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Abstract—Analysis of multi-dimensional data, especially tensor
decomposition, which extracts latent information, is becoming
considerably popular. Although multi-dimensional sparse data is
typically processed on multi-core processors, developing highly
optimized GPU-based Sparse Tensor Matrix Chain Multiplica-
tion (SpTMCM) is challenging. The purpose of this paper is to
investigate a novel approach named SpTMCM and to explore the
discovery of SpTMCM coupled with the emerging computing core,
Tensor Core Unit (TCU). In contrast to prior work, the proposed
novel approach enables a uniform storage format and optimization
approach for SpTMCM. We design a hybrid tensor format based
on multi-dimensional tiling that divides the tensor depending on
the tile threshold to address the inefficient memory accesses caused
by the irregular nonzero distribution of the sparse tensor. Further,
we develop a TCU-based tensor parallel algorithm with our novel
approach to increase the memory bandwidth. Compared to state-
of-the-art works, our method achieves 1.16 ∼ 24.12× speedup
for SpMTTKRP and 5.07 ∼ 7.15× speedup for SpTTMChain
across NVIDIA A100 GPU on a range of real-world sparse tensors.

Index Terms—GPU, hybrid format, parallel performance,
SpMTTKRP, SpTTMChain, sparse tensor, tensor core.

I. INTRODUCTION

T ENSOR is commonly used to represent multi-dimensional
data and is typically defined as multi-dimensional arrays

or N-directional arrays. Popular applications of tensor decom-
position include data mining [1], recommendation systems [2],
anomaly detection [3], and so on [4]. Sparse Tensor Matrix
Chain Multiplication (SpTMCM) is a fundamental kernel of
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tensor algorithms and applications, such as CP decomposi-
tion [5] and Tucker decomposition [6]. Most tensors in practical
applications are sparse, meaning that most of their elements
are zero. Consequently, it is essential to design and develop
parallel algorithms to optimize SpTMCM on contemporary
architectures.

In the past, numerous studies have been conducted on
SpTMCM, and the optimization of SpTMCM on various hard-
ware platforms has been an important research topic. Shared-
memory and distributed-memory systems [7], [8] are limited
by a cumbersome parallel execution model for SpTMCM [9],
so optimizing SpTMCM on GPU has become a prudent move.
Moreover, GPUs are undergoing a rapid evolution and Tensor
Core Units (TCUs) available on the latest GPUs offer new
opportunities for optimizing SpTMCM. TCUs provide high
performance and low power consumption, but its sole function
is Matrix Multiplication (MM) [10], [11]. GPU is inherently
scalable from domain-specific to general-purpose computing,
making the study of extending MM-specific TCUs to SpTMCM
interesting and significant.

Previous studies of optimization SpTMCM such as Sparse
Matricized Tensor Times Khatri-Rao Product (SpMTTKRP)
and Sparse Tensor Times Matrix Chain (SpTTMChain) are
independent and typically require a series of tedious pre-settings
to optimize the performance of individual SpTMCM, and these
complex processes often cause a lot of troubles for users [12].
Fortunately, there are similarities in data patterns and types of op-
timization among these various SpTMCM, and there have been
multiple attempts by researchers to explore a novel approach
for various SpTMCM [9], [13], [14], [15], [16], [17]. The focus
of these studies has been mainly on the generality of different
multiplications at nonzero granularity, which is detrimental to
the design of parallel algorithms based on TCU that focus on
MM. In light of this, we propose a novel MM-based approach
for representing SpMTTKRP and SpTTMChain by studying the
computational model of SpTMCM.

SpTMCM is inherently memory-constrained kernel due to
the irregular nonzero distribution of the sparse tensor, which
leads to frequent memory accesses [18], [19]. GPU with High-
Bandwidth Memory (HBM) can speed up SpTMCM in memory-
constrained kernel, making this a viable option. Despite the fact
that the high-bandwidth memory of GPU can surpass the mem-
ory limit of SpTMCM, there are still limitations such as limited
memory capacity and high memory access latency. Designing a
tensor format suitable for GPU is a feasible way to solve above
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problems. In previous studies, the compressed tensor format
can reduce the memory footprint and group dependency but
is limited by the mode-specificity [20], [21]. The tensor tiling
format, which stores tensors in tiles and exploits the localization
of data to reduce memory access overhead, has little utility
for tensors with irregular nonzero distribution [22], [23], [24].
Consequently, we construct a hybrid tensor format based on
tensor tiling, in which the nonzeros of a tensor with good data
locality are aggregated into a tile and saved, while the discrete
distribution of the tensor is still recorded as a single nonzero.
This makes effective use of the localization of tensor data and
reduces the additional burden of tile aggregation.

TCU, the latest computational component on GPU, is bound
to be a big trend to use to accelerate general-purpose compu-
tations [25], [26], [27]. TCU is designed to accommodate only
small dense matrices, hence conventional tensor storage formats
are incompatible with such hardware gas pedals. The process
of tensor tiling divides the tensor into smaller pieces, which
corresponds to the design of TCU. Based on this, we investigate
the acceleration of TCU for SpTMCM, using the fast MM of
TCU to accelerate the computation of tiles and maximize the
utilization of Multiplicative Accumulation (MAC) operation on
TCU.

In general, to address the above issues, in this paper, we
� propose a novel approach that coarsens the multiplication

pattern of SpTMCM from nonzero granularity to slice
granularity, which facilitates the design of the TCU-based
parallel algorithm.

� construct a hybrid tensor format based on multi-
dimensional tiling to provide higher memory efficiency for
the TCU-based parallel algorithm.

� develop a TCU-based SpTMCM parallel algorithm to max-
imize the performance benefits of new-generation GPU
through efficient memory access patterns and full utiliza-
tion of the MAC manipulation of TCU.

� test the performance of our proposed method on two recent
GPUs, and the experimental results show that our method
has a significant performance advantage over the baseline
method.

The rest of the paper is organized as follows: Section II out-
lines the basics of tensor, Section III summarizes recent related
research on SpTMCM, Section IV describes the MM-based form
of SpTMCM, Section V introduces the hybrid tensor format,
Section VI demonstrates a detailed implementation of TCU-
based SpTMCM, Section VII reveals our experimental results,
and Section VIII summarizes the works and contributions of this
paper.

II. BACKGROUND

A. Tensor Notation

We follow the definitions and symbols used by Kolda and
Sun in [4]. A tensor is a multi-dimensional array. Each of its
dimensions is called a mode, and the order of a tensor refers
to the number of dimensions or modes. A N th-order tensor
has N dimensions or modes. For example, a vector is a first-
order tensor, which is denoted by lowercase letter, e.g., v, and
it is also a row or column of matrix, by U(i, :) or U(:, j), and

TABLE I
TABLE OF SYMBOLS

it can be represented as a fiber which is defined by fixing all
tensor indices but one, by X (i, j, :). A matrix, a second-order
tensor, is denoted by capital letter, e.g., U , and it can also be
regarded as a slice which by fixing every tensor indices but two,
by X (i, :, :). A tensor of order 3 or higher is called high-order
tensor, is denoted by bold capital calligraphic letter, e.g., X . An
element at position (i, j, k) of tensor X is denoted by X (i, j, k).
An element at position (i, j) of matrix U is denoted by U(i, j).
An element at position i of vector v is denoted by vi. For the
rest of paper, unless otherwise noted, a third-order tensor X is
of dimensions I × J ×K. The symbols commonly used in our
paper are summarized in Table I.

Mode-n unfolding, also known as matricization, is a common
operation of SpTMCM. It is the process of transforming a tensor
into a matrix along mode-n and reordering nonzeros of the
tensor. For instance, a third-order tensor X ∈ RI×J×K , can be
unfolded into a matrix according mode-1, which is denoted as
X(1) ∈ RI×JK .

Some multiplication operations between vectors and matrices
are also fundamental operations of SpTMCM [16], [21], [28],
including Hadamard product, Kronecker product, and Khatri-
Rao product [29].

Hadamard product (also known as element-wise product or
Schur product) is a binary operation that takes two matrices
(vectors) of the same dimension and produces another matrix
(vector) of the same dimension as the operands. The Hadamard
product of two vectors a, b ∈ RI is a vector c = a ∗ b, c ∈ RI ,
with elements ci = ai · bi.

Kronecker product is an operation on two matrices (vectors) of
arbitrary size resulting in a matrix (vector). It is a generalization
of the outer product (which is denoted by the same symbol) from
vectors to matrices. The Kronecker product of two vectors a ∈
RI and b ∈ RJ results in a vector c = a⊗ b, c ∈ RIJ , defined
as

c = a⊗ b =

⎡
⎢⎢⎢⎢⎣
a1b

a2b
...

aIb

⎤
⎥⎥⎥⎥⎦. (1)
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For two matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-
Rao product is C = A�B which corresponds to Kronecker
product of their corresponding column vectors, defined as

C = A�B = [a1 ⊗ b1, a2 ⊗ b2, . . . , aK ⊗ bK , (2)

where C ∈ RIJ×K .

B. TCU Programming Model

TCU programming model plays an important role in design-
ing and implementing rectangle computation on GPU, which
has tremendously aided the advancement of machine learn-
ing, deep learning, and high performance computing. Compare
with CUDA Core, which calculates a floating-point operation
per clock cycle, TCU performs one matrix-matrix operation
(D = A×B + C) within each clock cycle, where A,B,C and
D are matrices of size 16× 16.

For ease of programming and using TCU, NVIDIA provides
Warp-level Matrix Multiply and Accumulate (WMMA) API.
The process of employing TCU can be divided into 3 stages.
First, the WMMA fragments Afrag, Bfrag, and Cfrag
are being declared. Second, Cfrag, the accumulator fragment
used to store the result of tile multiplication, is being set to
zero, and then the input tiles (A and B) are being loaded into
the fragments Afrag and Bfrag by executing the command
wmma::load_matrix_sync(). Third, tile multiplication
is performed by calling the command wmma::mma_sync(),
and then result is transferred from Cfrag to D in the GPU
global memory.

III. RELATED WORK

Optimizing SpTTMChain and SpMTTKRP operations has
been the key area in tensor composition, which proposes various
parallel strategies to achieve load balance and data reuse. Our
survey of previous work is based on (i) storage optimization for
sparse tensors; and (ii) parallel algorithms on SpTMCM.

Storage optimization for sparse tensors [30]: Hybrid for-
mats [21], [31] are made available to handle nonzeros without
favorable localization. For a tensor with N modes, SpTMCM
usually requires a sequence of N computations which is unac-
ceptable in practice. Nisa et al. [31] proposed a mixed-mode
tensor representation, where heavy fibers and slices are stored
at their most suitable modes. By storing just a portion of fibers,
the memory overhead associated with storing multiple modes
can be significantly reduced. Another hybrid scheme is to split
the entire tensor into dense and sparse parts according to a
given threshold condition. The parallel approach varies based
on different densities. Nisa et al. [21] constructed a Hybrid
Balanced-CSF format by splitting fibers to achieve inter-warp
load balance and partitioning tensor slices into three groups.

Bit-operation, as a common method of data compression, is
designed to efficiently process data that is frequently accessed.
Li et al. [24] proposed HiCOO format with a sparse-blocked
pattern to store a sparse tensor. It divided a third-order tensor
into sub-tensors of size 2× 2× 2 and represented every sub-
tensor with fewer bits. Nguyen et al. [22] designed BLCO format
which linearized the indices of one nonzero to an encoding line

represented by a single index. Each nonzero of the indices only
needs to be accessed once rather than as many times as modes
has the tensor.

Parallel algorithms for SpTMCM [32]: The most challeng-
ing aspect of the sparse tensor is its irregular and imbalanced
computation pattern. For sparse data, routine parallel strategies
cause severe load imbalance, with very large differences in the
data processed by each parallel unit. To solve the problem of load
imbalance, Li et al. [33] proposed a novel tensor memorization
algorithm and focused on a sequence of SpMTTKRP operations
to search the way to achieve the balance of computational
overheads among modes. Nisa et al. [21] split fibers and slices to
address the load imbalance among thread blocks on GPU. Heavy
fibers are split into fiber-segments, which enables near-equal
workloads for all the warps in the thread block. Liu et al. [9]
designed unified parallel algorithms for both SpMTTKRP and
SpTTMChain which were not sensitive to mode changes. They
captured changes in the computation pattern and used two flag
arrays to represent any changes in the index modes.

Fiber-, slice- or block-level computation as the granularity
are the basic tensor tiling methods. With tiling, index reuse
diminishes the reading times of nonzero locations. Fiber-level
partition represents the 1D tensor partition scheme. This formu-
lation of SpTMCM is based on the fiber-wise and column-wise
partitioning of input tensor and factor matrices, respectively.
Hu et al. [34] utilized vector inner-product to formulate SpMT-
TKRP and designed a fiber-level partitioning scheme. Hayashi
et al. [35] designed a two-step SpMTTKRP to use BLAS subrou-
tines. The 2-step algorithm first performed a partial SpMTTKRP
for a slice in a tensor followed by a tensor-times-vector operation
between a tensor and vectorization of a Khatri-Rao product.

Application of TCUs: The development of TCUs has been
fueled by deep learning. How to boost performance across a
range of applications has emerged as a research priority because
TCUs only provide matrix multiplication on small dense ma-
trices. Huang et al. [27] utilized TCUs to optimize hierarchical
Tucker tensor learning primitives and employed the optimized
primitives to optimize hierarchical Tucker tensor decomposi-
tion algorithms for extensive data analysis. Dakkak et al. [36]
expressed both reduction and scan by matrix multiplication
operations on TCUs and demonstrated a novel, straightforward,
and effective mapping of the reduction and scan primitives on
TCUs. TCUs were also commonly used in tensor analysis. Wang
et al. [37] proposed a graph neural network (GNN) acceleration
framework based on TCUs, which reconciles the sparse GNN
computation with TCUs. Hu et al. [38] demonstrated a TCU-
accelerated query engine, which expedited several query opera-
tions, such as group-by aggregates and natural joins. Chen et al.
[39] expressed a column-vector-sparse-encoding and designed
SpMM and SDDMM kernels on TCUs based on this.

IV. A NOVEL APPROACH OF SPTMCM

TCU is a novel type of functional unit included in the latest
NVIDIA GPU that significantly accelerates matrix multiplica-
tion operations relative to standard general-purpose processor
cores. It is difficult to use TCU to directly speed SpTMCM
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Fig. 1. Graphical representation of the Common Approach.

because of the enormous dimensionality of the tensor. The explo-
ration of a novel approach for SpTMCM such as SpTTMChain
and SpMTTKRP is currently an essential research topic due to
the complexity of the computational process of SpTMCM [9],
[13], [14], [15], [17]. In this section, we detail the novel approach
of SpTMCM we have designed to take advantage of TCU.

A. A Common Approach

SpTTMChain and SpMTTKRP are the key operations in
tensor decomposition, and these operations can be described
using some modal notations. The derivation of the modal no-
tation allows us to propose a unified optimization method for
SpTMCM [9], [15]. Taking the third-order tensor as an example,
SpTTMChain and SpMTTKRP can be expressed uniformly as
an element-wise computational form as follows:

Y(1)(i, :) + = X (i, j, k) (B(j, :)⊗ C(k, :)) , (3)

A(i, :) + = X (i, j, k) (B(j, :) ∗ C(k, :)) . (4)

Equation (3) describes the element-wise computational form of
SpTTMChain, where X (i, j, k) is a nonzero of the tensor X ,
B(j, :) and C(k, :) are row vectors of the factor matrix, and
Y(1)(i, :) is a row vector of a mode-1 unfolded tensor Y .

Similar to (3), (4) describes the element-wise computational
form of SpMTTKRP. The difference with (3) is that the result of
(4) is the row vector of the factor matrixA. From the perspective
of the computational process, (4) is Hadamard product between
the row vectors of the factor matrices B and C, while (3) is
Kronecker product.

The element-wise computational form of (3) and (4) as shown
in Fig. 1 uses the nonzeros of the tensor as the traversal objective,
which presents an opportunity to design efficient SpTMCM.
This has inspired us to design a novel approach of MM-based
calculation to better utilize TCU and fully exploit the perfor-
mance advantages of TCU in rectangular computing.

B. A Novel MM-Based Approach

To clearly demonstrate the approach we have designed for
SpTMCM, the formula for each element of the SpTTMChain
result is first given

Y(i, r1, r2) =
J∑

j=1

(
K∑

k=1

X (i, j, k)C(k, r2)

)
B(j, r1), (5)

whereB(j, r1) andC(k, r2) are scalar values of the correspond-
ing factor matrices, respectively, and Y(i, r1, r2) and X (i, j, k)
are nonzeros of the corresponding tensors, respectively.

Second, the computational form is adjusted to converge to the
inner product of vectors

Y(i, r1, r2) =
J∑

j=1

(X (i, j, :)C(:, r2))B(j, r1)

= B(:, r1)
T (X (i, :, :)C(:, r2)) , (6)

where B(:, r1) ∈ RJ×1 and C(:, r2) ∈ RK×1 are columns of
factor matrices, X (i, j, :) ∈ R1×K is a fiber, and X (i, :, :) ∈
RJ×K is a slice of the tensor X .

Third, the computational form is modified to yield the slice-
wise computational form of SpTTMChain.

Y(i, :, :) = BT (X (i, :, :)C) , (7)

where B ∈ RJ×R1 and C ∈ RK×R2 are factor matrices, Y(i, :
, :) ∈ RR1×R2 is a slice of the tensor Y .

Similarly, the formula for each element in the result of SpMT-
TKRP can be derived as follows:

A(i, r) =

J∑
j=1

(
K∑

k=1

X (i, j, k)C(k, r)

)
B(j, r), (8)

whereA(i, r),B(j, r), andC(k, r) are scalar values of the factor
matrix. After adjusting the computation form it can be expressed
as

A(i, r) =

J∑
j=1

(X (i, j, :)C(:, r))B(j, r)

= B(:, r)T (X (i, :, :)C(:, r)) , (9)

where B(:, r) and C(:, r) are associated, both being the r-th
column of the corresponding factor matrix, which is precisely
the distinction from (6).

Further, since the result of SpMTTKRP is a factor matrix
A whose number of columns is R, just like the columns of
factor matrices B and C. The slice-wise computational form
of SpMTTKRP is expressed as

A(i, :) = diag(BT(X (i, :, :)C)), (10)

where the diag function serves to take the diagonal of the matrix,
which is a vector A(i, :) ∈ RR×1. Examining (7) and (10) side
by side, it can be observed that taking the diagonal of the result
matrix of (7) yields the result vector of (10), which is the novel
approach we desire.

In summary, (7) and (10) demonstrate a novel approach as
shown in Fig. 2, and the principal pieces of this way are all matrix
multiplications, which is a motivating design for constructing
TCU-based parallel algorithms.

V. HYBRID LINEAR STORAGE FORMAT

Typically, a single sparse storage format is used to store sparse
tensor. Due to the absence of zero entries, the sparse storage
format considerably conserves storage space when compared to
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Fig. 2. Graphical representation of the MM-based Approach.

the dense storage format. However, because of the discontinuous
storage of nonzeros, sparse formats will cause high memory
access delay and performance reduction. To solve the above
issues, we propose the Hybrid Linear Storage (HLS) format
consisting of Dense Part (HLS-D) and Sparse Part (HLS-S).
In this section, we describe HLS format comprehensively.

A. Format Conversion

To overcome the aforementioned problems, the sparse tensor
is split into the dense part and sparse part, which will improve
the data locality of the former and facilitate the use of TCU to
accelerate SpTMCM. Furthermore, the integer index is replaced
by a binary linear index in HLS to mitigate the problem of high
memory access delay and accelerate data indexing.

Sparse tensor is usually stored in Coordinate (COO) format.
The conversion of a sparse tensor X ∈ R6×4×4 from COO to
HLS format is shown as Fig. 3. The whole process can be divided
into 4 stages. The first stage is Tiling. The sparse tensor X is
divided into a lot of third-order tiles of size SI × SJ × SK (this
size in Fig. 3 is 2× 2× 2). In Fig. 3, ti, tj , tk indicate the index
of tiles. Since the irregular nonzero distribution of sparse tensor,
Tiling will result in non-empty and empty tiles. However, only
non-empty tiles are recorded, as empty tiles are irrelevant to the
result of SpTMCM.

Classify: After Tiling, some non-empty tiles are dense, and
others are sparse due to the irregular nonzero distribution of
sparse tensors. These tiles are classified into dense and sparse
tiles according to threshold T (assuming that a tile is dense if
the number of nonzeros of it is great than or equal to T ). If
sparse tiles are stored as dense, it will cause lots of storage
waste. Furthermore, the performance of sparse tiles on TCU
is even worse than that on CUDA Core on SpTMCM. Hence,
only nonzeros in sparse tiles are recorded, and sparse tiles
are released. The tiles (in the rest of this paper, tile refers to
dense tiles unless otherwise noted) and discrete nonzeros will
be stored as dense and sparse parts, which is described in detail
in Section V-B.

Linearize: The multi-dimensional integer index of tiles
(nonzeros) are mapped to binary linear index (ti, tj , and tk
convert to Binary in Fig. 3), which reduces the complexity
of multi-dimensional matching. Note that the index of entries
within each tile begins at 0. The process of this stage is described
in detail in Section V-B.

Bitmap Represent: Although the use of binary linear index can
reduce storage usage, the storage of tiles remain still significant.
To further reduce it, the bitmap is used. A set of binary values
represents each tile value called a bitmap. It is used to track
which items of tile have nonzero values. The corresponding bit
in the bitmap is set to 1 if the value is nonzero and 0 otherwise
(i, j, and k convert to bitmap in Fig. 3).

B. Bit Optimization Techniques

As shown in Fig. 3. After classify, the tiles and nonzeros
are stored as HLS-D and HLS-S, respectively. Following is a
detailed description of HLS format.

HLS-S preserves only the information about nonzeros. Their
values of them are preserved in array nnz_vals. The number
of nonzeros is stored as variable nnz. And the number of bits
in each mode of nonzero’s integer index mapped to the binary
linear index is stored in array nnz_linear_bits.

For HLS-S, the indices of nonzero in each mode are com-
pressed into a single element (Binary in Fig. 3), which is stored
in nnz_inds. Bit represent of a nonzero is shown as Fig. 4(a).
In this example, the mode size of the sparse tensors are 6, 4,
and 4, so nnz_linear_bits is set as {3, 2, 2}. The integer
indices of this nonzero (1, 3, and 3) convert to binary linear
indices are {001, 11, 11}. So the bit represents 0011111. The bit
representation of HLS-D is similar to HLS-S.

For the dense part, HLS-D stores it as a whole tile. The tile
size in each mode is kept in array b_shapes. And the number
of tiles is variable nnb. Array b_inds is employed to hold the
binary linear index of tiles. Array b_vals_ptr represents the
offset of each tile relative to the first tile. The starting position of
the first element of each tile is stored in array b_vals. Variable
b_threshold is tile threshold. And the representation of array
b_linear_bits is similar to nnz_linear_bits.

For bitmap storage of tiles, HLS-D format employs array
b_bmp to store the bitmap of tiles. Each element of b_bmp
corresponds to a bitmap of each tile. As shown in Fig. 4(b), this
is a 2× 2× 2 tile with 3 nonzeros. The relative position of each
nonzero in the tile can be calculated by index. Therefore,b_bmp
is set as {10010001}.

C. Spatial Complexity Analysis

Consider a sparse tensor X ∈ RI×J×K with N nonzeros.
It has Ns nonzeros in sparse part. Hence, the space size M i

S

required to store the binary linear index of the sparse part is

M i
S = (�log2 I�+ �log2 J�+ �log2 K�)×Ns. (11)

In the tensor decomposition application scenario, half is ade-
quate to satisfy the accuracy criteria, so assuming that the data
type of the nonzero values is half (16 bits). The space size Mv

S

required for nonzero values is

Mv
S = 16×Ns. (12)
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Fig. 3. Example of a tensor converted from COO to HLS format.

Fig. 4. Examples of two bit optimization techniques.

Assuming that X has T tiles (SI × SJ × SK). Therefore, the
binary linear index of tiles occupies the space size M i

D is

M i
D =

(⌈
log2

I

SI

⌉
+

⌈
log2

J

SJ

⌉
+

⌈
log2

K

SK

⌉)
× T.

(13)

Further, the space size Mbm required for all tiles to store
indexes is

Mbm = (SI × SJ × SK)× T. (14)

And the space size Mv
D required to store the nonzero values

in dense part is

Mv
D = 16× (N −Ns). (15)

So total space size MH required for X stored in HLS is

MH = M i
S +Mv

S +M i
D +Mbm +Mv

D

= (�log2 I�+ �log2 J�+ �log2 K�)×Ns

+

(⌈
log2

I

SI

⌉
+

⌈
log2

J

SJ

⌉
+

⌈
log2

K

SK

⌉)
×M

+ (SI × SJ × SK)×M + 16×N. (16)

Dense format stores all element values of a sparse tensor with
float, whether or not that value is zero, where the float type
is 32 bits. Thus, the aforementioned derivation can lead to the
conclusion that HLS takes up substantially less space than Dense
format. COO format stores only nonzeros, and for third-order
tensor, uses three integer arrays to store indices and a float array
to store nonzero values, where the integer type is 32 bits. For
HLS-S, it takes up significantly less storage compared to COO

because of the use of the binary linear index. For HLS-D, because
bitmap is used, the storage occupied by it does not increase with
the increase of nonzeros of tile, and storage occupied is constant.
However, for COO, as the number of nonzeroes rises, so does
the storage that it occupies. Consequently, HLS-D requires less
storage when the number of nonzeros of COO exceeds the tile
threshold, that is, HLS takes up less space.

VI. HLS-BASED SPTMCM PARALLEL ALGORITHM ON GPU

In this section, the implementation of HLS-based SpTMCM
on GPU is demonstrated. First, the parallel algorithm for ac-
celerating SpTMCM using TCU is given. And then, the tile
threshold setting and task load scheme regarding this algorithm
are discussed.

A. Tcu-Accelerated Sptmcm

The parallel algorithm of HLS-based SpTMCM mainly con-
sists of two kernel functions, dense and sparse. For the dense
kernel function, tiles are stored in HLS-D format and are care-
fully designed to be loaded onto TCU. For the sparse kernel
function, tiles are stored in HLS-S format and are loaded onto
CUDA Core. Next, we characterize these two kernel functions
in detail.

For the nonzeros stored in HLS-D format, one result slice
is easily obtained by two multiplications of the corresponding
input slice and two factor matrices, as shown in SpTTMChain by
(7). SpMTTKRP just adds the operation of taking the diagonal
to this in (10). We perform SpTMCM under tiles, as indicated
in Fig. 5. The workflow of SpTMCM is broken down into four
steps. First, the input tensor X is partitioned into several tiles.
These tiles and two factor matrices are transferred into global
memory across PCIe. Second, all the mode-1 slices in each tile
are traversed to execute SpTMCM. Once factor matrices are
loaded, reusability is built into the following loop. Third, the
final product of SpTMCM needs to be processed further. In
SpTTMChain, this product is accumulated to the corresponding
slice in the result tensor Y . In SpMTTKRP, this product has
only diagonal elements contributing to the result matrix A, so
we accumulate these diagonal elements to the corresponding
rows in the result matrix A. Finally, the result is transferred to
CPU across PCIe.
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Fig. 5. Flow diagram of TCU-accelerated SpTMCM.

The pseudocode of how to employ TCU for (7) with our HLS-
D format is shown in Algorithm 1. The input tensor is divided
into tiles in terms of b_threshold, whose size is recorded by the
arrayb_shape. The variable nnb denotes the number of tiles. A
1D grid of thread blocks is used, and a thread block is exploited
to work on a single tile. Threads are organized in the form of
warps and lanes. The 32 threads form a warp and the index of
lanes indicates the relative index of the thread within the warp.
A thread block can be further divided into warps sized of N_w,
where these warps are employed to update a slice of a tensor or a
row of a matrix. To make better use of TCU, b_shape is set as
{16, 16, 16}, which means 16 slices, each the sized of 16× 16.
The fact that all modes in the tile are the same helps to reduce
the conversion overhead of SpTMCM under different modes.

In Fig. 4(a), the indices of tiles are mapped to a binary
linear index in HLS format. To get the corresponding matrix
location for the current tile, the binary linear index has to be
uncompressed to the coordinates. Algorithm 2 represents the
conversion function Binary2COO from binary linear index
to integer index of COO format, which is called in Line 9 of
Algorithm 1. It is obvious that all slices with one fixed mode
share the same factor matrices in (7). After factor matricesB and
C have been loaded for the first time by a warp, they will always
reside in the registers among iterations (Line 12 in Algorithm 1).
This yields data reuse for the slices with the same fixed mode.

The loop of each mode-1 slice in the tile is parallelized
by warps. Each warp handles 16/N_w slices (Line 19 in
Algorithm 1). Then, the intermediate product X (i, :, :)C is ob-
tained by multiplyingX (i, :, :)withC. For matrix multiplication
in WMMA, multipliers, multiplicands, and products have their
own structs, which are not to be assigned directly to each
other. In Line 21 in Algorithm 1, the i-th slice is filled into
the multiplier struct in the manner depicted in Fig. 4(b). The
intermediate product (X (i, :, :)C) in the product struct should
be transferred to the for the second matrix multiplication (Lines
24 and 25 in Algorithm 1). The i-th mode-1 slice is produced
by multiplying BT in the multiplier struct and X (i, :, :)C in the
multiplicand struct for the second matrix multiplication. Finally,

all contributions to the i-th mode-1 slice are accumulated to
complete the i-th mode-1 slice in the result tensor. Observed
that an additional step is required in SpMTTKRP, which takes
the diagonal elements of the last product, the i-th row of the
factor matrix A is composed of diagonal elements. While the
traditional work followed the element-wise computation, our
method is more all-purpose for SpTTMChain and SpMTTKRP.
In one tile, factor matrices involved in all slices are invariable the
same, which reside in the registers instead of being exchanged.
The transformation formula of SpTMCM not only reduces the
data transfer but also boosts the arithmetic intensity.

For nonzero stored in HLS-S format, we use an element-wise
way to compute the result corresponding to each nonzero ele-
ment. Each thread block computes an equal number of nonzero
elements, and each nonzero element is assigned to a thread.
First, each nonzero is assigned to a thread based on its thread
number. Second, the binary linear index is converted to an integer
index by Algorithm 2. Third, the corresponding element in the
result matrix Y is updated by each thread according to (4) in
SpMTTKRP, and the result tensor Y is updated according to (3)
in SpTTMChain.

The SpTMCM with HLS format not only expresses the
optimization based on TCU but also leads to two key issues:
(1) the tile threshold setting of HLS format, which determines
the optimal computing budget allocation to minimize the total
time consuming; and (2) the task load scheme, which impacts
the occupancy on GPU and further reacts to the bandwidth. To
address these key issues, we will elaborate on our solutions in
the next sections.

B. Tile Threshold of HLS

Different tile thresholds affect the computation of HLS-D and
HLS-S formats. If too much or too little computation for each
of the two formats, the algorithm will not perform optimally. So
it is necessary to find an optimal tile threshold. Experience is
commonly used to set tile threshold, that is, use the overall spar-
sity of sparse tensor to approximate the optimal tile threshold.
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Algorithm 1: Kernel Function of SpTTMChain on Mode-1
for Third-Order Tensors With HLS-D Format.

Input:
b_inds[nnb], b_bmp[64× nnb], b_vals[nnzD],
b_val_ptr[nnb+ 1], b_linear_bits[3], B[J ][R1],
C[K][R2];

Output:
Result tensor: Y ∈ RI×R1×R2 ;

1: using namespace nvcuda::wmma;
2: id_w ← threadIdx.x/32;
3: __shared__ uint pre_shm[64];
4: __shared__ half xcs[N_w × 256];
5: fragment x_frag, c_frag, m_frag, bT_frag,

xc_frag, y_frag;
6: if blockIdx.x < nnb then
7: // Get the tile coordinate index.
8: b_index← b_inds[blockIdx.x];
9: b_COO ← binary2COO(b_linear_bits, b_index);

10: // Get the corresponding matrix location.
11: B_t← B + b_COO[1]× 16×R1,

C_t← C + b_COO[2]× 16×R2;
12: load_matrix_sync(bT_frag,B_t, R1),

load_matrix_sync(C_frag, C_t, R2);
13: // Get the bitmap location for the current tile.
14: bmp_t← b_bmp+ 64× blockIdx.x;
15: vals_t← b_vals+ b_val_ptr[blockIdx.x];
16: // Get the prefix sum of the number of bits in the

bitmaps that are set to 1.
17: Get_Prefix_Sum(pre_shm, bmp_t);
18: off_w = id_w × 16/N_w;
19: for i← off_w to (id_w + 1)× 16/N_w do
20: fill_fragment(xc_frag, 0.0f );

fill_fragment(x_frag, 0.0f );
21: Fill2Frag(x_frag, vals_t, pre_shm, bmp_t);
22: mma_sync(xc_frag, x_frag, c_frag, xc_frag);
23: store_matrix_sync(xcs+ id_w × 256, xc_frag, 16,

mem_row_major);
24: load_matrix_sync(m_frag, xcs+ id_w × 256, 16);
25: mma_sync(y_frag, bT_frag,m_frag, y_frag);
26: Y(i, :, :)+ = y_frag;
27: end for
28: end if
29: return Y;

However, there is a certain error between the optimal threshold
by this method and the actual optimal threshold. According to
the introduction of the previous article, the computing budget
allocation of HLS-D format in a tile is fixed, regardless of the
number of nonzeros of the tile. However, the computing budget
allocation of HLS-S format changes linearly with the number
of discrete nonzeros. Therefore, an optimal threshold is such
that the computing budget allocation of HLS-S and HLS-D
formats in the size of a tile is the same. To find this optimal
threshold, a large number of experiments are conducted, which
is experimentally verified as described in Section VII-A3.

Fig. 6. Diagram of the process by which a tensor in HLS format loads
computational tasks onto the SM of the GPU.

Algorithm 2: Binary2COO Function.
Input:
b_linear_bits[3], b_index;

Output:
b_COO[3];

1: mask ←0xFFFFFFFFFFFFFFFF;
2: b0← b_linear_bits[0];
3: b1← b_linear_bits[1];
4: b2← b_linear_bits[2];
5: b_COO[0]← b_index	 (b1 + b2),

b_COO[1]← (b_index	 b1)&amp;∼ (mask � b1),
b_COO[2]← b_index&amp;∼ (mask � b2);

6: return b_COO[3];

C. Task Load Scheme

A suitable task scheduling strategy is beneficial for the per-
formance improvement of operators [36]. The two commonly
used task load strategies for hybrid formats on GPU are the
sequential load scheme and fusion load scheme. The sequential
load scheme is to launch each part of the computational task in
the hybrid format as a grid to the GPU in turn, such as CUSP [37],
whose hybrid format is implemented by sequentially launching
the kernel functions of the dense and sparse parts in turn. The
advantage of this scheme is that it is easy to implement. And
the disadvantage is that if the number of thread blocks in either
part of the computational grid of the hybrid format is too little,
then some Streaming Multiprocessors (SMs) are left idle, i.e.,
low GPU occupancy.

Instead, the fusion load scheme schedules the task load uni-
formly for hybrid formats, such as TileSpGEMM [38]. If a block
of threads from any part of the hybrid format cannot occupy the
entire GPU, the fusion load scheme schedules a block of threads
from other parts of the hybrid format to enter the GPU early
for execution. Also, the advantage of this scheme is high GPU
utilization but is more difficult to implement than the sequential
load scheme.

To fully utilize the GPU, a fusion load scheme based on HLS
is designed. Fig. 6 illustrates a tensor in HLS format loading
computational tasks onto the SMs of the GPU. The tensor in HLS
format is comprised of dense tiles and discrete nonzeros that are
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TABLE II
EXPERIMENTAL PLATFORMS CONFIGURATION

loaded onto the SMs in distinctive ways. The computational
tasks of each tile are organized into a thread block and executed
in a novel MM-based way, described in detail in Section VI-A.
It is refined to nonzero granularity since discrete nonzeros are
inhospitable to MM. Each thread block is designed to handle a
batch of an equal number of nonzeros to ensure load balancing
among each thread block.

VII. EXPERIMENTS

In this section, a large number of experiments are used to
fully evaluate our proposed method to Hybrid Linear Storage
Format Based Tensor Matrix Chain Multiplication Operation
(abbreviated HLSTO). First, the parameter settings of HLSTO
are given, and the effectiveness of the convergent load op-
timization scheme is verified. Second, the storage space and
computational bandwidth of HLS format are analyzed, and the
advantages and disadvantages of the HLS format are explained.
Third, the current state-of-the-art SpTMCM implementations
are compared to demonstrate the superiority and advancement
of the overall performance of our method. In our experiments,
the values shown are the average of the results of 100 repetitions
due to the relatively small standard deviation rates.

A. Setup

1) Platforms: We conduct experiments on two different ar-
chitectures of GPUs: NVIDIA A100 GPU (abbreviated A100)
with Ampere architecture, which is mounted on an Intel(R)
Xeon(R) Gold 5120 CPU, and NVIDIA TITAN RTX GPU
(abbreviated TITAN) with Volta architecture, which is mounted
on an Intel(R) Xeon(R) Silver 4110 CPU. The full configuration
is shown in Table II.

2) Datasets: We evaluate our method on six third-order
sparse tensors that are obtained from real-world datasets with
varying characteristics. These six real-world tensor datasets are
from GroupLens Research 1 and Didi Chuxing GAIA Initiative.2

Table III is a summary of the six datasets.
The first three datasets exhibited in Table III are all published

by GroupLens Research. The movie recommendation service
MovieLens members’ anonymous movie ratings are described in

1https://grouplens.org
2https://gaia.didichuxing.com

TABLE III
SUMMARY OF DATASETS

the dataset Movies.3 The Art dataset4 includes social networking,
tagging, and musician listening data from a group of 2000 users
of the internet music service Last.fm. The Book dataset includes
social networking, bookmarking, and tagging information from
a group of 2000 users of Delicious social bookmarking system.
The last three datasets G1, G2, and G3 come from the vehicle
trajectory data under different dates in the same scenario, and
they reflect the similarity of the tensor in the actual usage
scenario.

3) Tile Threshold Setting: In the multi-dimensional tiling
approach, the size of tiles is set as 16× 16× 16. To determine
the tile threshold, lots of tensors with different tile densities are
generated as test datasets. When these datasets are generated,
the sparsity of each mode is set to control the overall sparsity
of the sparse tensor, and the density within tiles is set to control
the test of tile thresholds within tiles. The optimal threshold is
found by keeping the sparsity of the sparse tensor the same in
each mode and adjusting the threshold for each experiment. The
experiment results are illustrated in Fig. 7. It clearly shows that
the optimal density of tiles in SpMTTKRP and SpTTMChain
is 1.9% and 2.0% on A100, 1.5% and 0.9% on TITAN, i.e., the
optimal thresholds of tiles are 78 and 61 on A100, 82 and 41 on
TITAN. In the following experiments, if the threshold values of
HLS are not specified, the above threshold values are used by
default.

4) Validity of Fusion Load Strategy: To better verify the
validity of the fusion load scheme, several experiments are
carried out. Since the fusion scheme is only effective in the
case of low GPU occupancy, which means that if a tensor in
HLS format with dense tiles and or discrete nonzeros cannot
occupy the entire GPU, our fusion load scheme will have a better
performance improvement. In the datasets of our experiments,
this is the case only for Art and Book, so we focus on showing
their experimental results.

Fig. 8 shows the time overhead comparison before and after
performing the fusion load scheme of the implemented HLSTO.
As can be seen from the figure, performing the fusion load
scheme achieves better performance improvement. On A100,
it achieves a speedup of 8.30× and 7.00× on the Art and Book
tensors of the implemented SpMTTKRP respectively, and5.00×
and1.38×of the implemented SpTTMChain. Note that SpTTM-
Chain has a relatively low execution time on Book dataset.
It has two reasons. First, compared to the SpMTTKRP and

3https://grouplens.org/datasets/movielens/
4https://grouplens.org/datasets/hetrec-2011/
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Fig. 7. Time overhead of tensor with various tile density.

Fig. 8. Comparison of the time overhead before and after performing fusion
task load scheme on A100.

TABLE IV
MEMORY USAGE (MB) OF DATASETS

SpTTMChain over Book, SpMTTKRP has more computation
steps and higher arithmetic intensity than SpTTMChain (see
Step 3 in Fig. 5), which makes it easier for SpMTTKRP to make
the GPU fully load. Second, compared to the SpTTMChain
over Art and Book, Book is denser than Art (see the sparsity
in Table III). So Book is more suitable for computation using
our algorithm. To sum up, SpTTMChain has a relatively low
execution time on the Book tensor.

B. Effectiveness of HLS

1) Memory Usage Analysis: Table IV details the relative
storage of the sparse tensors in HLS format on A100. The indices
of each format are stored using integers, and the values of each
format are stored using floating-point numbers, but different
formats use different floating-point precision. For instance, the
precision of the HLS (HLS-D and HLS-S) format is 16 bits,
compared to the 32 bits of the Dense and COO formats. Note that
SpMTTKRP and SpTTMChain have different memory usage for
the same datasets in HLS format, whose optimal thresholds are
distinct in Section VII-A3. The HLS (SpMTTKRP) and HLS
(SpTTMChain) in the table indicate the storage space required

Fig. 9. Bandwidth of SpTMCM on A100.

for HLS under the two threshold conditions, and HLS-D, HLS-S,
COO, and Dense indicate the storage space required to store
the entire tensor in that format. It can be seen that the storage
space overhead for storing the sparse tensor in Dense format is
the largest, followed by COO format. Furthermore, the storage
space of HLS is smaller than that of HLS-D and HLS-S for both
the threshold conditions of SpMTTKRP and SpTTMChain. For
G1, G2, and G3 tensors, the storage space of HLS-D is less than
that of HLS-S because the trajectory data has the property of
well block sparsity, which means that the nonzeros in the tensor
are always distributed in a minority of tiles.

Overall, the experimental results show that HLS reduces
storage space by 19.95% on average compared to HLS-S and
43.83% on average compared to HLS-D. Therefore, the hybrid
format is more beneficial to save storage space. More, HLS
reduces storage space by an average of 74.17% over COO format
and 97.85% over Dense format. Therefore, HLS format demands
less storage space compared to other formats.

2) Bandwidth Analysis: Fig. 9 depicts the memory band-
width of SpMTTKRP and SpTTMChain average on three
modes. Statistics are given for storage in fully sparse (HLS-S),
fully dense (HLS-D) and hybrid (HLS) formats on A100. Since
these different formats only compress the index data, we only
count the memory space of the indices. SpTMCM with HLS
results in a higher bandwidth than that with HLS-S format. The
bandwidth of G1, G2, and G3 datasets can reach 14 GB/S using
HLS format, and only 13 GB/S with HLS-S format. However, the
bandwidth under HLS-D format is higher, which reaches about
16 GB/s. The overall throughput with HLS is lower compared to
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Fig. 10. Overhead of SpTMCM on A100.

Fig. 11. Error of SpTMCM.

that with HLS-D due to the dense storage approach. The memory
overheads incurred by HLS-D are much higher than those of
HLS. The magnitude of the memory improvement takes place
at a lower rate than the rate of time improvement. The memory
analysis shows that HLS achieves greater memory overheads for
all tensors compared to HLS-S and HLS-D, especially in Movies
tensor and Art tensor, which gets about 5 times the importance.
This result demonstrates that our hybrid format (HLS) decreases
the memory overheads on GPU effectively and increases the
bandwidth of sparse tensors significantly.

Fig. 10 exhibits the time overhead of SpMTTKRP and
SpTTMChain for HLS, HLS-S, and HLS-D on A100. For SpMT-
TKRP, HLS has slightly lower performance than HLS-S and
HLS-D for the datasets with few nonzeros, such as Art and Book.
For most datasets with lots of nonzeros, such as Movies, G1, G2,
and G3, HLS significantly has better performance than HLS-S
and HLS-D. Thus, for SpMTTKRP, HLS achieves a speed-up
of 1.35× to 3.98×. For SpTTMChain, the performance of HLS
is better than HLS-S and HLS-D on all datasets. HLS achieves
a speed-up of 1.04× to 6.00×.

Overall, HLS improves the computational bandwidth by
136.00% on average compared to HLS-S. Compared to HLS-D,
HLS reduces the computational bandwidth by only 36.41% on
average, even if it stores a lot more space (43.83%) for invalid
indices.

3) Error Analysis: TCUs perform SpTMCM with 16-bit pre-
cision. Fig. 11 shows the Symmetric Mean Absolute Percentage

Error in comparison to a full 32-bit approach on CPU ( (17))

Error =
100%

n

n∑
i=1

|xi − x̂i|
|xi|+ |x̂i| . (17)

Since the two SpTMCM return different results, the way they
calculate the error is slightly different. SpTTMChain considers
the error between two tensors, and SpMTTKRP considers the er-
ror between two factor matrices. From the experimental results,
we can see that their errors are below 0.17% on both A100 and
TITAN GPUs. The lowest relative error reaches 0.04% on A100.
This means that HLSTO has low relative errors on different GPU
architectures, and therefore HLSTO is scalable.

C. Comparison to Other Implementations

1) Runtime Overhead: To better demonstrate the progress of
our HLSTO method, we chose other recent research results (Hi-
COO [24], BLCO [22], MM-CSF [31], F-COO [9], FWC [34],
B-CSF [21]) as the baseline method. The above latest research
work is presented in Section III. In summary, Hi-COO, BLCO,
F-COO, and our proposed HLSTO are all extensions of COO
format, whereas MM-CSF, FWC, and B-CSF are all extensions
of Compressed Sparse Row (CSR) storage format.

Fig. 12 shows the performance of SpMTTKRP implemented
by all methods used in the experiments. The Cut-off line is given
as an upper bound for the demonstrated time overhead because
the experimental overhead is too large for some of the experi-
ments. And mode-1 is abbreviated as m-1, and it can be seen that
HLSTO has more stable performance on mode-1, mode-2, and
mode-3. Specifically, for tensors with relatively few nonzero,
such as Art, Book, HLSTO has less time overhead than any other
methods. For most datasets with a large number of nonzeros,
such as G1, G2, and G3, HLSTO has better performance relative
to all other comparison methods. Only for tensors with high
sparsity such as Movies, HLSTO will have more time overhead
than methods such as BLCO, B-CSF, etc., but still has a large
advantage over methods such as MM-CSF, HiCOO, etc. Overall,
for SpMTTKRP, our HLSTO method achieves a speedup ratio
of 1.16× to 24.12×.

Since some of the comparison methods do not implement
SpTTMChain, we choose the methods in which SpTTM-
Chain exists as the baseline. Fig. 13 shows the time over-
head of SpTTMChain implemented by Hi-COO, MM-CSF,
and HLSTO. It can be seen that our methods all have well
performance improvement with respect to the baseline meth-
ods. Overall, for SpTTMChain, our HLSTO method achieves a
speedup ratio of 5.07× to 7.15×.

2) Format Construction Overhead: The conversion from the
standard sparse format COO to other formats is preprocessed
before the actual computation. That time overhead is usually
much larger than the single runtime overhead of tensor matrix
chain multiplication. In practice, SpTMCM usually needs to be
iterated hundreds or thousands of times, and these iterations will
amortize the additional overhead from preprocessing. Unlike
other methods, our approach needs to generate a bitmap for each
block to utilize TCU, which leads to many atomic operations.
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Fig. 12. SpMTTKRP performance of different methods on A100.

Fig. 13. SpTTMChain performance of different methods on A100.

Fig. 14. Conversion times from the standard sparse format COO to other
formats.

Hence, we design fine-grained data structures to avoid atomic
operations.

Fig. 14 shows the conversion time from the standard sparse
format COO to other formats, and it can be seen that the
conversion time required by all advanced formats is measured
in seconds. Compared to other methods, our method requires
less conversion time than most, which means that our method is
highly competitive.

VIII. CONCLUSION

In this paper, we have addressed the efficient implementation
of SpTMCM on GPU with a novel approach. SpMTTKRP and
SpTTMChain are treated as the SpTMCM, which facilitates
bandwidth enhancement with the assistance of TCU. Several
techniques were used to further improve the performance of
SpTMCM. A hybrid format called HLS was designed to divide
the tensor into multiple rectangular tiles to achieve better data
locality. Thresholds for HLS were obtained through extensive
experimentation. Fusion load strategies were employed to facil-
itate GPU utilization. The experiments showed that our method
outperformed state-of-the-art tensor techniques on GPU.

Our method applies to higher dimensional tensors above
three-dimensional ones, but the bitmap mapping needs to be
redesigned. The reason is that bitmaps are linear, but blocks are
multidimensional, so the mapping relationship between bitmaps
and tensor blocks changes as the dimensionality increases. We
will extend our method from a three-dimensional to a higher-
dimensional tensor in future work.
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