specifically, we subdivide the sparse
features of slices into two categories: fine-grained features and
global features.

Fine-grained features are similar relationships between dif-
ferent rows and columns; therefore, the bipartite graph is used
to represent the fine-grained features of the slices. The bipartite
graph is a standard model for studying the partitions of rows and
columns of a matrix [12,31]. The bipartite graph converted from
a tensor is an undirected graph. The graph contains the two ver-
tex sets, representing the rows and columns of the matrix, and the
edge connecting the two vertex sets is represented as a non-zero
of the matrix. So, the bipartite graph G = (H, C, E) is used to
represent the matrix X . If matrix X has a non-zero in the 2nd row
and 3rd column, there must be an edge e2,3 = (h2, c3) in graph G
from node h2 in the vertex set H to node c3 in the vertex set C.
The matrix and the bipartite diagram converted from the matrix
are shown in Fig. 3 (a) and (b).

Global features number is 9. By traversing the tensor, all 9 fea-
tures are counted at once, that is, the total number of rows, the
total number of columns and the total number of non-zero ele-
ments, the mean, maximum, and minimum values of the non-zero
numbers of each row, and the mean, maximum and minimum val-
ues of the non-zero numbers of each column.

4.2. Slice-GCN design

Graph neural networks are one of the most popular methods
for learning graph data and are widely used in areas such as re-
lationship extraction and recommendation systems. Several graph
convolution and pooling layers are used by graph neural networks
to extract features from graph structures, and a multilayer percep-
tron (MLP) is applied to classify the feature data [29,37]. Message
passing between graph nodes is used by the graph convolution
layer to capture the dependencies of the graph. The main idea of
message passing is to iteratively aggregate feature messages from
neighboring nodes and integrate the aggregated messages with the
current central node messages [23]. A multilayer perceptron con-
sists of at least one input layer, one output layer, and one hidden
layer, where each node, except the input node, is a neuron using
a nonlinear activation function. And the backpropagation method
is used by the MLP to learn the mapping between the input and
output layers.
5

Slice-GCN is a redesigned GCN network that applies graph neu-
ral networks to select the suitable format for slices. A large number
of labeled matrices are demanded training Slice-GCN, so 2041 ma-
trices from SuiteSparse1 Matrix Collection are used. The process of
labeling matrices is divided into two steps. Firstly, the execution
time of each matrix of different formats is measured on the tar-
get hardware platform. Then the format with the lowest execution
time is used as the label of the matrix.

Based on the effective graph structure feature extraction ability
of the graph convolution layer and the powerful data classification
ability of MLP, we design Slice-GCN to select the optimal format for
slices. As shown in Fig. 4, where the GCN is used to extract infor-
mation about the graph structure, and the MLP is used to classify
the feature information extracted by the GCN. To balance the pre-
diction accuracy and computational overhead, we tested each of
the commonly used pending options to select the most suitable
parameters. Inspired by [34], the pending options for the feature
vector size are {16, 32, 64, 128, 256, 512, 1024} and for the hidden
layer neurons are {32, 64, 128, 256, 512, 1024, 2048}. After our ob-
servation, we finally set the length of the output feature vector to
512 and the number of hidden layer neurons to 128. Specifically,
the GCN in Slice-GCN consists of two GraphConv layers, and the
length of the output feature vector is set to 512 = 256 × 2. The in-
put of the MLP is set to a vector of length 521 = 256 ×2 +9, which
is a splice of the output vector of the GCN and the global feature
vector of length 9. In addition, since the total number of categories
in format is 5, the number of neurons in the hidden layer is set to
128 and the number of neurons in the output layer is set to 5.

4.3. Hyperparameter settings

The sparsity threshold sp of slices is the key hyperparameter
of the two-stage format selection method. Suppose Slice-GCN is
used to determine whether slices use dense format. In that case,
this will increase the computational overhead of Slice-GCN due to
a large number of edges in the bipartite graph composed of dense
slices and will also introduce a significant error for Slice-GCN that
is designed to identify fine-grained sparse structures. In contrast,
sparse threshold sp can quickly filter out matrices suitable for us-
ing the dense format. We use threshold sp to filter slices in dense
format to balance computational overhead and accuracy. To find a
suitable sparsity threshold sp, a set of matrices with 500 rows and
500 columns and sparsity from 0.1 to 0.25 with an interval of 0.01
is randomly generated. Thus, all the matrices are divided into 16
groups according to their sparsity, i.e., 0.1 to 0.25, with an interval
of 0.01. Each group has 100 matrices. A percentage of a group is
recorded, and this percentage is the ratio of the number of matri-
ces whose optimal format is Dense to the number of all matrices
in the group. The percentages for all groups are shown in Fig. 5. It
is seen that for groups with a sparsity greater than 0.23, the opti-
mal format of all matrices is Dense. As a result, the threshold value
of slice sparsity is set to 0.23.

Further, to improve the data stability during training, Slice-GCN
uses LogSoftmax as the output layer and NLLLoss as the loss func-
tion, where LogSoftmax and NLLLoss are open source classes pro-
vided by the Pytorch geometry library [8].

5. Performance model for IAP-SpTV

To solve the problem of selecting the optimal number of CUDA
streams for each format in HTF, in this section, we quantitatively
analyze the transfer and computation execution times of different
formats and model the problem of the optimal number of streams
to adaptively set the number of streams in IAP-SpTV.

1 http://sparse .tamu .edu/.

http://sparse.tamu.edu/

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 4. Slice-GCN model structure diagram.

Fig. 5. The relationship between matrix sparsity and the selected Dense as the best format.
5.1. Performance analysis for HTF

Multiple kernels being launched for diverse formats is a time-
consuming operation, which incurs the additional cost of contexts,
thereby degrading performance. With the help of streams, GPU
programs can efficiently perform memory access and computing
operations in parallel, thus improving data throughput. To be con-
crete, we employ CUDA streams to execute kernels in parallel on
the device and to synchronize the stream only when its batch
slices are completely executed. Hence, a fiber-wise static analy-
sis method is used to evaluate the time consumed by the above
formats on CPU-GPU.

The kernel computation time is influenced by the memory ac-
cess time (MA), the CUDA core computation time (CC), and the
slice format. In the case of the COO format, the kernel computa-
tion time is predominantly affected by the memory access time,
resulting in CT = Max(MA, CC). Conversely, for the ELL, CSR, HYB,
and Dense formats, which effectively utilize memory bandwidth,
the computation time is given by CT = MA + CC, as follows:

CT =
{

MA + CC, For CSR, ELL, HYB, Dense;
Max(MA,CC), For COO.

(4)

The total execution time T for synchronous SpTV on the CPU-GPU
is

T = TT + CT, (5)

where transfer time (T T) and computation time (C T) are closely
related to the number of non-zero elements. For the asynchronous
case, we will discuss it further in Section 5.2. The underlying com-
pilation optimization on the GPU usually affects the overlap be-
tween MA and CC. The quantitative analysis of this overlap cannot
be done by directly analyzing the hardware. Therefore, the effect
of this overlap is simplified in this paper in order to facilitate
model-solving. Inspired by [19], a distribution function is defined
to analyze the number of non-zero elements of fibers within a ten-
sor. The distribution function represents the proportion of the total
sample of fibers with a given length in the sample space for a ten-
sor. Given a random variable ξ , denoting the number of non-zero
elements of a fiber, the sample space � = {1, 2, ..., E}, where E
denotes the length of the fiber. Thus, the distribution function de-
noting the number of non-zero elements of the fiber is
6

P (ξ = z) = ϒz/Fn, z ∈ �, (6)

where ϒz denotes the number of fibers whose non-zero elements
number is z, Fn represents the total number of fibers. The expected
value of the number of non-zero elements in the fiber is

E(ξ) =
z∈�∑
z=1

(z × P (ξ = z)). (7)

Thus, the total number of non-zero elements of Fn fibers is de-
noted as

O = E(ξ) × Fn. (8)

Since the result is a dense two-order tensor Y ∈RI×K as shown in
Equation (1), assuming that the bandwidth size of PCIe is B , PCIe
transfer time for the five different formats is expressed as

TT = TTh2d + TTd2h = βi × Ai + β f × Av

B
+ β f × I × K

B
, (9)

where Ai is the index amount and Av is the value amount.
For each format, we have described the corresponding memory

size in Section 2.3. Then,

TTCOO = (2 × βi + β f) × O

B
, (10)

TTCSR = βi × (Fn + 1 + O) + β f × O

B
, (11)

TTELL = (β f + βi) × Fn × He

B
, (12)

TT Dense = β f × J × K

B
; (13)

TTHYB = Ghybcoo + Ghybell

B
, (14)

where He is the maximum value of non-zero elements in all fibers.
The HYB storage format is evaluated using a hybrid approach,
where for each fiber of the slice, the part above the threshold H is
stored using the COO format, and the rest is stored using the ELL
format. Assuming H is less than E(ξ), the total number of non-
zero elements in the COO part of the HYB format is denoted as
Fn × (E(ξ) − H) and the total number of non-zero elements in the
ELL part is denoted as Fn × H . Thus,

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741
Ghybcoo = (β f + 2 × βi) × Fn × (E(ξ) − H), (15)

Ghybell = (β f + βi) × Fn × H . (16)

The memory accessing time (MA) contains two parts: reading
and writing, which mainly considers the time of accessing global
memory. The optimization effects of Cache and shared memory are
disturbed by complex factors such as intermediate auxiliary arrays,
making them difficult to evaluate. To focus on modeling and opti-
mizing the problem of choosing the number of CUDA streams, we
have simplified the analysis of computational performance. Con-
tiguous data with a memory transaction length is read on global
memory simultaneously. If the data access of one warp is contin-
uous, the latency of access to the global memory can be hidden.
Increasing the coalescing of memory accesses by compressing ir-
regular arrays is one of our purposes in choosing a suitable sparse
format for slicing. Therefore, we assume that all access operations
coalesce. MA of a thread is expressed by

MA =
⌈

G v+s

M

⌉
× 1

R
, (17)

where M is the size of a memory transaction, and R is the clock
rate of the global memory. G v+s includes two parts, the vector
memory (G v) and the slice memory (Gs) which contains differ-
ent formats. Nsp is the number of stream processors (SP). Nw is
the number of threads per warp. Nb is the number of threads per
block.

For COO format, the memory accessed by each thread in-
cludes three portions, one nonzero element with two indices of
cooRowIdx and cooColIdx, the element in cooVal and the
corresponding element in the vector, where the memory size for
slices is (2 × βi + β f) × O as shown in Section 2.3 and for the in-
put vector is β f × J . According to Equation (17), MA is expressed
by

MA =
⌈

(2 × βi + β f) × O + β f × J

M

⌉
× 1

R
. (18)

Each warp of the GPU performs an inner product operation be-
tween two vectors to process a row. Therefore, the computation
time required for a warp to execute a sliced row is

⌈
E(ξ)
Nw

⌉
× 1

Rfma
,

where 1
Rfma

represents the computation time for float-multiply-add
(FMA) operation per thread, and the expected value E(ξ) repre-
sents the number of non-zero values per row. A slice consists of J
rows, and if only one warp is used to compute J rows, the compu-

tation time required is
⌈
E(ξ)
Nw

⌉
× 1

Rfma
× J . Fortunately, the GPU can

execute Nsp
Nw

warps simultaneously. Hence, the computation time
CC for the kernel is expressed as:

CC =
⌈
E(ξ)

Nw

⌉
× 1

Rfma
× J × Nw

Nsp
. (19)

The reasoning process for the other four formats of MA and CC
is similar to the COO format, so they are not described in detail.

5.2. Performance model for pipeline

Before measuring the overlap achieved on streams, we only
consider 2 copy engines and no implicit synchronization. GPU with
2 copy engines can use the PCIe bus in a full duplex, which
completes the full overlap in both directions of computation and
communication. No implicit synchronization involves the data be-
ing transferred after the kernel is computed. As shown in Fig. 6,
the dominant component determines which kind of pieces overlap
would select.
7

Fig. 6. Overlap with no implicit synchronization and 2 copy engines when using 4
streams.

The additional overhead introduced by start-up streams is rela-
tively large if the execution time is fast, which leads to an inability
to optimize the overlap between transfer time and computation
time. To balance the start-up overhead and execution time, we
transfer them all simultaneously in multiple streams for a slice
set of the same format to increase the execution time. Further-
more, for the entire tensor, i.e., a family of slice sets in multiple
formats, we transfer the slice sets of each format in batches. In
short, one batch transfers the slice set of one format, and multiple
batches transfer the whole tensor. Due to the longer kernel com-
puting, streams other than the first stream need to wait for the
data from the host. For transfer dominant, each stream gets data
from the host fast, so the wait time for all streams is minimized.
To sum up, the total execution time T (n) with all streams is mod-
eled as

T (n) =
{ TTh2d

n + CT + TTd2h
n + λn, CT ≥ TTh2d;

TTh2d + CT
n + TTd2h

n + λn, CT < TTh2d,
(20)

where n is the number of streams and λ is the penalty coefficient
to quantify the overhead of creating streams.

As a point of note, when the dominant kernel case is computa-
tion, we need to consider whether the kernel functions of each
stream completely occupy the computational resources of SMs.
The top part of Fig. 6 indicates sufficient computational tasks per
stream to occupy the SMs. When enough tasks are unavailable for
the streams, concurrent execution of the streams is generated in
the middle part of Fig. 6. This overall processing time is

T (n) = TTh2d + CT

n
+ TTd2h

n
+ λn (21)

which is the same as the transfer-dominated case, so the optimal
results of concurrent execution can be obtained by consulting the
transfer-dominated one.

The pipeline optimization is organized as follows:

arg min
n∈[1,N]

T (n), (22)

where N is the maximum number of concurrent streams in CUDA.
Actually, limited by contexts, registers, etc., the number of streams
that can be executed concurrently is finite instead of a creation of
infinity in streams.

Theorem 1. From the function form of (22), the optimization objective
T (n) for n is a convex function.

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Table 2
Experimental platforms configuration.

Platform attr V100 TITAN

Parameters Intel(R) Xeon(R)
Gold 6248 CPU

NVIDIA
V100 GPU

Intel(R) Xeon(R)
Silver 4110 CPU

NVIDIA
TITAN RTX

Microarchitecture Cascade Lake Volta Skylake Turing
Frequency 2.50 GHz 1.455 GHz 2.10 GHz 1.77 GHz
#Physical cores 20 5120 8 4608
Peak FP32 – 15 TFLOP/s – 16.3 TFLOP/s

Last-level cache 27.5 M 16 M 11 M 6 M
Memory size 132 G 32 G 132 G 24 G
Max bandwidth 131 GB/s 900 GB/s 107 GB/s 672 GB/s

Compiler gcc 5.5.0 nvcc 10.1 gcc 5.4.0 nvcc 10.0
Proof. Given two variables n1, n2 and arbitrary rational numbers
θ ∈ (0, 1), then define a function f (n1, n2) that

f (n1,n2) = T (θn1 + (1 − θ)n2) − θT (n1) − (1 − θ)T (n2)

=
⎧⎨
⎩

(TTh2d+TTd2h)×θ(θ−1)(n1−n2)2

[θn1+(1−θ)n2]n1n2
, C T ≥ TTh2d;

(CT+TTd2h)×θ(θ−1)(n1−n2)2

[θn1+(1−θ)n2]n1n2
, CT < TTh2d.

(23)

Obviously, θ − 1 < 0, f (n1, n2) ≤ 0, hence T (n) satisfies the defini-
tion of the convex function [15] in these two cases. �

Consequently, there must be an optimal number of streams to
minimize the overall GPU execution time in terms of Theorem 1.

Theorem 2. By Theorem 1, there exist solutions to Equation (22), defined
by nopt , satisfying the maximization of the overlap between computa-
tional and transfer time. The optimal stream number nopt is

nopt =

⎧⎪⎨
⎪⎩

√
TTh2d+TTd2h

λ
, CT ≥ TTh2d;√

CT+TTd2h
λ

, CT < TTh2d.

(24)

Proof. It is known based on Theorem 1 that the optimization ob-
jective of n is a convex function and the derivative of T (n) is
obtained for

dT (n)

dn
=

⎧⎨
⎩

λ − TTh2d+TTd2h
n2 , CT ≥ TTh2d;

λ − CT+TTd2h
n2 , CT < TTh2d.

(25)

Setting dT (n)
dn = 0, then, Theorem 2 is proved. �

According to the aforementioned formats analysis in Section 3,
we consider the adaptive number of streams for each format aimed
at minimizing T . Each slice has an optimal format, and the ex-
ecution for a set of slices with the same format is divided into
nopt groups according to the number of streams, with a minimum
granularity of one slice, to achieve full overlap using pipeline tech-
niques. We balance the transfer time and computation time of each
format executed for adaptive streams.

6. Experimental analysis

In this section, a significant number of experiments are con-
ducted to assess the performance of IAP-SpTV on CPU-GPU. All
comparative experiments utilize single-precision floating numbers,
and the results are the mean of ten runs.
8

Table 3
Details of the tensor datasets.

Abbr. Tensor Dataset I J K Non-zeros

Mov MovieLens Ratings 71568 65134 6 10000054
Het Hetrec2011-lastfm-2k 2100 18744 12647 186479
Ube Uber Pickups 4392 1140 1717 3309490
Chi Chicago Crime 148464 77 32 5330673
Nip NIPS Publications 42194 2862 14036 3101609

6.1. Platforms and datasets

We evaluate our work on two distinct CPU-GPU systems, the
full hardware configuration is shown in Table 2. The Slice-GCN
code is implemented using Python 3.7, PyTorch 1.4.0 and PyTorch
Geometric 1.6.0 (PyG).

Listed in Table 3, the tensor datasets used in this work are
publicly available and most of them are from FROSTT [32], with
the Hetrec2011-lastfm-2k [4] dataset, the MovieLens Ratings [11]
dataset, the Uber Pickups [32] dataset, the Chicago Crime [32]
dataset, and the NIPS Publications [10] dataset. Furthermore, Slice-
GCN utilizes train data from 2041 matrices inside the publicly
available dataset SuiteSparse Matrix Collection. The M-format of
the matrix indicates the format that requires the least time to
conduct 10 iterations of SpMV, with M-format 0, 1, 2, 3, and 4
representing CSR, COO, ELL, HYB, and Dense, respectively.

6.2. Results of model training

To perform a more comprehensive evaluation of Slice-GCN in
Section 4, we show the loss, test accuracy, and train accuracy of
Slice-GCN during training. During the training phase, Slice-GCN up-
dates the weight of the neural network based on the loss, which
is used to indicate the degree of deviation of the prediction from
the target value. Train accuracy and test accuracy show the pro-
portion of correctly predicted cases relative to the total number of
cases in the train and test sets, respectively, where a binary value
(true/false) indicates whether the prediction is correct.

We divide all matrices of SuiteSparse Matrix Collection into a
train set and a test set in the ratio of 80% and 20%, and we la-
bel the format in which the matrix performs best on the GPU for
SpMV as M-format. Considering the variations in computational
performance among slices on different GPUs, we compare the opti-
mal formats for all matrices in our experiments on the Tesla V100
GPU and TITAN RTX GPU. Among the 2041 matrices analyzed, 701
matrices exhibited different optimal formats on these two GPUs.
The intricate nature of these differences has motivated us to de-
velop methods that can effectively discern and address them. In
summary, the M-format derived from our tests is GPU-specific and
cannot be universally applied across GPUs with different architec-
tures. Retraining using the M-format specific to the corresponding
GPU is a viable solution to resolve this issue.

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 7. Loss value, accuracy on the train set, and accuracy on the test set for Slice-GCN during the training phase.

Fig. 8. Comparison of the number of streams analyzed theoretically and measured practically.
To demonstrate the training process of Slice-GCN, the loss val-
ues are counted at each step of Slice-GCN training, and the accu-
racy of the model on the train and test sets are also recorded after
each training step, as shown in Fig. 7 (a) and (b). The figures show
that as the number of training steps increases, the loss value de-
creases and stabilizes, and the accuracy rate on the train and test
sets increases and eventually stabilizes. A gradual decrease in the
loss value means that the prediction of the network for the matrix
format of the training data is gradually closer to the best matrix
format, which usually leads to a gradual increase in the accuracy
of the training set. Specifically, for V100, the model reaches a sta-
ble state after about 85 epochs, with a total training time of 1.01
hours. For V100, the model reaches a stable state after about 92
epochs, with a total training time of 2.29 hours. After the model
stabilizes, the train set accuracy is 87.81% on the V100 GPU and
88.35% on the TITAN GPU. And the test set accuracy is 84.31% on
the V100 GPU and 85.78% on the TITAN GPU.

6.3. Optimal number of streams

To verify the correctness of the optimal number of streams de-
rived from our pipeline performance model in Section 5, we com-
pare the execution time of executing SpTV using different numbers
of streams in mode-1 of the Nip dataset for CSR and ELL formats.
The experiments are run on the TITAN RTX GPU, and the results
are shown in Fig. 8. For different formats, we record the execution
time for the number of streams from 1 to 32. And for each format,
the results of the theoretical calculation of the optimal number
of streams are shown as yellow vertical lines. It is seen that the
number of streams obtained from the theoretical calculation (yel-
low line) is very close to the number of streams with the lowest
execution time in practice (red dot). Therefore, the results of our
pipeline performance model are correct and valid.
9

Additionally, the pattern of execution time changes in both for-
mats, falling first and then rising as the number of streams grows.
This is a situation because only a few streams can successfully
hide the data transfer time. The benefits of hiding data transfer,
however, are eventually balanced by the extra overhead of opening
streams when more streams are opened, and the amount of pro-
cessing required for each stream is reduced, as well as the transfer
time and computation time.

The CSR format has better adaptability than ELL, which also
leads to significant differences in computational execution time
between slices of different CSR formats. The substantial oscilla-
tions in the line graph of CSR relative to ELL in Fig. 8 demonstrate
that CSR is more susceptible to load imbalance as the number of
streams rises, and the computational granularity of each stream
grows finer.

6.4. Performance

To evaluate the effectiveness of the technique, we compare the
SpTV speed of the method based on the adaptive pipeline tech-
nique with the current state-of-the-art method on GPUs. Thus,
our baseline includes ParTI! [18] and HOCFS [39], where ParTI!
is the prevalent tensor library on GPU and HOCFS is the latest re-
search work on pipeline-based implementation for SpTV. In brief,
the ParTI! library is a synchronous single-format (COO) library. The
HOCFS is a two-format hybrid, pipeline asynchronous, empirically
dependent, and static. In contrast, the IAP-SpTV we have presented
is a multi-format hybrid, pipeline asynchronous, adaptive, and con-
ceptually analytic.

Furthermore, to demonstrate the progress of Slice-GCN for slice
format selection, the currently widely used CNN [41] was made as
a comparison method. To facilitate the distinction, the IAP-SpTV
implemented based on Slice-GCN is denoted as AdaptGCN, and
the SpTV implemented based on CNN and our proposed adaptive

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 9. Average execution time for SpTV on Mov.

Fig. 10. Average execution time for SpTV on Het.

Fig. 11. Average execution time for SpTV on Ube.

Fig. 12. Average execution time for SpTV on Chi.
pipeline technique is denoted as AdaptCNN. For a fairer compar-
ison, the CNN in the experiments is obtained by re-training us-
ing the same train set as Slice-GCN. Arbitrarily sized matrices are
scaled into fixed size matrices using statistical methods and then
fed into CNN.

Figs. 9, 10, 11, 12, and 13 are shown to give the results on
Tesla V100 GPU and TITAN RTX GPU to verify the portability of our
proposed method. (1) Compared to the execution time of ParTI!,
AdaptGCN achieves significant performance gains over most tests.
The reason is that ParTI! implements fine-grained SpTV in a non-
zero element-wise manner but executes only on the GPU default
stream, which is synchronous, so it has more execution time than
10
AdaptGCN. (2) Compared to the execution time of HOCFS, Adapt-
GCN improves performance over almost half of the tests. The rea-
son is that HOCFS only distinguishes between CSR and ELL formats
for slices and cannot improve the performance of slices whose
optimal formats are COO, HYB, and Dense. (3) Compared to the
execution time of AdaptCNN, AdaptGCN shows significant perfor-
mance improvement in some of the tests. The reason for this is
that the format chosen for the slices using CNN is often not op-
timal, and the unsuitable slicing format leads to a significant in-
crease in the overall execution time of SpTV. Moreover, since the
matrix size of the input to the convolutional neural network is
fixed, a scaling operation is performed on the slices before they

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 13. Average execution time for SpTV on Nip.
Fig. 14. The cost time of once SpTV computing compared with the model inference
for sparse formats.

are fed into the convolutional neural network. The scaling opera-
tion loses the locally sparse features of the slices [41]. In contrast,
the sparse matrix can be converted into a bipartite graph for input
into the graph neural network without scaling. Therefore, graph
neural networks are more suitable than convolutional neural net-
works for the sparse format selection of slices. (4) Besides, the
computational performance of the different methods for executing
SpTV on the V100 and TITAN platforms differs due to the different
CPU and GPU processors of the two platforms. Further, the com-
putational performance of all SpTV tests was better on the V100
platform than on the TITAN platform, which is also consistent with
the difference in the two hardware configurations.

Furthermore, ParTI! uses only a single format, so the format se-
lection is not required. Compared with HOCFS, which selects slice
formats based on the threshold of non-empty fiber density [38],
our designed selection method has better adaptability. Both HOCFS
and our proposed IAP-SpTV approach use hybrid storage formats,
so both have to pre-process overhead. The pre-processing overhead
is the time spent selecting and converting the slices to suitable for-
mats. In practical applications such as tensor decomposition, SpTV
is heavily iterated, and the pre-processing execution time can be
cost-shared by these iterations. Specifically, we compare the infer-
ence time of the model with the results of one actual SpTV exe-
cution time, as shown in Fig. 14. It can be seen that the inference
time is more than the actual SpTV execution time if the SpTV is
executed only once. Moreover, we repeated the execution of SpTV
to determine the number of iterations needed for our method to
perform better than the other methods. As shown in Fig. 15, the
extra inference time of our method compared to PARTI! typically
requires 100 iterations to amortize. The comparison with HOCFS
generally requires 200 iterations of amortization.

Overall, in most cases, we can see that the AdaptGCN method
outperforms the other methods. Specifically, the AdaptGCN method
improves computing performance over the ParTI! library by 58.42%
on average and over HOCFS by 24.85% on average on the TITAN
CPU-GPU platform. And the AdaptGCN method improves comput-
11
ing performance over the ParTI! library by 32.23% on average and
over HOCFS by 24.87% on average on the V100 CPU-GPU platform.

6.5. Analysis of results

To evaluate our proposed method more comprehensively, we
first show the execution time of each format of HTF, as shown in
Fig. 16 (a) and (b). The m-1, m-2, and m-3 are abbreviations of
mode-1, mode-2, and mode-3. From the figures, we can see that
CSR is the main format for slicing, followed by ELL. This shows the
rationality of choosing CSR and ELL formats as the main computa-
tional formats for HOCFS. And, COO, HYB, and Dense also have a
certain proportion for the calculation, which is an important rea-
son for the performance improvement of our method relative to
the HOCFS method. In particular, most of the mode-3 of Mov is
computed in Dense and ELL formats, which can be seen in Fig. 9
(a) and (b) that the performance improvement of AdaptGCN over
HOCFS on mode-3 of Mov is significant.

Second, we compare the differences between CNN and Slice-
GCN by the M-format during the format selection phase. If the
prediction format of Slice-GCN is 1, and the prediction format of
CNN is 0, the M-format difference is 1. If the format is the same,
the M-format difference is 0, and so on. We compare the differ-
ences in prediction results between CNN and Slice-GCN on differ-
ent platforms. On the V100 platform, there are differences in the
prediction results for 15.86% of the slices, while on the TITAN plat-
form, there are differences in the prediction results for 17.64% of
the slices. These differences in the prediction results of CNN and
Slice-GCN affect the performance of the subsequent execution of
SpTV, as demonstrated in the comparison of AdaptCNN and Adapt-
GCN in Figs. 9, 10, 11, 12, and 13.

Third, we show the variation in the number of CUDA streams
during the process of computation for the adaptive pipeline
method, as shown in Fig. 17 (a) and (b). There are variations in
the number of CUDA streams created to compute slice sets in the
corresponding formats in all modes. Hence, the adaptive pipeline
technique is effective for the HTF hybrid format. And, by compar-
ing the number of streams for the same dataset and the same
mode on V100 and TITAN platforms, it is seen that the number of
streams varies due to the different hardware configurations of the
platforms. Therefore, for different hardware platforms, our method
can adaptively find a suitable number of streams.

Last, both our approach and the benchmark approach exhibit
a low performance of SpTV as a percentage of peak GPU FP32
performance due to two main reasons. Firstly, in addition to con-
sidering the computation time, we also take into account the data
transfer time between the CPU and GPU, so the overall perfor-
mance is lowered. Secondly, SpTV is a memory-bound operator.
The high-dimensional and intricate sparse structure of the sparse
tensor introduces additional memory access overhead, contributing
to the lower percentage of peak GPU FP32 performance observed
with SpTV. In light of these findings, we plan to conduct further

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741

Fig. 15. The number of iterations required to amortize the model inference time for the different types of SpTV calculations. The SpTV calculation types are derived from the
SpTV calculations under three modes of the five tensors: Mov, Het, Ube, Chi, and Nip, resulting in a total of 15 types. In subfigure (a), the number of iterations of SpTV for
the Nip tensor m-1 of type is 3872, which is beyond the range of the coordinate axes. Therefore, only the SpTV calculations for the other 14 types are presented in subfigure
(a). Similarly, in subfigure (b), the number of iterations of SpTV for the Het tensor m-1 of type is 1244, which is beyond the range of the coordinate axes. Thus, subfigure (b)
includes the SpTV calculations for the other 14 types.

Fig. 16. The average execution time for each format of HTF.

Fig. 17. Number of streams for different formats of the adaptive pipeline method.
research to enhance the memory access efficiency of sparse ten-
sors in our future work.

7. Related work

With the popularity of big data, the research of large-scale
tensors and stream tensors is becoming diversified. With the
widespread use of tensors, designing efficient tensor multiplica-
tion is a problem worth exploring. Yang et al. [39] designed a
pipeline calculation method for third-order SpTV on CPU and
GPU. Chen et al. [5] proposed aeSpTV, an adaptive and efficient
SpTV framework on Sunway TaihuLight supercomputer, to solve
several challenges in optimizing SpTV on high-performance com-
puting platforms. Zheng et al. [42] designed an automatic op-
timization framework for tensor computation on heterogeneous
12
systems, and used heuristics to optimize the tensor computa-
tion program. Besides SpTV, the widely used tensor multiplication
operations are Tensor-Times-Matrix (TTM) and Matricized-Tensor-
Times-Khatri-Rao-Product (MTTKRP) [6,17,24,25,28,30], which are
computationally equivalent to multiple TTVs.

Identifying a suitable sparse computation format to improve the
efficiency of parallel computation is a classical research problem,
which has a new solution with the development of deep learning.
Elafrou et al. [7] explored the distribution of non-zero elements of
the matrix and designed methods for predicting performance for
SpMV. Yang et al. [38] developed an optimal partitioning strategy
based on dynamic programming and distribution functions of non-
zero elements to improve the performance of SpMV. Merrill et al.
[22] conceived a strictly balanced method for solving SpMV, which

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741
provides predictable performance and is essentially independent of
the non-zero distribution between rows. Akrem et al. [2] demon-
strated the effectiveness of machine learning for sparse matrix
format selection. Zhao et al. [41] and Sun et al. [34,35] revealed
the gap between CNN and sparse matrix format selection and de-
signed a CNN structure that delayed the sparsity information to
the later training process. Niu et al. [26] devised a fine-grained se-
lection method to find the best format for each tile in the matrix.

8. Conclusion

In this paper, IAP-SpTV, an adaptive pipeline SpTV method
based on CPU-GPU is proposed. More specifically, we first designed
a hybrid format HTF and then described the HTF-based Pipelined
SpTV algorithm. Second, we implemented Slice-GCN for selecting
suitable formats for slices. Third, we constructed a performance
analysis model for IAP-SpTV. Finally, we demonstrated the correct-
ness, effectiveness, and portability of our approach experimentally.

Besides accelerating IAP-SpTV, our input-aware format selection
method is a useful inspiration for the study of hybrid formats, and
our performance model provides guidance for the design of hetero-
geneous pipeline algorithms on CPU-GPU. In future work, we will
continue to explore the design and optimization of fine-grained
pipeline parallelism.

CRediT authorship contribution statement

Haotian Wang: Conceptualization, Formal analysis, Methodol-
ogy, Software, Writing – original draft. Wangdong Yang: Conceptu-
alization, Funding acquisition, Investigation, Project administration,
Supervision. Rong Hu: Data curation, Software. Renqiu Ouyang:
Visualization, Writing – original draft. Kenli Li: Resources, Supervi-
sion. Keqin Li: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which
data has been used.

Acknowledgments

The author sincerely thanks the editors and all the anonymous
reviewers for their comments, which are valuable and construc-
tive. The research was partially funded by the Key-Area Research
and Development Program of Guangdong Province (Grant no.
2021B0101190004), the Key Program of the National Natural Sci-
ence Foundation of China (Grant nos. U21A20461, 92055213), the
National Key R&D Program of China (Grant no. 2021YFB0300800),
and the National Natural Science Foundation of China (Grant no.
61872127).

References

[1] N. Bell, M. Garland, Implementing sparse matrix-vector multiplication on
throughput-oriented processors, in: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009, pp. 1–11.

[2] A. Benatia, W. Ji, Y. Wang, F. Shi, Sparse matrix format selection with multiclass
SVM for SpMV on GPU, in: 2016 45th International Conference on Parallel Pro-
cessing, ICPP, 2016, pp. 496–505.

[3] A. Benoit, Y. Robert, Mapping pipeline skeletons onto heterogeneous platforms,
J. Parallel Distrib. Comput. 68 (2008) 790–808.
13
[4] I. Cantador, P. Brusilovsky, T. Kuflik, 2nd workshop on information heterogene-
ity and fusion in recommender systems (HetRec 2011), in: Proceedings of the
5th ACM Conference on Recommender Systems, RecSys 2011, ACM, New York,
NY, USA, 2011.

[5] Y. Chen, G. Xiao, M.T. Özsu, C. Liu, A.Y. Zomaya, T. Li, aeSpTV: an adaptive
and efficient framework for sparse tensor-vector product kernel on a high-
performance computing platform, IEEE Trans. Parallel Distrib. Syst. 31 (2020)
2329–2345.

[6] Y. Chen, G. Xiao, M.T. Özsu, Z. Tang, A.Y. Zomaya, K. Li, Exploiting hierarchi-
cal parallelism and reusability in tensor kernel processing on heterogeneous
HPC systems, in: 2022 IEEE 38th International Conference on Data Engineer-
ing, ICDE, 2022, pp. 2523–2536.

[7] A. Elafrou, G. Goumas, N. Koziris, Performance analysis and optimization of
sparse matrix-vector multiplication on modern multi- and many-core proces-
sors, in: 2017 46th International Conference on Parallel Processing, ICPP, 2017,
pp. 292–301.

[8] M. Fey, J.E. Lenssen, Fast graph representation learning with PyTorch Geometric,
in: ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[9] M. Garland, S.M.L. Grand, J.R. Nickolls, J. Anderson, J. Hardwick, S.A. Morton,
E.H. Phillips, Y. Zhang, V. Volkov, Parallel computing experiences with CUDA,
IEEE Micro 28 (2008).

[10] A. Globerson, G. Chechik, F.C. Pereira, N. Tishby, Euclidean embedding of co-
occurrence data, J. Mach. Learn. Res. (2004).

[11] F.M. Harper, J.A. Konstan, The MovieLens datasets: history and context, ACM
Trans. Interact. Intell. Syst. 5 (4) (Dec. 2015).

[12] B. Hendrickson, T.G. Kolda, Partitioning rectangular and structurally unsym-
metric sparse matrices for parallel processing, SIAM J. Sci. Comput. 21 (2000)
2048–2072.

[13] T. Kolda, B. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009)
455–500.

[14] T.G. Kolda, B.W. Bader, Matlab Tensor Toolbox, 2006.
[15] A.J. Kurdila, M. Zabarankin, Convex Functional Analysis, Springer Science &

Business Media, 2006.
[16] D. Lee, K. Shin, Robust factorization of real-world tensor streams with patterns,

missing values, and outliers, in: 2020 IEEE 36th International Conference on
Data Engineering, ICDE, 2021.

[17] J. Li, J. Sun, R. Vuduc, HiCOO: hierarchical storage of sparse tensors, in: SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2018, pp. 238–252.

[18] J. Li, Y. Ma, R. Vuduc, ParTI!: A Parallel Tensor Infrastructure for Multicore CPUs
and GPUs, Oct 2018, last updated: Jan 2020.

[19] K. Li, W. Yang, K. Li, Performance analysis and optimization for SpMV on
GPU using probabilistic modeling, IEEE Trans. Parallel Distrib. Syst. 26 (2015)
196–205.

[20] S. Lin, W. Yang, H. Wang, Q. Tsai, K. Li, STM-multifrontal QR: streaming task
mapping multifrontal QR factorization empowered by GCN, in: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021.

[21] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, R. Vuduc, Optimizing sparse tensor times
matrix on GPUs, J. Parallel Distrib. Comput. 129 (2019) 99–109.

[22] D. Merrill, M. Garland, Merge-based parallel sparse matrix-vector multiplica-
tion, in: SC16: International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2016, pp. 678–689.

[23] C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, M. Grohe,
Weisfeiler and Leman go neural: higher-order graph neural networks, in: AAAI,
2019.

[24] A.K. Nguyen, A. Helal, F. Checconi, J. Laukemann, J.J. Tithi, Y. Soh, T.M. Ranadive,
F. Petrini, J.W. Choi, Efficient, out-of-memory sparse MTTKRP on massively par-
allel architectures, in: Proceedings of the 36th ACM International Conference
on Supercomputing, 2022.

[25] I. Nisa, J. Li, A. Sukumaran-Rajam, R.W. Vuduc, P. Sadayappan, Load-balanced
sparse MTTKRP on GPUs, in: 2019 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, 2019, pp. 123–133.

[26] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, G. Tan, TileSpMV: a tiled algorithm for
sparse matrix-vector multiplication on GPUs, in: 2021 IEEE International Paral-
lel and Distributed Processing Symposium, IPDPS, 2021, pp. 68–78.

[27] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, W. Liu, TileSpGEMM: a tiled algorithm for
parallel sparse general matrix-matrix multiplication on GPUs, in: Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2022.

[28] E. Qin, G. Jeong, W. Won, S.-C. Kao, H. Kwon, S.M. Srinivasan, D. Das, G.E. Moon,
S. Rajamanickam, T. Krishna, Extending sparse tensor accelerators to support
multiple compression formats, in: 2021 IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS, 2021, pp. 1014–1024.

[29] H. Ramchoun, M.A.J. Idrissi, Y. Ghanou, M. Ettaouil, Multilayer perceptron: ar-
chitecture optimization and training, Int. J. Interact. Multim. Artif. Intell. 4
(2016) 26–30.

[30] S. Smith, G. Karypis, Tensor-matrix products with a compressed sparse tensor,
in: Proceedings of the 5th Workshop on Irregular Applications: Architectures
and Algorithms, 2015, pp. 1–7.

http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC42BC247CA42E6B0145F5D92B3B77263s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC42BC247CA42E6B0145F5D92B3B77263s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC42BC247CA42E6B0145F5D92B3B77263s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib37419E5931D0BB0912AA2C4390D04DC1s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib37419E5931D0BB0912AA2C4390D04DC1s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib37419E5931D0BB0912AA2C4390D04DC1s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6C62EF2EA1F0F752003EE0DE232770E0s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6C62EF2EA1F0F752003EE0DE232770E0s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib467C9F06829E9E4AC60715CDDD6BA401s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib467C9F06829E9E4AC60715CDDD6BA401s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib467C9F06829E9E4AC60715CDDD6BA401s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib467C9F06829E9E4AC60715CDDD6BA401s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEC42628C94C415C83CC11109C4AB4204s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEC42628C94C415C83CC11109C4AB4204s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEC42628C94C415C83CC11109C4AB4204s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEC42628C94C415C83CC11109C4AB4204s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib5778E59AF7EA39FCAE040A40706F3772s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib5778E59AF7EA39FCAE040A40706F3772s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib5778E59AF7EA39FCAE040A40706F3772s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib5778E59AF7EA39FCAE040A40706F3772s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6102584F6F9D60BB7995E3EA433D5122s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6102584F6F9D60BB7995E3EA433D5122s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6102584F6F9D60BB7995E3EA433D5122s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib6102584F6F9D60BB7995E3EA433D5122s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibB1AE954AF138E88821A8B4EB7F060EEAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibB1AE954AF138E88821A8B4EB7F060EEAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib0B53697552F14CF75B53DAD7ED4EC6C0s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib0B53697552F14CF75B53DAD7ED4EC6C0s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib0B53697552F14CF75B53DAD7ED4EC6C0s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibB2486C4BE54487E6CAB3D722AAAA472Fs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibB2486C4BE54487E6CAB3D722AAAA472Fs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibDC2DE59FE37CEEB391CCB8453922BD50s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibDC2DE59FE37CEEB391CCB8453922BD50s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBCE8238B769D4F2AE9CF6CE9F38D890Cs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBCE8238B769D4F2AE9CF6CE9F38D890Cs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBCE8238B769D4F2AE9CF6CE9F38D890Cs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9ECFB1D98FFD144283CE3D35E4175CE7s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9ECFB1D98FFD144283CE3D35E4175CE7s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD035DA14976BA3DEA848BB355A6FD00Cs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib44B73823C2E9EB082FD119353F809515s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib44B73823C2E9EB082FD119353F809515s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib24EFC73EF30AA1333D1D566E70FFE808s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib24EFC73EF30AA1333D1D566E70FFE808s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib24EFC73EF30AA1333D1D566E70FFE808s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA7BFD6592468D91E8187B0C7E03A589Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA7BFD6592468D91E8187B0C7E03A589Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA7BFD6592468D91E8187B0C7E03A589Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibF894C8B9E99EC9E2F887870E9D85CDE3s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibF894C8B9E99EC9E2F887870E9D85CDE3s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC295FC0E1C29DFD9FD30EF0C71E5644Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC295FC0E1C29DFD9FD30EF0C71E5644Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibC295FC0E1C29DFD9FD30EF0C71E5644Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib503CB033C323015B714175D0CED64D80s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib503CB033C323015B714175D0CED64D80s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib503CB033C323015B714175D0CED64D80s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib503CB033C323015B714175D0CED64D80s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEF17F9F65E46F1A6135AA78DC6118A71s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEF17F9F65E46F1A6135AA78DC6118A71s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibCAEE8F19B921074A64FB1652AE4B64F5s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibCAEE8F19B921074A64FB1652AE4B64F5s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibCAEE8F19B921074A64FB1652AE4B64F5s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib98C2E8DE266607E38A60E5099ECF5DF3s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib98C2E8DE266607E38A60E5099ECF5DF3s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib98C2E8DE266607E38A60E5099ECF5DF3s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE3E9D958748B8FA36A36E3EE6FFFD26Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE3E9D958748B8FA36A36E3EE6FFFD26Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE3E9D958748B8FA36A36E3EE6FFFD26Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE3E9D958748B8FA36A36E3EE6FFFD26Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA82C299A011E24810F11464262471D20s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA82C299A011E24810F11464262471D20s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA82C299A011E24810F11464262471D20s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBAD607BEB6451AD5293A55A86885603Fs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBAD607BEB6451AD5293A55A86885603Fs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibBAD607BEB6451AD5293A55A86885603Fs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib671208724E6379222418074E654C9F57s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib671208724E6379222418074E654C9F57s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib671208724E6379222418074E654C9F57s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib671208724E6379222418074E654C9F57s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib966CDC3713886CF2193150316080EAA9s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib966CDC3713886CF2193150316080EAA9s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib966CDC3713886CF2193150316080EAA9s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib966CDC3713886CF2193150316080EAA9s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD168815089D0BBD3827D3BFAF86286ABs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD168815089D0BBD3827D3BFAF86286ABs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD168815089D0BBD3827D3BFAF86286ABs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibAE9706F983417625E6569BC9359A953Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibAE9706F983417625E6569BC9359A953Bs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibAE9706F983417625E6569BC9359A953Bs1

H. Wang, W. Yang, R. Hu et al. Journal of Parallel and Distributed Computing 181 (2023) 104741
[31] S. Smith, N. Ravindran, N. Sidiropoulos, G. Karypis, SpLATT: efficient and paral-
lel sparse tensor-matrix multiplication, in: 2015 IEEE International Parallel and
Distributed Processing Symposium, 2015, pp. 61–70.

[32] S. Smith, J.W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, G. Karypis, FROSTT: The
Formidable Repository of Open Sparse Tensors and Tools, 2017.

[33] N. Srivastava, H. Jin, S. Smith, H. Rong, D.H. Albonesi, Z. Zhang, Tensaurus: a
versatile accelerator for mixed sparse-dense tensor computations, in: 2020 IEEE
International Symposium on High Performance Computer Architecture, HPCA,
2020, pp. 689–702.

[34] Q. Sun, Y. Liu, M. Dun, H. Yang, Z. Luan, L. Gan, G. Yang, D. Qian, SpTFS: sparse
tensor format selection for MTTKRP via deep learning, in: SC20: International
Conference for High Performance Computing, Networking, Storage and Analy-
sis, 2020, pp. 1–14.

[35] Q. Sun, Y. Liu, H. Yang, M. Dun, Z. Luan, L. Gan, G. Yang, D. Qian, Input-aware
sparse tensor storage format selection for optimizing MTTKRP, IEEE Trans.
Comput. (2021).

[36] R.W. Vuduc, J. Demmel, Automatic Performance Tuning of Sparse Matrix Ker-
nels, 2003.

[37] H. Wang, W. Yang, R. Ouyang, R. Hu, K. Li, K. Li, A heterogeneous parallel com-
puting approach optimizing SpTTM on CPU-GPU via GCN, ACM Trans. Parallel
Comput. 10 (2) (2023).

[38] W. Yang, K. Li, K. Li, A parallel computing method using blocked format with
optimal partitioning for SpMV on GPU, J. Comput. Syst. Sci. 92 (2018) 152–170.

[39] W. Yang, K. Li, K. Li, A pipeline computing method of SpTV for three-order
tensors on CPU and GPU, ACM Trans. Knowl. Discov. Data 13 (2019) 1–27.

[40] Y. Zhang, W. Yang, K. Li, D. Tang, K. Li, Performance analysis and optimization
for SpMV based on aligned storage formats on an arm processor, J. Parallel
Distrib. Comput. 158 (2021) 126–137.

[41] Y. Zhao, J. Li, C. Liao, X. Shen, Bridging the gap between deep learning and
sparse matrix format selection, in: Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2018.

[42] S. Zheng, Y. Liang, S. Wang, R. Chen, K. Sheng, Flextensor: an automatic sched-
ule exploration and optimization framework for tensor computation on hetero-
geneous system, in: Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
2020.

Haotian Wang received the B.S. degree in 2018
from College of Information Engineering, Nanchang
University, China. He is currently pursuing the PhD
degree with the College of Information Science and
Engineering, Hunan University, China. His research in-
terests include parallel computing, artificial intelli-
gence, and data mining.

Wangdong Yang received the Ph.D. degree in
computer science from Hunan University, China, and
the M.S. degree in computer science from Central
South University, China. He is a professor of computer
science and technology at Hunan University, China.
His research interests include modeling and program-
ming for heterogeneous computing systems, parallel
and distributed computing, and numerical computa-
tion. He has published more than 60 papers in Inter-

national conferences and journals. He is currently served on the editorial
boards of IEEE Internet of Things Journal.

Rong Hu received the BS degree from Chang’an
University, China, and the MS degree from Hunan Uni-
versity, China, where she is currently working toward
the PhD degree. Her research interests include parallel
and scientific computing, with focus on sparse tensor
decomposition.
14
Renqiu Ouyang received the BS degree from Hu-
nan University of Technology, China. He is currently
working toward the PhD degree. His research interests
include parallel and scientific computing, with focus
on sparse tensor decomposition.

Kenli Li received the Ph.D. degree in computer sci-
ence from Huazhong University of Science and Tech-
nology, China, in 2003 and the M.S. degree in mathe-
matics from Central South University, China, in 2000.
He was a visiting scholar at University of Illinois at
Urbana-Champaign from 2004 to 2005. He is a full
professor of computer science and technology at Hu-
nan University. The main research fields are parallel
and distributed processing, supercomputing and cloud

computing, high-performance computing for big data and artificial in-
telligence, etc. He has published more than 300 papers in international
conferences and journals. He is currently served on the editorial boards of
IEEE Transactions on Computers. He is an outstanding member of CCF and
a member of the IEEE.

Dr. Keqin Li is a SUNY Distinguished Professor of
computer science with the State University of New
York. He is also a National Distinguished Professor
with Hunan University, China. His current research in-
terests include cloud computing, fog computing and
mobile edge computing, energy-efficient computing
and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems,
big data computing, high-performance computing,

CPU-GPU hybrid and cooperative computing, computer architectures and
systems, computer networking, machine learning, intelligent and soft com-
puting. He has authored or coauthored more than 780 journal articles,
book chapters, and refereed conference papers, and has received several
best paper awards. He holds over 60 patents announced or authorized by
the Chinese National Intellectual Property Administration. He is among the
world’s top 10 most influential scientists in distributed computing based
on a composite indicator of Scopus citation database. He has chaired many
international conferences. He is currently an associate editor of the ACM
Computing Surveys and the CCF Transactions on High Performance Com-
puting. He has served on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Computers, the
IEEE Transactions on Cloud Computing, the IEEE Transactions on Services
Computing, and the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow.

http://refhub.elsevier.com/S0743-7315(23)00111-9/bib65518392B7FA5C15A4206A00116BFBBAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib65518392B7FA5C15A4206A00116BFBBAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib65518392B7FA5C15A4206A00116BFBBAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE62F7966A443AA7EFE33F9D9A1396DF2s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibE62F7966A443AA7EFE33F9D9A1396DF2s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib95416F698602801E893F0F515BCFE4F6s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib95416F698602801E893F0F515BCFE4F6s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib95416F698602801E893F0F515BCFE4F6s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib95416F698602801E893F0F515BCFE4F6s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib04A96EF4F109D9435DB3F9221965D758s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib04A96EF4F109D9435DB3F9221965D758s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib04A96EF4F109D9435DB3F9221965D758s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib04A96EF4F109D9435DB3F9221965D758s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib06000583159EE0005D4F752A7A6AC9DAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib06000583159EE0005D4F752A7A6AC9DAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib06000583159EE0005D4F752A7A6AC9DAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9169F43F642C8E13B7CF9F6803AC8C36s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9169F43F642C8E13B7CF9F6803AC8C36s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA814D096C41E862BDF133571307D475Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA814D096C41E862BDF133571307D475Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibA814D096C41E862BDF133571307D475Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib27D1AA3D5C178BA06DAF93ECFE7FA716s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib27D1AA3D5C178BA06DAF93ECFE7FA716s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD56E718320C6CA5F035DC548328EC7EAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibD56E718320C6CA5F035DC548328EC7EAs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9E16C6465CA84BC79314F7C65CE2FE8Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9E16C6465CA84BC79314F7C65CE2FE8Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9E16C6465CA84BC79314F7C65CE2FE8Es1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEDAE75EBECBBD3AA40DB7B7A365B9B00s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEDAE75EBECBBD3AA40DB7B7A365B9B00s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bibEDAE75EBECBBD3AA40DB7B7A365B9B00s1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9CFFA7CCAB571394762E23C742004FBFs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9CFFA7CCAB571394762E23C742004FBFs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9CFFA7CCAB571394762E23C742004FBFs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9CFFA7CCAB571394762E23C742004FBFs1
http://refhub.elsevier.com/S0743-7315(23)00111-9/bib9CFFA7CCAB571394762E23C742004FBFs1

	IAP-SpTV: An input-aware adaptive pipeline SpTV via GCN on CPU-GPU
	1 Introduction
	2 Notations and preliminaries
	2.1 Background
	2.2 The n-mode (vector) product
	2.3 Sparse format

	3 Hybrid tensor format
	3.1 HTF storage structure
	3.2 HTF-based pipeline SpTV algorithm

	4 Input-aware format selection via Slice-GCN
	4.1 Sparse structure representation
	4.2 Slice-GCN design
	4.3 Hyperparameter settings

	5 Performance model for IAP-SpTV
	5.1 Performance analysis for HTF
	5.2 Performance model for pipeline

	6 Experimental analysis
	6.1 Platforms and datasets
	6.2 Results of model training
	6.3 Optimal number of streams
	6.4 Performance
	6.5 Analysis of results

	7 Related work
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

