
Information Sciences 496 (2019) 464–484

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

An efficient manifold regularized sparse non-negative matrix

factorization model for large-scale recommender systems on

GPUs

Hao Li a , Keqin Li a , b , Jiyao An

a , Weihua Zheng

a , c , Kenli Li a , ∗

a School of Information Science and Engineering, National Supercomputing Center in Changsha, Hunan University, Changsha, 410082,

China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
c College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, Changsha 412007, China

a r t i c l e i n f o

Article history:

Received 31 January 2018

Revised 1 July 2018

Accepted 25 July 2018

Available online 27 July 2018

Keywords:

Collaborative filtering recommender

systems

Data mining

Euclidean distance and KL-divergence

GPU parallelization

Manifold regularization

Non-negative matrix factorization

a b s t r a c t

Non-negative Matrix Factorization (NMF) plays an important role in many data mining ap-

plications for low-rank representation and analysis. Due to the sparsity that is caused by

missing information in many high-dimension scenes, e.g., social networks or recommender

systems, NMF cannot mine a more accurate representation from the explicit information.

Manifold learning can incorporate the intrinsic geometry of the data, which is combined

with a neighborhood with implicit information. Thus, manifold-regularized NMF (MNMF)

can realize a more compact representation for the sparse data. However, MNMF suffers

from (a) the forming of large-scale Laplacian matrices, (b) frequent large-scale matrix ma-

nipulation, and (c) the involved K -nearest neighbor points, which will result in the over-

writing problem in parallelization. To address these issues, a single-thread-based MNMF

model is proposed on two types of divergence, i.e., Euclidean distance and Kullback–Leibler

(KL) divergence, which depends only on the involved feature-tuples’ multiplication and

summation and can avoid large-scale matrix manipulation. Furthermore, this model can

remove the dependence among the feature vectors with fine-grain parallelization inher-

ence. On that basis, a CUDA parallelization MNMF (CUMNMF) is presented on GPU com-

puting. From the experimental results, CUMNMF achieves a 20X speedup compared with

MNMF, as well as a lower time complexity and space requirement.

© 2018 Published by Elsevier Inc.

1. Introduction

With the rapid expansion of the scale of the Internet, it is difficult to select the anticipated data and information out

of the tremendous number of bytes. Recommender systems can assist people in avoiding this dilemma, which is inundated

with choices. Collaborative filtering (CF), as one of the most appealing methods in recommender systems, models the his-

torical user behaviors on items and does not rely on domain knowledge [18] . The main role of CF is to predict the user

with regard to unconcerned data or missing data. Due to the low-rank representation and non-negativity [34] , Non-negative
∗ Corresponding author.

E-mail addresses: lihao123@hnu.edu.cn (H. Li), lik@newpaltz.edu (K. Li), jt_anbob@hnu.edu.cn (J. An), zhengdavid@hnu.edu.cn (W. Zheng), lkl@hnu.edu.cn

(K. Li).

https://doi.org/10.1016/j.ins.2018.07.060

0020-0255/© 2018 Published by Elsevier Inc.

https://doi.org/10.1016/j.ins.2018.07.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.07.060&domain=pdf
mailto:lihao123@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:jt_anbob@hnu.edu.cn
mailto:zhengdavid@hnu.edu.cn
mailto:lkl@hnu.edu.cn
https://doi.org/10.1016/j.ins.2018.07.060

H. Li et al. / Information Sciences 496 (2019) 464–484 465

Matrix Factorization (NMF) is an ubiquitously used approach in signal processing, data mining and machine learning for

many practical big data applications. As a dimensionality reduction technique, NMF can map both the users and items into

the same latent feature space with non-negative constraints [17] . Thus, NMF is widely used in CF recommender systems’

communities via low-rank representation. NMF considers a low-rank linear combination of a set of basis vectors [17,18,34] ,

and trains the user and item latent factor matrices by explicit information, e.g., rated scores, clicks, and purchase records.

However, data sparsity, due to having a finite concerned item set only, makes it difficult for NMF to provide more accurate

estimations [17,18,34] .

High-dimension data manifold structure (geometrical information) has drawn wide attention, and can improve the

accuracy in many data mining and machine learning applications, i.e., image clustering, pattern recognition, and more,

[5,7,9,10,23,32,35,43] . The manifold structure of data provides an utility for implicit information, owing to considering the

neighborhood point relations in the intrinsic Riemannian structure [5,7,9,10,23,32,35,43] . In CF communities, manifold regu-

larized NMF (MNMF) constructs the geometrical information and cooperates with the nearest K -neighbor graph information

of the user and item space [9,35] . MNMF considers the neighborhood information as prior information, which can improve

the accuracy of low-rank approximations [5,7,9,10,23,32,35,43] . However, in CF recommender systems, on the one hand,

MNMF considers only the Gaussian probabilistic distribution as the Euclidean distance approximation [9,35] , and the others

are lacking; on the other hand, there are disadvantages that prevent MNMF from obtaining large-scale applications in GPU,

i.e., large-scale Laplacian matrices, frequent large-scale matrix manipulation, and the parallelization over-writing problem

caused by the involved computation with the K-nearest neighbor points.

With the rapid computational power improvements in graphics processing hardware, the GPU has become a widely

used processor in many data-intensive applications, i.e., matrix manipulation and others. Compute Unified Device Architecture

(CUDA) makes GPU efficient at harnessing the computational power of the GPU; at the same time, CUDA has many mature

libraries for matrix processing. Currently, MNMF focuses only on small-scale datasets for clustering [5,7,9,10,23,32,35,43] , i.e.,

COLT20 (1, 440 × 1, 024), PIE (2, 856 × 1, 024), and a GPU can compute the updating rule of the MNMF by matrix kernels in

CUDA. However, this processing approach cannot be applied in large-scale problems directly, because of following reasons:

1) the formation of intermediate matrices cannot be manipulated on a GPU, i.e., the Netflix dataset (intermediate matrices,

480, 190 × 17, 770, 480, 190 × 480, 190, and 17, 770 × 17, 770); 2) the over-writing problem, which results from the depen-

dence among the feature vectors, preventing GPU from obtaining high performance computing. To solve the GPU computing

obstacles, a single-thread-based MNMF model is proposed. This model transforms the whole feature matrix manipulation

into the involved feature vectors’ multiplication and elements summation, and can remove the dependence among the fea-

ture vectors; at the same time, it holds the consecutive access characteristics of the feature elements within a feature vector.

On that basis, CUDA parallelization for single-thread-based MNMF (CUMNMF) is proposed on a GPU. The update process

of all the feature vectors is independent, and it can be solved by CUDA thread blocks in parallel. The basic update unit

of a feature vector is a feature element within the feature vector, and those feature elements within a feature vector are

dependent. The update process of all feature elements within a feature vector can be solved by shared memory, and a CUDA

thread updates a feature element. More details about this thread scheduling strategy are that the successive threads within

a thread block update the successive feature elements within a feature vector. This strategy ensures aligned access of the

warp threads and reduces the access latency on the global memory. To the best of our knowledge, CUMNMF is the first

work that is proposed to solve the high memory overhead and over-writing problems of the MNMF on a GPU. Our main

contributions in this paper are as follows:

• MNMF on Euclidean distance (MNMF Eu) is extended to Kullback–Leibler (KL) divergence (MNMF KL) for the CF problem,

which can solve both the Gaussian and the Poisson probabilistic distribution maximization problems.
• Single-thread-based MNMF is derived, which involves the needed feature vectors’ multiplication and elements summa-

tion; and at the same time, single-thread-based MNMF holds the consecutive access characteristic on the feature ele-

ments within a feature vector. Thus, single-thread-based MNMF can remove the dependence among the feature vectors,

and has fine-grained parallelization inherence.
• The fine-grained parallelization inherence of single-thread-based MNMF ensures high performance on a GPU for CUDA

parallelization. Thus, the CUMNMF is proposed for GPU computing, including CUMNMF on the Euclidean distance

(CUMNMF Eu) and Kullback–Leibler (KL) divergence (CUMNMF KL).

The remainder of this paper is organized as follows. Sections 2 and 3 describe the related work, and preliminaries, re-

spectively. Section 4 introduces the single-thread-based MNMF model. Section 4 reports the CUMNMF. Section 6 is devoted

to the experimental results, i.e., parameter selection, convergence analysis, and the efficiency and effectiveness of the CUM-

NMF. Finally, Section 7 presents the study’s conclusions and a brief discussion of future work.

2. Related work

NMF can represent the learned factors as real meanings, due to the natural representation of two arrays of data as a

linear combination of non-negative feature vectors. Thus, NMF has become a useful dimension reduction and feature rep-

resentation tool to analyze high-dimensional data, and it plays an important role in machine learning [33] , anomaly detec-

tion for text data [14] , community detection [45] , accurate recovery in missing data network [37,38] , collaborative prediction

and recommender systems [20,31,40,42,46,47] . More recently, there many articles in the literature have appeared that are

466 H. Li et al. / Information Sciences 496 (2019) 464–484

devoted to the application and theory of NMF. Liu et al. [25] proposed large-cone (LCNMF) to obtain an efficient local solu-

tion for NMF. Li et al. [21] proposed robust collaborative non-negative matrix factorization (R-CoNMF) for remotely sensed

hyper-spectral un-mixing. For the CF problem, MF can solve several limitations of the neighbor-based approach, e.g., spar-

sity, scalability, and synonymy, which was suggested by Sarwar et al. [30] . He et al. [12] proposed online implicit feedback

recommendations based on MF. Non-negativity of feature vectors highlights the users’ interests and community tendencies

[41] . The fulfilling of non-negativity is accomplished by adapting the rescaled learning-rate. Thereby, the negative compo-

nents can be cancelled out, and the non-negativity components remain during the update process. However, NMF is based

on a linear combination of basis feature vectors in a low-rank subspace, and it does not consider the geometric structure.

MNMF can make the local geometry cooperate with a low-rank representation, and it can consider the data neighborhood

information [5,7,9,10,23,32,35] . Hence, the dependence among the feature vectors and the intermediate matrices are brought

into the updating rule of the MNMF [5,7,9,10,23,32,35] . In the CF problem, the GPU cannot afford the overhead of the inter-

mediate data. Meanwhile, manifold learning in the CF problem considers only data with a Gaussian probabilistic distribution

[5,7,9,10,23,32,35] .

There are some studies on accelerating NMF in parallel and distributed platforms. More recently, Wu et al. [36] de-

veloped GPU accelerating NMF for hyperspectral un-mixing, and the target matrix of the hyperspectral image is a dense

matrix. Kannan et al. [13] proposed an HPC-NMF distributed computing model for large-scale dense NMF. Due to non-linear

communications cost, the HPC-NMF has weak scalability. Mejía-Roa et al. [26] proposed Multi-GPU NMF (NMF-mGPU) to

extract the biological inherent meaning out of the massive experimental information. NMF-mGPU requires each GPU device

to be a full copy of both factors. Furthermore, those data copies must be performed through a CPU. To solve the low effi-

ciency memory exchanges that involve inter-GPUs, an automatic multi-GPU partitioning model was proposed by Tal et al.

[2] , which can improve the memory access efficiency of the NMF-mGPU. The updating process of dense NMF shares the

same Hermitian matrix. However, the intermediate Hermitian matrices are different in the sparse NMF, due to the required

feature vectors following the sparsity pattern of the sparse rating matrix rather than the pattern of the whole feature ma-

trices in the updating process, which increases the large amount of computational overhead. There are some studies on

accelerating sparse NMF on a distributed platform by MPI [13] , and on a Cloud platform by MapReduce [24] . However, the

computational strategies of the two studies are unsuited to GPUs, and the two studies have large communications overhead.

Thus, there is a lack of sparse NMF for large-scale data mining applications, i.e., CF recommender systems, and so on.

General purpose computing on a GPU and listed GPU computing applications, e.g., game physics and computational bio-

physics, has been introduced by Owens et al. [28] . Pratx and Xing [29] reviewed GPU computing applications in medical

physics, including three areas: dose calculation, treatment plan optimization, and image processing. There are some works

on analyzing and predicting GPU performance. Guo et al. [11] reported a performance modeling and optimization analysis

tool that can provide optimal Sparse Matrix-Vector Multiplication (SPMV) solutions based on CSR, ELL, COO, and HYB for-

mats. To improve the performance of SPMV, Li et al. [22] considered the probability of the row non-zero element probability

distribution to efficiently use four sparse matrix storage formats. In the CF recommender systems, Gao et al. [8] proposed

a item-based approach for the CF recommender systems on GPU. Kato and Hosino [15] proposed singular value decompo-

sition (SVD) based CF on GPU. However, this approach is not suitable for large-scale CF problems. To solve the problem of

having a non-even distribution in a sparse matrix, which can lead to a load imbalance on GPUs and multi-core CPUs, Yang

et al. [39] proposed a probability-based partition strategy. Some key problems for data mining are proposed on GPUs and

multi-core, i.e., memory optimization, high efficient algorithms parallelization designing, and more [3,4] .

3. Preliminaries

In this section, we present the related notations with regard to NMF, in Section 3.1 . The preliminaries of NMF and MNMF

are reported in Sections 3.2 and 3.3 , respectively. GPU computing is presented in Section 3.4 .

3.1. Notation

To start this section, we introduce some notations. We denote matrices by uppercase letters and vectors by bold-faced

lowercase letters. Let V ∈ R

m ×n
+ be a sparse rating matrix, where m and n are the numbers of users and items, respectively.

W ∈ R

m ×r
+ and H ∈ R

n ×r
+ are denoted as the user and item feature matrix, respectively. � and � are denoted as the set

of indices of non-zeros in V (row oriented) and the set of indices of non-zeros in V (column oriented), respectively. We use

�i and � j to denote the column indices and row indices in the i th row and j th column, respectively. We denote the i th

row of W by w i and the k th column of W by w k . We denote the j th row of H by h j and the k th column of H by h k . The

k th elements of w i and h j are represented by w i, k and h j, k , respectively. The graph Laplacian matrix about the row of V

and column of V are denoted by L and L , respectively. In CF MF recommenders, most of the algorithms in the MF literature

take WH

T as the low-rank approximation matrix to predict the non-rated or zero entries of the sparse rating matrix V , and

the approximation process is accomplished by minimizing the distance function to measure the degree of approximation

[12,14,20,21,25,30,31,33,37,38,40–42,45–47] . To keep the non-negativity of the two feature matrices, NMF can conduct this

factorization process into using non-negative constraints, i.e., W, H ≥ 0.

H. Li et al. / Information Sciences 496 (2019) 464–484 467

Definition 1 (NMF) . We are given two matrices V and ̃

 V ∈ R

m ×n
+ and a divergence function D(V ‖ ̃ V) , which is to evaluate the

distance between the two matrices. The NMF problem is to find W ∈ R

m ×r
+ and H ∈ R

n ×r
+ such that D(V ‖ ̃ V) is minimized,

where ̃ V = W H

T .

3.2. A brief review of NMF

The distance between V and WH

T evaluated by the Euclidean distance D Eu (V || ̃ V) (NMF Eu) and KL-divergence D KL (V || ̃ V)

(NMF KL) are defined as

arg min

W,H

d Eu = D Eu (V || ̃ V)

= ‖ V − ˜ V ‖

2

=

∑

(i, j) ∈ �
(v i, j −˜ v i, j)

2 , s.t.W, H ≥ 0 ,

(1)

arg min

W,H

d KL = D KL (V || ̃ V)

=

∑

(i, j) ∈ �

(
v i, j log (

v i, j ˜ v i, j

) − v i, j + ̃

 v i, j

)
, s.t.W, H ≥ 0 ,

(2)

respectively [20,31,40,42,46,47] . Problems (1) and (2) are non-convex optimization problems, and the most common solution

method is alternative minimization [20,31,40,42,46,47] . Applying gradient decent to problems (1) and (2) , the updating rules

for the NMF Eu and NMF KL are obtained as follows: {

w i,k ← w i,k + ηi,k

(
(V H) i,k − (W H

T H) i,k
)
;

h j,k ← h j,k + η j,k

(
(V

T W) j,k − (HW

T W) j,k
)
,

(3)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

w i,k ← w i,k + ηi,k

(
(

V

W H

T
H) i,k −

∑

i

h i,k

)
;

h j,k ← h j,k + η j,k

(
((

V

W H

T
) T W) j,k −

∑

j

w j,k

)
,

(4)

respectively, where ηi, k and η j,k are the corresponding learning rate for w i, k and h j, k , respectively. With initially non-

negative W and H , NMF diagonally manipulates the rescaled learning rate to maintain the non-negativity of W and H for

the NMF Eu and NMF KL , which are as follows:

D Eu (V || ̃ V)

⎧ ⎪ ⎨ ⎪ ⎩

ηi,k ←

w i,k

(W H

T H) i,k
;

η j,k ←

h j,k

(HW

T W) j,k
,

(5)

D KL (V || ̃ V)

⎧ ⎪ ⎨ ⎪ ⎩

ηi,k ←

w i,k ∑

i h i,k

;

η j,k ←

h j,k ∑

j w j,k

,

(6)

respectively. Applying the rescaled learning rate (5) and (6) to (3) and (4) , respectively, the negative components

{−(W H

T H) i,k , −H W

T W) j,k } in (3) and {− ∑

i h i,k , −
∑

j w j,k } in (4) can be cancelled out. Thereby, the learning process is

reformulated into

D Eu (V || ̃ V)

⎧ ⎪ ⎨ ⎪ ⎩

w i,k =

w i,k

(W H

T H) i,k
;

h j,k =

h j,k

(HW

T W) j,k
,

(7)

D KL (V || ̃ V)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

w i,k =

(V
W H T

H) i,k ∑

i h i,k

;

h j,k =

((V
W H T

) T W) j,k ∑

j w j,k

,

(8)

respectively. The convergence proof of updating rules (7) and (8) are proved in [19] . We observe that the update rules (7) and

(8) are designed for dense NMF. However, in the CF problems, the sparse rating matrix V has high sparsity with a non-even

468 H. Li et al. / Information Sciences 496 (2019) 464–484

Fig. 1. Manifold learning and the corresponding overwriting problem on MNMF: (a) a toy example for manifold learning, and (b) the overwriting problem

in parallelization.

distribution non-zero entries. Consequently, the updating rules (7) and (8) should be revised correspondingly. Some prior

studies [16,44] have developed NMF-based weighted low-rank approximation for the CF problems. Zhang et al. [44] pro-

posed the weighted NMF (WNMF) and introduced an indicator matrix into the updating process to fit the CF problems. The

corresponding sparse NMF updating rules for NMF Eu and NMF KL are given by

D Eu (V || ̃ V)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

w i,k ← w i,k

(G ◦ V H) i,k (
(G ◦ W H

T) H

)
i,k

;

h j,k ← h j,k

(
(G ◦ V)

T
W

)
j,k (

(G ◦ W H

T)
T
W

)
j,k

,

(9)

D KL (V || ̃ V)

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

w i,k ← w i,k

(
G ◦ V

W H T
H

)
i,k

(GH) i,k
;

h j,k ← h j,k

(
(G ◦ V

W H T
)

T
W

)
j,k

(G

T W) j,k
,

(10)

respectively, where the symbol ◦ denotes the Hadamard product (element-wise matrix multiplication), and G ∈ R

m ×n , of

which the element is equal to 1 if the corresponding entry in V is known and 0 otherwise.

3.3. Manifold regularized non-negative matrix factorization

NMF can approximate the original samples V = { v 0 , · · · , v n −1 } , v k ∈ R

m + , k ∈ { 0 , · · · , n − 1 } as a linear combination of basis

vectors in a low-dimensional subspace. V can be represented by a non-negative matrix W ∈ R

m ×r
+ and H ∈ R

n ×r
+ , in which

H ∈ R

n ×r
+ is the coefficient matrix. Thus, it can be deemed to be a function f (v j) = h j , subject to v j = W h

T
j , to preserve the

local geometry of the distribution of samples V . Suppose that V is sample from a probability distribution P V on a manifold

M that is embedded by penalizing the gradient ∇ M

f along the manifold M ∫
V ∈M

‖∇ M

f‖

2 dP V , (11)

where the integral is taken over the probability distribution P V . However, both the manifold M and marginal distribution P V

are unknown in practice, and thus, we use an empirical estimate of the penalty (11) . The prior work [5] has demonstrated

that the local geometric structure can be approximated by some data points along the manifold M . We consider a graph

with N vertices, where each vertex corresponds to a data point. For each data point v j , we find its K nearest neighbors

and place edges between v j and its neighbors. Fig. 1 (a) illustrates a toy example for manifold learning. As Fig. 1 (a) shown,

there are 20 points scattered among the manifold M , i.e., points { P 1 , ���, P 20 }. The distance between points P 1 and P 20 along

the manifold M can be approximated by the length of the red line, which is linked by the 20 points. Note that the blue line

(the direct distance between points P 1 and P 20 in Euclidean space rather than in the manifold M) in Fig. 1 (a) presents an

obvious difference from the red line (the space in manifold M). The distance along the manifold M between two points is

measured by the Euclidean distance, which is adopted by Guan et al. [10] . Thus, in CF communities, the dependence in the

user and item latent space can provide implicit information.

The Graph Laplacian of samples V can be used for the regularization in manifold learning. The main idea is to construct a

weight matrix P whose vertexes correspond to the samples, and the pairwise edge weight p i, j reflects the approximation de-

gree of two samples. There are many strategies to define the row weight matrix P on the graph, as follows [5,7,9,10,23,32,35] :

H. Li et al. / Information Sciences 496 (2019) 464–484 469

• 0-1 weighting . p i, j = 1 if and only if nodes i and j are connected by an edge.

• Heat kernel weighting . if nodes i and j are connected, then place p i, j = e −
‖ v i −v j ‖ 2

σ . The heat kernel has an intrinsic

connection to the Laplace Beltrami operator on differentiable functions on a manifold.
• Dot-product weighting . If nodes i and j are connected, then place p i, j = v T

i
v j .

The computational strategy in [9] is adopted in our work. Correspondingly, P is the column weight matrix . Then, the

threshold to determine the K value is introduced to keep the sparsity and symmetry of the matrices P and P . Define L =
Q − P, where Q is a diagonal matrix whose entries are row q i,i =

∑

j p i, j . Similarly, define L = Q − P , where Q is a diagonal

matrix whose entries are row q i,i =

∑

j p i, j . L and L are called graph Laplacian matrices [5,7,9,10,23,32,35] , which is a discrete

approximation to the Laplace–Beltrami operator. Thus, the discrete approximation can be computed as follows:

R k =

1

2

m −1 ∑

i =0

m −1 ∑

j=0

(
f k (v i) − f k (v j)

)
2 p i, j

=

m −1 ∑

i =0

m −1 ∑

j=0

f k (v i)
2 p i, j −

m −1 ∑

i =0

m −1 ∑

j=0

f k (v i) f k (v j) p i, j

=

m −1 ∑

i =0

w

2
i,k q i,i −

m −1 ∑

i =0

m −1 ∑

j=0

w i,k w j,k p i, j

= w

T
k Q w k − w

T
k P w k

= w

T
k L w k ,

(12)

and similarly,

R k =

1

2

n −1 ∑

i =0

n −1 ∑

j=0

(
f k (v i) − f k (v j)

)
2 p i, j

=

n −1 ∑

i =0

n −1 ∑

j=0

f k (v i)
2 p i, j −

n −1 ∑

i =0

n −1 ∑

j=0

f k (v i) f k (v j) p i, j

=

n −1 ∑

i =0

h

2
i,k q i,i −

n −1 ∑

i =0

n −1 ∑

j=0

h i,k h j,k p i, j

= h

T

k Q h k − h

T

k P h k

= h

T

k L h k ,

(13)

where R k and R k can be used to measure the smoothness of the mapping function f k along the geodesics in the intrinsic

geometry of a data set. By minimizing R k and R k , we obtain a mapping function f k that is sufficiently smooth on the data

manifold. An intuitive explanation of minimizing R k is that if two data points v i and v j are close, then f k (v i) and f k (v j)

are similar to each other. Manifold regularization can incorporate the R k and R k terms and minimize the following two

functions (Euclidean distance, KL-divergence):

O Eu = D Eu (V || ̃ V) + λW

r−1 ∑

k =0

R k + λH

r−1 ∑

k =0

R k

= ‖ V − W H

T ‖

2
2 + λW

T r(W

T LW) + λH T r(H

T L H) ,

(14)

and

O KL = D KL (V || ̃ V) + λW

r−1 ∑

k =0

R k + λH

r−1 ∑

k =0

R k

=

∑

(i, j) ∈ �

(
v i, j log (

v i, j ˜ v i, j

) − v i, j + ̃

 v i, j

)
+ λW

T r(W

T LW) + λH T r(H

T L H) ,

(15)

respectively, where Tr (•) is the trace norm, which is the summation of the diagonal elements in a square matrix. The up-

dating rules are presented in Table 1 , and the convergence proof is presented in [5,7,9,10,23,32,35] .

The updating rules in Table 1 can solve the optimization problems (1) and (2) ; however, there exist some extra compu-

tation, the intermediate data explosion problems, as follows:

• Sparse matrix G: G is used to distinguish a zero and non-zero value, and the space complexity of G is O (| �|).

470 H. Li et al. / Information Sciences 496 (2019) 464–484

Table 1

Updating rules of two divergence types MNMF, i.e., Euclidean distance, KL-divergence.

Divergence types Euclidean distance D Eu (V || ̃ V)
∑

(i, j) ∈ �

(
v i, j −˜ v i, j

)
2 KL-divergence D KL (V || ̃ V)

∑

(i, j) ∈ �

(
v i, j log (

v i, j ˜ v i, j
) − v i, j + ̃

 v i, j

)
Manifold Regularized Update Rules W ← W ◦ G ◦V H+ λW PW

(G ◦WH T) H+ λW QW
(16) W ← W ◦ G ◦ V

WH T
H+ λW PW

GH+ λW QW
(18)

H ← H ◦ (G ◦V) T W+ λH P H

(G ◦W H T) T W + λH Q H
(17) H ← H ◦ (G ◦ V

WH T
) T W+ λH P H

G T W+ λH Q H
(19)

Fig. 2. Multi-GPU and CUDA kernel and thread batching.

• Intermediate matrix WH

T : The computing and space complexity of WH

T are O (mnr) and O (mn), respectively.
• Intermediate matrices PW, QW , P H, and Q H: The space complexity of { PW, QW } and { P H, Q H} are O (m

2) and O (n 2),

respectively.

We observe that there are many highly efficient dense and sparse matrix multiplication kernels in CUDA. Due to the

aforementioned high memory overhead problems, the GPU cannot afford the memory overhead. On the other hand, the

Laplacian matrices { P, Q }, { P , Q } , and intermediate matrices { PW, QW }, { P H, Q H} can take the data geometric structure into

NMF. However, they bring in the dependence among the feature vectors { w i | i ∈ { 0 , 1 , · · · , m − 1 }} , and { h j | i ∈ { 0 , 1 , · · · , n −
1 }} , respectively. A toy example of the over-writing problem is illustrated in Fig. 1 (b). As Fig. 1 (b) shown, the threads

{1, 2, 3} update { w 1 , w 3 , w 5 } and fetch { w 0 , w 1 , w 3 , w 5 } simultaneously. This step results in the over-writing problem on

{ w 3 , w 5 } .
3.4. GPU based computing

Multiple GPUs are connected to the host by peripheral communication interconnect express (PCIe) in Fig. 2 . CUDA can per-

form computation on the device and data transfers between the device and host concurrently. More state-of-the-art GPUs,

i.e., K20m, K40c, and P100, have two or more copy engines, which can operate data transfers to and from a device and

transfer among the devices concurrently. CUDA provides synchronization instructions, which can ensure the correct execu-

tion on multi-GPUs, and each GPU of the multi-GPU has a consumer/producer relationship. Memory copies between two

different devices can be performed after the instruction of CUDA peer-to-peer memory access has been enabled.

The GPU resides on a device , and a GPU consists of many stream multiprocessors (SMs). Each SM contains a number of

stream processors (SPs). CUDA is a programming interface that can enable a GPU to be compatible with various programming

languages and applications. In CUDA, kernels are functions that are executed on GPU. A kernel function is executed by a batch

of threads. The batch of threads is organized as a grid of thread blocks. The thread blocks map to SMs. As shown in Fig. 2 ,

H. Li et al. / Information Sciences 496 (2019) 464–484 471

the greater the number of SMs in a GPU, the higher the degree of parallelism the GPU has. Thus, a GPU with more SMs will

execute a CUDA program in less time than a GPU with fewer SMs. Threads in a block are organized into small groups of 32

called warps , for execution on the processors, and the warps are implicitly synchronous; however, threads in different blocks

are asynchronous. CUDA threads access data from multiple memory hierarchies. Each thread has private local memory, and

each thread block has shared memory that is visible to all threads within the thread block, and all threads can access global

memory.

4. A single-thread-based MNMF approach

In this section, the derivations of the single-thread-based MNMF Eu and NMF KL are shown in Section 4.1 . In Section 4.2 ,

the space and time complexity are presented.

4.1. Single-thread-based MNMF for CF problems

4.1.1. Euclidean distance (MNMF Eu)

For MNMF, the Euclidean distance between the sparse rating matrix V and low-rank approximation WH

T is given by

ε
V ↔ W,H

= O Eu

= ‖P �(V) − P �(̃ V) ‖

2 + λH T r(H

T L H) + λW

T r(W

T LW)

=

∑

(i, j) ∈ �

(
v i, j −˜ v i, j

)
2 +

r−1 ∑

k =0

(

λH (
n −1 ∑

j=0

h

2
j,k q j, j −

n −1 ∑

j=0

n −1 ∑

l=0

h j,k h l,k p j,l) + λW

(
m −1 ∑

i =0

w

2
i,k q i,i −

m −1 ∑

i =0

m −1 ∑

l=0

w i,k w l,k p i,l)

)

=

∑

(i, j) ∈ �

(
v i, j − w i h

T
j

)
2 +

r−1 ∑

k =0

(

λH (
n −1 ∑

j=0

h

2
j,k q j, j −

n −1 ∑

j=0

n −1 ∑

l=0

h j,k h l,k p j,l) + λW

(
m −1 ∑

i =0

w

2
i,k q i,i −

m −1 ∑

i =0

m −1 ∑

l=0

w i,k w l,k p i,l)

)

=

∑

(i, j) ∈ �

(

v i, j −
r−1 ∑

k =0

w i,k h j,k

)

2 +

r−1 ∑

k =0

(

λH (
n −1 ∑

j=0

h

2
j,k q j, j −

n −1 ∑

j=0

n −1 ∑

l=0

h j,k h l,k p j,l) + λW

(
m −1 ∑

i =0

w

2
i,k q i,i −

m −1 ∑

i =0

m −1 ∑

l=0

w i,k w l,k p i,l)

)

,

(20)

where P � is the projection operator on the index set �. We note that in (20) , only the entries in � and their approximation

are considered. The problem (20) can be split into many independent sub-problems, i.e., ε =

m −1 ∑

i =0

ε i , ε =

n −1 ∑

j=0

ε j , where

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

ε i =

∑

j∈ �i

(

v i, j −
r−1 ∑

k =0

w i,k h j,k

)

2 +

r−1 ∑

k =0

λW

(

w

2
i,k q i,i − 2

m −1 ∑

l =0 ,l
 = i
w i,k w l,k p i,l − w

2
i,k p i,i

)

;

ε j =

∑

j∈ � j

(

v i, j −
r−1 ∑

k =0

w i,k h j,k

)

2 +

r−1 ∑

k =0

λH

(

h

2
j,k q j, j − 2

n −1 ∑

l =0 ,l
 = j
h l,k h j,k p j,l − h

2
j,k p j, j

)

.

(21)

The weight matrices P and P are symmetric. Hence, in (21) , the involved coefficient of
∑ m −1

l =0 ,l
 = i w i,k w l,k p i,l and∑ n −1
l =0 ,l
 = j h l,k h j,k p j,l is 2. We observe that minimizing ε is equivalent to minimizing εi and ε j alternatively. Thus, we ap-

ply gradient descent to minimize εi and ε j , respectively, by omitting the constant 2. Therefore, an additive update-rule to

472 H. Li et al. / Information Sciences 496 (2019) 464–484

V

.
minimize εi and ε j is derived as follows: ⎧ ⎪ ⎨ ⎪ ⎩

w i,k ← w i,k − ηi,k

∂ε i
∂w i,k

= w i,k + ηi,k

(∑

j∈ �i

h j,k (v i, j −
r−1 ∑

k =0

w i,k h j,k) +

m −1 ∑

l=0

λW

p i,l w l,k − λW

q i,i w i,k

)

= w i,k + ηi,k

(∑

j∈ �i

h j,k v i, j +

m −1 ∑

l=0

λW

p i,l w l,k − λW

q i,i w i,k −
∑

j∈ �i

h j,k ̃ v i, j

)

;

h j,k ← h j,k − η j,k

∂ ε j
∂h j,k

= h j,k + η j,k

⎛ ⎝

∑

i ∈ � j

w i,k (v i, j −
r−1 ∑

k =0

w i,k h j,k) +

n −1 ∑

l=0

λH p j,l h l,k − λH q j, j h j,k

⎞ ⎠

= h j,k + η j,k

⎛ ⎝

∑

i ∈ � j

w i,k v i, j +

n −1 ∑

l=0

λH p j,l h l,k − λH q j, j h j,k −
∑

i ∈ � j

w i,k ̃ v i, j

⎞ ⎠ .

(22)

If the variable ηi, k and η j,k are set as ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

ηi,k =

w i,k ∑

j∈ �i

h j,k ̃ v i, j + λW

q i,i w i,k

;

η j,k =

h j,k ∑

i ∈ � j

w i,k ̃ v i, j + λH q j, j h j,k

,

(23)

respectively. With initial non-negative feature matrices W and H , the negative items {−λW

q i,i w i,k −
∑

j∈ �i
h j,k ̃ v i, j } and

{−λH q j, j h j,k −
∑

i ∈ � j
w i,k ̃ v i, j } can be cancelled out, and the updating rule of (22) is adjusted into the following updating

rule: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

w i,k ← w i,k

∑

j∈ �i

h j,k v i, j +

m −1 ∑

l=0

λW

p i,l w l,k ∑

j∈ �i

h j,k ̃ v i, j + λW

q i,i w i,k

;

h j,k ← h j,k

∑

i ∈ � j

w i,k v i, j +

n −1 ∑

l=0

λH p j,l h l,k ∑

i ∈ � j

w i,k ̃ v i, j + λH q j, j h j,k

.

(24)

4.1.2. KL-divergence (MNMF KL)

The KL-divergence between the sparse matrix V and low-rank approximation WH

T is given by

ε
 ↔ W H T

= O KL

= D KL

(
P �(V) ||P �(̃ V)

)
+

λH

2

T r(H

T L H) +

λW

2

T r(W

T LW)

=

∑

(i, j) ∈ �

(
v i, j log (

v i, j ˜ v i, j

) − v i, j + ̃

 v i, j

)
+

r−1 ∑

k =0

(

λH

2

(

n −1 ∑

i =0

h

2
j,k q j, j −

n −1 ∑

i =0

n −1 ∑

l=0

h j,k h l,k p l, j

)

+

λW

2

(

m −1 ∑

i =0

w

2
i,k q i,i −

m −1 ∑

i =0

m −1 ∑

l=0

w i,k w l,k p l,i

))
(25)

H. Li et al. / Information Sciences 496 (2019) 464–484 473

We note that in (25) , only the entries in � and their approximation are taken into considerations. The problem (25) can

be split into many independent sub-problems, i.e., ε =

m ∑

i =1

εi , ε =

n ∑

j=1

ε j , where ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

ε i =

∑

j∈ �i

(
v i, j log (

v i, j ˜ v i, j

) − v i, j + ̃

 v i, j

)
+

r−1 ∑

k =0

λW

2

(

w

2
i,k q i,i − 2

m −1 ∑

l =0 ,l
 = i
w i,k w l,k p l,i − w

2
i,k p i,i

)

;

ε j =

∑

j∈ � j

(
v i, j log (

v i, j ˜ v i, j

) − v i, j + ̃

 v i, j

)
+

r−1 ∑

k =0

λH

2

(

h

2
j,k q j, j − 2

n −1 ∑

l =0 ,l
 = j
h l,k h j,k p l, j − h

2
j,k p j, j

)

.

(26)

The weight matrices P and P are symmetric. Hence, in (26) , the involved coefficient of
∑ m −1

l =0 ,l
 = i w i,k w l,k p i,l and∑ n −1
l =0 ,l
 = j h l,k h j,k p j,l is 2. Minimizing εi and ε j alternatively is equivalent to minimize ε. Thus, we apply gradient descent

to minimize εi and ε j , respectively, and we omit constant 2. The updating rules to minimize εi and ε j are derived as

follows: ⎧ ⎪ ⎨ ⎪ ⎩

arg min

w i,k

ε i

w i,k ← w i,k − ηi,k

∂ε i
∂w i,k

= w i,k + ηi,k

⎛ ⎜ ⎜ ⎝

∑

j∈ �i

h j,k

v i, j

r−1 ∑

k =0

w i,k h j,k

+

m −1 ∑

l=0

λW

p i,l w l,k − λW

q i,i w i,k −
∑

j∈ �i

h j,k

⎞ ⎟ ⎟ ⎠

;

arg min

h j,k

ε j

h j,k ← h j,k − η j,k

∂ ε j
∂h j,k

= h j,k + η j,k

⎛ ⎜ ⎜ ⎝

∑

i ∈ � j

w i,k

v i, j

r−1 ∑

k =0

w i,k h j,k

+

m −1 ∑

l=0

λH p j,l h l,k − λH q j, j h j,k −
∑

i ∈ � j

w i,k

⎞ ⎟ ⎟ ⎠

.

(27)

If the variable ηi,k and η j,k are set as ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

ηi,k =

w i,k ∑

j∈ �i

h j,k + λW

q i,i w i,k

;

η j,k =

h j,k ∑

i ∈ � j

w i,k + λH q j, j h j,k

,

(28)

respectively. With initial non-negative feature matrices W and H , the negative items {−λW

q i,i w i,k −
∑

j∈ �i
h j,k } and

{−λH q j, j h j,k −
∑

i ∈ � j
w i,k } can be cancelled out, and the updating rule of (27) is adjusted into the following updating rule: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

w i,k ← w i,k

∑

j∈ �i

h j,k
v i, j ˜ v i, j

+

m −1 ∑

l=0

λW

p i,l w l,k ∑

j∈ �i

h j,k + λW

q i,i w i,k

;

h j,k ← h j,k

∑

i ∈ � j

w i,k
v i, j ˜ v i, j

+

n −1 ∑

l=0

λH p j,l h l,k ∑

i ∈ � j

w i,k + λH q j, j h j,k

.

(29)

From the updating rules (24) and (29) , we observe that the updating rules of W and H are symmetric. Thus, we consider

only the updating rule of W in the following sections. Algorithm 1 describes the serial version of single-thread-based MNMF.

As described in Algorithm 1 , the updating rule of single-thread-based MNMF follows the sparsity pattern of the sparse rating

matrix, and it can escape from forming the large-scale intermediate matrices. We observe that the intermediate matrices

Up and Down make an accumulation to accomplish single-thread-based MNMF via 3 loops, i.e., the 1th loop (Lines 7–10,

Algorithm 1), the 2nd loop (Lines 17, 18, Algorithm 1), and the 3rd loop (Lines 24, 25, Algorithm 1). Thus, Up and Down can

474 H. Li et al. / Information Sciences 496 (2019) 464–484

Algorithm 1 The serial Version of the single-thread-based MNMF to update W .

Input : Initial feature matrices W and H, sparse rating matrix V , � j and �i , the number of training epoches epo.

Output : W .

1: for iter from 1 to epo do

2: set Down ← 0 , U p ← 0 ;

3: for i from 0 to m − 1 do

4: for j ∈ �i do

5: ˜ v i, j ←

∑ r−1
k =0

w i,k h j,k ;

6: for k from 0 to r − 1 do

7: U p i,k ← U p i,k + h j,k v i, j ; %Update rule (24).

8: Down i,k ← Down i,k + h j,k ̃ v i, j ;%Update rule (24).

9: U p i,k ← U p i,k + h j,k v i, j / ̃ v i, j ; %Update rule (29).

10: Down i,k ← Down i,k + h j,k ;%Update rule (29).

11: end for

12: end for

13: end for

14: for i from 0 to m − 1 do

15: for l from 0 to m − 1 do

16: for k from 0 to r − 1 do

17: U p i,k ← U p i,k + λW

p i,l w l,k ; %Update rule (24).

18: U p i,k ← U p i,k + λW

p i,l w l,k ; %Update rule (29).

19: end for

20: end for

21: end for

22: for i from 0 to m − 1 do

23: for k from 0 to r − 1 do

24: Down i,k ← Down i,k + λW

q i,l w l,k ;%Update rule (24).

25: Down i,k ← Down i,k + λW

q i,l w l,k ;%Update rule (29).

26: end for

27: end for

28: for i from 0 to m − 1 do

29: w i,k ← w i,k (U p i,k /Down i,k) ;

30: end for

31: end for

32: return W ;

remove the dependence among each w i in Algorithm 1 . At the same time, P and P are sparse and symmetric matrices, and

Q and Q are diagonal matrices. In the derivation process, to keep the consistency with dense MNMF, we do not use symbols

to denote the coordinates of non-zero values in matrices P and P .

4.2. Complexity analysis

In this section, we analyze the time and space complexities of the single-thread-based MNMF.

Theorem 1 (Time complexity of the serial version single-thread-based MNMF) . Let epo and r denote the number of update

epochs and the dimension of the latent feature space, respectively. K is denoted as the K-top nearest neighbor rows within V, which

is defined in Section 3.3 . The time complexity of the single-thread-based MNMF (Algorithm 1) is O

(
(3 | �| r + 2 mr + mKr) epo

)
.

Proof. The computation process is presented in Algorithm 1 (Lines 5, 7, 8, 9, 10, 17, 18, 24, 25, and 29) for updating W .

The time complexity of the reduction operation (Line 5) is O (| �| r). The time complexity of updating Up (Lines 7, 9, 17, and

18) is O (| �| r + mKr) . The time complexity of the diagonal matrix manipulation QW is O (mr) (Lines 24, 25). Thus, the time

complexity of updating Down (Lines 8, 10, 24, and 25) is O (| �| r + mr) . The time complexity of updating W (Line 29) is

O (mr). Thus, the total time complexity is O (3 | �| r + 2 mr + mKr) on one updating epoch for updating W . �

Theorem 2 (Space complexity of the serial version single-thread-based MNMF) . The space complexity of the single-thread-

based MNMF (Algorithm 1) is O

(| �| + mr + nr + mK + m + 2 max (m, n) r
)
.

Proof. The space complexity of the sparse matrix V is O (| �|). The space complexity of W and H are O (mr) and O (nr), re-

spectively. Up and Down can remove the dependence among the w as intermediate matrices, and the space complexity
i

H. Li et al. / Information Sciences 496 (2019) 464–484 475

of Up and Down is O

(
2 max (m, n) r

)
. The space complexity of P and Q is O (mK + m) . Thus, the total space complexity is

O

(| �| + mr + nr + mK + m + 2 max (m, n) r
)
. �

Theorem 3 (Space complexity of CUDA parallelization single-thread-based MNMF (CUMNMF)) . The space complexity of CUM-

NMF is O

(| �| + mr + nr + mK + m + 2 max (m, n) r
)
.

Proof. The space complexity of the sparse matrix V is O (| �|). The space complexity of the sparse matrices P and Q is O (mK +
m) . The space complexity of W and H are O (mr) and O (nr), respectively. In CUMNMF, a thread block updates a w i and a h j ,

and the thread k within the thread block updates w i, k and h j,k . Up and Down lie in global memory as intermediate matrices,

which can remove the dependence among the w i , and the complexity of Up and Down is O (2 max (m, n)).
∑ r−1

k =0
w i,k h j,k

(Algorithm 1 Line 5) can be solved by shared memory. More details will be presented in Section 5 . W, H, P, Q and the sparse

matrix V lie in the global memory. Thus, the space complexity of CUMNMF is O

(| �| + mr + nr + mK + m + 2 max (m, n) r
)
. �

According to the theoretical analysis, the single-thread-based MNMF has the same function as the original MNMF, and

the linear memory and time complexity overhead with the rank r .

5. CUMNMF

In this section, a CUMNMF approach is presented in Section 5.1 , and some optimizing approaches about CUDA program-

ming are reported in Section 5.2

5.1. Parallelization approach

From Section 3 , updating W and H is symmetric. Thus, in the remainder of this paper, we only present CUDA paralleliza-

tion approaches to updating W . Furthermore, we prove that CUMNMF can work under a row or column oriented sparse

matrix compressive format, i.e., CSR, CSC, which can save on the GPU global memory overhead.

In this section, we show the scheduling strategies for the thread blocks. The scheduling strategy is how thread blocks

select entries in the rating matrix V . In the centralized approach, first, a thread block selects a column index j , and the k th

thread within the thread block T is denoted by T k . Then, the thread block selects an entry index (i, j), where i ∈ � j . Each

thread block selects a feature vector w i , and C thread blocks update the selected feature vectors in parallel.

Algorithm 2 shows the thread block scheduling strategy of the centralized updating approach. Furthermore, we adopt

Algorithm 2 CUDA centralized updating W .

Input : Initial W and H, rating matrix V , regularization parameter λW

, training epoches epo, and total number of thread

blocks C.

Output : W .

1: T ← Thread block id.

2: for loop from epo to 0 do

3: set Down ← 0 , U p ← 0 ;

4: parallel :

5: Update U p i,k by T k (Lines 7, 9 in Algorithm 1).

6: Update Down i,k by T k (Lines 8, 10 in Algorithm 1).

7: end parallel

8: parallel :

9: Update U p i,k by T k (Lines 17, 18 in Algorithm 1).

10: end parallel

11: parallel :

12: Update Down i,k by T k (Lines 24, 25 in Algorithm 1).

13: end parallel

14: parallel :

15: Update w i,k by T k (Line 29 in Algorithm 1).

16: end parallel

17: end for

18: return W .

the histogram-based solution [1] , which can elevate the load balance on the thread blocks.

5.2. Aligned memory access

We set the parameter r to be an integral multiple of 32 (warpsize), for warp synchronization execution and coalesced

global memory access. Fig. 3 illustrates coalesced access on W and H in global memory. As shown in Fig. 3 , a thread block

476 H. Li et al. / Information Sciences 496 (2019) 464–484

Fig. 3. Aligned access to a feature vector w i or h j in global memory from and to registers in threads within a thread block.

Table 2

The statistics and parameters for the data sets.

Data set Movielen-1M Movielen-10M Netflix Webscope-R1

m 6, 040 71, 567 480, 189 1, 948, 883

n 3, 900 10, 681 17, 770 98, 212

� Training 900, 101 9, 301, 274 99, 072, 112 104, 215, 016

� Probing 100, 108 698, 780 1, 408, 395 11, 364, 422

can access the feature vectors w i and h j continuously, because of the coalesced access on the GPU global memory via 32-,

64- or 128-byte memory transactions [27] . A warp (warpsize = 32) accesses the successive 128-bytes in global memory at

the same time if the memory access is aligned. For a 128-byte memory transaction, a warp fetches aligned 16 double-type

elements from global memory to local memory two times. We set the number of threads per thread block to be r ∈ {32,

64, 128, 256, 512, 1024}, to synchronize the warp execution.

6. Experiments

We present the experimental settings and data set information in Section 6.1 , and we test our experimental results to

answer the following questions:

• Q1: Parameter Selection (Section 6.2) . How do P100 GPUs obtain the highest performance according to its own parameters,

under various conditions, i.e., the rank of feature matrix, different volumes of sparse matrix compressive format?
• Q2: Scalability (Section 6.3) . How does CUMNMF scale with regard to various conditions, i.e., the rank of the feature

matrix, different volumes of sparse matrix compressive format?
• Q3: Convergence (Section 6.4) . How quickly and accurately do the state-of-the-art approaches factorize the real-world

sparse matrix?

6.1. Experimental settings

RMSE Root Mean Square Error (RMSE) is generally accepted to evaluate the quality and accuracy of a rating recommender

system [18] , and it is defined as

RMSE =

√ ∑

(i, j) ∈ 	
(v i, j −˜ v i, j) 2

| 	| ,
(30)

where 	 denotes the test sets. RMSE is the square root of the average of the square differences between the estimated and

the real preference, and RMSE more heavily penalizes the estimations that are far off than the Mean Error Average (MEA).

Data Sets The 4 data sets are used for the experiments, e.g., MovieLens-1M, MovieLens-10M

1 , Netflix 2 , Webscope_R1 3 .

The statistics of the 4 data sets are presented in Table 2 .

Platform An NVIDIA Tesla P100 GPU, each has 56 SMs. There are 64 SPs per SM, which operate at a 1.33 GHz clock

rate, and there is 16GB of global memory with 4096 bits of bandwidth and a 715-MHz memory clock rate. The computing
1 http://files.grouplens.org/datasets/movieLens
2 http://www.netflixprize.com

3 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

http://files.grouplens.org/datasets/movieLens
http://www.netflixprize.com
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

H. Li et al. / Information Sciences 496 (2019) 464–484 477

Fig. 4. Comparisons with the maximum synchronization instruction method (Unoptimized), the reduced synchronization instruction method (Optimizing

Reduction) and the improved load balance (Optimizing Load Balance) for CUMNMF Eu with K = 15 , on a P100 GPU.

capacity of a P100 GPU is 6.0 for CUMNMF. The CPU server is equipped with 2 Intel(R) Xeon(R) E5-2680 v4 CPUs, running on

2.4 GHz, for CCD++ 4 , and OpenMP parallelization version for NMF Eu (HPC-NMF [13]), and the corresponding revision version

for NMF KL . For simplicity, in the following sections, NMF KL is denoted as the serial version of NMF on KL-divergence, and the

OpenMP parallelization version of NMF KL . There are 14 cores in each processor, and the computation and communication

are based on OpenMP.

Parameters We present the parameters used for each data set in Table 2 . The initial value settings (Uniform distribution)

of { W, H } are the same as HPC-NMF [13] , NMF Eu , NMF KL [16,19,44] , and CCD++ [40] . We observe that CCD++ is double-

precision floating point arithmetic, and the serial part of CCD++ is denoted as CCD. Thus, the double-precision floating point

arithmetic is considered in the programming.

6.2. Performances of CUMNMF

Increasing the rank (r) of the feature matrix can improve the accuracy of CF MF to a certain degree [17,18] . The time com-

plexity of the sequential multiplication of two vectors is O (r). The two-vector multiplication of CUMNMF requires O

(
log 2 (r)

)
.

Thus, a larger r can improve the GPU speedup performance further. At the same time, threads within a thread block need

synchronization overhead for vector multiplication and reduction, and decreasing the synchronization overhead can im-

prove the computational efficiency of CUMNMF significantly. From the CUDA updating process described in Section 5.2 , a

thread block that has r threads can update a h j only once by { w i , h j , ̃ v i, j } . The value of ̃ v i, j requires the pre-computation

of w i h

T
j , and vector dot multiplication requires the cooperation of the r threads within the thread block. Thus, the w i and

h j are stored in the shared memory of the thread block. A thread synchronization instruction can be saved from log 2 (r) to

log 2 (r) − 5 by the warp synchronization mechanism presented in [27] . Furthermore, we adopt the histogram-based solution

[1] , which can elevate the load balance on the thread blocks.

The appropriate r of the feature matrices can guarantee reasonable accuracy [17,18] . In our work, because we focus on

the GPU accelerating performance on various value of r of the feature matrices rather than the choice of an appropriate
4 http://www.cs.utexas.edu/ ∼rofuy/libpmf/ .

http://www.cs.utexas.edu/~rofuy/libpmf/

478 H. Li et al. / Information Sciences 496 (2019) 464–484

Fig. 5. Comparisons with the maximum synchronization instruction method (Unoptimized), the reduced synchronization instruction method (Optimizing

Reduction) and improved load balance (Optimizing Load Balance) for CUMNMF KL with K = 15 , on a P100 GPU.

Table 3

The occupancy for CUMNMF on the P100 GPU.

r 32 64 128 256 512 1024

Register Per thread 21 21 21 21 21 21

Shared memory Per block(bytes) 256 512 1024 2048 4096 8192

Active Thread Per SM 1024 2048 2048 2048 2048 2048

Active Warps Per SM 32 64 64 64 64 64

Active Thread Blocks Per SM 32 32 16 8 4 2

Occupancy of per SM 50% 100% 100% 100% 100% 100%

r , we test five sets of experiments on various value of r , e.g., r ∈ {32, 64, 128, 256, 512, 1024}. GPU occupancy is the

ratio of the number of active threads to the total number of threads, and high occupancy means that the GPU is working

in high efficiency. The GPU occupancy is calculated by CUDA Occupancy Calculator [27] . In CUMNMF, a thread block has r

threads, and the number of thread blocks is tunable, which can control the occupancy . Table 3 lists occupancy under various

conditions, e.g., r ∈ {32, 64, 128, 256, 512, 1024}. According to Table 3 , we set the optimal number of thread blocks {1792,

1792, 896, 448, 224, 112} for r ∈ {32, 64, 128, 256, 512, 1024}, respectively. Figs. 4 and 5 illustrate the comparisons with the

maximum synchronization instruction method (Unoptimized), the reduced synchronization instruction method (Optimizing

Reduction), and the improved load balance (Optimizing Load Balance). As shown in Figs. 4 and 5 , when r is larger than 128,

saving synchronization overhead can improve the GPU accelerating performance. We conclude the reason is that the saved

cost of warp synchronization is larger than the cost of warp scheduling. Furthermore, improving the load balance within the

thread blocks can improve the overall performance significantly.

6.3. Scalability performance

We measure the scalability of CUMNMF with regard to the rank of the feature matrices, and the scale of the input sparse

matrix. As illustrated in Algorithm 1 , and the space complexity analysis in Section 4.2 , the single-thread-based MNMF in-

cluding MNMF and MNMF , have the same space overhead. Thus, the memory scalability is shown in Fig. 6 only. The
Eu KL

H. Li et al. / Information Sciences 496 (2019) 464–484 479

Fig. 6. Scalability w.r.t. the rank of the feature matrices r , and the scale of the data set. Here, o.o.m.: out of memory on a P100 GPU, and K ∈ {5, 10, 15}.

The memory requirement of CUMNMF is scalable with r .

space complexity of MNMF involves several parameters, i.e., r, K , and the volume of the compressive format of a sparse

rating matrix. As shown in Fig. 6 , CUMNMF scales with the rank of the feature matrix r , when P100 GPU works at the

highest occupancy under r ∈ {32, 64, 128, 256, 512, 1024}. Fig. 6 illustrates that the space overhead increases linearly while r

increases. With the same conditions shown in Fig. 6 , under the highest occupancy , as shown in Figs. 7 and 8 , the computa-

tional overhead of CUMNMF scales linearly with r .

6.4. Comparisons

In this section, convergence analysis is conducted, and the optimal K is selected via experiments on K ∈ {5, 10, 15, 20,

25} for MNMF Eu and MNMF KL . To present the superiority of MNMF over NMF and CCD, experiments are conducted on

Euclidean distance and KL-divergence with the optimal K = 15 . Based on the fine-grained parallelization of single-thread-

based MNMF, CUMNMF can obtain accelerated performance from the GPU. The experiments of selecting the optimal K for

MNMF and accuracy comparisons among MNMF Eu , HPC-NMF (Euclidean distance), CUMNMF Eu on Euclidean distance, and

MNMF KL , NMF KL , CUMNMF KL on KL-divergence are presented in Section 6.4.1 . The performance of CUMNMF is shown in

Section 6.4.2 .

6.4.1. Convergence analysis

Figs. 9 (a) and (b) depict the accuracy performance of MNMF Eu and MNMF KL on K ∈ {5, 10, 15, 20, 25}. Fig. 10 (a) presents

the accuracy comparisons among MNMF Eu , NMF Eu , and CCD on CPU, and CUMNMF Eu on P100 GPU, and Fig. 10 (b) presents

the accuracy comparisons among MNMF KL , and NMF KL on CPU, and CUMNMF KL on P100 GPU with optimal K = 15 . Note

that, with the same initialization conditions of the factor matrices W and H and the regularization parameters λW

and λH ,

CUMNMF Eu can obtain the same accuracy performance results as MNMF Eu , and CUMNMF KL can obtain the same accuracy

performance results as MNMF KL . From these accuracy performance results from Figs. 9 and 10 , we have the following find-

ings:

1. Various K can improve the accuracy to various degrees. As shown in Fig. 9 (a) and (b), MNMF Eu and MNMF KL with K ∈ {15,

20, 25} outperform the counterparts K ∈ {5, 10}; Moreover, the accuracy of MNMF Eu and MNMF KL with K ∈ {15, 20, 25}

obtain the same accuracy, which indicate that there is an optimal choices of K . For example, the accuracy performance of

480 H. Li et al. / Information Sciences 496 (2019) 464–484

Fig. 7. Scalability of the computational time for CUMNMF Eu on K ∈ {5, 10, 15} and P100 GPU.

MNMF with K = { 15 , 20 , 25 } outperforms the counterparts K = { 5 , 10 } obviously; However, the accuracy performance of

MNMF with K = { 15 , 20 , 25 } obtains almost a similar accuracy performance. Thus, there is the an optimal K . To balance

the accuracy and training time, K = 15 is chosen for the following experiments.

2. As illustrated in Figs. 9 and 10 , K plays a large role in the accuracy gain. As shown in Fig. 10 (a), MNMF Eu and CUMNMF Eu

with K = 15 outperform NMF Eu and CCD, and as shown in Fig. 10 (b), MNMF KL and CUMNMF KL with K = 15 outperform

NMF KL . We conclude that the reason is that MNMF can cooperate the implicit information of a data set, i.e., the geometry

structure, neighborhood information, and so on.

6.4.2. Comparison of parallelization approaches

We compare CUMNMF Eu and CUMNMF KL with the state-of-the-art parallel and distributed works, e.g., CCD++, HPC-NMF

(Euclidean distance), and NMF KL on r = 128 for fairness. Fig. 11 illustrates the accuracy performance (RMSE) versus the

training time. As shown in Fig. 11 , CUMNMF Eu and CUMNMF KL on P100 GPU run faster than CCD++, HPC-NMF, and NMF KL on

the shared memory platform. We conclude that the reason is that the single-thread-based MNMF removes the dependence

in each feature vector. Thus, this MNMF has fine-grained parallelization inherence, which is suited to CUDA parallelization

on a GPU. Thus, with the high computing power of P100 GPU and the fine-grained parallelization inherence of CUMNMF,

CUMNMF Eu can perform better than CCD++, HPC-NMF on a shared memory platform, and CUMNMF KL outperforms than

NMF KL on a shared memory platform.

7. Conclusions and future work

In this paper, we focus on the simplification of the computational process, memory optimization and fine-grained paral-

lelization on MNMF with Euclidean distance and KL-divergence. First, we extend MNMF from the Euclidean distance to the

KL-divergence, and the proposed MNMF can solve both the Gaussian and the Poisson probabilistic distribution maximization

problems. Second, we derive the single-thread-based MNMF, which involves only the needed feature vector multiplications

and element summations; at the same thime, single-thread-based MNMF holds the consecutive access characteristic on the

feature elements within a feature vector. Thus, single-thread-based MNMF can remove the dependence among the feature

vectors, and has the inherence of fine-grained parallelization. Last but not least, the inherence of fine-grained parallelization

ensures the high performance on the GPU for CUMNMF.

H. Li et al. / Information Sciences 496 (2019) 46 4–484 4 81

Fig. 8. Scalability of the computational time for CUMNMF KL on K ∈ {5, 10, 15} and P100 GPU.

Fig. 9. Selection of the optimal K for MNMF Eu , and MNMF KL on Movielen-1M data set.

We observe that the Laplacian matrices P and P of MNMF must be symmetric, which prevent MNMF from obtaining

high flexibility. Hence, future work will focus on the solving of un-symmetric Laplacian matrices to obtain a flexible MNMF.

We would like to improve the convergence rate of the single-thread-based MNMF, and integrate the single-thread-based

MNMF with an alternative direction multiplication method (ADMM) [9] . To solve the TB-scale MNMF problem, with fine-

grained parallelism of the single-thread-based MNMF, we want to extend CUMNMF on a single GPU to multi-GPU; at the

same time, we plan to extend CUMNMF to other distributed platforms, e.g., MapReduce, Hadoop. More recently, Sunway

TaihuLight has become a high performance processor [6] . Thus, we want to implant our single-thread-based MNMF into a

Sunway TaihuLight.

482 H. Li et al. / Information Sciences 496 (2019) 464–484

Fig. 10. Convergence comparisons: (a) the comparison among MNMF Eu , CUMNMF Eu with K = 15 , HPC-NMF, and CCD, and (b) the comparison among

MNMF KL , CUMNMF KL with K = 15 , NMF KL on Movielen-1M data set.

Fig. 11. Comparison of parallelization approaches.

Acknowledgments

This research was partially funded by National Key Research and Development Program of China (Grant no.

2016YFB0201303), the National Outstanding Youth Science Program of the National Natural Science Foundation of China

(Grant no. 61625202), and the Key Program of the National Natural Science Foundation of China (Grant no. 61432005), the

Natural Science Foundation of China (Grants nos. 61370097 , 61672224), the Natural Science Foundation of Hunan Province ,

China (Grant no. 2018JJ2063), and the National Key R & D Program of China (Grant No. 2016YT80201900).

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004735

H. Li et al. / Information Sciences 496 (2019) 46 4–484 4 83

References

[1] A. Ashari , N. Sedaghati , J. Eisenlohr , S. Parthasarathy , P. Sadayappan , Fast sparse matrix-vector multiplication on gpus for graph applications, in:

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE Press, 2014, pp. 781–792 .

[2] T. Ben-Nun , E. Levy , A. Barak , E. Rubin , Memory access patterns: the missing piece of the multi-gpu puzzle, in: The International Conference for High
Performance Computing, Networking, Storage and Analysis, ACM/IEEE, 2015, pp. 1–12 .

[3] M. Cafaro , I. Epicoco , G. Aloisio , M. Pulimeno , Cuda based parallel implementations of space-saving on a gpu, in: High Performance Computing &
Simulation (HPCS), 2017 International Conference on, IEEE, 2017, pp. 707–714 .

[4] M. Cafaro , M. Pulimeno , I. Epicoco , G. Aloisio , Parallel space saving on multi-and many-core processors, Concurrency and Computation: Practice and
Experience, 2017 .

[5] D. Cai , X. He , J. Han , T.S. Huang , Graph regularized nonnegative matrix factorization for data representation, IEEE Trans. Pattern Anal. Mach. Intell. 33

(8) (2011) 1548–1560 .
[6] Y. Chen , K. Li , X. Fei , Z. Quan , K. Li , Implementation and optimization of AES algorithm on the sunway taihulight, in: 17th International Conference on

Parallel and Distributed Computing, Applications and Technologies, PDCAT 2016, Guangzhou, China, December 16–18, 2016, 2016, pp. 256–261 .
[7] A. Ezzat , P. Zhao , M. Wu , X.-L. Li , C.-K. Kwoh , Drug-target interaction prediction with graph regularized matrix factorization, IEEE/ACM Trans. Comput.

Biol. Bioinf. 14 (3) (2017) 646–656 .
[8] Z. Gao , Y. Liang , Y. Jiang , Implement of item-based recommendation on gpu, in: 2012 IEEE 2nd International Conference on Cloud Computing and

Intelligent Systems (CCIS), 2, IEEE, 2012, pp. 587–590 .

[9] Q. Gu , J. Zhou , C. Ding , Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs, in: Proceedings of the
2010 SIAM International Conference on Data Mining, SIAM, 2010, pp. 199–210 .

[10] N. Guan , D. Tao , Z. Luo , B. Yuan , Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent, IEEE Trans. Image
Process. 20 (7) (2011) 2030–2048 .

[11] P. Guo , L. Wang , P. Chen , A performance modeling and optimization analysis tool for sparse matrix-vector multiplication on gpus, IEEE Trans. Parallel
Distrib. Syst. 25 (5) (2014) 1112–1123 .

[12] X. He , H. Zhang , M.Y. Kan , T.S. Chua , Fast matrix factorization for online recommendation with implicit feedback, in: The International ACM SIGIR
Conference, 2016, pp. 549–558 .

[13] R. Kannan , G. Ballard , H. Park , Mpi-faun: an mpi-based framework for alternating-updating nonnegative matrix factorization, IEEE Trans. Knowl. Data

Eng. pp (99) (2017) . 1–1
[14] R. Kannan , H. Woo , C.C. Aggarwal , H. Park , Outlier detection for text data, in: Proceedings of the 2017 SIAM International Conference on Data Mining,

SIAM, 2017, pp. 4 89–4 97 .
[15] K. Kato , T. Hosino , Singular value decomposition for collaborative filtering on a gpu, in: IOP Conference Series: Materials Science and Engineering, 10,

IOP Publishing, 2010, pp. 012–017 .
[16] Y.-D. Kim , S. Choi , Weighted nonnegative matrix factorization, in: Acoustics, Speech and Signal Processing, 20 09. ICASSP 20 09. IEEE International

Conference on, IEEE, 2009, pp. 1541–1544 .

[17] Y. Koren , Factor in the neighbors: scalable and accurate collaborative filtering, ACM Trans. Knowl. Discov. Data (TKDD) 4 (1) (2010) 1 .
[18] Y. Koren , R. Bell , C. Volinsky , Matrix factorization techniques for recommender systems, Computer (8) (2009) 30–37 .

[19] D.D. Lee , H.S. Seung , Algorithms for non-negative matrix factorization, in: Advances in Neural Information Processing Systems, 2001, pp. 556–562 .
[20] H. Li , K. Li , J. An , K. Li , Msgd: a novel matrix factorization approach for large-scale collaborative filtering recommender systems on gpus, IEEE Trans.

Parallel Distrib. Syst. PP (99) (2017) . 1–1
[21] J. Li , J. M. Bioucas-Dias , A. Plaza , L. Liu , Robust collaborative nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote

Sens. 54 (10) (2016) 6076–6090 .

[22] K. Li , W. Yang , K. Li , Performance analysis and optimization for spmv on gpu using probabilistic modeling, IEEE Trans. Parallel Distrib. Syst. 26 (1)
(2015) 196–205 .

[23] X. Li , G. Cui , Y. Dong , Graph regularized non-negative low-rank matrix factorization for image clustering, IEEE Trans. Cybern. (2017) .
[24] C. Liu , H.-c. Yang , J. Fan , L.-W. He , Y.-M. Wang , Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce, in:

Proceedings of the 19th International Conference on World Wide Web, ACM, 2010, pp. 681–690 .
[25] T. Liu , M. Gong , D. Tao , Large-cone nonnegative matrix factorization, IEEE Trans. Neural Netw. Learn Syst. (2016) 1–14 .

[26] E. Mejía-Roa , D. Tabas-Madrid , J. Setoain , C. García , F. Tirado , A. Pascual-Montano , Nmf-mgpu: non-negative matrix factorization on multi-gpu systems,

BMC Bioinformatics 16 (1) (2015) 1 .
[27] C. Nvidia , Nvidia cuda c programming guide, NVIDIA Corporation 120 (2011) 18 .

[28] J.D. Owens , M. Houston , D. Luebke , S. Green , J.E. Stone , J.C. Phillips , Gpu computing, Proc. IEEE 96 (5) (2008) 879–899 .
[29] G. Pratx , L. Xing , Gpu computing in medical physics: a review, Med. Phys. 38 (5) (2011) 2685–2697 .

[30] B. Sarwar , G. Karypis , J. Konstan , J. Riedl , Application of Dimensionality Reduction in Recommender System–A Case Study, Technical Report, DTIC
Document, 20 0 0 .

[31] N. Srebro , J. Rennie , T.S. Jaakkola , Maximum-margin matrix factorization, in: Advances in Neural Information Processing Systems, 2004, pp. 1329–1336 .

[32] M. Sun , Y. Li , J.F. Gemmeke , X. Zhang , Speech enhancement under low snr conditions via noise estimation using sparse and low-rank nmf with
kullback–leibler divergence, IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP) 23 (7) (2015) 1233–1242 .

[33] G. Trigeorgis , K. Bousmalis , S. Zafeiriou , B.W. Schuller , A deep matrix factorization method for learning attribute representations, IEEE Trans. Pattern
Anal. Mach. Intell. 39 (3) (2017) 417–429 .

[34] Y.-X. Wang , Y.-J. Zhang , Nonnegative matrix factorization: a comprehensive review, IEEE Trans. Knowl. Data Eng. 25 (6) (2013) 1336–1353 .
[35] W. Wu , S. Kwong , Y. Zhou , Y. Jia , W. Gao , Nonnegative matrix factorization with mixed hypergraph regularization for community detection, Inf. Sci.

(2018) .

[36] Z. Wu , S. Ye , J. Liu , L. Sun , Sparse non-negative matrix factorization on gpus for hyperspectral unmixing, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
7 (8) (2014) 3640–3649 .

[37] K. Xie , X. Ning , X. Wang , D. Xie , J. Cao , G. Xie , J. Wen , Recover corrupted data in sensor networks: a matrix completion solution, IEEE Trans. Mob.
Comput. 16 (5) (2017) 1434–1448 .

[38] K. Xie , L. Wang , X. Wang , G. Xie , J. Wen , Low cost and high accuracy data gathering in wsns with matrix completion, IEEE Trans. Mob. Comput. 17 (7)
(2018) 1595–1608 .

[39] W. Yang , K. Li , Z. Mo , K. Li , Performance optimization using partitioned spmv on gpus and multicore cpus, IEEE Trans. Comput. 64 (9) (2015)
2623–2636 .

[40] H.-F. Yu , C.-J. Hsieh , S. Si , I. Dhillon , Scalable coordinate descent approaches to parallel matrix factorization for recommender systems, in: Data Mining

(ICDM), 2012 IEEE 12th International Conference on, IEEE, 2012, pp. 765–774 .
[41] F. Zhang , Y. Lu , J. Chen , S. Liu , Z. Ling , Robust collaborative filtering based on non-negative matrix factorization and r 1 -norm, Knowl. Based Syst.

(2016) .
[42] J.D. Zhang , C.Y. Chow , J. Xu , Enabling kernel-based attribute-aware matrix factorization for rating prediction, IEEE Trans. Knowl. Data Eng. (99) (2017)

1 .
[43] L. Zhang , Q. Zhang , B. Du , D. Tao , J. You , Robust manifold matrix factorization for joint clustering and feature extraction, in: Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, California, USA., 2017, pp. 1662–1668 .

http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0043

484 H. Li et al. / Information Sciences 496 (2019) 464–484

[44] S. Zhang , W. Wang , J. Ford , F. Makdon , Learning from incomplete ratings using non-negative matrix factorization, in: 2006 Proceeding SIAM Interna-
tional Conference of Data Mining (SDM), SIAM, 2006, pp. 43–47 .

[45] Y. Zhang , D. Yi , B. Wei , Y. Zhuang , A gpu-accelerated non-negative sparse latent semantic analysis algorithm for social tagging data, Inf. Sci. 281 (2014)
687–702 .

[46] Z. Zheng , H. Ma , M.R. Lyu , I. King , Collaborative web service qos prediction via neighborhood integrated matrix factorization, IEEE Trans. Serv. Comput.
6 (3) (2013) 289–299 .

[47] B. Zou , C. Li , L. Tan , H. Chen , Gputensor: efficient tensor factorization for context-aware recommendations, Inf. Sci. 299 (2015) 159–177 .

http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30587-5/sbref0047

	An efficient manifold regularized sparse non-negative matrix factorization model for large-scale recommender systems on GPUs
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Notation
	3.2 A brief review of NMF
	3.3 Manifold regularized non-negative matrix factorization
	3.4 GPU based computing

	4 A single-thread-based MNMF approach
	4.1 Single-thread-based MNMF for CF problems
	4.1.1 Euclidean distance (MNMFEu)
	4.1.2 KL-divergence (MNMFKL)

	4.2 Complexity analysis

	5 CUMNMF
	5.1 Parallelization approach
	5.2 Aligned memory access

	6 Experiments
	6.1 Experimental settings
	6.2 Performances of CUMNMF
	6.3 Scalability performance
	6.4 Comparisons
	6.4.1 Convergence analysis
	6.4.2 Comparison of parallelization approaches

	7 Conclusions and future work
	 Acknowledgments
	 References

