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1 BAsIc OPTIMIZATION MODELS

He properties of A, n € {N} accord to the task which
determines the decomposition algorithm, i.e., in HOOI

[1], each az(zzb, Jn € {Jn} where n € {N} is orthogonal and

the Ly norm constraints ||a(';l||2 =14, €{Jn}, ne{N}
The orthogonality and unity of HOOI can track the optimal
low-rank orthogonal subspace, as shown in Algorithm 1.

Algorithm 1 A Training Epoch of HOOL.

Input: Sparse tensor X, Factor Matrices A e RIn XJn n e

{N}
Output: Factor matrices A(™ € RI"*/» n € {N};
Core Tensor G Nth order tensor € R/t x/2x %Iy

1: forn from 1 to N do

T
2: y “— X X(l) A X,§2) . X(n—l) A(nil) X(71+1)
AT S X (N A( )
3 A « J, leading left singular vectors of Yn);
4: end for - .
5 G+ X X (1) A(l) X(2) " X(n) A(n) X(n+1) **° X(N)
AT,

The other methods are to infer the low-rank factor matri-
ces A, € {N} and core tensor G with Ly norm regular-
ization [1-5]. Lo norm regularization can keep the promise
of the smoothness [6-9] for the low-rank factor matrices
A™, n € {N} and the core tensor G. The optimization
algorithms are divided into two classes, i.e., dense condition
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and sparse condition. The optimization problem for dense
tensor is presented as:

argmin f (X, {AMY, g>

AM ne{N}.G

where X =G x1 AW x5 x, A 11+ x vy AN and
Ag and A, are the regularization parameters for core tensor
and low-rank factor matrices, respectively. The optimization
objective (1) involves variables multiplication, which is non-
convex. The non-convex problem can be tackled by convex
solution via updating a Variable and fixing the others. The
optimization problem (1) can be s%)ht into updating core
tensor G (nth Vect0r1zat1on form ¢(™) and updating low-
rank factor matrices AT, n € {N} as followmg [10-12]:
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Where f(n) — H(n)g(")/ f(") = A(n)G(n)s(n)T and S(n) —

AN ... gAY gArDg...g AL, Equ. (2) discusses
the basic optimization model for the two key parts, i.e., core
tensor G and factor matrices A™), n € {N}. The convex op-
timization objective (2) for core tensor G € RJ1 %X JnxxJn
cooperates with parameters { X', H(")} and the gradient of
g™ on (2) is:
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where:
H™ =A®V) R-® Alnt1) ® An=1) Q-
4)
o AM @ A HM ¢ RE e I, &
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P = A(”)TA("), and ¢ € ]Rnl;[l . The overall space

overheads for intermediate matrices {H™, H(")TH(”)} are

{ (H InJn), (H )}, respectively, and the overall

computatlonal complex1ty for the gradient of core tensor (3)

N
is O( 11 (I, Jn) + H 243 H Jn>.
n=1 n=1
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The gradient for the factor matrices A™, n € {N} on (2)
X {AMY, G(”)>
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where:

g(n) — A(V) Q- ®A("+1) ®A("—1) - ®A(1);
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In common conditions, the original tensor is a HOHDST;
thus, the space and time overheads for the intermediate
matrices are huge which are not practical. There are some
works that can construct the optimization objectives follow-
ing the sparsity model, e.g., ALS [3, 4] and CD [5], etc. ALS
should construct the Hessian matrices C™ ¢ R/» %/ none

{N} and the element-wise form is presented as:

-1
H JIn 1‘[ Jn
g(’ﬂ) <— <C —+ )‘g(”)l> d I € Rn=1 Xﬂf :
- (7)
aE:l? - dg:’):T (C(n) + /\A1n> I, € RJHXJ”’
n € {N},
where
A= 4,
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The computational complexity for (C + /\g(ml) is

N
O(( I Jn)?’) and the computational complexity for

n=1

-1
(C(”) + AAIn) is O (JS{) Thus, the total computational

N N N
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N N N
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CD is a special version of ALS and CD updates each feature
element in a feature vector discretely. In the sequel, CD
neglects the successive reading and writing for a feature
vector which will increase the data addressing overheads.

The optimization objective for { gé"), E")J } is presented as:
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The element-wise form for { g((l"), agf?jn} is presented as:
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HOOQOI, ALS and CD rely on the whole training set
which results in high computation overhead and memory
bottleneck especially in the situation of HOHDST.
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Fig. 1: Rank scalability for time overhead on full threads.
The computational scalability for P—Tucker, HOOI, CD,
and SGD_Tucker on the 2 datasets with successively
increased number of total elements, i.e., Movielen-100K,
Movielen-1M.
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(a) Movielen-100K (b) Movielen-1M
Fig. 2: Rank scalability for memory overhead on a thread
running. (On this work, GB refers to GigaBytes and MB
refers to Megabytes). The space scalability for P—Tucker,
CD, HOOQI, and SGD_Tucker on the 2 small datasets with
successively increased total elements, i.e., Movielen-100K,
Movielen-1M.

2 EXPERIMENTS RESULTS

Fig. 5 illustrates the computational time of the key
parts, ie., TTMec, top-N of svds, and the total compu-
tational time. The key and most time-consuming part of
TTMc is vectors Kronecker product which is computed
by kron of Armadillo library and the index access code
is borrowed from SPLATT of [1]. The SVD for the inter-
mediate matrix of TT'Mc is computed by top-N of svds
on Armadillo library. As the Fig. 5 show, there are two
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Fig. 3: RMSE and MAE vs time for SGD_Tucker on training
set {2} and testing set I
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Fig. 4: RMSE comparison of SGD_Tucker, P—Tucker, and
CD on 2 small datasets.
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Fig. 5: Computational time of T"I"M c and top-N svds based

on the Armadillo library on the 6 datasets. The experiment
runs on full threads



regulations as: 1) the computational overhead for TT'Mc is
controlled by the degree of thread balance which is balance

belong to lth thread
degree of > \(QS\Z))Z ,n € {N} for thread

l. 2) the computat%nal overhead for svds is regulated by
N

{In x 11 Jkln € {N}} From the results of Fig. 5 and
k#n

Figs. 5 and 6 in main paper, the time scalability of HOOI
is the same with SGD_Tucker. However, SGD_Tucker has
lower computational overhead and less space overhead than
HOOL
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