IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

35941

Proactive Spatio-Temporal Request Prediction for
Replica Placement in Edge-Cloud Computing

Hao Zheng™', Graduate Student Member, IEEE, Zhigang Hu

Hui Xiao

Abstract—User requests in edge computing environments
are inherently decentralized and dynamic, posing significant
challenges for efficient and adaptive service replica placement.
To address this, we formulate the service replica placement
problem in an edge-cloud collaborative environment, explicitly
incorporating the spatio-temporal distribution of user requests.
By capturing spatial and temporal correlations, we predict future
request patterns to enable forward-looking replica placement.
Given the NP-hard nature of the optimization problem, we design
a deep reinforcement learning (DRL) algorithm that optimizes
replica placement decisions based on predictive modeling. To
validate our approach, we conduct extensive experiments on
real-world datasets across two typical application scenarios—
grid-based and graph-based request distributions. Experimental
results show our method reduces average response latency by
up to 59.6% and boosts service provider profitability by 4.85%
compared to reactive and temporal-only baselines. The proposed
framework provides a novel and effective solution for proactive
service provisioning in edge computing environments.

Index Terms—Deep reinforcement learning (DRL), edge
computing, replica placement, spatio-temporal prediction.

I. INTRODUCTION

OBILE edge computing (MECs) has emerged as a

promising paradigm to bring cloud resources closer to
end users by deploying micro data centers at the network’s
periphery [1], [2], [3]. This proximity enables rapid service
responses and reduces the load on core networks [4], [5].
However, the deployment of MEC also introduces new chal-
lenges, particularly in managing limited edge resources and
addressing the highly dynamic and decentralized nature of user
requests.

As illustrated in Fig. 1, user requests in edge envi-
ronments exhibit complex spatio-temporal characteristics in
practice [6], [7]. In a grid-based scenario [Fig. 1(a)], the ser-
vice region is partitioned into uniform grids, each experiencing
varying levels of request intensity (from light to heavy).

Received 3 March 2025; revised 23 May 2025; accepted 10 June 2025.
Date of publication 13 June 2025; date of current version 25 August 2025.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62172442 and Grant 62172451; in part by the
China Scholarship Council under Grant 202306370179; and in part by
the High Performance Computing Center of Central South University.
(Corresponding author: Liu Yang.)

Hao Zheng, Zhigang Hu, Liu Yang, Aikun Xu, Meiguang Zheng,
and Hui Xiao are with the School of Computer Science and
Engineering, Central South University, Changsha 410083, China
(e-mail: zhenghao@csu.edu.cn; zghu@csu.edu.cn; yangliu@csu.edu.cn;
aikunxu@csu.edu.cn; zhengmeiguang @csu.edu.cn; huixiao @csu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/JI0T.2025.3579618

, Liu Yang™, Aikun Xu"', Meiguang Zheng",

, and Keqin Li™, Fellow, IEEE

g 8ad
g a QDD@DDD
8 8 g gdd
()

Fig. 1. Visualization of spatio-temporal user request distributions in grid-
based and graph-based scenarios. (a) Grid-based scenario, where the coverage
area is divided into uniform grids with varying request intensities. (b) Graph-
based scenario, where user requests follow a road network topology, and each
node experiences dynamic demand over time.

Meanwhile, in a graph-based scenario [Fig. 1(b)], requests
predominantly follow road networks, where each node [e.g., a
base station or roadside unit (RSU)] may experience fluctuat-
ing demand over time. These spatial variations, compounded
by temporal dynamics, pose significant challenges for resource
allocation and service provisioning. Traditional service replica
placement methods primarily focus on reactive strategies,
which adjust replica deployment by designing predictive mod-
els or heuristics based on historical request patterns [8], [9].
Such reactive methods often fail to cope with sudden changes
in demand due to their inherent response delay [10], [11],
[12], [13]. Moreover, many existing predictive models only
consider temporal dynamics, overlooking the inherent spatial
correlations that are critical in geographically distributed
settings [14], [15], [16]. Consequently, designing an efficient
and proactive replica placement strategy must account for
both where and when demand emerges, ensuring that edge
resources are deployed to best serve the evolving distribution
of user requests.

However, the inherent complexity and nonfixed nature
of request patterns, especially mapping high-dimensional,
uncertain predictions to multiple conflicting goals, poses a
challenge for designing such proactive strategies [17], [18].
Fundamentally, proactive placement in such dynamic envi-
ronments constitutes a sequential decision-making problem,
where the placement of replicas at the current time affects
future network costs and system states. Deep reinforcement
learnings (DRLs) is well-suited for this scenario, as it excels at
modeling sequential decision processes and optimizing long-
term cumulative rewards, aligning perfectly with the dynamic

2327-4662 (© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

)) . See https://www.ieee.org/publication:
Authorized licensed use limited to: Centraﬁ) South Unlversn)g. Bown oade

/Cr)irghts/index.html for more informa}ion

August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5598-4348
https://orcid.org/0000-0001-5707-8931
https://orcid.org/0000-0001-8319-0724
https://orcid.org/0000-0002-3525-0339
https://orcid.org/0000-0001-8084-5203
https://orcid.org/0000-0002-0122-233X
https://orcid.org/0000-0001-5224-4048

35942

nature of replica placement [19], [20], [21], [22]. Specifically,
DRL learns optimal policies through trial-and-error interaction
with the environment, automatically uncovering complex rela-
tionships among spatial locations, temporal patterns, and
placement strategies to maximize a reward signal that captures
both response latency and operational cost.

Based on the aforementioned challenges, this article inves-
tigates the service replica placement problem from the
perspective of service providers operating in an edge-cloud
collaborative environment. We rigorously formulate the replica
placement problem by incorporating both the spatial and
temporal distribution of user requests. By capturing the inter-
dependencies between neighboring regions and the evolution
of request patterns over time, we propose a proactive and
forward-looking replica placement strategy that anticipates
future demand rather than merely reacting to past trends.

To tackle the NP-hard nature of the optimization problem,
our approach integrates spatio-temporal predictive learning
with DRL. The predictive module extracts key features
from historical data to accurately forecast future request
distributions, while the DRL-based solution leverages these
predictions to determine an optimal replica placement scheme
that minimizes response latency and balances resource utiliza-
tion with operational costs.

We conduct extensive trace-driven experiments on both
grid-based and graph-based real scenario datasets, and the
results show that our proposed method significantly reduces
overall response latency and enhances service provider prof-
itability compared to conventional reactive and temporal
prediction-based approaches. These results not only validate
the effectiveness of our approach but also underscore its
potential for practical deployment in IoT and edge computing
applications. The main contributions of this article are as
follows.

1) We formulate the replica placement problem in an edge-
cloud collaborative environment by explicitly modeling
the spatio-temporal dynamics of user requests, address-
ing the limitations of prior temporal-only or reactive
approaches.

2) We propose a novel framework that combines spatio-
temporal request prediction with DRL, enabling
proactive and adaptive replica placement.

3) We validate our method through extensive experiments
on real-world datasets, showing substantial improve-
ments in both response latency and service provider
profitability.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III describes the
system architecture and formally defines the replica placement
problem. In Section IV, we present our approach for spatio-
temporal prediction of user requests, and Section V details
the proactive replica placement strategy. Section VI outlines
the experimental results and evaluation. Finally, Section VII
concludes this article and discusses directions for future work.

II. RELATED WORK

The literature on replica placement in edge computing can
be broadly categorized into reactive approaches, predictive

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

methods based on time-series analysis, recent deep learning
(DL)—driven solutions, and the latest reinforcement learning-
based methods [29].

A. Reactive Replica Placement Strategies

Early research focused on reactive replica placement strate-
gies [11], [24], where placement decisions were adjusted
based on historical observations of user requests. Chang and
Wang [11] proposed an adaptive replica placement algorithm
that monitors request patterns and periodically relocates repli-
cas to minimize access latency. Similarly, Li et al. [24]
developed a dynamic placement scheme that responds to
workload changes by migrating replicas across edge nodes.
Wang et al. [23] introduced a decentralized replica placement
framework that uses local observations to make placement
decisions, reducing coordination overhead. Xu et al. [30]
leveraged game-theoretic approaches to model the competitive
behavior among edge service providers. While these methods
dynamically adapt to changing workloads, their reliance on
past data often results in a lag in response to sudden demand
fluctuations. Such reactive schemes are particularly inadequate
in edge environments where the spatio and temporal variability
of user requests can be pronounced.

B. Traditional Predictive Methods

To overcome the limitations of reactive strategies, predictive
methods have been proposed [31]. Traditional statistical
approaches, such as ARIMA [25] and exponential weighted
moving averages [26], model the temporal evolution of
request rates. Maia et al. [25] demonstrated that ARIMA-
based forecasting can improve replica placement effectiveness
in content delivery networks. Li et al. [26] incorporated
user mobility patterns into exponential smoothing models
to predict future request locations. Some research has also
explored optimization algorithms like swarm intelligence (e.g.,
variants of particle swarm optimization [32] or ant colony
optimization [33]) to solve the placement problem formulated
with predicted future states, aiming for better resource uti-
lization based on forecasted demand. However, these methods
typically neglect the spatio dependencies inherent in user
request distributions. For instance, while [13] and [24] demon-
strate that prediction-based replica placement can improve
performance, their models generally assume that requests are
independent of geographic location, thereby limiting their
effectiveness in scenarios where spatio correlations play a
crucial role.

C. Deep Learning-Based Methods

More recently, DLs techniques have emerged as powerful
tools for capturing the complex spatio-temporal dynamics of
user requests. recurrent neural networks (RNNs), particularly
long—short-term memorys (LSTMs) [12], [28] and gated recur-
rent units (GRUs) models, have shown promise in forecasting
temporal trends in service demand. Wang et al. [12] employed
LSTM networks to predict request patterns and integrated
these predictions into a replica placement optimization frame-
work. Zaman et al. [28] developed a hybrid LSTM-CNN
architecture for multistep ahead forecasting of edge computing

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

35943

TABLE I
OVERVIEW OF REPRESENTATIVE REPLICA PLACEMENT TECHNIQUES

Source Proactive placement Prediction technique Temporal Spatial
Chang et al. [11] X - _

Wang et al. [23] X - - _
Li et al. [24] X - - -
Fahadi et al. [13] v Assume perfect prediction v X
Maia et al. [25] v ARIMA v X
Li et al. [26] v Multiple linear regression v X
Li et al. [27] v Gray Markov chain v X
Zaman et al. [28] Vv LSTM (Predict VNF demand) v X
Wang et al. [12] v LSTM (Predict data popularity) N X
Our work v Spatio-Temporal predictive learning v’ v

workloads. However, many early DL applications in this
domain still focused predominantly on the time dimension,
without robustly integrating spatio information. To address
spatio dependencies, Zhang et al. [34] proposed a CNN-
based approach for modeling spatio correlations in MEC
environments. Moreover, graph neural networks (GNNs) have
emerged as particularly suitable for modeling complex spa-
tio relationships, with recent works [35], [36] demonstrating
their effectiveness in network resource allocation scenarios.
However, most of these approaches still focus primarily
on either the temporal or spatio dimension in isolation,
without effectively integrating both aspects. Although some
works have applied spatio-temporal methods in the context
of network resource allocation and base station manage-
ment [37], [38], they are primarily targeted at infrastructure
providers rather than service providers who require proactive
replica placement strategies.

D. Reinforcement Learning-Based Methods

The application of reinforcement learning to edge com-
puting problems has gained significant momentum [39].
Traditional RL approaches [40], [41] have been applied
to resource allocation and task scheduling problems.
Liang et al. [40] used deep Q-networks (DQNs) for
dynamic resource allocation in edge computing environments.
Yang et al. [41] proposed a multiagent reinforcement learning
framework for collaborative edge computing. More sophis-
ticated approaches have emerged that combine RL with
other techniques. Actor—Critic methods [42], [43] have shown
particular promise for continuous control problems in edge
computing. Gao et al. [42] developed an actor—critic frame-
work for joint computation offloading and resource allocation.
Zhang et al. [43] employed Proximal policy optimizations
(PPOs) for dynamic service placement in edge-cloud envi-
ronments. Liu et al. [44] leveraged a parameterized DQN
framework to jointly optimize service placement and com-
putational resource allocation, with the goal of minimizing
long-term task latency under stochastic workloads and migra-
tion delays. Zheng et al. [45] formulated the replica placement
problem as a multiobjective problem and used a DRL strategy
based on dual DQNs to improve latency, reliability, and load
balancing. However, most existing RL-based approaches for
replica placement do not adequately incorporate predictive

components or do not consider the complex spatio-temporal
nature of user requests.

In contrast, our work aims to bridge these gaps by inte-
grating both spatio and temporal predictive learning within
a unified framework for proactive replica placement. As
summarized in Table I, our approach uniquely addresses the
limitations of existing methods by simultaneously considering
the spatial distribution and temporal evolution of user requests.
This enables the design of a DRL-based placement strategy
that not only anticipates future demand but also optimizes
resource allocation from the service provider’s perspective.

III. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

In this section, we present the overall system architec-
ture and formally define the replica placement problem in
an edge-cloud collaborative environment. Then, we describe
the architecture and introduce two representative scenarios,
followed by the definition of the request model, replica
placement, scheduling variables, and problem formulation.

A. System Architecture

Fig. 2 illustrates the three-layer architecture specifically as.

Edge Cloud Layer is a typical wireless access network that
consists of n geographically distributed edge clouds, denoted
as S = 51, 82,..., 8, Each edge cloud has a built-in edge
server and network access pointss (APs) (e.g., base station or
WiFi hotspot) that provides network access to end users within
its coverage area. Due to limited computational and storage
resources, these edge clouds must efficiently deploy service
replicas.

Regional Central Server Layer orchestrates replica place-
ment and request scheduling across all edge clouds. It collects
request data from each edge cloud and makes system-wide
decisions based on global resource availability and network
conditions.

Central Cloud Layer is denoted by Sp and the set of all
clouds is denoted as Sy = S U {Sp}. It provides virtually
unlimited resources but is located farther from end users.
Although it guarantees service availability, the higher latency
compared to the edge clouds makes it less desirable for delay-
sensitive applications.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

35944

Central Cloud

O]
e 988

Model training

L0

o
CAg

cloud Services
/
Model Historical request j}
deployment information
Future request Placement Regional
information . scheme °
Req'ue'st Replica Reque.st Ry, Ceviral Server
prediction placement scheduling .)
Layer
Request Placement Scheduling
information scheme scheme //
J/User devices
e S O

g " [- (o N\
Aﬁ_~ 0~ A)? nl G Edge Cloud
\

A

o N E%Q Layer

2% ---Replica #5--- Edge Cloud

Fig. 2. System of proactive replica placement in edge-cloud collaboration,
illustrating the three-layer framework (central cloud, regional central server,
and edge cloud layers) with integrated processes for model training, request
prediction, replica placement, and request scheduling to optimize service
delivery in IoT applications.

TABLE I
NOTATION LIST

Notation Meaning

T={0,1,2,..T} Time slots

S ={51,52,...5.} Set of edge clouds

S+ =8USp Set of clouds

C={C1,Co,...Cr} Setof grid areas or road sections

R =A{r1,r2,..rn} Set of area requests arrival rate

Cap Capacity of each replica in edge cloud
m Wireless link cost, a constant

d;j Communication delay between .S; and S;
z! € {0,1} Placement variable for slot ¢

ygj €[0,1] Shceduling variable for slot ¢

T; Prediction input time windows length
SD Spatial distribution of user requests

To capture diverse application requirements, we consider
two typical scenarios.

Grid-Based Scenario: The first typical service scenario
targets applications, such as cloud gaming, real-time video
streaming and conferencing [46], [47], where requests are dis-
persed throughout the region. The service region is partitioned
into a uniform n x n grid. Each cell is managed by a base
station that monitors local request intensity. This scenario is
representative of urban IoT applications where user requests
are distributed over a city.

Graph-Based Scenario: The second typical service scenario
targets traffic-based applications, such as in-vehicle navigation
and assisted driving [48], [49], [50], where requests are sent
along roads. Their spatial distribution is usually related to the
structure of the road network. The road network is modeled as
an undirected graph G = (V, E, A), where V is the set of road
segments (nodes), E is the set of connections based on the road
topology, and A is the adjacency matrix. In this case, each road
segment deploys a RSUs that is responsible for managing and
forwarding requests sent from that road segment. This scenario
is particularly applicable to vehicular IoT applications.

In both scenarios, grid areas and road sections are utilized
to manage user requests, and for simplicity, we denote them

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

uniformly as C = {Cy, Ca, ..., C,}, where n represents the
number of regions. Each region is equipped with an edge
server to form an edge cloud. The main notations used in this
article are summarized in Table II.

B. Replica Placement and Request Scheduling

To ensure a high-Quality of Services (QoSs) in an edge-
cloud collaborative environment, the replica placement scheme
must proactively adapt to the dynamic spatio-temporal dis-
tribution of user requests. This section introduces the key
mechanisms of replica placement and request scheduling,
defining their roles, mathematical representations, and under-
lying assumptions.

Time-Slotted Framework: We model the system dynamics
using a discrete-time framework, where the timeline is divided
into equal-length time slots r € 7 ={0,1,2,...,T}. Each
time slot represents a decision epoch during which the service
provider evaluates and adjusts the replica placement based on
predicted request patterns. The duration of a time slot (e.g., one
hour) is a configurable parameter determined by the service
provider, balancing the need for timely adaptation to request
fluctuations with the overhead of frequent redeployment.
For instance, shorter slots enable rapid responses to sudden
demand spikes, while longer slots reduce operational costs.

Replica Placement: Replica placement involves determining
the optimal locations for deploying service replicas across the
edge clouds and the central cloud. Under the rental rules and
cost constraints, we assume that each edge cloud S; (for i =
1, ..., n) can deploy at most one service replica, while the cen-
tral cloud Sp always has a replica deployed [11]. Each replica
deployed at an edge cloud has a fixed maximum processing
capacity Cap (i.e., the maximum number of requests processed
per second), which is determined by the rented computing,
storage, and communication resources.

The replica placement decision at time slot ¢ is represented
by a binary vector X' = [x{, x}, x}, ..., x},], where x! € {0, 1}
fori=0,1,...,n If x§ = 1, a replica is deployed on edge
cloud Sp; otherwise, x; = 0 indicates no replica is deployed on
that edge cloud. We assume that the central cloud Sy always
has a replica deployed, i.e., x6 =1 forall r € T, serving as a
fallback option for request processing.

The placement decision X’ is made proactively at the begin-
ning of each time slot based on predicted request distributions
(detailed in Section IV), aiming to minimize response latency
and operational costs.

Request Scheduling: Once the replica placement X' is deter-
mined, incoming user requests must be efficiently scheduled
to available replicas. Users are distributed across the coverage
area and access services by sending requests to their nearest
base stations. When a user requests a service that is not
deployed on the local edge server, the system must determine
where to process this request—either at another edge server
hosting a replica or at the central cloud. This decision is made
according to scheduling rules designed to optimize service
response time while respecting capacity constraints.

Rather than modeling individual request routing, we focus
on the statistical distribution of requests across space and

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

time from a service provider’s perspective. Let R' =
{rl,rh, ..., r}} denote the set of request arrival rates from a
specific grid area or road section C; at time slot ¢, where
ri is the predicted number of requests originating from C;.
The complete scheduling decision is represented by a matrix
Y= {yﬁj} subject to the constraints » yﬁj =1 for all i and
yfj < xjt- for all i, j, ensuring that requests are only scheduled
to clouds with deployed replicas.

Through this formulation, we can systematically address the
joint optimization of replica placement and request scheduling
decisions to minimize service latency while respecting capac-
ity constraints Cap and managing deployment costs effectively.
This joint optimization problem is NP-hard (see Section III-D),
making it computationally intractable for large-scale systems.
To overcome this challenge, we decompose the problem into
manageable subproblems that are solved sequentially in our
proposed approach (Section V), striking a balance between
solution quality and computational efficiency.

C. Response Latency Model

In edge computing systems, QoS is primarily measured by
the request response latency, which consists of two major
components: 1) computation latency and 2) communication
latency. This section presents our model for quantifying these
latency components in the context of replica placement and
request scheduling.

Communication latency in our system has two key com-
ponents: 1) wireless access latency between user devices and
their nearest base stations, and 2) request routing latency
between different edge clouds or from edge clouds to the
central cloud. The wireless access component is largely inde-
pendent of our replica placement decisions, as requests must
first traverse the wireless link to reach the nearest base station
regardless of where service replicas are deployed. Therefore,
we model this wireless access latency as a constant p for all
requests.

For the request routing latency between clouds, we adopt
a distance-based model where the latency between edge
clouds §; and S; is proportional to the number of network
hops between them [23], [51]. This is represented by dj,
which corresponds to the geographical distance between the
regions containing these edge clouds. This simplification is
widely used in edge computing research as it captures the
essential characteristics of network transmission delays while
maintaining model tractability.

Regarding computation latency, we assume that the load
on each replica does not exceed its maximum capacity
Cap, ensuring no queuing delays. Under this condition, the
processing time for each request can be approximated as
constant for a given service type. This allows us to focus on
the impact of replica placement and request scheduling on
network latency without the additional complexity of variable
computation times. Consequently, we can express the overall
system response latency at time slot 7 as

n

n n
Latency’ = Z rh Z yydij + Z wurk (D)
i=1

i=l j=0

35945

where 7! represents the number of requests originating from
area C; during time slot ¢. The first term captures the total
request routing latency across all network paths, weighted by
the number of requests and the fraction of requests assigned to
each path. The second term represents the aggregate wireless
access latency for all requests, which remains constant for a
given request distribution and is included for completeness.

D. Problem Formulation

Building on the previous sections, we now formulate the
optimization problem. Our objective is twofold: 1) to minimize
the overall response latency experienced by users; and 2) to
minimize the number of replicas deployed, which directly
impacts deployment costs. This dual-objective optimization
problem for time slot # can be mathematically formulated as

n n n n
Plimin {Y Y yidi+ > prl Y x})
i=1 j=1

i=l j=0
n
s.t. Zy{., =1 VG eC (3)
j=0
Yy <X VC ecvsjeS, (4)
n
nyjrf <Cap VSjeS (5)
i=1

xj€{0,1},y; €[0,1] VCieC VSje Sy (6)

where the first term represents the total routing latency across
all requests, excluding the constant wireless access latency
since it is independent of placement decisions. The second
term penalizes the number of replicas deployed at edge clouds,
capturing the tradeoff between QoS and resource costs.

The problem Pl is formulated as a constrained mixed-
integer linear programmings (MILPs) problem, which is
NP-hard due to the binary placement variables and their
coupling with the continuous scheduling variables. The com-
plexity of this problem grows exponentially with the number
of edge clouds, making exact solutions computationally infea-
sible for large-scale systems. This computational challenge
motivates our approach in Section V, where we decompose
the problem into manageable subproblems that can be solved
efficiently while maintaining solution quality.

IV. SPATIO-TEMPORAL PREDICTION OF USER REQUESTS

To enable proactive replica placement, this section develops
a predictive model for user request distributions by capturing
their spatio-temporal dynamics. We define the spatio-temporal
distribution of requests and propose tailored prediction meth-
ods for the grid-based and graph-based scenarios, leveraging
historical data to forecast future demand.

A. Spatio-Temporal Distribution of User Requests

As outlined in Section III-A, the service area is partitioned
into region set C (grid cells or road segments), and the timeline
is discretized into time slot set 7. Request patterns in the
service area exhibit two fundamental types of correlation.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

35946

1) Temporal Correlation: The request arrival rate at a
specific location (grid area or road section) shows strong
correlation with its historical values from neighboring
time slots. This correlation captures daily and weekly
patterns, trends, and seasonal variations in user behavior.

2) Spatial Correlation: Geographically proximate locations
tend to exhibit similar request patterns. For instance,
neighboring grid cells in urban areas or connected road
sections in transportation networks often experience
correlated demand due to similar user activities and
movement patterns.

When a user sends a service request, it first reaches a nearby
base station or RSU. These AP serve as data collection nodes
that record request volumes without capturing sensitive user
information, thus preserving privacy while providing valuable
aggregate statistics. For each region C, at time slot ¢, the
request volume Dg, is calculated as the number of requests
received by its associated access point

ng = {|req € Reqz”greq =g} @)

where Req, is the set of all requests issued during time slot
t, and greq denotes the originating region of request req. To
represent these spatial distributions uniformly, we define SD;
as the complete spatial distribution of requests during time
slot ¢

SD, = {D|¥g € C}) (®)

and the full spatio-temporal distribution of requests across all
time slots is then defined as

STD = {SD,|Vt € T}. 9)

This comprehensive representation of request patterns cap-
tures both spatial variations and temporal dynamics. By
analyzing historical STD data, we can identify recurring
patterns, trends, and anomalies that inform our prediction
models.

B. Prediction of User Requests Distribution

Effective edge computing systems must anticipate future
user demand patterns to optimize replica placement proactively
rather than reactively. In this section, we develop prediction
models that forecast future request distributions by leveraging
the spatio-temporal patterns captured in the historical STD
data.

Objective: Given the historical spatio-temporal distribution
[SDy, SD3, ..., SDz,] over an input time window of length
Tin, predict the future spatial distribution SDTAin_H for the next
time slot. We employ two different prediction approaches
tailored to the distinct characteristics of grid-based and graph-
based scenarios.

Prediction for Grid-Based Scenario: For the grid-based
scenario, we employ a convolutional long short-term memorys
(ConvLSTMs) approach, which extends traditional LSTM
networks by incorporating convolutional operations to capture
spatial dependencies alongside temporal patterns. Fig. 3 illus-
trates the prediction process, where the spatial distribution of
requests from Tj, historical time slots is sequentially processed

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

8D, , o,

.
Extracting temporal,
correlation ’
'

Predict

Extracting spatial | -
correlation

time
N
g >
Forward-Looking
window

Observation Window

Fig. 3. Spatio-temporal request prediction process for grid-based scenario
using ConvLSTM, illustrating the extraction of spatial and temporal corre-
lations across an observation window to predict future request distributions
over a forwardlooking window.

through the ConvLSTM network to produce the prediction
SDz, +1. At each time step, the network maintains two state
vectors: the hidden state H; representing the current output and
the cell state C; storing long-term memory. The core operations
of the ConvLSTM at each time slot ¢ are formalized in the
following equations:

it = 0 (Wyi % SDy + Wy x Hi—| + b))

fi = U(fo * SDy + Wy x Hi_q + bf)

Ci =f1 0 Ci—1 + i otanh(Wy. % SD; + Wy x Hi—1 + b.)
0y = 0 (Wxo * SD;y + Who x Hy—1 + o)

Hl‘ = 0: O tanh(C,) (10)

where i, f;, 0o, represent the input, forget, and output gate
coefficients respectively, controlling information flow. o
denotes the sigmoid activation function, which outputs values
between 0 and 1. tanh is the hyperbolic tangent activa-
tion function, which outputs values between —1 and 1. *
denotes convolution, o is the Hadamard product, and H;
and C; are the hidden and cell states at time ¢. Unlike
standard LSTM, ConvLSTM applies 2-D convolution to SDy,
extracting spatial features across neighboring cells while
retaining temporal dependencies via gating mechanisms. In our
implementation, we utilize the CMS-LSTM architecture [52],
which has demonstrated strong performance in spatio-temporal
prediction tasks.

Prediction for Graph-Based Scenario: For transportation
networks represented as graphs, the standard convolution oper-
ation is no longer applicable since graph nodes have varying
numbers of neighbors with no inherent ordering. Instead,
we employ graph convolutional networks that can operate
directly on graph-structured data. In our graph-based approach,
spatial features are extracted using graph convolution oper-
ations that aggregate information from neighboring nodes.
Specifically, we use Chebyshev polynomials as convolution

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

£ . L% ﬁéx}

SD7, 4

Extracting spatial
correlation

Extracting temporal
correlation
| | | | | >
1 3 t o
»le »
T !
Forward-Looking Window

=

Observation Window

Fig. 4. Spatio-temporal request prediction process for graph-based scenario
using graph convolution.

kernels to efficiently approximate spectral graph convolutions.
For temporal feature extraction, we apply standard convolution
operations along the time dimension. The spatio-temporal
feature extraction module in the /th layer can be expressed as

(1)

where *, represents the graph convolution operator with
Chebyshev polynomial kernels ® of order K, and ® is the
standard convolution kernel applied in the temporal dimension,
and SD) represents the feature maps at layer I. We set
K = 1 to balance accuracy and computational cost, the
feature extraction and the prediction schematic are shown
in Fig. 4. Taking node v4 as an example, the model first
extracts spatial correlation features between this node and
its neighbors using graph convolution at each time step.
Then, temporal convolution is applied across time steps to
capture temporal patterns. For our graph-based scenario, we
implement the attention-based spatio-temporal graph convo-
lutional networks (ASTGCNs) [53], which further enhances
prediction accuracy by incorporating attention mechanisms
that dynamically weight the importance of different spatial and
temporal components.

sD® = ReLU(cb % (ReLU(O #, SD”—”)))

V. PROACTIVE REPLICA PLACEMENT STRATEGY

With the prediction methods established in the previous
section, we can forecast the request arrival rate distribution
for the next time slot, providing us with the set of expected
request rates R = {r}, r5, ..., r,}. This predictive information
enables us to make proactive replica placement decisions that
anticipate future demand patterns rather than merely reacting
to current conditions. The original optimization problem P1
involves two sets of decision variables: 1) placement vari-
ables X' and 2) scheduling variables Y’. Solving this joint
optimization problem directly is computationally intractable
for large-scale systems due to its NP-hard nature. Therefore,
we adopt a decomposition approach that breaks the problem
into more manageable subproblems: First, we determine the
number of replicas needed based on the predicted workload.
Next, we solve for the optimal placement of these replicas.
Finally, we determine the optimal request scheduling given the
replica placement. This decomposition approach solves them
sequentially to achieve a near-optimal solution.

A. Approximation Algorithm for Replica Placement

Determining the Number of Replicas: Deploying more
replicas enhances reliability and processing capacity but incurs

35947

higher rental costs. To isolate the benefits of spatio-temporal
prediction, we set the number of replicas k to the minimum
required to handle the predicted workload

i

k=|— i=1

Cap 1 (12)

where Cap is the maximum processing capacity of each replica
and)7, r! represents the total predicted request volume. The
ceiling function ensures that we deploy enough replicas to
handle the entire workload. With the number of replicas fixed
at k, our original problem P1 transforms into

n

P2:min (Y Ay yidj+ Y (13)
i=l j=0 i=1

s.t. (3),(4), (5), (6) (14)

(15)

Zx; =k
=

Here, this formulation adds constraint Z}L I x]’- = k, which
specifies that exactly k replicas must be deployed across edge
clouds. It can be proven that P2 is a generalization of the
p-median problem, a well-known NP-hard facility location
problem where p facilities must be placed to minimize the total
distance between demand points and their nearest facilities.

Optimal Approach for Request Scheduling: Once the replica
placement is determined, we need to decide how to schedule
user requests to the deployed replicas. Given a fixed placement
decision X* = [x{, x], ..., x;], the problem P2 simplifies to

n n n
P3 : min Z r Z)’Z'dij + Z urt (16)
i=1 j=0 i=1
s.t. (3), (5), (17)
Yi<xt VCieC VS eS. (18)
Yi€elo.1] YCieC ¥SjeSi. (19

Here, problem P3 is a standard Linear Programmings (LPs)
problem, which can be solved in polynomial time using
various LP solvers. In our implementation, we use Gurobi', a
high-performance commercial optimization solver.

DRL-Based Placement (DRLP) Algorithm for Replica
Placement: Determining the placement variables X* in P3
is core challenge due to its NP-hard nature and exponential
action space O(2"). To address this efficiently in an online
setting, we propose an enhanced DRLPs algorithm, leveraging
the spatio-temporal predictions from Section IV to adaptively
place k replicas across n edge clouds.

As shown in Fig. 5, to solve problem P3 using DRL
methods, take the spatial distribution of requests as the state S
of the system, and action a is defined as the replica placement
decision taken in the current state. To minimize the response
latency, the reward r is defined as the inverse of the response
latency under the corresponding placement decision, and then
the reward is maximized when the latency is minimized. Since
the action space reaches O(2"), a deep neural network is used

lhttp://www. gurobi.com/.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

35948

Select action a*
that yields
maximum reward r*

X+

batch buffer

Excellent
. exper ience|

Request spatial
distribution

states actiong* reward r*

Fig. 5. Schematic of DRL-based replica placement, illustrating the process
of training a neural network with state inputs, quantizing outputs, selecting
optimal actions to maximize rewards, and interacting with an environment
reflecting request spatial distribution in edge-cloud systems.

as the policy network, and the state s is fed into the policy
network. The network will output a continuous action, and the
agent makes a replica placement decision based on the policy
network output.

1) State s: The spatial distribution of requests SD; at the
current time slot, representing the current state of the
system.

2) Action a: Replica placement decision, determining
which edge servers will host replicas, represented as a
binary variable vector X’ = [x}, x5, ..., x].

3) Reward r: Defined as the inverse of the total response
latency under a given placement decision, i.e., r =
U/ ooy i 2o Yidij + iy).

The detailed training and decision process of the DRLP
Algorithm is shown in Algorithm 1. The policy network
is pretrained to avoid the cold start problem to obtain an
acceptable network parameter 0. The regional central server,
as an agent, regularly inputs the request spatial distribution
as a state into the policy network, which will learn and
make decisions online. A request spatial distribution state
s is input to the network, and the network output is a
continuous action decision relaxed_pla. As shown in line 2
of the algorithm, a quantization operation (Quantization) is
performed on relaxed_pla to generate a discrete placement
decision.

We design a quantization operation, i.e., the k-edge clouds
with the highest probability value in relaxed_pla are selected
to form the initial placement action. Then the initial action
is mutated several times based on the idea of mutation in
the genetic algorithm to generate the set of feasible actions.
Then, we solve the problem P3 for all the candidate placement
actions in the generated action_list to obtain the corresponding
reward values (lines 4-6), select the placement solution with
the largest reward as action action, and store the state s,
action action and the corresponding reward reward in the batch
buffer. As shown in lines 10-14 of the algorithm, when the
buffer is full, the network parameters are updated with an
elite strategy, i.e., the 30% of data with the highest rewards
in the batch buffer is selected to train the policy network. The
policy network parameters are updated using the cross-entropy
method. This process is carried out continuously over time,

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

Algorithm 1 DRL-Based Replica Placement Algorithm

Require: Pre-trained policy network gp=, State s
Ensure: Replica placement scheme for state s
1: relaxed_pla < @gz(s)
. action_list < Quantization(relaxed_pla)
: reward_list < ¢
. for a in action_list do
reward_list < reward_list U Reward(a)
end for
action < action_listlargmax(reward_list)]
. reward < reward_list{argmax(reward_list)]
: Push (s, action, reward) into batch buffer
. if batch buffer is full then
Select the 30% of data in the batch buffer with the
highest rewards to form {(s, action, reward)}
12: Train policy network with {(s, action, reward)}
13: Empty batch buffer
14: end if
15: return action

© ® N QWU AW N

—_
- O

and the strategy network parameters are updated periodically
while making decisions online.

B. Forward-Looking Replica Placement Algorithm

Algorithm 2 is the spatio-temporal prediction-based replica
placement algorithm [spatio-temporal prediction-based replica
placement approach (STPRPA)] proposed in this article,
a forward-looking replica placement strategy. The request
prediction model is trained in the central cloud with historical
data, and the pretrained spatio-temporal prediction model ®g
and the pretrained policy network g+ are deployed on the
regional central server. The regional center server records the
spatial distribution of the average request arrival rate for each
time slot, indicating the distribution of demand for the service.
As shown in line 3 of the algorithm, if the observed number
of historical time slots is less than the input time window
length, a replica placement decision is made based on the
observation of the previous time slot, i.e., responsive replica
placement. Here, DRLP(SD) is used to indicate that when
facing the requested spatial distribution SD, Algorithm 1 is
invoked to obtain a replica placement scheme corresponding
to SD. Otherwise, the request space distribution for this time
slot is predicted at the beginning of each time slot (line 6),
and then a forward-looking replica placement decision is
made based on the prediction result. This prediction of future
user request information guides making the proper replica
placement decision and improves replica placement efficiency.

At regular intervals (one week, for example), the updated
average request arrival rate records are uploaded to the
central cloud for incremental training. The model with updated
parameters is deployed to the regional central server to ensure
prediction performance. The policy network learns and updates
online during the decision-making process.

For Algorithm 2, the computational complexity is concen-
trated on calling Algorithm 1 to obtain the replica placement
scheme. In this case, DRL methods make the fast inference

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

Algorithm 2 STPRPA
Input: Pre-trained prediction model ®g,Pre-trained policy
network ggx
Output: Placement schemes F' for every time slot
1: Empty F
2: while r < T do
3: if t < T;, then

4: p_scheme <— DRLP(SD,;_1) > Responsive replica
placement
5: else

SD; <~ ®¢(SD,_7,,.....sD,_;)
p_scheme < DRLP(Sf)t)
replica placement
end if
: F < FUp_scheme
10: end while
11: return F

> Forward-Looking

online when obtaining the placement action. Thus the main
computational complexity lies in solving for the action rewards
in line 5 of Algorithm 1, which can be solved quickly in
polynomial time complexity by the Gurobi solver. Thus,
STPRPA can obtain a near-optimal replica placement scheme
with forward-looking perspective in polynomial time. STPRPA
achieves replica placement via proactive forecasting, and its
computational complexity is dominated by the spatio-temporal
prediction stage, with the remainder incurring the standard
costs of DRL. For CMS-LSTM on a G x G grid, each 2-D
convolution requires O(G?k?) operations per layer and the
LSTM gates require O(G*1?) operations (where k is the kernel
size and 4 is the hidden-state width). For ASTGCN on a
graph with N nodes and E edges, graph convolutions cost
O(EK) operations per layer (with polynomial order K), and
the attention blocks cost O(NA?).

VI. PERFORMANCE EVALUATION

In this section, we rigorously evaluate the proposed
STPRPAs using real-world datasets across the grid-based and
graph-based scenarios outlined in Section III-A. We compare
STPRPA against three representative baseline approaches,
focusing on QoSs and service provider profitability. In
addition, we provide an in-depth analysis of performance
variations, particularly between weekdays and weekends.

A. Experimental Settings

Datasets: For the grid-based application service scenario,
we utilize the public bicycle demand dataset from New
York City (CitiBikeNYC?). The original dataset undergoes
preprocessing, where the geographic area is partitioned into a
12 x 12 grid. Each grid region is equivalent to an edge cloud
covering approximately 1km?, providing network access and
computational services to users within its coverage area. For
the graph-based application service scenario, we employ the
California highway traffic dataset PeMSD&. In this scenario,

2https://1ride.citibikenyc.com/ system-data

35949

170 edge clouds are formed by detectors distributed along
the highway network, providing network access and services
to adjacent road segments. This dataset reflects vehicular IoT
applications with graph-structured spatial dependencies. Both
datasets are segmented into hourly time slots and split into
training, validation, and test sets at an 8:1:1 ratio, ensuring
robust model evaluation. These traffic-related datasets accu-
rately mirror the spatio-temporal dynamics of edge computing
demands, as validated in prior studies [23], [54], [55].

Comparison Methods: We benchmark STPRPA against
three distinct approaches.

1) Responsive Placements (RPs): This method utilizes the
average request arrival rate from the previous time slot
as the basis for decision-making at the beginning of each
subsequent time slot. RP dynamically adjusts replica
placement by reactively following request patterns with-
out employing prediction mechanisms [11].

2) LSTM-Based Replica Placements (LRPs): This method
employs the widely adopted LSTMs network for tempo-
ral prediction, without considering spatial correlations.
LSTM predicts the average request arrival rate for
each grid area or road section, with replica placement
performed based on these predicted values.

3) Perfect Prediction-Based Placement (Ideal): This rep-
resents an ideal scenario where perfect prediction of
request arrival rates for future time slots is assumed
possible. This approach is included to assess the
performance gap between our proposed forward-looking
replica placement strategy and the theoretical optimal
case.

Training Details: For LSTM architecture, each hourly snap-
shot is flattened from a 12 x 12 demand grid and embedded
to 64 dimensions via a fully connected layer with ReLU. The
embedding sequence then passes through two stacked LSTM
layers (hidden size & = 128, dropout 0.2 between layers). The
model is trained using the Adam optimizer (Ir = 0.0001) with
a batch size of 64.

Evaluation Setup: We assume that each replica possesses
identical processing capacity, set at 90 requests per time
slot [11]. Following [23], the wireless communication delay
between user devices and base stations is considered constant
(u) and set to 0, which does not impact our experimental
results. When a request is forwarded to the central cloud, the
response latency is configured at three times the maximum
response latency for edge processing, reflecting the higher
latency of cloud-based processing.

B. Performance Metrics

In the experiments, we use two metrics to evaluate the
performance of all approaches:

QoS: A primary objective for service providers is to deliver
high QoS. In our evaluation, we define the QoS for each time
slot as the overall request response time within that slot. This
metric aligns with the optimization goal defined in (1), where
lower values indicate better performance.

Profit of Service Provider: The ultimate objective for service
providers is to generate profit from user access to their

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

35950
TABLE III
COMPARISON OF DIFFERENT PREDICTION METHODS

Dataset Method RMSE MAE MAPE
ARIMA 15.15 5.67 19.9%

CitiBikeNYC LSTM 8.02 3.11 11.2%
STPRPA (Ours) 6.79 2.69 9.3%
ARIMA 40.51 23.04 24.7%

PeMSD8 LSTM 34.08 21.69 22.6%
STPRPA (Ours) 28.02 18.12 17.8%

services [11], [56]. Profit is calculated as revenue minus
deployment costs. While more replicas generally result in
higher service quality, they also incur greater deployment
expenses. One of the key objectives of our forward-looking
replica placement approach is to optimize the tradeoff between
service quality and deployment overhead.

Regarding revenue calculation, we adopt the service level
agreements (SLAs) model utilized in [4]. If the response
latency(g) for user request g is below /igeq1, the user receives
perfect service quality and is charged rigeas for access. If
the response latency falls between [igeay and Imax, revenue
decreases linearly proportional to service quality degradation.
If response latency exceeds /iy, the service provider receives
only the minimum revenue rpyi,. Larger values for ljgea1 and
Imax indicate that the service has lower QoS requirements and
can tolerate higher response latency. These parameters can be
adjusted to accommodate service types with varying sensitivity
to latency. The revenue obtained from serving request g can
be expressed as follows:

Fideal , latency(q) < ligeal
Fmin » latency(q) > Inax
Tideal — ¥ (Fideal — 7min), Otherwise

Revenue(q) = (20)

where, y = [(latency(q) — lideal)/ (Imax — lideal)]. In our simu-
lations, the full revenue and deployment cost are configured
according to [11], i.e., rigeal = 0.044 $ per 1K requests, and
Fmin 18 Set to rigeal * 0.5. Physical resources are rented on-
demand, with prices referencing Amazon’s cloud instances.
Pick the cloud instance named c5ad.8xlarge and rent it for
1.376 $ per hour®. The ideal latency [igeq) is set to 5 ms, and
the maximum tolerable latency /max is set to the maximum
response latency that the request can be processed in the edge
cloud, i.e., only the minimum revenue ryj, can be obtained if
it is processed in the central cloud.

C. Analysis of Spatio-Temporal Prediction Results

We select ARIMA and LSTM as baseline prediction meth-
ods for our proactive replica placement study based on
their widespread adoption in recent edge computing litera-
ture [12], [25], [28]. ARIMA represents traditional statistical
time-series modeling, while LSTM exemplifies DL approaches
that capture temporal dependencies. Root mean square errors
(RMSEs), mean absolute errors (MAEs), and mean abso-
lute percentage errors (MAPEs) are employed as evaluation
metrics, where RMSE emphasizes larger errors through its

3https://aws.amazon.com/cn/ecZ/pricing/on—demand/

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

grid area 1:predicted value
grid area 1:true value

grid area 2:predicted value

—— grid area 2:true value
80

60

40

20

Average request arrival rate (requests/s)

0 24 48 72 96 120
Time slot no.

Fig. 6. Predicted versus Actual request arrival rates for two grid areas.

quadratic nature, MAE represents the average magnitude of
errors without considering their direction, and MAPE mea-
sures the average relative error as a percentage, providing
insight into the prediction accuracy relative to the actual
values.

The comparative prediction accuracy of ARIMA, LSTM,
and our proposed STPRPA is presented in Table III. For the
CitiBikeNYC dataset with 144 grid regions, our STPRPA
achieves the best performance with an RMSE of 6.79, MAE
of 2.69, and MAPE of 9.3%. Similarly, for the PeMSD8
dataset with 170 edge clouds, STPRPA further improves
them to an RMSE of 28.02, MAE of 18.12, and MAPE
of 17.8%. The intrinsic spatio-temporal complexity of user
request distributions poses significant challenges for traditional
time-series prediction methods like ARIMA, resulting in
considerably higher error rates compared to DL approaches.
This performance gap stems from ARIMA’s limited capa-
bility to model high-dimensional nonlinear features inherent
in edge computing request patterns. In contrast, both the
LSTM and our STPRPA approach achieve substantially better
prediction performance by leveraging deep neural architec-
tures. Specifically, STPRPA demonstrates superior accuracy
by simultaneously extracting dynamic correlation features
of user requests in both temporal and spatial dimensions,
achieving RMSEs of 6.79 and 28.02 on the CitiBikeNYC
(144 grid regions) and PeMSDS8 (170 edge clouds) datasets,
respectively. This enhanced prediction accuracy provides a
more reliable foundation for subsequent replica placement
decisions, potentially leading to more efficient resource utiliza-
tion and improved service quality. Since the LSTM baseline
was already superior to ARIMA, for subsequent experiments
we kept only the more representative LSTM to maintain focus.

Fig. 6 illustrates the comparison between predicted and
actual request arrival rates for two representative grid areas
selected based on their distinct temporal patterns (one exhibit-
ing regular peak-valley fluctuations and another showing more
irregular demand). The visualization demonstrates that our
spatio-temporal predictive learning method effectively cap-
tures both the overall trend and fine-grained fluctuations in
request arrival rates across diverse grid areas. This accurate
prediction of spatial demand heterogeneity is crucial for

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

Loss

Loss 0.7

0 1000 2000 3000 4000 5000 0 1000 2000 3000 1000 5000

Tteration Iteration

(@) (b)

Fig. 7. Convergence of our STPRPA during training. (a) Grid-based scenario.
(b) Graph-based scenario.

predicted value

1000 - —— true value

o
T

request arrival rate
v
<]
3

—&— RP

—k— LRP

—— STPRPA
Ideal

20000 [

latency (ms)

o

N
S
S

o AP PP
—A&— RP
—&— LRP

i
F\
N —e— STPRPA

‘\A\A\ Ideal

%A\”;;Hzn«

2 345 6 7 8 910111213 14151617 18 19 20 21 22 23
time slot

1=
S

profit(dollars)

o

Fig. 8. Latency and profit comparison of placement strategies over a workday
in grid-based scenario.

optimizing replica placement in edge computing environ-
ments where resources are constrained and demand varies
significantly across locations.

D. Analysis of Replica Placement Results

Convergence Analysis of DRL Model: Fig. 7 illustrates the
evolution of the loss value during the pretraining process of
our DRL model, with a batch size of 64 and learning rate
of 0.0001. During the initial 1000 iterations, we observe a
consistent decrease in loss values, indicating that the agent
effectively learns improved strategies through environmental
interaction, progressively reducing the gap between policy
network outputs and exemplary strategies in the batch buffer.
After approximately 1000 iterations, the loss value stabilizes
at a consistently low level in both application scenarios, signi-
fying model convergence and the acquisition of near-optimal
decision-making capabilities. This convergence stability is
particularly important in edge computing environments where
consistent performance under varying load conditions is essen-
tial for reliable service delivery.

Temporal Variation Analysis Within the Same Day: Edge
computing application requests demonstrate significant period-
icity aligned with human activity patterns. To comprehensively
evaluate our approach under different temporal patterns, we
select five consecutive days from the test set for replica
placement simulation experiments, comprising three weekdays

35951

and two weekend days, thus capturing both workday and
leisure request patterns.

Fig. 8 presents detailed experimental results for each time
slot during a representative weekday in the grid-based appli-
cation service scenario. The three vertically aligned subplots
share a common horizontal axis representing 24 hourly time
slots. The top subplot displays both predicted and actual
request burden patterns across the entire region, while the
bottom two subplots illustrate the corresponding latency and
profit metrics for each time slot under different placement
strategies.

The selected day represents a typical workday pattern with
two distinctive peaks in request arrival rates, corresponding
to morning and evening commuting periods—a common chal-
lenge for edge resource allocation systems. When application
demand exhibits an upward trend (e.g., time slots 1 through
4), the RPs approach consistently allocates fewer replicas
than required due to its inherent reactive nature, resulting in
insufficient capacity at edge servers. This deficiency neces-
sitates request redirection to the central cloud, significantly
increasing overall latency compared to other approaches.
Consequently, service provider profits diminish substantially
due to the inability to deliver high-quality service during peak
demand periods. Conversely, during demand reduction phases
(e.g., time slots 14 through 23), RP typically overprovisioning
replicas due to the same temporal lag in response. While
this excessive replica deployment produces marginally lower
latency than the ideal case, it results in inefficient resource
utilization and subsequently lower profitability due to unnec-
essary deployment costs.

In contrast, prediction-based approaches can proactively
respond to anticipated changes in service demand distri-
bution. As illustrated in Fig. 8, the Ideal approach—with
perfect prediction capabilities—consistently makes optimal
replica placement decisions that precisely match actual ser-
vice demand regardless of demand fluctuations, maintaining
minimal response latency while maximizing service provider
profits. In real-world implementations, however, prediction
accuracy becomes the critical factor. Our results demon-
strate that STPRPA achieves near-ideal performance in both
QoS and profitability metrics due to its highly accurate
spatio-temporal predictions of future request patterns. The
LSTM-based approach LRP, while superior to RP, shows
inferior performance compared to STPRPA due to its limited
consideration of spatial correlation factors. This prediction
accuracy deficit propagates to subsequent replica placement
decisions, resulting in increased response latency and reduced
profit. This comparison clearly illustrates the crucial impor-
tance of incorporating both spatial and temporal dimensions
in edge computing replica placement strategies.

Performance Analysis Across Multiple Days: Figs. 9(a)
and 10(a) present the comparative performance across five
consecutive days in the grid-based scenario. Our STPRPA
approach achieves an average overall response latency approx-
imately 57.64% and 36.13% lower than RP and LRP,
respectively, while concurrently delivering average profit
improvements of approximately 4.85% and 1.14%. These
significant improvements translate to potential enhancement

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

35952

6000

5000

4000

g
8

2000

Average total response latency(ms)

1000

Average total response latency(ms)

14000

12000

10000

8000

6000

4000

Wednesday ~ Thursday Friday Saturday
Day of the week

(@)

Sunday

Wednesday Thursday Friday

Day of the week

(b)

Saturday

Sunday

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

= 7000 2 ,__.\/‘\._,\‘/‘
2 — . RP £
£ — = 14000
T 6000 s 9
9 —e— STPRPA S
2 Ideal &
B 5000 p 12000
] & — RP
2 s —— LRP
g 4000 2 10000 —e— STPRPA
] — . ¢ \deal
= 3000 =
E]]
g £ 000
2000 & —
% s\\\\.4<_;.<_44‘\\\\"/,,.--4 &
8 T gooo} e e T —e—e—*
s
3 1000 z
<

20 100

90
Capacity of replica(requests/s)

(a)

20 110

60 90
Capacity of replica(requests/s)

(b)

Fig. 9. Average latency comparison of methods over five days in grid-based
and graph-based scenario. (a) Grid-based Scenario. (b) Graph-based Scenario.

420

Average profit(dollars)
Average profit(dollars)

Wednesday Thursday Friday Saturday
Day of the week

(@)

Sunday Wednesday Thursday Friday

Day of the week

(b)

Saturday Sunday

Fig. 10. Average service provider profit comparison of methods over five days
in grid-based and graph-based Scenario. (a) Grid-based Scenario. (b) Graph-
based Scenario.

of user experience and additional revenue of thousands of
dollars daily in large-scale edge deployments. The superior
performance stems from STPRPA’s comprehensive integration
of spatio-temporal correlation analysis, which enables more
appropriate and timely replica placement decisions.

Notably, in the grid-based application scenario, prediction-
based approaches deliver particularly substantial benefits
compared to reactive methods RP on weekdays, where the
CitiBikeNYC dataset exhibits two distinct service request
peaks, representing relatively rapid demand fluctuations. In
contrast, weekend request patterns demonstrate more gradual
variations, narrowing the performance gap between reactive
and proactive placement approaches. This temporal pattern
difference explains the unexpected observation on Saturday,
where RP momentarily outperforms LRP in terms of average
response latency—a phenomenon attributable to the more
stable demand pattern and the imperfect predictions from the
temporal-only model.

Figs. 9(b) and 10(b) illustrate the performance compari-
son in the graph-based scenario, where STPRPA achieves
approximately 59.62% and 13.49% lower average overall
response latency than RP and LRP, respectively, along with
profit improvements of approximately 2.32% and 0.12%. An
interesting observation emerges on Saturday in Fig. 9(b),
where STPRPA’s average response latency slightly under-
cuts the Ideal value. This occurs when prediction values
exceed actual values, leading to the deployment of addi-
tional replicas beyond immediate requirements. These excess
replicas enhance request proximity processing capabilities,
resulting in lower-than-ideal average response latency but at
increased deployment costs. Nevertheless, the overall profit
remains remarkably close to optimal values due to the
high-prediction accuracy of STPRPA, with the additional
infrastructure costs substantially offset by increased revenue

Fig. 11. Impact of replica capacity on average response latency in grid-
based and graph-based scenarios. (a) Grid-based Scenario. (b) Graph-based
Scenario.

—— RP

°

°

°

Average profit(dollars)

Average profit(dollars)

°

a0 50 60 70 80 90 100 0 50
Capacity of replica(requests/s)

(@)

60 50 Tio
Capacity of replica(requests/s)

(b)

Fig. 12. Impact of replica capacity on service provider profit in grid-based
and graph-based scenarios. (a) Grid-based Scenario. (b) Graph-based Scenario.

from enhanced service quality. This observation highlights
an important consideration for service providers: the strategic
tradeoff between deployment costs and user experience quality
can be optimized based on application-specific requirements
and business objectives.

E. Impact of Replica Processing Capacity on System
Performance

To evaluate system sensitivity to hardware specifications,
we analyze the effect of varying replica processing capacities
on overall performance. The processing capacity range of
40-110 requests/s was selected to represent typical edge server
configurations from resource-constrained IoT gateways (40
requests/s) to more powerful edge servers (110 requests/s)
based on industry deployments. Figs. 11 and 12 illustrate
the effect of replica processing capacity on response latency
and profit metrics, respectively. Fig. 11 demonstrates that our
proposed replica placement method ensures stable overall
response latency across various replica processing capacities,
indicating robust performance across heterogeneous edge com-
puting environments. From a business perspective, Fig. 12
reveals a consistent trend: higher replica capacity consis-
tently generates greater profit for service providers, assuming
constant rental pricing. This relationship stems from the
enhanced ability to process more requests locally at the edge,
reducing costly central cloud offloading while simultaneously
improving user experience through lower latency. This insight
provides valuable guidance for edge infrastructure investment
decisions, suggesting that investing in higher-capacity edge
nodes may yield better returns than deploying more numerous
lower-capacity nodes, particularly in high-demand regions
identified through our spatio-temporal analysis.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

TABLE IV
ORTHOGONAL EXPERIMENTS WITH THE SOTA METHODS

Dataset Method Latency (s) Profit ($)
PDQN [44] 3.1 79.5
P STPRPA-PDQN (Ours) 1.5 87.2
CitiBikeNYC BRPS [45] 27 313
STPRPA-BRPS (Ours) 1.3 88.5
PDQN [44] 8.4 378.9
STPRPA-PDQN (Ours) 6.2 391.6
PeMSD8 BRPS [45] 6.7 390.2
STPRPA-BRPS (Ours) 5.1 396.9

F. Orthogonality With SOTA RL-Based Methods

To demonstrate the orthogonality of our proactive prediction
module with RL-based replica placement methods, we selected
two recent SOTA approaches for integration: PDQN [44] and
BRPS [45], both of which directly learn replica placement
strategies from observations of lagged workload. In our hybrid
framework, the request distributions predicted by STPRPA are
fed as initial states into the RL agents, thereby extending
their state space with a proactive perspective. The RL agents
then optimize replica placement actions based on this enriched
state, leveraging their respective reward functions. As shown
in Table 1V, for the CitiBikeNYC dataset, the STPRPA-PDQN
hybrid scheme achieves an average latency of 1.5 s and
a profit of 87.2 $, compared to 3.1 s and 79.5 $ for the
standalone PDQN. Similarly, STPRPA-BRPS reduces latency
to 1.3 s and increases profit to 88.5 $. Consistent performance
gains are observed on the PeMSDS8 dataset. These results
indicate that integrating STPRPA with SOTA RL methods can
enhance performance by leveraging proactive spatio-temporal
predictions, affirming the orthogonality of our approach.

VII. CONCLUSION

In this article, we addressed the challenge of service replica
placement in an edge-cloud collaborative environment by
explicitly modeling the spatio-temporal dynamics of user
requests from a service provider’s perspective. We proposed
a novel forward-looking strategy, STPRPA, integrating spatio-
temporal predictive learning with DRL to proactively place
replicas based on anticipated demand. Our approach leverages
convolutional and graph-based neural networks (CMS-LSTM
and ASTGCN) to achieve high-prediction accuracy, coupled
with a DRL-driven placement algorithm to optimize latency
and resource utilization. Extensive trace-driven simulations
on real-world datasets across grid-based and graph-based
IoT scenarios demonstrate that STPRPA reduces average
response latency by up to 59.6% compared to reactive methods
and enhances service provider profitability by approximately
4.85% over temporal-only prediction baselines. These gains
are most pronounced during periods of rapid request fluctu-
ations, underscoring the value of spatio-temporal awareness
in edge computing. The main limitation of our approach
is its reliance on ample historical data to generate accurate
proactive forecasts, which becomes especially challenging in
newly deployed MEC regions where such data are scarce.
Moreover, the current objective formulation optimizes only

35953

service latency and provider profit. In future work, we plan
to refine our spatio-temporal prediction models by explor-
ing hybrid architectures (e.g., transformer-based methods) to
capture longer-term dependencies and improve scalability for
ultradense edge deployments, and the reward function should
be extended to balance multiple objectives.

REFERENCES

[1] Q. Guo, F. Tang, and N. Kato, “Resource allocation for aerial assisted
digital twin edge mobile network,” IEEE J. Sel. Areas Commun., vol. 41,
no. 10, pp. 3070-3079, Oct. 2023.

[2] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 2, pp. 281-294, Feb. 2021.

[3] Q. Guo, F. Tang, and N. Kato, “Federated reinforcement learning-
based resource allocation for D2D-aided digital twin edge networks
in 6G industrial 10T,” IEEE Trans. Ind. Informat., vol. 19, no. 5,
pp. 7228-7236, May 2023.

[4] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Internet Things J., vol. 9, no. 1, pp. 55-67, Jan. 2022.

[5] Q. Guo, F. Tang, and N. Kato, “Hybrid routing in FSO/RF space-air-
ground integrated network,” in Proc. IEEE Global Commun. Conf., 2023,
pp. 6585-6590.

[6] C. Li, L. Zhu, and Y. Luo, “Latency-aware content caching and cost-
aware migration in SDN based on MEC,” Wireless Netw., vol. 27, no. 8§,
pp. 5329-5349, 2021.

[7]1 C. Anand C. Wu, “Traffic big data assisted V2X communications toward
smart transportation,” Wireless Netw., vol. 26, no. 3, pp. 1601-1610,
2020.

[8] L. Yang, M. Yuan, W. Wang, Q. Zhang, and J. Zeng, “Apps on the move:
A fine-grained analysis of usage behavior of mobile apps,” in Proc. 35th
Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1-9.

[9]1 T. Li, Y. Li, T. Xia, and P. Hui, “Finding spatiotemporal patterns of
mobile application usage,” IEEE Trans. Netw. Sci. Eng., early access,
Nov. 30, 2021, doi: 10.1109/TNSE.2021.3131194.

[10] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep
reinforcement learning for scalable fog and service placement,” I[EEE
Trans. Services Comput., vol. 15, no. 5, pp. 2671-2684, Sep./Oct. 2022.

[11] W.-C. Chang and P-C. Wang, “Adaptive replication for mobile
edge computing,” [EEE J. Sel. Areas Commun., vol. 36, no. 11,
pp. 2422-2432, Nov. 2018.

[12] J. Wang, H. Chen, F. Zhou, M. Sun, Z. Huang, and Z. Zhang, “A-
DECS: Enhanced collaborative edge—edge data storage service for edge
computing with adaptive prediction,” Comput. Netw., vol. 193, Jul. 2021,
Art. no. 108087.

[13] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 779-792, Apr. 2021.

[14] A. Aral and T. Ovatman, “A decentralized replica placement algorithm
for edge computing,” IEEE Trans. Netw. Service Manage., vol. 15, no. 2,
pp. 516-529, Jun. 2018.

[15] C. Nguyen, C. Klein, and E. Elmroth, “Multivariate LSTM-based
location-aware workload prediction for edge data centers,” in Proc. 19th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), 2019,
pp- 341-350.

[16] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio-temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wireless Commun.,
vol. 17, no. 12, pp. 8388-8401, Dec. 2018.

[17] C. Huang, G. Chen, P. Xiao, Y. Xiao, Z. Han, and J. A. Chambers, “Joint
offloading and resource allocation for hybrid cloud and edge computing
in SAGINs: A decision assisted hybrid action space deep reinforcement
learning approach,” IEEE J. Sel. Areas Commun., vol. 42, no. 5,
pp. 1029-1043, May 2024.

[18] M. Mansouri, M. Eskandari, Y. Asadi, and A. Savkin, “A cloud-fog com-
puting framework for real-time energy management in multi-microgrid
system utilizing deep reinforcement learning,” J. Energy Storage, vol. 97,
Sep. 2024, Art. no. 112912.

[19] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforce-
ment learning for energy-efficient computation offloading in mobile-edge
computing,” IEEE Internet Things J., vol. 9, no. 2, pp. 1517-1530, Jan.
2022.

[20] Y. Wang and X. Yang, “Research on edge computing and cloud collab-
orative resource scheduling optimization based on deep reinforcement
learning,” 2025, arXiv:2502.18773.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSE.2021.3131194

35954

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(351

[36]

[37]

[38]

(39]

[40]

[41]

Z. Wang, M. Goudarzi, M. Gong, and R. Buyya, “Deep reinforcement
learning-based scheduling for optimizing system load and response time
in edge and fog computing environments,” Future Gener. Comput. Syst.,
vol. 152, pp. 55-69, Mar. 2024.

Q. Guo, F. Tang, and N. Kato, “Routing for space-air-ground integrated
network with GAN-powered deep reinforcement learning,” IEEE Trans.
Cogn. Commun. Netw., vol. 11, no. 2, pp. 914-922, Apr. 2025.

Y. Wang et al., “Towards cost-effective service migration in mobile
edge: A Q-learning approach,” J. Parallel Distrib. Comput., vol. 146,
pp. 175-188, Dec. 2020.

C. Li, Y. Wang, H. Tang, and Y. Luo, “Dynamic multi-objective opti-
mized replica placement and migration strategies for SaaS applications
in edge cloud,” Future Gener. Comput. Syst., vol. 100, pp. 921-937,
Nov. 2019.

A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Dynamic service placement and load distribution in edge computing,”
in Proc. 16th Int. Conf. Netw. Service Manage. (CNSM), 2020, pp. 1-9.
C. Li, M. Song, C. Yu, and Y. Luo, “Mobility and marginal gain based
content caching and placement for cooperative edge-cloud computing,”
Inf. Sci., vol. 548, pp. 153-176, Feb. 2021.

C. Li, M. Song, M. Zhang, and Y. Luo, “Effective replica management
for improving reliability and availability in edge-cloud computing envi-
ronment,” J. Parallel Distrib. Comput., vol. 143, pp. 107-128, Sep. 2020.
Z. Zaman, S. Rahman, and M. Naznin, “Novel approaches for VNF
requirement prediction using DNN and LSTM,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2019, pp. 1-6.

F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai,
“A deep reinforcement learning-based dynamic traffic offloading in
space-air-ground integrated networks (SAGIN),” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 276-289, Jan. 2022.

Q. Xu, Z. Su, Q. Zheng, M. Luo, B. Dong, and K. Zhang, “Game
theoretical secure caching scheme in multihoming edge computing-
enabled heterogeneous networks,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4536-4546, Jun. 2019.

F. Tang, B. Mao, N. Kato, and G. Gui, “Comprehensive survey
on machine learning in vehicular network: Technology, applications
and challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 2027-2057, 3rd Quart., 2021.

Z. Chen, J. Hu, G. Min, and X. Chen, “Effective data placement for
scientific workflows in mobile edge computing using genetic particle
swarm optimization,” Concurrency Comput. Pract. Exp., vol. 33, no. 8,
2021, Art. no. e5413.

T. Huang, W. Lin, C. Xiong, R. Pan, and J. Huang, “An ant colony
optimization-based multiobjective service replicas placement strategy for
fog computing,” IEEE Trans. Cybern., vol. 51, no. 11, pp. 5595-5608,
Nov. 2021.

Y. Zhang, W. Liang, Z. Xu, and X. Jia, “Mobility-aware service
provisioning in edge computing via digital twin replica placements,”
IEEE Trans. Mobile Comput., vol. 23, no. 12, pp. 11295-11311,
Dec. 2024.

L. Chen, Y. Bai, P. Zhou, Y. Li, Z. Qu, and J. Xu, “On adaptive edge
microservice placement: A reinforcement learning approach endowed
with graph comprehension,” IEEE Trans. Mobile Comput., vol. 23,
no. 12, pp. 11144-11158, Dec. 2024.

A. Xu et al., “TransEdge: Task offloading with GNN and DRL in edge
computing-enabled transportation systems,” IEEE Internet Things J.,
vol. 11, no. 23, pp. 38151-38166, Dec. 2024.

A. Rago, G. Piro, G. Boggia, and P. Dini, “Anticipatory allocation of
communication and computational resources at the edge using spatio-
temporal dynamics of mobile users,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 4, pp. 4548-4562, Dec. 2021.

Q. Wu, X. Chen, Z. Zhou, L. Chen, and J. Zhang, “Deep reinforcement
learning with spatio-temporal traffic forecasting for data-driven base sta-
tion sleep control,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 935-948,
Apr. 2021.

Q. Guo, N. Kato, and F. Tang, “Energy efficient routing for FSO-
RF space-air-ground integrated network: A deep reinforcement learning
approach,” in Proc. 8th IEEE Int. Conf. Netw. Intell. Digit. Content (IC-
NIDC), 2023, pp. 254-258.

F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward deep
Q-network-based resource allocation in Industrial Internet of Things,”
IEEE Internet Things J., vol. 9, no. 12, pp. 9138-9150, Jun. 2022.

J. Yang, Q. Yuan, S. Chen, H. He, X. Jiang, and X. Tan, “Cooperative
task offloading for mobile edge computing based on multi-agent deep
reinforcement learning,” IEEE Trans. Netw. Service Manag., vol. 20,
no. 3, pp. 3205-3219, Sep. 2023.

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 17, 1 SEPTEMBER 2025

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

X. Gao, Y. Sun, H. Chen, X. Xu, and S. Cui, “Joint computing,
pushing, and caching optimization for mobile-edge computing networks
via soft actor—critic learning,” IEEE Internet Things J., vol. 11, no. 6,
pp. 9269-9281, Mar. 2024.

T. Zhang, C. Xu, B. Zhang, X. Li, X. Kuang, and L. A. Grieco, “Towards
attack-resistant service function chain migration: A model-based adap-
tive proximal policy optimization approach,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 6, pp. 4913-4927, Nov./Dec. 2023.

T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, and Y. Yang, “Deep reinforcement
learning based approach for online service placement and computation
resource allocation in edge computing,” IEEE Trans. Mobile Comput.,
vol. 22, no. 7, pp. 3870-3881, Jul. 2023.

M. Zheng, X. Du, Z. Lu, and Q. Duan, “A balanced and reliable
data replica placement scheme based on reinforcement learning in
edge—cloud environments,” Future Gener. Comput. Syst., vol. 155,
pp. 132-145, Jun. 2024.

M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, “A review on the
edge caching mechanisms in the mobile edge computing: A social-aware
perspective,” Internet Things, vol. 22, Jul. 2023, Art. no. 100690.

Y. Jin, J. Liu, F. Wang, and S. Cui, “Ebublio: Edge assisted multi-user
360-degree video streaming,” IEEE Internet Things J., vol. 10, no. 17,
pp. 15408-15419, Sep. 2023.

H. Wang, J. Xie, and M. M. A. Muslam, “FAIR: Towards impar-
tial resource allocation for intelligent vehicles with automotive edge
computing,” IEEE Trans. Intell. Veh., vol. 8, no. 2, pp. 1971-1982,
Feb. 2023.

W. Fan et al., “Joint task offloading and resource allocation for vehicular
edge computing based on V2I and V2V modes,” IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 4, pp. 4277-4292, Apr. 2023.

S. Yang, J. Tan, T. Lei, and B. Linares-Barranco, “Smart traffic navi-
gation system for fault-tolerant edge computing of Internet of Vehicle
in intelligent transportation gateway,” IEEE Trans. Intell. Transp. Syst.,
vol. 24, no. 11, pp. 13011-13022, Nov. 2023.

B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online framework for joint
network selection and service placement in mobile edge computing,”
IEEE Trans. Mobile Comput., vol. 21, no. 11, pp. 3836-3851, Nov. 2022.
Z. Chai, C. Yuan, Z. Lin, and Y. Bai, “CMS-LSTM: Context-embedding
and multi-scale spatiotemporal-expression LSTM for video prediction,”
2021, arXiv:2102.03586.

S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 922-929.

H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware appli-
cation placement in mobile edge computing: A stochastic optimization
approach,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 909-922, Apr. 2020.

X. Zhao, Y. Shi, and S. Chen, “MAESP: Mobility aware edge ser-
vice placement in mobile edge networks,” Comput. Netw., vol. 182,
Dec. 2020, Art. no. 107435.

X. Xia et al., “Graph-based data caching optimization for edge
computing,” Future Gener. Comput. Syst., vol. 113, pp. 228-239,
Dec. 2020.

Hao Zheng (Graduate Student Member, IEEE)
received the M.S. degree from Central South
University, Changsha, China, in 2021, where he is
currently pursuing the Ph.D. degree in the research
group of Zhigang Hu with the School of Computer
Science and Engineering.

His research interests include computer vision
and remote sensing, federated learning, and edge
computing.

Zhigang Hu received the B.S., M.S., and Ph.D.
degrees from Central South University (CSU),
Changsha, China, in 1985, 1988, and 2002,
respectively.

In 2002, he joined CSU, where he is a
Professor with the School of Computer Science
and Engineering. He has published over 200
research papers. His research interests include radar
signal processing and classification/recognition,
high-performance computing, and cloud computing.

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PROACTIVE SPATIO-TEMPORAL REQUEST PREDICTION FOR REPLICA PLACEMENT IN EDGE-CLOUD COMPUTING

Liu Yang received the B.S., M.S., and Ph.D. degrees
from Central South University (CSU), Changsha,
China, in 2002, 2005, and 2011, respectively.

She is currently an Associate Professor with the
School of Computer Science and Engineering, CSU.
Her research interests include knowledge graph,
deep learning, and software metrics.

Dr. Yang is a member of ACM and CCF.

Aikun Xu received the M.S. degree from Central
South University, Changsha, China, in 2022, where
he is currently pursuing the Ph.D. degree.

His research interests include deep learning,
graph neural network, deep reinforcement learning,
scheduling, electric vehicles, and edge computing.

Meiguang Zheng received the B.S. and Ph.D.
degrees in computer science from Central South
University (CSU), Changsha, China, in 2005 and
2011, respectively.

She is currently an Associate Professor with the
School of Computer Science and Engineering, CSU.
She is currently leading some research projects
supported by National Natural Science Foundation
of China. Her research interests include federated
learning, distributed machine learning, computer
vision, and edge computing.

35955

Hui Xiao received the B.E. degree from Shandong
University, Jinan, China, in 2017, and the M.E.
degree from Central South University, Changsha,
China, in 2020, where she is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering.

Her main research interests include mobile edge
computing and cloud computing.

Keqin Li (Fellow, IEEE) received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, in 1985, and the Ph.D. degree in computer
science from the University of Houston, Houston,
TX, USA, in 1990.

He is currently a SUNY Distinguished Professor
of Computer Science with the State University
of New York, New Paltz, NY, USA. He is also
a National Distinguished Professor with Hunan
University, Changsha, China. He has authored or co-
authored over 900 journal articles, book chapters,
and refereed conference papers. He holds nearly 70 patents announced or
authorized by the Chinese National Intellectual Property Administration. He is
among the world’s top five most influential scientists in parallel and distributed
computing in terms of both single-year impact and career-long impact based
on a composite indicator of Scopus citation database. His current research
interests include cloud computing, fog computing and mobile edge computing,
energy-efficient computing and communication, embedded systems and cyber—
physical systems, heterogeneous computing systems, big data computing,
high-performance computing, CPU-GPU hybrid and cooperative computing,
computer architectures and systems, computer networking, machine learning,
and intelligent and soft computing.

Dr. Li has received several best paper awards and chaired many international
conferences. He is currently an Associate Editor of the ACM Computing
Surveys and the CCF Transactions on High Performance Computing. He
has served on the editorial boards of the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON
COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS
ON SUSTAINABLE COMPUTING. He is an AAAS Fellow and an AAIA Fellow
and also a member of Academia Europaea (Academician of the Academy of
Europe).

Authorized licensed use limited to: Central South University. Downloaded on August 24,2025 at 13:08:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

