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Abstract—Reliability and operational efficiency of equipment
are crucial in the manufacturing of consumer electronics. Existing
fault detection methods often face limitations such as dataset
dependence, poor scenario generalization, and data privacy
issues when addressing the complex and diverse operating
conditions in product manufacturing. To address these issues,
this paper proposes a cross-factory fault detection framework for
consumer electronics production equipment based on adaptive
federated domain generalization. This framework reconsiders
the limitations of Sharpness-Aware Minimization(SAM) and, by
jointly considering local personalization and global generalization
objectives, designs an adaptive weighting scheme to balance
the trade-off between loss minimization and sharpness during
optimization, thereby improving the model’s robustness and
accuracy under various working conditions. Then, A parameter
momentum aggregation scheme is proposed on the server side
to incorporate historical gradient information, reducing client
drift impact and improving model convergence and stability.
Finally, extensive scenario experiments were conducted on two
public datasets. The results indicate that the proposed framework
achieves an average improvement of 22.5% in fault detection
accuracy over the baseline model across varying operating
conditions and data distribution scenarios, demonstrating its
effectiveness in addressing the challenges of complex con-
dition variations and data privacy in consumer electronics
manufacturing.

Index Terms—Federated domain generalization, sharpness-
aware minimization, fault detection.
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I. INTRODUCTION

ITH the rapid development of Industry 5.0, the
W consumer electronics manufacturing industry is under-
going unprecedented transformations. Industry 5.0 emphasizes
human-machine collaboration, intelligent manufacturing, and
personalized production, further enhancing product quality
and production efficiency, which in turn improves customer
satisfaction [1]. However, with the increasing complexity of
the consumer electronics manufacturing process and the diver-
sification of production equipment, the condition monitoring
and fault detection of industrial equipment have become
crucial steps to ensure production quality and stable equipment
operation [2].

In recent years, the rapid development of the industrial
Internet has led to the emergence of data-driven fault detec-
tion methods for consumer electronics production equipment,
significantly improving the performance and accuracy of
traditional models [3]. Luo et al. proposed a deep learning
algorithm that leverages dynamic attribute recognition to
detect early mechanical faults under time-varying operating
conditions [4]. Liu et al. developed a novel wind turbine
condition monitoring and fault isolation system based on
supervisory control and data acquisition to enhance opera-
tional reliability and maintenance efficiency [5]. Oh et al.
introduced a deep transferable adaptive fault detection method
for industrial robotic equipment, effectively ensuring stability
in consumer electronics production lines [6]. However, in real
industrial settings, individual users have limited fault data and
computational resources, which poses challenges for existing
fault detection methods when applied to consumer electronics
production equipment.

Firstly, most existing methods rely heavily on the com-
pleteness and annotation of datasets; however, obtaining
labeled data in a cross-factory environment is often costly,
time-consuming, and labor-intensive [7], [8]. Secondly, the
distribution of equipment data varies significantly between fac-
tories. Differences in operating conditions, equipment types,
and environmental factors lead to distinct fault patterns in
each factory, making it challenging for centralized models
to generalize to unknown environments. Although federated
training of edge device data can alleviate this issue, the
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Fig. 1. Comparison between DG and FedDG.

bottleneck of computational resources continues to limit model
performance, and data heterogeneity presents an additional
challenge to model stability [9]. Additionally, data privacy
issues are a major challenge for centralized methods, espe-
cially when sensitive production data is involved, leading to
severe industrial data silo problems [10].

Consequently, Google proposed a novel distributed fed-
erated learning(FL) framework, which enables collaborative
learning while ensuring data privacy, has gained widespread
attention [11]. However, FL still faces limitations in general-
ization for cross-factory equipment fault detection, particularly
in addressing data distribution heterogeneity and unknown
fault patterns. This limitation stems from the assumption in
current FL. methods that training and testing data share the
same distribution. Nonetheless, this assumption is often invalid
in the consumer electronics production industry, where failure
modes vary significantly across different task requirements
and production environments [12]. This variability leads to
a decline in federated model performance under unfamiliar
conditions and across different factory environments.

Against this background, introducing domain generaliza-
tion(DG) algorithms into the FL framework is a promising
yet challenging task [12]. DG aims to enhance the model’s
generalization ability on unseen target domains by training
on multiple source domains, as illustrated in Figure 1(a).
However, existing technologies face challenges in direct appli-
cation to FL settings due to data privacy concerns and
data silo limitations [13]. Therefore, this paper identifies
the problem of cross-factory fault detection in consumer
electronics production equipment based on federated domain
generalization(FedDG), aiming to address the generalization
issue of federated models under unknown working con-
ditions and factories, as shown in Figure 1(b). Inspired
by the argument that generalization performance is closely
related to the flatness of the model’s minima [14], this
paper proposes a federated domain generalization framework
based on adaptive sharpness-aware minimization (FedASAM).
On the one hand, FedASAM leverages the sharpness-aware
minimization (SAM) algorithm to seek a flat global loss
landscape to achieve global model generalization. On the
other hand, FedASAM introduces adaptive weights to flexibly
balance the trade-off between loss minima and sharpness
during the optimization process. This approach enables the
global model to better adapt and generalize across different
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clients, thereby mitigating the impact of varying degrees of
flatness on clients with different performance in heterogeneous
scenarios. Additionally, in the server-side aggregation phase,
FedASAM employs an adaptive momentum aggregation
method, which updates the model by incorporating historical
gradient information to reduce the impact of client drift on the
global model.
The main contributions of this paper are as follows:

1) We propose a federated domain generalization frame-
work for cross-factory fault detection in the consumer
electronics manufacturing industry. By employing an
adaptive flatness search scheme, the framework enhances
the generalization performance of federated models under
unknown working conditions while considering heteroge-
neous data distribution across clients.

2) We design a server-side momentum aggregation scheme
for federated domain generalization, which effectively
enhances the model’s convergence speed, stability, and
generalization capability.

3) We provide a rigorous proof of model convergence in the
federated domain generalization scenario..

4) Extensive experimental scenarios are designed, and exper-
imental results show that the proposed method improves
accuracy by an average of 22.5% over the baseline across
all domain generalization scenarios.

II. RELATED WORKS

A. Consumer Electronics Manufacturing Equipment Fault
Detection

In recent years, with the upgrading and development of
industrial manufacturing, fault detection methods for produc-
tion equipment in the consumer electronics manufacturing
industry have continuously evolved. From early methods based
on rules and traditional statistical models to recent intelligent
detection systems that relying on big data and machine learn-
ing technologies, the accuracy and real-time performance of
fault detection have significantly improved, greatly enhancing
the stability of consumer electronics. Pichette and Thibeault
proposed a hybrid approach combining knowledge modeling
and case-based reasoning to address data insufficiency in
high-mix, low-volume production environments, aiming to
automate the diagnostic process for assembling printed circuit
boards [15]. Ding et al. designed a highly fault-tolerant
production network control system by integrating commu-
nication protocols, control mechanisms, and fault diagnosis
algorithms [16]. Chen et al. proposed a high-order dynamic
mode decomposition method for fault detection and isola-
tion in dynamic industrial production processes, aiming to
improve fault detection accuracy and the identification of
faulty variables [17] . Zhong and Ali proposed a method com-
bining a self-attention mechanism and residual network for the
automated monitoring and fault diagnosis of intelligent sen-
sors, effectively capturing fault characteristics and enhancing
the accuracy and reliability of sensor status monitoring [18].

However, these methods may encounter a series of prac-
tical production problems, such as data scarcity or untimely
knowledge updates, missed detection of sudden faults, and
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high computational complexity, when faced with complex
and ever-changing production environments. Therefore, there
is an urgent need for a new fault detection framework that
can enhance the model’s generalization capability in different
production environments and unknown operating conditions
while ensuring data privacy.

B. Sharpness-Aware Minimization

SAM is an optimization technique proposed in recent
years [19]. It aims to improve the generalization ability of
models by controlling the flatness of the minima of the loss
function during the optimization process [20]. Traditional
optimization methods, such as Stochastic Gradient Descent
(SGD), may converge to sharp minima of the loss function.
While these sharp minima perform well on the training data,
they often generalize poorly to unseen test data [21]. SAM
effectively improves the model’s generalization performance
on unseen data by seeking flat regions of the loss function
during the optimization process. Researchers have already
introduced the SAM algorithm into the federated learning
environment. Caldarola et al. incorporated SAM and its adap-
tive version in client optimization, significantly enhancing the
generalization capability of federated models [22]. Dai et al.
addressed client drift issues using global SAM techniques [23].
Sun et al. combined dynamic regularization with SAM to
effectively improve the convergence speed and generalization
accuracy of global models [24]. However, these methods fail
to adequately balance the flat regions with the minimum
loss, making it challenging to meet the generalization require-
ments in complex and heterogeneous industrial production
environments.

C. Federated Domain Generalization

Federated domain generalization, as an emerging research
area in FL, aims to train models on multiple heterogeneous
federated nodes that perform well in unseen domains with-
out the need for collaborators to share data [25]. Although
research in this direction is still limited, there have been some
important explorations. Wu and Gong proposed a strategy
called collaborative optimization and aggregation to effectively
learn domain-invariant features [26]. Peng et al. suggested
solving the domain transfer issue in federated learning by
generating domain-invariant features through adversarial learn-
ing [27]. Zhang et al. and Yuan et al. have independently
developed domain-invariant models that excel in unseen target
domains by aggregating local source models using distinct and
hierarchical weights [28], [29]. While these explorations may
face challenges such as data privacy security and networking
communication burdens in complex industrial production
environments. Some researchers have already made effective
explorations in data privacy and security. Wang et al. designed
an FL framework based on differential privacy mechanisms to
address privacy issues in the FL process [30]. Lin et al. com-
bined differential privacy with model compression techniques
to mitigate privacy leakage caused by inference attacks while
maintaining model accuracy [31]. Nonetheless, these methods
also increase computational overhead while enhancing data
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privacy protection. Therefore, improving the efficient gener-
alization capability of FL models under the premise of data
security remains a highly challenging area of research.

III. PROPOSED METHOD
A. Preliminaries

Before presenting the method proposed in this paper, we
first provide the definition of the cross-factory fault detection
problem in the federated setting:

Definition 1: Assuming that there are K factories willing
to participate in the federated fault detection system, with
each factory i(1 < i < K) having a private dataset D; =
{hoyh, 629D, ..., &, yM)} that follows distribution B;, N
represents the size of the datasets at each client. It is worth
noting that the distributions B; among different factories are
different, corresponding to the data heterogeneity between
factories. At the same time, Each factory can only process
its local data and cannot access data from other factories.
The objective of the federated fault detection model is to
learn a global model M with parameters 6, which can adapt
to all factories participating in federated fault detection. The
generalized FL problem can be formulated as follows:

1 K
in F(0) = — ) fi(6),
arggmln ©) K;f()

with £0) = Eg, .y [,c (9; ", y?")))] )

Here, F(0) represents the global objective function, f;(0)
denotes the empirical risk associated with the local distri-
bution, L(-;-) signifies the loss function,(xl("),y;")) e D;
represents a single data sample within a factory. To solve
Eq. (1), Google proposed a federated aggregation algorithm
known as FedAvg [11]. In each communication round ¢, the
server sends the global model parameters 6’ to the participating
factories. Upon receiving them, each factory performs E
rounds of SGD in parallel using local data, then uploads the
updated parameters 91{ g- The server aggregates all updates to
generate new global model parameters 6+, initiating the next
communication round. The overall process is illustrated in
Figure 2.

B. Problem Formulation

The aforementioned FL framework assumes that training
and testing data are extracted from the same independent and
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Fig. 3. Overview of the proposed FedASAM.

identically distributed (i.i.d.). However, in industrial produc-
tion, data distributions exhibit heterogeneity within a single
factory and across different factories, making it difficult for
simple weighted aggregation models to generalize to unknown
domains. Here, we present the definition of the FedDG
problem in the scenario of unknown factory fault detection:

Definition 2: In FedDG, assuming there are I source
domains Sspurce = {Sjlj = 1,2,...,1}, with different joint
distributions between each pair of domains: B; # B;, 1 <j #
J < I. This paper defines different source domains correspond-
ing to different operational conditions of the equipment. The
difference between the number of domains and the number of
clients forms different types of FedDG problems. Bai et al.
provided a detailed definition of the relationship between
the number of domains and the number of clients in their
study [32]. In this paper, we mainly explore scenarios where
the number of clients is greater than the number of domains,
that is, each factory contains multiple domain distribution
data. Our goal is to develop a robust and generalized FL
model using K factories containing / source domains that can
minimize fault prediction errors in unknown domain factories
Slarget(Where Btarget #* Bj):

argernin EBgrger ) [ L6 (5, 1)) ] 2

C. FedASAM Algorithm

The FedASAM is divided into two main parts, as shown in
Figure 3. In the local client, we adopt the Adaptive Sharpness
Aware Minimization method, aiming to improve generalization
performance by balancing the loss minimum and sharpness of
model. On the server side, we use a momentum aggregation
method that integrates historical gradient information into the
current updates, thereby enhancing the model’s generalization
capability and stability. The following sections will provide
a detailed description, explaining their implementation details
and theoretical foundations.

1) Local Model Training on the Client Side: Extensive
literature indicates that the generalization of a model is directly
related to the local training loss. Existing FL methods are
overly focused on the personalization of local models, leading
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to the local loss easily falling into the steep valleys of the
loss surface, thus making it difficult for the model to take into
account poorly performing clients, and even more challenging
to generalize to unknown domains. Therefore, in the case
of data distribution shift, priority should be given to the
generality of the global model, avoiding involved training
clients from getting stuck in localities, and smoothing the loss
function surface to make it closer to the global model. To
address this issue, inspired by the SAM algorithm, we design
a federated adaptive SAM framework, aiming to create a more
general global model that can exhibit good generalization
performance in scenarios of client data distribution shift and
unknown domain data distribution. Specifically, we first add a
perturbation vector ¢; to the local models of each clients, i.e.,
=0+ @;. This vector is used to simulate the flatness search
of the global model during local training. According to SAM,
the sharpness of the perturbed federated loss function at 6 is
defined as:

F6) = max F() —F(0) 3)

leill,<¢
————

FSAM<§)

However, F(#) can only be used to find flatter areas
rather than the minimum, which may lead to convergence
at points where the loss is still relatively high. Therefore,
SAM adopts F(0) + F(9) as the loss function, which is
a compromise between F(0) and F(9), but approach of
SAM that assigns equal weight to F() and F(0) is not
applicable in heterogeneous federated scenarios. Searching
for the same degree of flatness may impact clients with
different performance. Therefore, this paper designs a more
universal adaptive federated SAM framework, we redefines the
sharpness of the federated loss function at 6 as follows:

FRY) = FO) + T F0)

128 B

5O+ ﬁFSAM(é) 4)

and FedASAM can be formalized as follows:

. 1-28\[1 &
w () ()

()

where ¢ is a constant controlling the range of the added
perturbation vector, and p is the Euclidean norm, typically
taken as p = 2. Eq. (5) is a typical min — max optimization
problem, where the min part corresponds to the update of
the outer model parameters, and the max part involves the
search for the inner perturbation. The objective of the interior
maximization problem (i.e., max problem) is to find the
perturbation ¢; such that fj(6 + ¢;) is maximized, given a
specific 6. This is equivalent to finding the direction in the
neighborhood of 6 where the loss function is least sensitive to
parameter perturbations, as these directions correspond to the
flat regions of the loss function. However, directly solving the

fz(9+§01 )} (&)

”(Pth
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aforementioned inner maximization problem is too complex.
Therefore, an approximation can be obtained by performing a
first-order Taylor expansion around w as follows:

@i = argmaxfi(6 + ¢;)
loill<¢

~ argmaxf;(6) + ¢; ' V£(6)

lpill<¢
Vfi(©)
~ ¢ sign(Vfi(0)) = —— (6)
CUIVEOI
Eq. (6) is equivalent to scaling the magnitude of the
gradient using ¢ under the condition ||¢;|| < ¢, such that
the direction of ¢; is the same as Vf;(6). Subsequently, the
perturbed model at each client can be represented as 6 = 0 +
¢ sign(V£(9)) I\gfjgg;\l We define g, and &}, as the original
gradient and the perturbed model gradient, respectively, after
the e-th iteration during the #-th round of communication at
the client, where g}, = Vfi(6] ; &), &, = Vf,(@l o &D. The
parameter iteration process of local FedASAM for solving the
max-min problem can be expressed as follows:
0 gi’.e
0, =6, +or5

i,e

vgl 2 ~
Ol - ( ;gie + %gf,e)

where n; denotes the local learning rate. Eq. (7) indicates
that each local client first uses a gradient ascent algorithm
to estimate the point where the local loss is maximized at
the perturbed parameter 0[{ . + @i, and computes the gradi-
ent g;,e of the perturbed parameter at this point. Finally,
it performs a gradient descent update at 9;, . by adaptively
combining the original gradient with the perturbed gradient.
This gradient combination method better balances the model’s
performance across different clients, thereby improving overall
generalization.

2) Federated Aggregation Model on the Server Side: In
existing server parameter aggregation schemes, unrealistic
assumptions are often made regarding system heterogeneity
and client synchronization, ignoring the impact of client
drift, leading to poor generalization performance. Therefore,
inspired by momentum learning, this paper proposes a
momentum aggregation scheme on the server side, integrating
historical information into current updates, making the global
model more resistant to local drift. Specifically, we define a
momentum buffer m’, representing the variable that stores and
updates historical gradient information during the #-th training
round. Then the server-side optimization can be represented
as:

)

01 e+1 —

mt = ym' + (1 — y)A! g
{9t+1 — et _ ngmt+l ( )
Here, y represents the momentum coefficient, A’ denotes
the aggregated gradient on the server side during the f-th
training round, and n, represents the global learning rate.
Through the aforementioned momentum aggregation scheme,
the server can effectively utilize historical gradient information
to mitigate the impact of client drift on the global model,

4383

Algorithm 1 FedASAM

Input: local datasets D;, number of communication rounds
T, number of factories K, number of local epochs E, local
learning rate 7, global learning rate n,

Output: The global model parameters 67

Server executes:

1: Initialize server model 6.
2: fort=0,1,2,....,T—1do
3 for i=1,2,...,K in parallel do
4: send global model 0 to F;
5 Al < ClientUpdate(t, i, 6")
6 end for
7 Server aggregates A; = Ilé_zl ZieKi A
8 Server updates 0" = 0" —n,(ym' + (1 — y)A")
9: end for
10: return 6!
ClientUpdate(z, i, 0):
1: for epoch = 1,2, ...,
2 for each batch & = (x;, y;) in D; do
3 Compute original gradient g; , = Vfi(6] ,; &)
4: Compute perturbed gradient g} , = Vfi(él-” S ED
5
6

E do

Compute local model Qi’ er1 0Y Eq. (7)
end for
A§ =0’
7: end for
8: return Al to server

t
— b

thereby improving the model’s generalization ability. The
complete FedASAM algorithm is shown in Algorithm 1.

D. Theoretical Analysis

This section presents the convergence analysis of the
FedASAM framework. For the sake of subsequent analysis,
we first provide some definitions. In this paper, the clients
participating in FL perform e-step SGD updates locally with a
learning rate of 7;, while momentum aggregation is performed
on the server with a learning rate of 1,. Unlike the traditional
FedAvg update rule, the update sequence in this paper defined
as 0T — 0" = ny(ym' + (1 — y)A"). Therefore, to simplify
the proof process, an auxiliary sequence {dt}t o 18 constructed.
{d'}_, is defined as follows:

Ngy !
l—y

©)

The above equation satisfies d'*! — d' = —1ngA;, and
the detailed proof can be found in Appendix A im the
supplementary material.

The accumulated parameter difference is denoted as Ai =
Gi” £ 91'!, 0= = —m ZE o1 gf .- In the following narrative, we
list the assumptions used in the convergence analysis proof in
this paper.

Assumption 1 (L-Lipschitz Gradient Continuity): The over-
all loss function is continuously differentiable, and there
exists a constant L > 0 satisfying the following conditions:
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IVF(01) — VF(@)Il = Ll61 — 6211,V601,62 € Rg, and i €
(K1 [33].

Assumption 2 (Unbiased Gradient Estimation): Let Si’
represent a random sample data within the i-th factory
updated to the r-th step, satisfying the following conditions:
E[VI§;(6", €)1 = VI;(6"), Vi € [K] [34].

Assumption 3 (Bounded Gradient Variance): The variance
of the stochastic gradient for each internal factory model sat-
isfies the following conditions: E[||V; (6", Si’)] — Vli(Q’)||2] <
T, ENIVL©', €171 < Q.Vi € [K] [35].

Theorem 1: After T > 1 rounds of communication, if the
local learning ratze n; and global learning rate 7, satisfies 7; <

1—
2E(C77£27L2)/2+((1j;))2+77gL(1*V)2) ’
Algorithm 1 based on Assumptions 1-3 can be formalized as
follows:

the convergence upper bound of

2(F(0°) — F(6*
min B[ IVF(6')] < (FEO)—FE) 1 0
7] ngmET
2 LZ 21—~
e 1= g1 gl T

Theorem 1 shows that as the number of communication
rounds T increases, the upper bound of the expected norm of
the gradient can be determined by the difference between the
initial value and the optimal value of the function, as well
as terms related to the learning rate. This implies that by
choosing an appropriate learning rate, the gradient’s descent
can be ensured, leading to the global convergence of the
algorithm. The detailed proof can be found in Appendix B in
the supplementary materials.

IV. EXPERIMENT STUDY
A. Dataset Selection and Task Scenario Setup

1) Dataset: To validate the generalization performance of
the proposed method in complex industrial scenarios, we
selected two standard datasets from industrial domains to
conduct extensive generalization experiments.

o Paderborn University (PU) dataset: The PU dataset
provides fault data generated by two methods: artifi-
cial damage and accelerated life testing. Various fault
types occurring during bearing operation were simulated
using methods such as drilling and electric engraving
machines [36]. We randomly selected bearings with
different processing methods and fault depths to form a
dataset comprising 8 different fault types.

o Case Western Reserve University (CWRU) dataset: The
CWRU dataset provides four working conditions, with
vibration signals collected under each condition using
a 16-channel data recorder. Single-point damage was
artificially created at different bearing locations using
electrical discharge machining, resulting in fault types
with diameters of 0.007, 0.014, and 0.021 inches [37].
Fault data from both the drive end and fan end are
provided. In our experimental setup, we selected data
from four types: healthy bearings, inner race faults,
outer race faults, and rolling element faults, each with
different working conditions and fault severity, to create a
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TABLE I
DETAILED INFORMATION ON FAULT MODES IN PU AND CWRU
DATASETS

PU Fault modes (0) Normal; (1) Outer ring damage
of EDM; (2) Outer ring damage of
electric engraver; (3) Outer ring
damage of drilling(level 1); (4)
Outer ring damage of drilling(level
2); (5) Inner ring damage of EDM;
(6) Inner ring damage of electric
engraver(level 1); (7) Inner ring
damage of electric engraver(level 2)

A=1500 rpm, 0.7 Nm, 1000 N;
B=900 rpm, 0.7 Nm, 1000 N;
C=1500 rpm, 0.1 Nm, 1000 N;
D=1500 rpm, 0.7 Nm, 400 N

Working condition
(Rotational speeds,
load torques,
and radial forces)

CWRU  Fault modes (0) Normal; (1) Rolling element
damage with level 0.007inch; (2)
Inner ring with level 0.014inch; (3)

Outer ring with level 0.021linch
. - E = 1797 r/min; F = 1772 r/min;
Working condition G = 1750 r/min; H = 1730 r/min
(Rotational speeds)

Fault location Drive end(DE); Fan end(FE)

Data Distribution for Scenario 1 Data Distribution for Scenario 1

a
N

&~
'

Fault label

Fault label
[ ]

N

0
0123456 789
Client IDs

<

0123 456 789
Client IDs

Fig. 4. Data distribution for different scenarios.

comprehensive test scenario. Detailed information about
the two datasets is shown in Table I.

2) Task Scenario Setup: This study simulates scenarios of
federated domain generalization based on the aforementioned
datasets. In the experimental setup, each client is considered
an independent domain to mimic different working conditions
and environments that may be encountered in real applications.
Specifically, each training client is configured to include mixed
data from three different bearing fault conditions, simulating
complex real-world operating environments. The test clients
contain only one unseen condition to evaluate the model’s gen-
eralization capability in new conditions. Additionally, on the
CWRU dataset, we set up federated generalization experiments
with cross-condition and cross-location mixtures to further test
the robustness and adaptability of the proposed method in the
face of broader domain variations. Table II shows detailed
information about the detection tasks designed on the PU and
CWRU datasets.

To comprehensively simulate realistic industrial production
scenarios, we have designed two data distribution schemes,
taking the PU dataset as an example, as illustrated in Figure 4,
the color of each circle represents a different fault type, and
the size indicates the data volume for that fault type. In
scenario 1, each client contains all fault types, but the data
volume for each fault type is inconsistent. This distribution
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TABLE 11
DESCRIPTION OF CROSS-FACTORY DOMAIN GENERALIZATION TASK
SCENARIOS FOR PU AND CWRU DATASETS

PU Multiple ~ Unknown CWRU  Multiple Unknown
task source target task source target
name clients clients name clients clients
(DE) (FE)
P1 A B C D C1 E F G H
P2 A B D C C2 E F H G
P3 A C D B C3 E G H F
P4 B C D A C4 F G H E

method is more reflective of the data distribution in real
industrial environments. In scenario 2, the fault types and data
volumes for each client are randomly assigned, making the
generalization task in scenario 2 more challenging.

B. Approaches for Comparison and Implementation Details

1) Comparison Methods: To fully validate the effective-
ness and superiority of the FedASAM algorithm when
dealing with unknown domain clients, we compared the
performance of FedASAM with a total of 7 FL frameworks
under four strategies, including FedAvg [11], FedProx [38],
FedALA [39], FedADG [13], FedSoup [40], FedSpeed [41],
and FedGAMMA [23]. FedAvg mainly updates the global
model by averaging the model updates from each client,
which is also set as the baseline in this paper. FedProx
introduces a regularization term based on FedAvg, which
helps better control the deviation of each client from the
global model. FedALA is a personalized FL framework that
considers both the global model and the specific needs of each
client. FedADG, FedSoup, FedSpeed, and FedGAMMA, as
current state-of-the-art (SOTA) federated domain generaliza-
tion frameworks, aim to improve the model’s performance on
unseen client domains.

2) Implementation Details: For all scenarios, this paper
uses Resnet-18 as the main framework. However, appropriate
modifications were made to data input and feature extraction
to address the characteristics of industrial time series data. In
each scenario, 10 clients are set up for federated training, and
5 clients with unknown data distributions are used for testing.
The initial global training cycle for all methods is set to 100;
the local training cycle is 5. The control variables 8§ = 0.6,
¢ = 0.3, momentum coefficient y = 0.1, and local batch
size is 32. The hyperparameters for all comparative methods
are selected based on the literature to achieve satisfactory
performance while meeting experimental requirements.

3) Metrics: In this study, the performance of the proposed
model is evaluated using the following metrics: the average
accuracy(Acc) of fault classification across all clients and the
average Area Under the Curve (AUC).

o Acc: The average accuracy of all generalization test facto-
ries involved in joint detection, i.e., Acc = 1/K Zlel a;,
where a; represents the accuracy of fault classification for
an individual factory.

o« AUC: The average AUC for all generalization test
factories participating in joint detection. i.e., AUC =
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1/K Zlel AUC;. The AUC value is not sensitive to the
imbalance of sample categories, making it suitable for
reflecting the overall classification performance of the
model in situations with imbalanced samples.

C. Performance Evaluation and Result Analysis

In Tables III and IV, we report the comparison of the
unknown domain generalization accuracy between the method
proposed in this paper and the current SOTA methods across
two industrial datasets, two data distribution scenarios, and
four cross-domain task scenarios. From the experimental
results, we can observe that in scenario 1, which includes com-
plete fault types, FedASAM significantly outperforms other
methods on average, demonstrating its excellent performance
in cross-domain fault detection tasks. Specifically, on the
PU dataset, compared to the widely compared FedAvg, our
method improved accuracy and AUC by 36.20% and 4.44%,
respectively. Additionally, in cross-location fault detection
tasks on the CWRU dataset, accuracy and AUC improved by
53.21% and 5.89%, respectively, indicating that the proposed
method can effectively adapt to generalization tasks in scenar-
ios with imbalanced sample distributions and cross-location
fault detection.

When facing scenario 2, which involves missing data
types, most methods showed a significant performance decline,
primarily due to the severe insufficiency of fault type samples,
which affected the training of the aggregated model. In
contrast, the FedASAM framework maintained a high level
of generalization accuracy and robustness. Specifically, in
the cross-location generalization tasks on the CWRU dataset,
FedASAM showed an average improvement of 54.15% in
accuracy and 14.03% in AUC compared to the baseline,
indicating that FedASAM can more effectively distinguish
between fault and non-fault states in cross-domain gener-
alization tasks, reducing false positives and false negatives.
Overall, the experimental results demonstrate that by intro-
ducing adaptive SAM and momentum aggregation, FedASAM
significantly enhances the performance of FL models in cross-
domain scenarios, offering stronger generalization ability and
robustness.

To further evaluate the performance of each client par-
ticipating in the federated domain generalization task, we
selected the PU dataset scenario 1, task P1 (P1(S1)), sce-
nario 2, task P3 (P3(S2)) and the CWRU dataset scenario
1, task C2 (C2(S1)), scenario 2, task C4 (C4(S2)) as the
experimental subjects. We visualized the accuracy of the five
clients in the test, and the experimental results are shown in
Figure 5. From the comparative radar chart, it can be seen
that FedASAM performed excellently in scenario 1 of both
datasets, achieving high fault detection accuracy on almost all
clients. This indicates that FedASAM exhibits strong gener-
alization capability in situations with uneven data distribution
but comprehensive fault types. In the more complex scenario
2, despite the significant performance differences between
clients, FedASAM still maintained a superior performance.
This further demonstrates its robustness in handling complex
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TABLE III
COMPARISON OF GENERALIZATION PERFORMANCE(%) WITH STATE-OF-THE-ART METHODS IN SCENARIO 1

Method P1 P2 P3 P4 C1 C2 C3 C4
Acc  AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC
FedAvg 63.82 92.66 7537 94.73 66.09 92.22 7T4.48 93.85 79.75 97.64 79.27 98.26 50.74 95.94 55.01 96.18
FedProx 65.20 92.25 73.17 93.30 70.01 92.40 70.08 93.17 81.38 97.82 64.98 95.65 64.25 96.65 76.26 97.33
FedALA 58.42 91.03 80.76 94.45 71.07 91.14 66.41 92.02 67.47 96.34 78.25 97.88 81.21 96.56 70.48 97.04
FedADG 61.25 92.36 72.90 93.45 46.58 86.94 62.07 91.89 84.40 98.25 71.90 97.64 73.32 97.67 78.22 97.84
FedSoup 86.51 95.33 90.68 96.28 81.82 96.22 90.75 96.47 87.72 94.98 74.43 94.72 74.69 97.30 78.06 98.01
FedSpeed 79.41 92.09 89.68 97.17 87.59 96.72 89.63 97.03 91.46 98.34 89.07 98.93 87.93 99.16 89.14 98.59
FedGAMMA  83.03 93.82 94.07 97.24 86.00 96.80 91.73 97.00 94.94 98.59 80.45 98.47 93.51 99.73 92.26 99.37
FedASAM  90.33 96.92 94.61 97.94 88.52 97.28 93.44 97.87 95.69 98.46 91.94 99.29 95.14 99.32 93.91 99.80
TABLE IV
COMPARISON OF GENERALIZATION PERFORMANCE(%) WITH STATE-OF-THE-ART METHODS IN SCENARIO 2
Method P1 P2 P3 P4 C1 C2 Cs3 C4
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC
FedAvg 78.65 92.65 76.99 93.85 67.57 91.52 73.76 95.02 56.34 93.97 67.47 96.58 67.22 95.81 63.05 96.50
FedProx 71.01 90.30 74.54 93.30 72.58 93.29 78.87 95.51 61.88 94.01 64.19 94.89 54.25 94.82 74.96 97.69
FedALA 70.14 89.53 76.92 94.23 75.15 92.63 72.17 92.14 57.39 92.71 85.41 97.26 65.77 97.21 73.66 97.88
FedADG 76.22 93.00 83.98 9599 64.12 90.94 80.46 96.42 61.63 94.47 59.02 94.72 60.71 96.09 74.78 97.20
FedSoup 84.46 89.60 90.84 95.61 78.81 87.84 89.50 96.26 88.25 98.41 85.33 97.47 83.97 98.33 77.25 98.84
FedSpeed 87.43 9491 91.04 96.92 81.18 95.30 90.81 95.79 72.84 96.78 90.25 98.43 88.69 98.61 87.27 98.97
FedGAMMA  89.86 97.03 92.19 97.33 84.97 97.23 88.33 95.39 92.49 97.80 81.55 98.46 81.76 98.84 91.34 99.24
FedASAM  92.77 97.39 93.62 97.77 85.92 96.88 90.40 96.88 94.29 98.35 90.63 98.54 87.76 98.91 92.34 99.35
a)P1(Sl)  Cliento b)P3(S2)  Client0 . .
LIS 1O (max) and the Hessian trace (or) can serve as impor-
tant indicators for assessing the generalization capability of
Client 4 £ S Client 1 Clientd > Client 1 models [42], [43]. Models with lower o, and ar tend to
exhibit stronger robustness, leading to smoother loss surfaces
and flatter minima during the training process. Therefore,
this paper selected several representative FL. methods’ global
Client 3 Client 2 Client 3 Client 2 models and calculated their «;,, and o«7. The results are
c) C2(S1) d) C4(S2)

Client 0 Client 0
L0g Lo,

Clienta 7 Client ] Client4 & N, Client 1

Client 3 Client 2 Client 3
FedAvg FedProx —#— FedALA —v— FedADG

| —¢— FedScoup —<— FedSpeed —P— FedGAMMA —#— FedASAM|

Client 2

Fig. 5. Generalization performance of FedASAM on each unseen client
across different scenarios.

and heterogeneous data distributions, validating its potential
and advantages in federated domain generalization tasks.

D. In-Depth Study

1) Sharpness Quantification: Recent studies on network
generalization have shown that the top Hessian eigenvalue

shown in Table V and Figure 6. From the experimental results,
both traditional federated learning and personalized federated
learning struggle to adapt to domain generalization tasks under
unknown conditions, showing relatively high o, and ar. In
contrast, the federated domain generalization framework with
the introduction of the SAM method significantly outperforms
traditional domain generalization methods, further proving
the importance of minimizing the loss surface in federated
domain generalization tasks. In all task scenarios, FedASAM
consistently achieves the lowest o4 and o7, demonstrating
its lower sensitivity to changes in the environment, stronger
generalization ability, and more stable optimization process.

2) Visualization of the Loss Landscape: To provide a
more intuitive demonstration of the effectiveness of the
FedASAM method, we visualized the loss functions optimized
by FedAvg, FedSpeed, FedGamma, and FedASAM in a
random task scenario (P2(S1)), as shown in Figure 7. As
observed from the figure, the loss landscape of FedAvg is
very sharp, indicating its poor generalization ability. The two
more advanced federated generalization models, FedSpeed
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TABLE V
COMPARISON OF TOP EIGENVALUE(@;qx) ACROSS DIFFERENT FL
METHODS
Method P1(S1) P3(S2) C2(S1) C4(S2)
FedAvg 1481.65 891.98 1165.83 3019.05
FedALA 2285.32 1468.45 602.92 730.51
FedADG 1382.21 1425.52 1344.25 678.64
FedSpeed 693.31 734.17 531.37 627.42
FedGAMMA 506.66 777.83 676.42 480.83
FedASAM 479.71 758.92 522.47 350.44
5000 - _ [ ] P1(S1)
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[ 1 c2sh
4000 - [ c4(82)
8 -
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g
% | —
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Fig. 6. Comparison of Hessian trace (a7) across different FL methods.

and FedGamma, show a significant improvement in their loss
surfaces compared to FedAvg. This indicates that they are
better at optimizing model loss under heterogeneous client data
distributions, leading to improvements in both generalization
ability and robustness. However, these methods only average
the local flat regions of each client, which might remain in
sharp regions due to client drift issues. FedASAM achieves
the best performance in both loss values and loss landscape.
This is due to the introduction of an adaptive sharpness
control technique, which allows the FedASAM method to
better balance model sharpness and the minimum loss, thereby
improving generalization across unknown factories and con-
ditions. Compared to other methods, FedASAM demonstrates
higher robustness and accuracy when dealing with complex
condition variations.

3) Ablation Experiment: To validate the effectiveness of
the components in the proposed framework, this sec-
tion conducts ablation experiments with three variants
based on the FedASAM framework i.e., ‘w/o SAM’, ‘w/o
Sharpness Weight’ and ‘w/o Momentum’. Specifically, ‘w/o
SAM’ removes sharpness-aware minimization, ‘w/o Sharpness
Weight’ removes adaptive sharpness weighting, and ‘w/o
Momentum’ removes server momentum. The experimental
results are shown in Figure 8. It can be observed that when
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Fig. 7. 3-D landscape visualizations of the empirical loss of the global model
across different FL frameworks.
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Fig. 8.  Ablation study of the FedASAM on generalization tasks across
different scenarios.

SAM is removed, the generalization performance of the model
across different clients significantly decreases, indicating that
SAM plays a crucial role in maintaining model stability and
robustness. After removing the adaptive sharpness weight, the
test accuracy also decreases. The role of adaptive sharpness
weight is to balance updates between minimizing curvature
and minimizing loss. This is particularly important in complex
scenarios, such as scenario 2, where the lack of adaptive
sharpness adjustment makes the model more prone to getting
trapped in local optima, thus affecting overall generaliza-
tion performance. Figure 8§ also shows that without server
momentum aggregation, the model’s performance fluctuates
significantly across different clients, further verifying the
importance of momentum aggregation in FL.

E. Hyperparameter Analyses

This section mainly discusses the impact of perturbation
radius ¢, sharpness term 8, and server momentum aggregation
coefficient ¥y on model performance. The P1(S1), P3(S2),
C2(S1), and C4(S2) task scenarios are used as experimental
subjects, and the experimental results are shown in Figure 9.

1) Perturbation Radius ¢: The parameter ¢ represents the
step size in the gradient ascent process during flatness search.

Authorized licensed use limited to: Northeastern University. Downloaded on August 19,2025 at 14:15:55 UTC from IEEE Xplore. Restrictions apply.



4388

8) CariEn —o—rE #-GE) o qlg) [-ricn e rasy @ Casn  casa)

50%
001 005 01 03 05 07 09 00 02 04 06 08

Fig. 9. The sensitivity of FedASAM’s performance to the choice of ¢, 8, y.

It is used to measure how much area the model needs to
explore to find the flattest minimum. As shown in Figure 9(a),
when ¢ is small, the model’s generalization ability is weak.
This is because a smaller search area may cause the model
to get trapped in the flat minimum within steep valleys. As ¢
increases, the model’s generalization ability improves signifi-
cantly. However, an excessively large ¢ may cause the model
to favor larger flat minima, thereby reducing the original data
processing performance. This is especially evident in the cross-
location fault detection tasks on the CWRU dataset, where a
larger ¢ causes the model’s generalization performance to drop
sharply. Therefore, it is necessary to reasonably choose the
search range for global flatness search based on the specific
task context.

2) Sharpness Term B: The parameter § is the weight that
controls sharpness. As observed in Figure 9(b), when B <
%, the federated model focuses more on minimizing the loss
function itself during the optimization process, rather than
considering the impact of sharpness. In this case, the model
may tend to find a minimum with lower loss but higher
curvature, meaning it could converge at a narrow and steep
valley. The model’s generalization ability might be weaker
than that in flatter regions with lower curvature. When 8 >
%, the model tends to minimize curvature, leading it to
converge in flatter regions with lower curvature. This reduced
curvature in flatter regions means the model is less sensitive to
small input perturbations (i.e., data noise), thereby effectively
improving its generalization ability.

3) Server Momentum Value y: In the momentum aggre-
gation scheme, the hyperparameter y plays a crucial role in
balancing historical gradient information with newly aggre-
gated gradients. This balance is essential for mitigating the
effects of client drift and enhancing the global model’s gener-
alization ability. As observed in Figure 9(c), the generalization
performance of the model shows a significant decline with the
increase of y. This indicates that over-reliance on historical
gradients may reduce the model’s ability to adapt to new data
patterns, while noise in the historical information can also
significantly impact model updates. This effect is particularly
pronounced in cross-location generalization tasks, where a
larger momentum coefficient severely impairs the model’s
generalization ability. Experimental results indicate that while
the momentum aggregation method enhances the model’s
resistance to client drift, careful tuning is required.

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 71, NO. 2, MAY 2025

V. CONCLUSION

This paper proposes the FedASAM framework for
cross-factory fault detection of industrial equipment in con-
sumer electronics production. By incorporating an adaptive
SAM algorithm, the framework significantly improves the
generalization capability of the global model under heteroge-
neous client data distributions, while ensuring data privacy.
Additionally, an adaptive momentum aggregation strategy
is implemented on the server side, which greatly enhances
the convergence speed and stability of the global model,
reducing the impact of client drift on the global model’s
performance. Experimental results show that the framework
demonstrates excellent detection accuracy and generalization
performance across different working conditions and data
distribution scenarios, effectively addressing the limitations
of existing fault detection methods in complex conditions.
The proposed method provides a novel solution for cross-
factory fault detection in unknown settings, addressing diverse
working conditions and fault types in the consumer electronics
production process while ensuring data privacy, thus offering
significant practical value.
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