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Abstract— Multifeature synthetic aperture radar (SAR) ship
classification aims to build models that can process, corre-
late, and fuse information from both handcrafted and deep
features. Although handcrafted features provide rich expert
knowledge, current fusion methods inadequately explore the
relatively significant role of handcrafted features in conjunction
with deep features, the imbalances in feature contributions, and
the cooperative ways in which features learn. In this article,
we propose a novel multifeature collaborative fusion network
with deep supervision (MFCFNet) to effectively fuse handcrafted
features and deep features for SAR ship classification tasks.
Specifically, our framework mainly includes two types of feature
extraction branches, a knowledge supervision and collabora-
tion module (KSCM) and a feature fusion and contribution
assignment module (FFCA). The former module improves the
quality of the feature maps learned by each branch through
auxiliary feature supervision and introduces a synergy loss to
facilitate the interaction of information between deep features
and handcrafted features. The latter module utilizes an attention
mechanism to adaptively balance the importance among various
features and assign the corresponding feature contributions to
the total loss function based on the generated feature weights.
We conducted extensive experimental and ablation studies on
two public datasets, OpenSARShip-1.0 and FUSAR-Ship, and
the results show that MFCFNet is effective and outperforms
single deep feature and multifeature models based on previous
internal FC layer and terminal FC layer fusion. Furthermore,
our proposed MFCFNet exhibits better performance than the
current state-of-the-art methods.

Index Terms— Deep supervision, handcrafted features, mul-
tifeature fusion, SAR ship classification, synthetic aperture
radar (SAR).

I. INTRODUCTION
YNTHETIC aperture radar (SAR) is a high-resolution
Sradar system that can operate from either spaceborne
or airborne platforms, providing a variety of features such
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as all-day, all-weather, and cloud-penetrating capabilities.
Unlike optoelectronic sensors, SAR image mainly reflects
the backscattered information of the target, and the image
signal-to-noise ratio is low. Moreover, the signal-to-noise ratio
decreases with increasing radar distance, and its amplitude
value fluctuates randomly with the change of target observa-
tion angle, which makes SAR target identification far more
complex than optical images. Ships are the main means
of transportation for maritime trade, and SAR is the main
means of marine detection. It is important to develop SAR
ship classification for marine fisheries management, maritime
traffic management, combating illegal activities at sea, mar-
itime search and rescue, and so on. Therefore, SAR image
interpretation and ship target information extraction are critical
issues for SAR ship classification.

Features are the keys to SAR ship classification since the
goodness of features largely determines the accuracy of clas-
sification. These features can be divided into two categories:
traditional handcrafted features and deep features based on
modern convolutional neural networks (CNNs) according to
the differences in feature extraction. The handcrafted feature
often needs to describe images from different perspectives
using mature and explicable mathematical theories, such as
grayscale, texture, edge, or shape [1], [2], [3]. Specifically,
they are only applicable to a specific environment, so gener-
alization in unknown environments is not sufficient. However,
multisensor and multiscene variations require ship images to
be highly descriptive and distinguishable, so it is not possible
with handcrafted features alone.

Different from shallow learning methods that rely on hand-
crafted features, deep learning methods, supported by powerful
computing platforms and big data, can extract features directly
from raw data through self-driven learning. Deep features
can be seen as multilevel representations of the essence of
objects, so they are more descriptive than handcrafted features.
However, they have low interpretability. Existing CNN-based
SAR ship models rely excessively on abstract deep networks,
leading to a single cycle of network structure modification,
training skill optimization, and loss function improvement.

As most CNN have a black-box behavior, improving model
performance through optimizing CNN architecture has become
more challenging. Some SAR experts have therefore begun to
study explainable artificial intelligence, exploring the impor-
tance of features or neurons in image analysis [4]. Other
experts have incorporated prior knowledge of handcrafted
features, exploring efficient ways to combine them with deep
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features. Extensive experiments have shown that handcrafted
features can provide supplementary information to deep fea-
tures, thereby enhancing the classification performance of
CNNs [5], [6]. However, existing feature fusion methods
simply concatenate deep features with handcrafted features
and directly input the high-dimensional fused feature vec-
tor to the fully connected (FC) layer, leading to a very
complex optimization plane. This direct concatenation causes
the computation of the FC layer to grow exponentially and
contains a lot of noise, which ultimately fails to provide
satisfactory results. Alternatively, this concatenation considers
all features to be equally important, ignoring the different
contributions of each feature. It results in a negative impact
among different features and causes the ultimate decision
ability to be diminished. We recognize that if handcrafted
features can incorporate their information into the network
training process, they can provide a more rigorous mathe-
matical interpretation for the deep feature extraction process,
achieve mutual supervision and collaborative learning during
feature extraction, and thereby enhance the robustness of the
CNN. In addition, weighting the final decision according to
the contribution of different features can render applications
in highly sensitive fields, such as military, more reliable.

To solve the above issues, a multifeature collaborative fusion
network (MFCFNet) with deep supervision is proposed to
achieve SAR ship classification. In MFCFNet, inspired by
supervised learning, handcrafted feature auxiliary branches are
added to the deep backbone network for the first time to
improve the accuracy of the model through feature fusion. The
relative importance of deep and handcrafted features is also
considered, and an attention mechanism is used to adaptively
balance the contribution of different features to the model
performance. We introduce a new synergy loss to achieve
knowledge interaction between all supervised branches. It nor-
malizes the network training based on knowledge dynamically
learned by all classifiers to achieve dynamic knowledge extrac-
tion and fusion. We perform a comprehensive evaluation
of two public datasets (OpenSARShip and FUSAR-Ship)
and carefully studied the performance of each module in
MFCFNet. The experimental results demonstrate the effec-
tiveness and robustness of MFCFNet with advanced SAR
ship classification accuracy compared to modern CNN-based
methods and other handcrafted feature fusion methods.

The main contributions of this article are specified as
follows.

1) A novel MFCFNet is proposed, which uses handcrafted
feature maps as an auxiliary branch and deeply mines the
expert knowledge it contains, solving the past optimiza-
tion hyperplane problem caused by feature concatenation
in front of the FC layer.

In the knowledge supervision and collaboration mod-
ule (KSCM), high-quality extraction of feature maps
from each branch is achieved, and a synergy loss is
employed to foster dynamic knowledge matching and
mutual learning between deep knowledge and hand-
crafted knowledge.

In the feature fusion and contribution assignment module
(FFCA), an improved channel attention mechanism is

2)

3)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

used to address the differences in importance between
deep features and handcrafted features, and the issue of
imbalance in feature contribution.

The MFCFNet, combined with four handcrafted fea-
tures, respectively, on the OpenSARShip and FUSAR-
Ship datasets, improves the classification performance of
the base model and demonstrates superior classification
accuracy compared to traditional handcrafted feature
fusion methods.

The remainder of the article is organized as follows.
Section II describes the related works about SAR ship clas-
sification based on handcrafted and deep features. Section III
presents a detailed introduction to the proposed MFCFNet.
Section IV shows experimental settings and comparative
analysis of results. The ablation studies are introduced in
Section V. Finally, Section VI provides the limitation and
conclusion.

4)

II. RELATED WORK

In this section, we review previous research works about
three main types: traditional handcrafted feature methods,
modern deep feature methods, and feature fusion methods.

A. Traditional Handcrafted Feature Methods

Traditional handcrafted visual features are used to express
low-level information, which amplifies some visual features of
an image, such as color, texture, and shape. These features are
often accompanied by some interpretable theories.

Karvonen and Hallikainen [7] pointed out that in addition
to the areal backscattering, the information in SAR images
was also in the edges. The canny edge detection algorithm
can effectively improve the SAR image classification task.
Similarly, some local features such as the mast position,
were found to have more substantial discriminatory power in
ship classification [8]. In addition, various feature frameworks
have shown better performance. Li et al. [9] viewed the Gabor
filter as a global operator to capture global texture features
(e.g., orientation and scale) and the local binary pattern
(LBP) as a local operator to characterize local spatial textures
(e.g., edges, corners, and nodes). The classification was
improved by combining Gabor features and LBP features from
different perspectives. Wu et al. [10] analyzed the reflectivity
histogram and estimated the values of some macroscopic
features such as length, width, and radar cross-sectional profile
of the ship, which were evaluated using the fuzzy logic
module. Lin et al. [11] designed an MSHOG feature describing
the ship structure and used a task-driven dictionary learning
algorithm to increase the ship separability. Although they
achieved excellent performance in some specific settings, these
methods were highly dependent on handcrafted features. These
features were time-consuming and labor-intensive to extract
manually, and they did not describe the image content in a
comprehensive manner, limiting the classification accuracy in
complex tasks.

B. Modern Deep Feature Methods

Compared with traditional handcrafted features, modern
deep feature methods can automatically extract robust and
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adaptive deep features from labeled data. These methods have
been widely used in SAR ship classification tasks and have
achieved excellent performance due to the powerful multilevel
characterization capability of deep features. For example,
Shi et al. [12] applied 2-D discrete fractional Fourier trans-
form (2D-DFrFT) and two-branch CNN to obtain features.
Wang et al. [13] developed a semisupervised learning frame-
work based on ResNet50, in which a self-consistent augmen-
tation rule enables the network to efficiently utilize unlabeled
data. Dong et al. [14] designed a deeper SAR ship classifica-
tion model by introducing a residual module. Zheng et al. [15]
proposed an ensemble network to improve the robustness and
accuracy of classification by fusing multiple heterogeneous
deep CNNs. Huang et al. [16] presented a novel method for
CNNgs, called group squeeze stimulated sparsely connected
convolutional networks (GSESCNNs), which made the con-
catenation of feature maps from different layers more efficient
through sparse connection operations.

With the rise of artificial intelligence, the fact that deep
feature-based SAR ship classifiers have achieved higher accu-
racy than traditional handcrafted feature classifiers, leading
these models to uncritically discard handcrafted features.
To further improve the characterization of deep features, the
CNN structure becomes increasingly complex, deeper, and
uninterpretable. This cramming enhancement will soon face
a bottleneck. In addition, in the modern information military,
uninterpretable abstract features pose great risks in applica-
tions such as precision strikes.

C. Feature Fusion Methods

The latest methods in feature fusion primarily focus on two
areas: multiscale deep feature fusion and fusion of deep fea-
tures with handcrafted features. Multiscale deep feature fusion
methods facilitate an organic integration of high-level semantic
information with low-level spatial features, often adopting a
top—down approach to extract representative information from
each layer. Bai et al. [17] employed a spatial pyramid attention
mechanism and expanded the receptive field of convolutions
to extract fine-grained feature information. Chen et al. [18]
aimed to diminish differences between multiscale features,
promoting a smooth transition of these features, by enhancing
feature correlation and encoding spatial feature information.
In order to effectively distinguish and utilize features of
different scales, Wang et al. [19] used multiscale feature atten-
tion and an adaptive weighting classifier to measure features
effectively. These approaches allow for a more comprehensive
expression of features in the input image, but fusing with
handcrafted features can not only diversify the features but
also incorporate expert knowledge into the deep learning
model. Similarly, Li et al. [20] adopted feature alignment and
adaptive weights to achieve multiscale feature fusion. The
low-scale images contained precise locations and contours,
while the high-scale images provided complete contextual and
structural information. Li et al. [21] used multihead encoders
to extract complementary features of optical, SAR, and terrain
modalities separately and implemented multimodal knowledge
fusion using an indicator-guided decoder.
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In order to enhance model interpretability and further
improve CNN classification performance, some researchers
in recent studies combined handcrafted features with deep
features to achieve complementary effects. Tang et al. [22] uti-
lized a 3-D fuzzy gradient histogram descriptor to fully capture
spatial-spectral characteristics. This, coupled with the multidi-
mensional features extracted by a CNN, significantly improved
the robustness of their model. Zhang and Zhang [23] thor-
oughly investigated the effect of fusing handcrafted features
with deep features at the internal FC layer and the terminal FC
layer. The results showed that the best classification accuracy
can be achieved by injecting handcrafted ones into the terminal
FC layer, due to the handcrafted features having rich expert
experience. He also pointed out that different CNNs differ
in their sensitivity to handcrafted features. The worse the
performance, the more significant the accuracy improvement
of the CNN. Zhang et al. [24] integrated handcrafted features
into CNNs, demonstrating that mature handcrafted features
can play an important role. They studied the fusion of 2-D
handcrafted features with deep features by first flattening 2-D
handcrafted features to one dimension, then using principal
component analysis (PCA) to reduce the dimensionality of
handcrafted features, and finally combining them in the FC
layer. Zhang et al. [25] proposed a HOG-ShipCLSNet network
that combined the HOG feature with multiscale CNN-based
features at the FC layer to improve the classification accuracy.
The HOG-ShipCLSNet used a multiscale mechanism to enrich
the deep features, and then flattened the multiscale ones with
HOG into 1-D and fused them in the terminal FC layer to
enhance the global representation.

In summary, previous methods generally involved simply
concatenating handcrafted and deep features, treating these
two types of features equally, and then feeding them into the
FC layer. However, this approach can result in a complex
optimization hyperplane in the fused feature map, without
digging deeply into the relationship between handcrafted and
deep features, thus not fully enhancing the network’s feature
learning capacity.

III. METHODOLOGY

We propose a novel multifeature collaborative fusion net-
work framework with deep supervision, as shown in Fig. 1,
containing two branches (DEEP and HAND Branch) and
two modules (KSCM and FFCA). In the HAND branch,
we design a new location for feature injection. Specifically, the
handcrafted feature map is treated as input, and the backbone
network is used to deeply explore the contained expert knowl-
edge. In this way, it can solve the optimization hyperplane
problem caused by traditional feature fusion directly in front of
the FC layer. At the same time, we design the KSCM module
to improve the quality of feature maps by auxiliary supervision
units and adopt synergy loss to promote dynamic information
interaction between DEEP knowledge and HAND knowledge.
Second, in order to reduce the overfitting problem caused
by channel feature redundancy, we use the spatial dropout
mechanism [26] to randomly zero out 50% of the feature
maps in channel units. Finally, the feature map is input to the
FFCA module, and the difference in importance between deep
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Fig. 1. Overall architecture of our MFCFNet (KSCM and FFCA).

and handcrafted features is weighed by the channel attention
mechanism, and the total weights of deep and handcrafted
features are output separately to solve the feature contribution
imbalance problem. To the best of our knowledge, this is the
first work to achieve multifeature collaborative fusion using
handcrafted feature maps as input, and the experimental results
demonstrate the effectiveness of MFCFNet. The modules are
described in detail in Sections III-A-III-C.

A. Handcrafted Feature Extraction

Traditional handcrafted features enhance some of the visual
information of an image, such as edges, corners, and textures,
which are often accompanied by some interpretable theories.
According to the effect of previous use in the field of SAR
ship classification and the requirement that the dimension of
handcrafted features is 2-D, we selected handcrafted features
of each type, such as Canny edge, Harris corner, Gabor filter,
and LBP histogram, respectively. As shown in Fig. 2, these
handcrafted features all have the same dimensional as the
original image. All methods are well-known and each method
is briefly explained below.

The canny edge feature is used to extract the edge infor-
mation of SAR ships [27], which has the advantages of
high localization accuracy and effective suppression of false
edge points. Similar to the traditional edge detection step, the
original image f(x, y) is first smoothed and denoised by using
the following Gaussian filter G (x, y):

x2 +y2
Gx,y) = > ZeXp(_Zaz> ey
H(x,y) = f(x,y) *G(x,y) 2

where H (x, y) is the smoothed image and * is the representa-
tion of the convolution operator. o is the standard deviation of
G(x, y), which affects the Gaussian filtering quality. Then, the
gradient amplitude and direction of the pixel are calculated by
computing the first-order partial derivatives in both directions
for each pixel and transforming the coordinate system.
Harris corner feature is used to characterize the ship’s corner
information [28], which is more effective for ship positioning

dropout
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recognition. The Harris feature is defined by

E@,v) =Y wlx,y) x [f(x+u,y+v) = fx, )]

(x,y)

3)

where w(x,y) is a window function, which can also be a
Gaussian function G(x, y). When the w is shifted in both x
and y directions, the E(u, v) is calculated.

Gabor filter [29], [30] feature is also widely used for ship
classification because it can represent the spatial structure at
different scales and orientations, enhancing the global rotation
invariance. The mathematical expression of the 2-D Gabor
function takes the following form:

x5+ 725

2
)

glx,y; A\, 0,0,y) =exp (—

X exp( (ZHX + Iﬁ)) 4)
X0 =xcosf + ysin6
. &)
Yo = —x sinf + ycos@

where (x, y) is the spatial domain coordinate, A is the wave-
length, 0 is the directional separation angle of the Gabor core,
y is the spatial aspect ratio, and v is the phase shift.

LBP descriptor is a simple and effective pixel-based tex-
ture descriptor for extracting spatial texture features of ship
images [31]. The descriptor computes each neighborhood pixel
using the centroid pixel gray value as a threshold, which can
be expressed as

4
LBP(xc, yo) = Y 2Ps(ip — i) (6)
0
I, x>0
s(x)={0’ o (7)

where (x., y.) is the pixel coordinate, p is the pth pixel in the
domain, c is the pixel in the neighbor center, i, is the pth pixel
value, and i, is the pixel value in the neighbor center. Then,
the whole LBP feature map is counted using the histogram to
obtain the final LBP feature vector histogram.
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(d) © ® (2

(a)—(g) Seven categories of SAR ship images in the FUSAR-Ship dataset. (a) Container, (b) general cargo, (c) fishing, (d) tanker, (e) bulk, (f) other

cargo, and (g) others. The first row is the original image and the other rows are corresponding handcrafted feature visualizations.
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Fig. 3. KSCM. L; denotes synergy loss, £, denotes DEEP branch loss, and
L), denotes HAND branch loss.

B. Knowledge Supervision and Collaboration Module

KSCM consists of an auxiliary feature supervision unit and
a knowledge collaboration learning unit, as shown in Fig. 3.
Briefly, the auxiliary feature supervision unit is responsible for
providing supervision on the output features of each branch
and introducing accompanied objective functions £, and L,
to improve the convergence rate of the model. The knowledge
collaboration learning unit uses a knowledge synergy strat-
egy Ly to facilitate the information interaction between deep
features and handcrafted features.

In the auxiliary feature supervision unit, we add auxiliary
classifiers after two feature extraction branches. The HAND
branch is used for low-level visual features and the other
DEEP branch is used for high-level semantic features. Let
D = {(x1,y1),...,(xy, y,)} be an annotated SAR dataset
having N training samples collected from K ship classes,
where each member (x;,y;) contains x; € RY and y; is
the corresponding ship category. Let W = {W,, W), W,} be
the weights of the DEEP branch, HAND branch, and global
network that needs to be learned. Hence, f(W,x;) is the
k-dimensional output vector of the W branch for a training
sample x;. According to the deeply supervised network fusing
the losses of each branch, the global optimization objective
can be expressed by the following equation:

argmin L, (W,, D) + aLy(Wy, We, D) + BLy (Wy, W, D)
Wy, Wa, Wi

®)

where L is calculated with the cross-entropy cost function, £,
is the default loss, the auxiliary loss £, and L) are the cor-
responding DEEP and HAND auxiliary classifiers evaluated
on the training set, making the learned deep and handcrafted
features more discriminative and robust.

In deep supervised networks, Sun et al. [32] stated that
setting a fixed value of 1.0 for o and 8 gives the same perfor-
mance as the best CNN trained by the ZERO-ing strategy [33].
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—(sum)— @ TABLE 1
1D Convolution DISTRIBUTION OF THE SAR SHIP DATASETS
s;y W —(sum] —@®
. 1x1xC Dataset Category Training  Test All
o \ I Bulk 338 328 666
T ixixac OpenSARShip-1.0 Container 338 808 1146
Element wisé multplication Tanker 338 146 484
Concatenated Features _ Channel Weights @ (@) Feature Contribution | Refined Features Container 1219 523 1742
Fig. 4. FFCA, which outputs refined features and feature contributions « General cargo 1205 17 1722
and B. Fishing 1101 473 1574
FUSAR-Ship Tanker 1215 521 1763
Bulk 1150 494 1644
However, we found in our experiments that when deep features Other cargo 1214 500 1734
are added, the two branches contribute differently to the final Others 1211 521 1732
classification, and if the same weights are used it will lead to
poor fusion. Therefore, how to set the weights of o and S,
we will introduce in Section III-C. followi tion:
In the knowledge collaboration learning unit, the knowledge otlowing equation:
synergy strategy can facilitate the aggregation of deep features W (F) = sigmoid(MLP(AvgPool(F))) (10)

and handcrafted ones to improve the information consistency
among them. Specifically, the class probability outputs of the
two auxiliary classifiers on the training data are utilized as
learned knowledge to regularize the network’s training. The
knowledge matching between the DEEP auxiliary classifier
and the HAND auxiliary classifier is a Kullback-Leibler (KL)
divergence

Ly

= —1§:<Mdhfd 103& + Hna fn log fh) ©)
N = In fa

where f; and fj, are the class probability outputs of DEEP and

HAND classifiers using the softmax function and p weights

the information loss of knowledge matching among them.

In this study, to make the knowledge learned by the classifiers

transferable to each other, we set © = 1 and keep them fixed

like in [32].

C. Feature Fusion and Contribution Assignment Module

Traditional multifeature fusion methods usually use a simple
concatenated feature map, and this concatenation defaults the
deep and handcrafted features to have the same important
information. In order to more clearly characterize the features
of different channels after concatenation, as shown in Fig. 4,
we designed an FFCA. Similar to the widely applied attention
mechanism [34], [35], FFCA module uses global average
pooling to aggregate the spatial dimensional information of
the multichannel feature maps F € R2C*H*W  compressed
into a 1 x 1 x 2C sequence of real numbers. Then, the
feature sequence is fed into a shared multilayer perceptron
(MLP) to learn the relationship between each channel and
generate a more representative feature vector. After that, using
the sigmoid function obtains the feature channel weights.
It outputs the two types of feature weights according to the
summation operation of the deep feature channel and
the handcrafted feature channel, respectively. Finally, we use
the feature channel weights multiplied by the input fea-
ture map to obtain the final channel attention map. The
equation of the channel attention mechanism is shown in the

where F represents the concatenated feature map and W (F)
represents the feature weights of each channel. Thus, the deep
feature weights o and handcrafted feature weights S are

C 2C
a=) WF). p= ) WF). (1)
c=1 c=C+1

We use the deep feature weights o and the handcrafted
feature weights B to measure the corresponding supervised
loss functions, thus balancing the contribution of different
features to the model classification. As a result, combining the
loss function of Section III-B with the contribution weights of
this section, the total loss function of the whole framework is

Lioal = Lo +aLly+ BLy + Ly (12)

where L, is the default loss, £; and L, can play the role of
judging the good or bad quality of the corresponding feature
maps, and £, can promote the auxiliary classifiers to learn
from each other.

IV. EXPERIMENT AND RESULT ANALYSIS

All programs are implemented in Python language, and the
CNN is implemented using the open-source PyTorch frame-
work, with the handcrafted feature extraction methods partially
derived from the skimage library. The model inference is
accelerated using the CUDA11.6 platform called GPU.

A. Data Description

To evaluate the feasibility and effectiveness of MFCFNet to
fuse handcrafted features, we perform extensive experimental
analysis on two popular SAR ship datasets like other schol-
ars [40], [41], [42]. The distribution ratio and preprocessing
of the datasets are the same as our previous work [15]. Table I
shows the distribution of two datasets, such as categories,
totals, and allocations. The validation set is randomly divided
from the training set by using the threefold cross-validation
method, which is used to verify a variety of hyperparameters.
On the basis of the minimum average error hyperparameters,
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(a) (b) ()

Fig. 5. Three-category of SAR ship images in the OpenSARShip-1.0 dataset.
(a) Bulk. (b) Container. (c) Tanker.

the training set and the validation set are combined to retrain
the final model, and then its generalization ability is tested
through the test set.

1) OpenSARShip Dataset: The OpenSARShip images were
derived from the dual-polarization SAR detected by the Euro-
pean Space Agency’s Sentinel 1 satellite, including both VH
and VV polarization channels. Combining the coordinates and
categories provided by Huang and the experimental setup
of earlier research [13], [25], three main types of ships are
extracted and the same training-test ratio is set to solve the
sample imbalance problem. In addition, the resolution of this
dataset was decreased compared to FUSAR-Ship. As shown
in Fig. 5, there are three types of ships: bulk, container, and
tanker.

2) FUSAR-Ship Dataset: The FUSAR-Ship dataset was
extracted from 126 hyperfine images acquired on the quad-
polarization Gaofen-3 satellite, and had a greater variety of
ships compared to the OpenSARShip dataset. As shown in
the first row of Fig. 2, seven types of ships are used in the
experiment, i.e., bulk, container, fishing, tanker, general cargo,
other cargo, and others. We use the same data preprocessing
method and training-testing ratio as in [15]. Specifically, the
image is first padded by 5 pixels to both sides and then
224 x 224 crops are randomly sampled from the padded image
or its horizontal flips.

B. Experiment Settings

1) Backbone and Implementation Details on Opensar-
ship: We use the four most representative CNN architec-
tures for evaluation, namely, AlexNet [36], VGG-16 [37],
ResNet-18 [38], and DenseNet-121 [39]. We employ the
open-source model code in Pytorch and train each back-
bone network following the standard settings. For ResNet-18,
we use a stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and a learning rate of 0.001. The rest of
the models use the Adam optimizer with a learning rate of
0.0001 and the weight decay as 5 x 107*. All models are
trained with 100 epochs and the batch size is set to 16.

2) Backbone and Implementation Details on FUSAR-
Ship: Due to the larger FUSAR-Ship dataset, we add two
deeper models to test the validity of MFCFNet, namely
ResNet101 [38] and DenseNet201 [39]. For ResNet-18 and
ResNet-101, we use an SGD optimizer with a momentum
of 0.9 and the learning rate set to 0.01. The rest of the models
use the Adam optimizer with a learning rate of 0.001 and
the weight decay as 5 x 107*. All models are trained for
100 epochs, and the learning rate is decayed by 10% at the
60th epoch, and the batch size is set to 32.
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3) Auxiliary Classifier Implementation Details: The auxil-
iary classifiers on both branches have the same structure as
the classifiers in the original backbone network.

C. Metric Index

For the SAR ship classification task, we use the Accuracy,
F1, Precision, and Recall metrics to measure the classification
performance and compare it with the state of the arts. The
formula for accuracy is presented here as an example

TP + TN
TP + TN + FP + FN
where TP, TN, FP, and FN denote the number of cor-
rectly classified ships, number of correctly classified opposite

classes, number of incorrectly classified ships, and number of
the misclassified ships, respectively.

Accuracy =

13)

D. SAR Ship Classification Results

Table II shows the SAR ship classification results of
MFCFNet on OpenSARShip and FUSAR-Ship with and with-
out handcrafted features. In Table II, the Backbone refers to
the deep features, the Baseline denotes the standard training
scheme, and Canny, Harris, Gabor, and LBP indicate the
corresponding handcrafted feature fusion schemes. We run
each combination five times and report the “mean =+ std”
accuracy. For better comparison, we also present the average
gain ABG and AFG. ABG refers to the average gain of
the identical backbone combined with different handcrafted
features. Similarly, AFG refers to the average gain of the same
handcrafted feature combined with different backbones.

Results on the OpenSARShip are summarized in Table II
where our method MFCFNet consistently improves the per-
formance of all backbones. Among them, Densenet-121 +
Harris achieved the highest accuracy of 78.60%. From the
perspective of average backbone gain, we find that the accu-
racy improvement is more significant for the original model
with poorer performance. For example, the original VGG-11
model has 69.90% classification accuracy, and the average
gain after adding handcrafted features is 6.69%. However, the
original DenseNet-121 model has 73.59% accuracy, and the
average gain after adding features is 3.96%. The average gain
of the ResNet-18 model is only 1.36%, partly because of the
high accuracy of the original network, but mainly because the
sparse residual summation operation in the network disrupts
the feature information flow to some extent. Meanwhile, the
same model has sensitivity differences to different handcrafted
features. For example, the accuracy improvement of the
VGG-16 model is 7.35% after fusing Gabor features and
only 3.81% after fusing Harris. Therefore, we need to further
consider the intrinsic relationship between deep and hand-
crafted features. From the average feature gain perspective,
the textures features are described by the Gabor and LBP for
the Top-2 gains, which are 5.30% and 4.75%, respectively.
It shows that texture features have a substantial gain for
deep features on OpenSARShip. The experimental results
powerfully illustrate the effectiveness of MFCFNet for the
fusion of handcrafted features with deep features.
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TABLE I

SAR SHIP CLASSIFICATION RESULTS WITH AND WITHOUT HANDCRAFTED FEATURES ON OPENSARSHIP AND FUSAR-SHIP. FOR EACH NETWORK,
WE RUN EACH METHOD FIVE TIMES AND REPORT THE “MEAN =+ STD” ACCURACY. () INDICATES THE PERFORMANCE IMPROVEMENT FOR
BASELINE. ABG REFERS TO THE AVERAGE BACKBONE GAIN. AFG REFERS TO THE AVERAGE FEATURE GAIN. THE BEST
GAIN FOR BACKBONE AND HANDCRAFTED FEATURES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Dataset Backbone Baseline + Canny + Harris + Gabor + LBP ABG(%)
AlexNet [36] 7047145  77.70£0.36+723)  74.56£0.94(+4.09)  75.93+£0.67¢546)  77.252£0.44(+6.78) 5.89
VGG-11 [37] 69.90+0.96  76.66+0.48+676)  76.13£0.52(+623)  76.85+£0.61¢+695  76.7220.46(+6.82) 6.69
OpenSARShip VGG-16 [37] 70.62+1.18  75.93+0.944s531)  74.43+£0.36¢381)  77.97+£0.94¢7.35)  77.05£0.59+6.43) 5.73
ResNet-18 [38] 72.66+0.87  74.49+0.56+183)  74.19£091¢153)  74.62+0.85196)  72.79£0.36(+0.13) 1.36
DenseNet-121 [39]  73.59+1.44  76.072£0.93+248)  78.60£0.21¢+5.01)  78.36+£0.30¢477  77.1820.33(+3.59 3.96
AFG(%) — 4.72 4.13 5.30 4.75 —
AlexNet [36] 77.64+0.83  79.7020.56(+2.06) 79.54+0.31¢+19  79.91+£0.49¢227  79.1520.22+1.51) 1.94
VGG-16 [37] 80.30+£0.19  84.50+0.22¢4.2)  82.07+0.31+177  85.13+0.13483)  82.51£0.19¢221) 3.25
FUSAR-Ship ResNet-18 [38] 78.94+0.56 83.04+0.24+4.1) 82.3940.19+3.45) 82.48+0.26(+354)  81.66%0.17¢+2.72) 3.45
ResNet-152 [38] 80.48+0.33  80.79+0.20031)  82.21x0.17+1.73  82.76+0.21+228)  80.56+0.22(+0.08) 1.1
DenseNet-121 [39]  82.18+0.59  84.86+0.43¢268)  83.53+0.14¢+135)  85.79+£0.10:361)  83.82+0.25¢+1.64) 2.32
DenseNet-201 [39]  83.35+0.47  85.21+0.13¢+186)  85.29+0.21+194)  87.23+0.26¢+385)  83.77+0.18+0.42) 2.01
AFG(%) — 2.54 2.02 3.40 1.43 —
TABLE IIT TABLE IV

CONFUSION MATRIX OF MFCFNET CLASSIFICATION
RESULTS ON OPENSARSHIP

Predicted | puik  Container  Tanker Recall(%)
True
Bulk 251 65 12 76.52
Container 126 636 46 78.71
Tanker 9 16 121 82.88
Precision(%) 65.03 88.70 67.60 Accuracy=78.62%
F1(%) 70.31 83.41 74.46

Results on the FUSAR-Ship are similar to those on
OpenSARShip, and MFCFNet achieves an effective accuracy
improvement even on larger datasets and deeper networks.
The accuracy results of all backbone networks are consistent
with that reported in [25]. Benefiting from the proposed
handcrafted feature fusion, MFCFNet improves 1.94%, 3.25%,
3.45%, 1.1%, 2.32%, and 1.73% in average accuracy gain for
AlexNet, VGG-16, ResNet-18, ResNet-152, DenseNet-121,
and DenseNet-201, respectively. The accuracy improvement
of ResNet-152 and DenseNet-201 with deeper layers is lower
than that of the corresponding shallow networks, indicating
that the deeper networks contain richer semantic information.
ResNet-18 achieves the best average backbone gain of 3.45%
on a larger dataset in contrast to OpenSARShip. So the
performance of residual blocks can be exploited when the
dataset is sufficiently complex and diverse. The Gabor feature
also achieves the best average feature gain of 3.40% on
FUSAR-Ship.

Due to the ability of MFCFNet to fuse different deep
features and handcrafted features, Fig. 6 is intended to better
illustrate the role of handcrafted features on the backbone
during the training process. From Fig. 6, we can find that
the backbone based on MFCFNet combined with handcrafted

CONFUSION MATRIX OF MFCFEFNET CLASSIFICATION
RESULTS ON FUSAR-SHIP

Predicted Container General Fishing Tanker Bulk Other Others | Recall(%)
True cargo cargo

Container 509 0 14 0 0 0 0 97.32
General cargo 0 511 0 0 6 0 0 98.84
Fishing 12 0 321 14 13 4 109 67.86
Tanker 1 0 5 499 0 7 9 95.78
Bulk 4 16 24 3 427 8 12 86.44
Other cargo 2 0 15 28 17 426 32 81.92
Others 2 5 78 2 10 15 409 78.50

Precision(%) 96.04 96.05 7024 9139 90.27 92.61 71.63 | Accuracy
F1(%) ) 96.68 97.43 69.03 9353 8831 86.94 7491 86.92%

features can accelerate the convergence speed and improve
the accuracy, but each network has sensitivity differences
to various handcrafted features. For example, the DenseNet-
121, after combining Canny and Gabor features, obviously
converges faster than the original network. However, the com-
bination of Gabor causes oscillations in the training process.
The internal mechanism of this phenomenon needs to be fur-
ther investigated in the future. In conclusion, as the backbones
become deeper (e.g., ResNet-152 and DensenNet-201) and
the datasets become larger (e.g., FUSAR-Ship), our method
MFCFNet has the same significant accuracy improvement for
all backbones.

Tables III and IV show the top-1 accuracy DenseNet121 +
Harris and DenseNet201 + Gabor on both datasets and
illustrate the classification performance for each ship category
in the form of confusion matrices. Tables III and IV also
have many misclassifications due to the significant interference
of background noise in the images of the two datasets.
However, Table IV performs better than Table III because
the FUSAR-Ship dataset has a higher resolution, can learn
more ship features, and has an accuracy of 86.92%, higher
than the 78.62% of OpenSARShip. Clearly, the confusion
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Training performance of MFCFNet using different backbones and various handcrafted features on the FUSAR-Ship dataset. The backbones were

selected as (a) AlexNet, (b) VGG-16, (c) ResNet-18, (d) ResNet-152, (e) DenseNet-121, and (f) DenseNet-201. The handcrafted features were selected as

Canny, Harris, Gabor, and LBP.

in category prediction on the FUSAR-Ship dataset mainly
occurs in Fishing and Others, as these two ship types have
similar geometric shapes. The various types of cargo such as
containers, general cargo, tankers, and bulk achieved better
classification performance.

E. Comparison Results

In the comparison experiments, the best feature combina-
tions DenseNet121 + Harris on OpenSARShip and DenseNet-
201 + Gabor on FUSAR-Ship are used as benchmarks and
then compared them with handcrafted feature-based, deep
feature-based, and state-of-the-art feature fusion methods,
respectively. The Harris feature is used in OpenSARShip and
the Gabor feature is used in FUSAR-Ship.

1) Comparison With Handcrafted Feature-Based Methods:
In the first item of Table V, four methods based on handcrafted
features are listed, SVM, Decision Tree, Random Forest, and
MLP. From Table V, the best accurate MLP combined with
handcrafted features can reach 59.67% and 72.35%, both much
lower than our MFCFNet. But thinking differently, these meth-
ods demonstrate the validity of handcrafted features Harris and
Gabor that can be used for SAR ship classification. In addition,
all handcrafted feature methods are inferior to deep feature-
based methods. This is the reason we use handcrafted features
to provide complementary information to the deep features.

2) Comparison With Deep Feature-Based Methods: Com-
bining the backbone network in Table II and the deep
feature-based method in Table V, the improved network
GSESCNNs proposed by Huang et al. [16] achieve the best

accuracy of 74.98% and 83.19%, respectively, which is 5%
lower than our MFCFNet approach. The result demonstrates
the effectiveness of combining handcrafted features with deep
features. It further illustrates that SAR classification should
not be caught in a single cycle of network structure modi-
fication, training technique optimization, and so on. Instead,
combining deep features with handcrafted features can solve
the aforementioned limitations.

3) Comparison With Feature Fusion Methods: Among the
feature fusion methods for SAR ship classification in Table V,
the state-of-the-art methods are DUW-Cat-FN [23] and HOG-
ShipCLSNet [25] proposed by Zhang. Since we study 2-D
manual features, the dimensionality difference between deep
features and manual features that are flattened to 1-D is large,
and direct concatenation to the FC layer will lead to feature
confusion and overfitting. Both of the above methods fuse
handcrafted features in the terminal FC layer and achieve
the best classification accuracy of 78.15% and 86.86% on
both datasets. Therefore, for better comparison, we use the
regular internal FC layer and terminal FC layer as well to
fuse handcrafted features separately, which have significantly
lower performance than our MFCFNet. Since we are studying
2-D handcrafted features, the dimension difference between
the deep feature and handcrafted feature which is flattened to
1-D is large, and the direct concatenation to the FC layer leads
to feature confusion and overfitting. From Table V, MFCFNet
can achieve a state-of-the-art classification accuracy of 78.60%
and 87.23%. We find that for all experimental results on the
OpenSAR dataset, the precision value is significantly lower
than the other three metrics, which is due to the unbalanced
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TABLE V

COMPARISON OF MFCFNET WITH HANDCRAFTED FEATURE-BASED, DEEP FEATURE-BASED,
AND STATE-OF-THE-ART FEATURE FUSION METHODS ON TWO DATASETS

Feature Method OpenSARShip FUSAR-Ship
Accuracy(%) Recall(%) Precision(%) F1(%) Accuracy(%) Recall(%) Precision(%) F1(%)
SVM [43] 55.74 56.77 49.51 5291 67.74 68.13 67.51 67.82
Handerafied Feature | DeCisSion Tree [44] 57.38 60.09 54.85 57.32 65.57 65.79 65.30 65.54
Random Forest [45] 57.05 59.56 52.94 56.04 67.05 67.33 67.65 67.49
MLP [46] 59.67 60.70 53.44 56.84 72.35 72.25 72.98 72.61
Wide-ResNet-101 [47]  73.04£0.73 72124277  67.37+1.46  69.62+1.27  80.98+0.53  81.02+0.54  81.10£0.51  81.06x0.52
MobileNet-v1 [48] 69.91+1.08  66.30+2.87  63.49+2.40  64.83+2.03  77.610.54  77.79+0.56  77.92+0.59  77.86+0.56
Deep Feature SqueezeNet-v1.0 [49]  72.15%1.25 7147131  66.73+1.70  69.01£1.28  78.76+0.38  78.87+0.40  79.07+0.52  78.97+0.44
Inception-v4 [50] 7244070 69.26£3.16  67.43x239  68.28+1.97  80.50:0.37 8055040  80.89+0.55  80.72+0.45
Xeception [51] 7374:0.86  71.56%3.00  68.601.67  70.00+1.29  77.29+0.38  77.42£039  77.39£036  77.41£0.37
GSESCNNG [16] 74.98+1.46 7474160  69.56:2.38  72.04:1.60  83.19£0.31  83.19:0.41  83.34x031  8§3.27+0.35
DUW-Cat-FN [23] 78 78.65 72.99 75.21 86.86 85.49 85.28 85.22
HOG-ShipCLSNet [25] ~ 78.15:0.57  77.87+1.14  72.42%1.06  75.04%0.68  86.69+0.47  86.62:0.51  86.54£0.50  86.58+0.50
Feature Fusion Internal FC layer 74754121 73574211 71643252 7331x1.98  84.25+042  84.1620.52  84.29+0.43  84.29+0.42
Terminal FC layer 74108142 732241.89 70213221  7229:2.19  83.17+0.51  83.22+0.54  83.08+0.48  83.1620.54
MFCFNet 78.60£0.21  79.37+0.58  73.78£0.62  76.06x0.93  87.23:0.26  86.67:0.43  86.89:0.45  86.69+0.41
The standard deviation of DUW-Cat-FN are not given in the source.
test samples in this dataset. Precision can prevent the problem %
of indicator failure caused by unbalanced positive and negative T T
samples. Similarly, MFCFNet achieves the highest perfor- 1
mance in Precision on both datasets. Combined with Fig. 7,
the standard deviation produced by MFCFNet is much lower g '[
than the deep feature methods and feature fusion methods, §75’ 1 I
which is 0.21 and 0.26 on the two datasets, respectively. The l
results show that in each random experiment, KSCM and
FFCA modules make the fusion features play a maximum and
stable role.
70 DenseNet121 GSESCNNs lmernlal FC Tenni;lal FC HOG‘-Ship MFCIFNet
F. Generalization Experiment ” @
To test the generalization performance of MFCFNet, the
OpenSARShip dataset was used for training and then tested
directly on the FUSAR-Ship dataset. Since the number of T T
categories in the FUSAR-Ship is more than that in the - N
OpenSARShip, only three common categories in FUSAR-Ship %85 L
are retained in the generalizability experiments, such as Bulk, 2 1
Container, and Tanker. Table VI shows the experimental results I
of different methods. Compared with the classical deep mod-
els, MFCFNet improves on average by 20.79% in the four

metrics. Comparing the handcrafted feature fusion methods in
different locations, MFCFNet also achieves the best results
with an accuracy of 65.54%.

To further explain the generalization performance of
MFCFNet, we present the confusion matrix of seven models.
It is clear from Fig. 8(a)—(d) can be found that the classi-
cal deep models both perform poorly on the Tanker class,
and Bulk and Tanker are easily misclassified as Container.
As shown in Fig. 8(e)—(g), the model after fusing handcrafted
features can better distinguish each category. Because the
handcrafted features can provide prior knowledge, which pre-
vents the models from overfitting in the direction of irrelevant
target features. All methods have degraded classification per-
formance in generalization experiments, which is due to the

DenseNet201 GSESCNNs  Internal FC Terminal FC  HOG-Ship  MFCFNet

(b)

Fig. 7. Comparison results of “mean =+ std” accuracy between the proposed
MFCFNet and state-of-the-art. (a) OpenSARShip. (b) FUSAR-Ship.

differences in the two data domains, such as different image
resolutions and sea conditions. In general, MFCFNet has a
better generalization performance, but further generalization
research is still needed.

V. ABLATION STUDY

In MFCFNet, the feature fusion unit is the core of the
FFCA module, the knowledge collaborative learning unit is
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Fig. 8. Generalization confusion matrix comparison of MFCFNet with deep feature-based and feature fusion methods. (a) AlexNet. (b) VGG-16. (c) ResNet-18.

(d) DenseNet-121. (e) Internal FC layer. (f) Terminal FC layer. (g) MFCFNet.

TABLE VI

GENERALIZATION COMPARISON OF MFCFNET WITH DEEP
FEATURE-BASED AND FEATURE FUSION METHODS FROM
THE OPENSARSHIP TO FUSAR-SHIP DATASET

Networks Accuracy(%)  Recall(%)  Precision(%) F1(%)
AlexNet 40.44 40.56 40.08 35.88
VGG-16 46.29 46.41 46.64 39.88
ResNet-18 41.29 41.41 50.79 38.90
DenseNet121 50.98 51.79 51.82 43.63
Internal FC layer 58.19 57.93 68.27 58.00
Terminal FC layer 56.70 57.17 50.52 47.44
MFCFNet 65.54 65.59 67.34 66.13

the core of the KSCM module, and both modules contain
an auxiliary feature supervision unit with feature contribution
weight. Therefore, we have divided the ablation experiments
according to these units. We perform ablation experiments
with the top-2 gain combinations on both datasets to allow a
more pronounced study of each unit’s effectiveness. The top-2
gain on OpenSARShip are VGG16 + Gabor(+47.35) and
AlexNet + Canny(4-7.23). The top-2 gain on FUSAR-Ship
are VGG16 + Gabor(+4.83) and VGG16 + Canny(+4.2).
All ablation experiments were also run five times to report the
“mean =+ std” accuracy.

A. Ablation Study on Feature Fusion Unit

We conduct several ablation studies to investigate the effec-
tiveness of attentional mechanisms in feature fusion units
and the effect of different attentional mechanisms on clas-
sification accuracy, including the commonly used types of
attention: the spatial attention module (SAM) [52] and the
convolutional block attention module (CBAM) [53]. From
Table VII, the performance of the network can be improved
by using any attention mechanism on OpenSARShip, and the

lower the Attention Removed value, the more significant the
improvement. However, due to the more diverse and complex
ship categories in FUSAR-Ship, and the handcrafted features
and deep features characterizing ship information from two
different perspectives, the SAM focusing more on spatial
pixel relationships can cause feature representation confusion,
resulting in a negative impact. The CBAM performs a little
better as it is a mixed spatial and channel attention mechanism.
Our method based on the channel attention mechanism per-
forms a little better, coming from paying more attention to the
relationship between deep features and handcrafted features of
each channel to eliminate the effect of feature confusion.

B. Ablation Study on Auxiliary Feature Supervision Unit

We conduct some ablation experiments to verify the effec-
tiveness of auxiliary feature supervision loss and feature
contribution weights. Here, we set the loss weight values to 0,
0.2, 0.8, and 1 for the experiments. o represents the DEEP
branch loss weight and B represents the HAND branch loss
weight. When «, 8 = 0, it means no auxiliary loss is used. The
model gain at this time is attributed to the attention mechanism
and knowledge synergy loss. From Table VIII, we can make
the following observations.

1) When using the weaker handcrafted feature Canny, if g
is set greater than or equal to «, it makes the model pay
more attention to the HAND branch in the backpropaga-
tion process, resulting in the model shaking violently and
difficult to converge during the training process, which
eventually leads to lower performance than Baseline.

2) When using stronger Gabor features, a larger gain can be
produced for the deep features. The model performance
gets better as « keeps increasing.

3) Our method uses feature contribution degree to set o and
B, which can adaptively measure the relative importance
of different deep features with handcrafted features, and
finally achieve the maximum accuracy gain.
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TABLE VII
ABLATION EXPERIMENTS OF FEATURE FUSION UNIT. Baseline REFERS TO NOT USING HANDCRAFTED FEATURES, Attention Removed

REFERS TO NOT USING THE ATTENTION MECHANISM, () INDICATES THE PERFORMANCE GAIN FOR Attention Removed

Dataset Networks Baseline Attention Removed SAM [52] CBAM [53] Ours
. VGG16+Gabor  70.62+1.18 74.75+1.26 75.74+0.61+099)  76.99£0.59¢224)  77.97£0.94(:322)
OpenSARShip
AlexNet+Canny  70.47+1.45 76.07+£0.52 76.7240.43¢065)  77.38+0.75¢131  77.70£0.36(+1.63)
. VGG16+Gabor  80.30+0.19 84.73+0.21 78.11£0.17¢6.62) 83.83+0.22¢-090)  85.13+0.13(+0.40)
FUSAR-Ship
VGG16+Canny  80.30+0.19 83.08+0.26 83.18+0.49¢0.100  84.04%0.24+096)  84.50+0.22(+1.42)
TABLE VIII

ABLATION EXPERIMENTS OF AUXILIARY FEATURE SUPERVISION UNIT. «, § = 0 MEANS REMOVE THE
AUXILIARY SUPERVISION LOSS, () INDICATES THE PERFORMANCE GAIN FOR @, B =0

Dataset Networks Baseline a, =0 a, =1 a=02,=08 «a=0.8,6=0.2 Ours
. VGG16+Gabor  70.62+1.18  71.82+1.03 74.11£0.53+2.29) 71.1620.60-0.66) 74.21+0.82+2.39) 77.97+0.94+6.15)
OpenSARShip
AlexNet+Canny  70.47+1.45  74.43+0.59 73.77£0.670.66) 73.11£0.43¢132) 75.7440.60(+1.31) 77.70£0.36¢+327)
FUSAR-Shi VGG16+Gabor 80.30+0.19 82.86+0.17 84.89+0.10¢:2.03) 83.6120.16(+0.75) 84.39+0.22(+1.53) 85.13+0.13¢+2.27)
-Ship
VGG16+Canny  80.30+0.19 83.78+0.54  70.54+0.62(1324) 69.69+0.83-14.09) 82.10£0.55¢-1.68) 84.50+0.22+0.72)
TABLE IX

ABLATION EXPERIMENTS OF KNOWLEDGE COLLABORATION LEARNING
UNIT. () INDICATES THE PERFORMANCE GAIN FOR Loss Removed

Dataset Networks Baseline Loss Removed Ours
VGG16+Gabor  70.62+1.18 77.05+0.46 77.97+0.94(+092)
OpenSAR
AlexNet+Canny  70.47+1.45 74.10+£0.43 77.70£0.36(:3.60)
VGG16+Gabor  80.30+0.19 84.97+0.31 85.13+0.130.16)
FUSAR
VGG16+Canny  80.30+0.19 82.90+0.44 84.50+£0.22+1.60)

In conclusion, the results in Table VIII strongly prove that
the auxiliary features supervision loss and feature contribution
degree, which can balance the importance between features,
make the handcrafted features and deep features complement
each other.

C. Ablation Study on Knowledge Collaboration Learning
Unit

We conduct some ablation experiments to verify the effec-
tiveness of synergy loss in the knowledge collaborative learn-
ing unit. Here, we remove the knowledge synergy loss and
keep the rest of MFCFNet in Table IX. Specifically, the best
accuracy gain of 3.6% was achieved on OpenSARShip using
AlexNet + Canny, and effective results were also achieved on
FUSAR-Ship. These results demonstrate the significance of the
knowledge synergy loss and the effectiveness of our approach,
which leads to deep knowledge and handcrafted knowledge
to learn from each other, achieving a dynamic collaborative
process for the same task.

VI. LIMITATION AND CONCLUSION

In this article, we proposed a novel collaborative multifea-
ture fusion network with deep supervision to better achieve
handcrafted features to provide complementary information

to deep features. An auxiliary feature supervision unit and a
knowledge collaborative learning unit are designed, the former
realized high-quality extraction of feature maps for each
branch, and the latter achieved collaborative learning of deep
and handcrafted knowledge. In addition, an FFCA based on
the channel attention mechanism is designed, which can solve
the problem of the important difference between deep features
and handcrafted features and the unbalanced contribution of
different features. Extensive experiments have shown that our
proposed MFCFNet outperforms single deep features and
multifeature models based on Internal FC Layer and Terminal
FC Layer fusion, and exhibited better performance than the
current state-of-the-art related methods. Therefore, MFCFNet
reliably and realistically achieves superior ship classification
results.

Our current study has some limitations. First, MFCFNet
is unable to achieve effective classification in a multiobject
scenario. Second, the model performance is improved when
fusing one handcrafted feature with a deep feature, but sus-
tained performance improvement cannot be achieved when
more than two handcrafted features are fused with a deep
feature at the same time. The main reason for our analysis of
this phenomenon is the feature redundancy problem. Finally,
we observe that the size of MFCFNet is twice that of the back-
bone, which is mainly related to the number and complexity
of features auxiliary branches. Therefore, weighing the model
size and the expected increase in accuracy, we believe that the
current increase in model size is justified. More importantly,
all auxiliary classifiers are discarded in the inference process,
so there is no additional computational overhead.

Our future work is as follows.

1) Study the intrinsic relationship between deep and
handcrafted features to implement recommending the
best-handcrafted features to different networks.

2) Solve the feature redundancy problem and extract
common features in deep and handcrafted features,
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thus improving model robustness and extending the
MFCFNet framework to any number of feature fusions.
Study and evaluate various representational capabilities
of deep and handcrafted features and build a feature
capability matrix.

The existing feature fusion methods all use classic
models as the backbone. In our future work, we will
demonstrate the feasibility of our method on the latest
models.
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