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Abstract—Sparse Tucker Decomposition (STD) algorithms learn a core tensor and a group of factor matrices to obtain an optimal low-rank

representation feature for the High-Order, High-Dimension, and Sparse Tensor (HOHDST). However, existing STD algorithms face the

problem of intermediate variables explosionwhich results from the fact that the formation of those variables, i.e., matrices Khatri-Rao product,

Kronecker product, andmatrix-matrixmultiplication, follows thewhole elements in sparse tensor. The above problems prevent deep fusion of

efficient computation and big data platforms. To overcome the bottleneck, a novel stochastic optimization strategy (SGD Tucker) is proposed

for STDwhich can automatically divide the high-dimension intermediate variables into small batches of intermediatematrices. Specifically,

SGD Tucker only follows the randomly selected small samples rather than thewhole elements, whilemaintaining the overall accuracy and

convergence rate. In practice, SGD Tucker features the two distinct advancements over the state of the art. First, SGD Tucker can prune the

communication overhead for the core tensor in distributed settings. Second, the low data-dependence of SGD Tucker enables fine-grained

parallelization, whichmakesSGD Tucker obtaining lower computational overheadswith the same accuracy. Experimental results show that

SGD Tucker runs at least 2X faster than the state of the art.

Index Terms—High-order, high-dimension and sparse tensor, low-rank representation learning, machine learning algorithm, sparse tucker

decomposition, stochastic optimization, parallel strategy
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1 INTRODUCTION

TENSORS are a widely used data representation style for
interaction data in the Machine Learning (ML) applica-

tion community [1], e.g, in Recommendation Systems [2],
Quality of Service (QoS) [3], Network Flow [4], Cyber-Physi-
cal-Social (CPS) [5], or Social Networks [6]. In addition to
applications in which the data is naturally represented in
the form of tensors, another common used case is the fusion
in multi-view or multi-modality problems [7]. Here, during
the learning process, each modality corresponds to a feature
and the feature alignment involves fusion. Tensors are a
common form of feature fusion for multi-modal learning

[7], [8], [9], [10]. Unfortunately, tensors can be difficult to
process in practice. For instance, an N-order tensor com-
prises of the interaction relationship between N kinds of
attributes and if each attribute has millions of items, this
results in a substantially large size of data [11]. As a remedy,
dimensionality reduction can be used to represent the original
state using much fewer parameters [12].

Specifically in the ML community, Tensor Factorization
(TF), as a classic dimensionality reduction technique, plays a
key role for low-rank representation. Xu et al., [13] proposed a
Spatio-temporal multi-task learning model via TF and in this
work, tensor data is of 5-order, i.e., weather, traffic volume,
crime rate, disease incidents, and time. Meanwhile, this model
made predictions through the time-order for the multi-task in
weather, traffic volume, crime rate, and disease incidents
orders and the relationship construction between those orders
is via TF. In the community of Natural Language Processing
(NLP), Liu et al., [14] organized a mass of texts into a tensor
and each slice is modeled as a sparse symmetric matrix. Fur-
thermore, the tensor representation is a widely-used form for
Convolutional Neural Networks (CNNs), e.g., in the popular
TensorFlow [15] framework, andKossaifi et al., [16] took tenso-
rial parametrization of a CNNs and pruned the parametriza-
tion by Tensor Network Decomposition (TND). Meanwhile,
Ju, et al., [17] pruned and then accelerated the Restricted
BoltzmannMachine (RBM) couplingwithTF. In theComputer
Vision (CV) community, Wang et al., [18] modeled various
factors, i.e., pose and illumination, as an unified tensor and
make disentangled representation by adversarial autoencoder
via TF. Zhang et al., [19] constructed multi subspaces of
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multi-viewdata and then abstract factormatrices via TF for the
unified latent of each view.

High-Order, High-Dimension, and Sparse Tensor
(HOHDST) is a common situation in the big-data processing
and ML application community [20], [21]. Dimensionality
reduction can also be used to find the low-rank space of
HOHDST in ML applications [22], which can help to make
prediction from existing data. Therefore, it is non-trivial to
learn the pattern from the existed information in a HOHDST
and then make the corresponding prediction. Sparse Tucker
Decomposition (STD) is one of themost popular TFmodels for
HOHDST, which can find theN-coordinate systems and those
systems are tangled by a core tensor between each other [23].
Liu et al., [24] proposed to accomplish the visual tensor comple-
tion via STD. The decomposition process of STD involves the
entanglement of N-factor matrices and core tensor and the
algorithms follow one of the following twodirections: 1) search
for optimal orthogonal coordinate system of factor matrices,
e.g.,High-orderOrthogonal Iteration (HOOI) [25]; 2) designing
optimization solving algorithms [26]. HOOI is a common solu-
tion for STD [27] and able to find theN orthogonal coordinate
systems which are similar to Singular Value Decomposition
(SVD), but requires frequent intermediate variables of Khatri-
Rao andKronecker products [28].

An interesting topic is that stochastic optimization [29], e.g.,
Count Sketch and Singleshot [30], [31], etc. can alleviate this
bottleneck to a certain extent, depending on the size of dataset.
However, those methods depend on the count sketch matrix,
which cannot be easily implemented in a distributed environ-
ment and is notoriously difficult to parallelize. The Stochastic
Gradient Descent (SGD) method can approximate the gradient
from randomly selected subset and it forms the basis of the
state of art methods, e.g., variance SGD [32], average SGD [33],
Stochastic Recursive Gradient [34], and momentum SGD [35].
SGD is adopted to approximate the eventual optimal solver
with lower space and computational complexities; meanwhile,
the low data-dependence makes the SGDmethod amenable to
parallelization [36]. The idea of construction for the computa-
tional graph of the mainstream platforms, e.g., Tensorflow [15]
and Pytorch [37], is based on the SGD [38] and practitioners
have already demonstrated its powerful capability on large-
scale optimization problems. The computational process of
SGD only needs a batch of training samples rather than the full
setwhich gives theMLalgorithm the low-dependence between
each data block and low communication overhead [39].

There are three challenges to process HOHDST in a fast
and accurate way: 1) how to define a suitable optimization
function to find the optimal factormatrices and core tensor? 2)
how to find an appropriate optimization strategy in a low-
overhead way and then reduce the entanglement of the factor
matrices with core tensor which may produce massive inter-
mediate matrices? 3) how to parallelize STD algorithms and
make distributed computationwith low communication cost?
In order to solve these problems, we present the main contri-
butions of thisworkwhich are listed as follows:

1) A novel optimization objective for STD is presented.
This proposed objective function not only has a low
number of parameters via coupling the Kruskal
product (Section 4.1) but also is approximated as a
convex function;

2) A novel stochastic optimization strategy is proposed
for STD, SGD Tucker, which can automatically divide
the high-dimension intermediate variables into small
batches of intermediate matrices that only follows the
index of the randomly selected small samples; mean-
while, the overall accuracy and convergence are kept
(Section 4.3);

3) The low data-dependence of SGD Tucker creates
opportunities for fine-grained parallelization, which
makes SGD Tucker obtaining lower computational
overhead with the same accuracy. Meanwhile,
SGD Tucker does not rely on the specific compres-
sive structure of a sparse tensor (Section 4.4).

To our best knowledge, SGD Tucker is the first work that
can divide the high-dimension intermediate matrices of
STD into small batches of intermediate variables, a critical
step for fine-grained parallelization with low communica-
tion overhead. In this work, the related work is presented in
Section 2. The notations and preliminaries are introduced in
Section 3. The SGD Tucker model as well as parallel and
communication overhead on distributed environment for
STD are showed in Section 4. Experimental results are illus-
trated in Section 5.

2 RELATED STUDIES

For HOHDST, there are many studies to accelerate STD on the
state of the art parallel and distributed platforms, i.e.,
OpenMP,MPI, CUDA, Hadoop, Spark, andOpenCL. Ge et al.,
[40] proposeddistributedCANDECOMP/PARAFACDecom-
position (CPD) which is a special STD for HOHDST. Shaden
et al., [41] used a Compressed Sparse Tensors (CSF) structure
which can optimize the access efficiency for HOHDST. Ten-
sor-Time-Matrix-chain (TTMc) [42] is a key part for Tucker
Decomposition (TD) and TTMc is a data intensive task. Ma
et al., [42] optimized the TTMc operation on GPU which can
take advantage of intensive and partitioned computational
resource of GPU, i.e., a warp threads (32) are automatically
synchronized and this mechanism is apt to matrices block-
block multiplication. Non-negative Tucker Decomposition
(NTD) can extract the non-negative latent factor of aHOHDST,
which is widely used inML community. However, NTD need
to construct the numerator and denominator and both of them
involve TTMc. Chakaravarthy et al., [43] designed a mecha-
nism which can divide the TTMc into multiple independent
blocks and then those tasks are allocated to distributed nodes.

HOOI is a common used TF algorithm which comprises
of a series of TTMc matrices and SVD for the TTMc. [44]
focused on dividing the computational task of TTMc into a
list of independent parts and a distributed HOOI for
HOHDST is presented in [45]. However, the intermediate
cache memory for TTMc of HOOI increased explosively.
Shaden et al., [41] presented a parallel HOOI algorithm and
this work used a Compressed Sparse Tensors structure
which can improve the access efficiency and save the mem-
ory for HOHDST. Oh and Park [46], [47] presented a paral-
lelization strategy of ALS and CD for STD on OpenMP. A
heterogeneous OpenCL parallel version of ALS for STD is
proposed on [48]. However, the above works are still
focused on the naive algorithm parallelization which can-
not solve the problem of fine-grained parallelization.
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3 NOTATION AND PRELIMINARIES

The main notations include the tensors, matrices and vectors,
along with their basic elements and operations (in Table 1).
Fig. 1 illustrates the details of TD including the tanglement of
the core tensor G with the N factor matrices AðnÞ, n 2 fNg.
The data styles for TF include sparse and dense tensors and
STD is devoted to HOHDST. Here, basic definitions for STD
and models are rendered in Section 3.1. Finally, the STD pro-
cess for theHOHDST is illustrated in Section 3.2.

3.1 Basic Definitions

Definition 1 (Tensor Unfolding (Matricization)). nth ten-
sor unfolding (Matricization) refers to that a low order matrix
XðnÞ 2 RIn�I1���In�1�Inþ1���IN stores all information of a tensor
X 2 RI1�I2����In����IN and the matrix element x

ðnÞ
in;j

of XðnÞ at
the position j ¼ 1þPN

k¼1;n 6¼k½ðik � 1ÞQk�1
m¼1;m 6¼n Im� contains

the tensor element xi1;i2;...;in of a tensor XX .
Definition 2 (Vectorization of a tensor XX ). nth tensor vec-

torization refers to that a vector xðnÞ (VecnðXX ) and Vec(XðnÞ))
stores all elements in the nth matricization XðnÞ of a tensor X
and x

ðnÞ
k ¼X

ðnÞ
i;j , where k ¼ ðj� 1ÞIn þ i.

Definition 3 (Tensor Approximation). A N-order tensor XX
2 RI1�����IN can be approximated by bXX 2 RI1�����IN , as well as
a N-order residual or noisy tensor EE 2 RI1�����IN . The low-rank
approximation problem is defined as XX ¼ bXX þ EE, where bXX is
denoted by a low-rank tensor.

Definition 4 (n-Mode Tensor-Matrix product). n-Mode
Tensor-Matrix product is an operation which can reflect coordi-
nate projection of a tensor XX 2 RI1�����IN with projection matrix
U 2 RIn�Jn into a tensor ðXX �ðnÞ UÞ 2 RI1�����In�1�Jn����IN

where ðXX �ðnÞ UÞi1�����in�1�jn�inþ1�����iN ¼
PIn

in¼1 xi1�����in����
�iNujn;in .

Definition 5 (R Kruskal Product). For an N-order tensor bXX
2 RI1�����IN , the R Kruskal Product of bXX is given by R Kruskal
product as: bXX ¼PR

r¼1 a
ð1Þ
:;r � � � � � aðnÞ:;r � � � � � aðNÞ:;r .

Definition 6 (Sparse Tucker Decomposition). For a
N-order sparse tensor XX 2 RI1�����IN , the STD of the optimal
approximated bXX is given by bXX ¼ G �ð1Þ Að1Þ �ð2Þ � � � �ðnÞ
AðnÞ �ðnþ1Þ � � � �ðNÞ AðNÞ; where G is the core tensor and AðnÞ,
n 2 fNg are the low-rank factor matrices. The rank of TF for a ten-
sor is ½J1; . . . ; Jn; . . . ; JN �. The determination process for the core
tensor G and factor matrices AðnÞ, n 2 fNg follows the sparsity
model of the sparse tensorXX .

In the convex optimization community, the literature [49]
gives the definition of Lipschitz-continuity with constant L
and strong convexity with constant m.

Definition 7 (L-Lipschitz continuity). A continuously dif-
ferentiable function fðxÞ is called L-smooth onRr if the gradient
rfðxÞ is L-Lipschitz continuous for any x, y 2 Rr, that is k
rfðxÞ � rfðyÞ k2 � L k x � y k2, where k � k2 is L2-norm

kxk2 ¼ ð
Pr

k¼1x
2
kÞ1=2 for a vector x.

Definition 8 (m-Convex). A continuously differentiable func-
tion fðxÞ is called strongly-convex on Rr if there exists a con-
stant m > 0 for any x, y 2 Rr, that is fðxÞ 	 fðyÞ þ r fðyÞ
ðx� yÞT þ 1

2mkx� yk22.
Due to limited spaces, we provide the description of basic

optimization as the supplementary material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2020.3047460.

3.2 Problems for Large-Scale Optimization
Problems

Many ML tasks are transformed into the solvent of optimi-
zation problem [32], [33], [34], [35] and the basis optimiza-
tion problem is organized as

argmin
w2RR

fðwÞ ¼ L

�
w

����yi; xi; w

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Loss Function

þ �wRðwÞ|fflfflfflffl{zfflfflfflffl}
Regularization Item

¼
XN
i¼1

Li

�
w

����yi; xi; w
�
þ �wRiðwÞ;

(1)

TABLE 1
Table of Symbols

Symbol Definition

In The size of row in the nth factor matrix;
Jn The size of column in the nth factor matrix;
X Input N order tensor 2 R

I1�I2�����INþ ;
xi1 ;i2;...;in i1; i2; . . . ; inth element of tensor X ;
G Core N order tensor 2 RJ1�J2�����JN ;
X Input matrix 2 R

I1�I2þ ;
XðnÞ nth unfolding matrix for tensor X ;
VecnðXXÞ nth vectorization of a tensor X ;
V Index ði1; . . . ; in; . . . ; iNÞ of a tensor X ;
V
ðnÞ
M Index ðin; jÞ of nth unfolding matrixXðnÞ;
ðVðnÞM Þi Column index set in ith row of V

ðnÞ
M ;

ðVðnÞM Þj Row index set in jth column of V
ðnÞ
M ;

V
ðnÞ
V Index i of nth unfolding vector VecnðXX );
fNg The ordered set f1; 2; . . . ; N � 1; Ng;
AðnÞ nth feature matrix 2 RIn�Jn ;
a
ðnÞ
in;:

inth row vector 2 RKn ofAðnÞ;
a
ðnÞ
:;j jth column vector 2 RKn ofAðnÞ;

a
ðnÞ
in;kn

knth element of feature vector a
ðnÞ
in;:

;

��ð�; =Þ Element-wise multiplication= division;
� Outer production of vectors;

 Khatri-Rao (columnwise Kronecker) product;
� Matrix product;
�ðnÞ n-Mode Tensor-Matrix product;
� Kronecker product.

Fig. 1. Illustration of TD.
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where yi 2 R1, xi 2 RR, i 2 fNg, w 2 RR and the original
optimization model needs gradient which should select all
the samples fxiji 2 fNgg from the dataset V and the GD is
presented as

w w� g
@fVðwÞ
@w

¼ w� g
1

N

XN
i¼1

@

�
LiðwÞ þ �wRiðwÞ

�
@w

:

(2)

The second-order solution, i.e., ALS and CD, etc, are
deduced from the construction of GD from the whole data-
set. In large-scale optimization scenarios, SGD is a common
strategy [32], [33], [34], [35] and promises to obtain the opti-
mal accuracy via a certain number of training epoches [32],
[33], [34], [35]. An M entries set C is randomly selected
from the set V, and the SGD is presented as

w w� g
@fCðwÞ
@w

� w� g
1

M

X
i2C

@

�
LiðwÞ þ �wRiðwÞ

�
@w

:

(3)

Equ. (3) is an average SGD [33], and the averaged SG can be
applied to build the basic tool of themodern stochastic optimi-
zation strategies, e.g., Stochastic Recursive Gradient [34], vari-
ance SGD [32], or momentum SGD [35], which can retain
robustness and fast convergence. The optimization function
can be packaged in the form of SGDðM;�; g; w; @fCðwÞ

@w Þ.

4 SGD TUCKER

Overview. In this section, SGD Tucker is proposed to decom-
pose the optimization objectives which involves frequent
operations of intermediate matrices into a problem which
only needs themanipulations of small batches of intermediate

matrices. Fig. 2 illustrates the framework for our work. As
Fig. 2 shows, SGD Tucker comprises of an approximation
process of the core tensor and an optimization for factormatri-
ces. Table 2 records the intermediate variables which follow
the problem deduction process. Section 4.1 presents the
deduction process for the core tensor (Lines 1-16, Algorithm
1), and Section 4.2 presents the proceeding process for the fac-
tor matrices of SGD Tucker (Lines 17-26, Algorithm 1).
Section 4.3 shows the stochastic optimization process for
the proposed novel optimization objectives, which illustrates
the details of the process that how can the SGD Tucker
divide the high-dimension intermediate matrices fHðnÞ;
SðnÞ;EðnÞ

��n 2 fNgg into a small batches of intermediate
matrices. Section 4.4 shows the parallel and distributed
strategies for SGD Tucker. Finally, Section 4.5 illustrates the
analysis of space and time complexities. Because the optimi-
zation process for approximating the core tensor and factor

Fig. 2. Illustration of Optimization Process for SGD Tucker: 1) Original
problem for core tensor. 2) Kruskal product for approximating core ten-
sor. 3) Optimization process for factor matrices.

TABLE 2
Table of Intermediate Varibles for SGD Tucker
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matrices are non-convex. We fix the core tensor and opti-
mize a factor matrix and fix factor matrices to optimize
Kruskal product for core tensor. This alternative minimiza-
tion strategy is a convex solution [46], [47], [48], [50].

4.1 Optimization Process for the Core Tensor

Due to the non-trivial coupling of the core tensor GG, the effi-
cient and effective way to infer it is through an approxima-
tion. A tensor GG can be approximated by Rcore � Jn; n 2 fNg
Kruskal product of low-rank matrices fBðnÞ 2 RJn�Rcore jn 2
fNgg to form bGG

bGG ¼ XRcore

rcore¼1
bð1Þ:;rcore

� � � � � bðnÞ:;rcore
� � � � � bðNÞ:;rcore

: (4)

As the direct approximation for the core tensor GG may
result in instability, we propose to apply the coupling pro-
cess to approximate STD and tensor approximation. Specifi-
cally, we use Kruskal product of low-rank matrices
fBðnÞ 2 RJn�Rcore jn 2 fNgg as follows:

argminbGG f

�bgðnÞ����xðnÞ; fAðnÞg
�

¼
����xðnÞ �HðnÞbgðnÞ����2

2

þ �bgðnÞ
����bgðnÞ

����2
2

;

(5)

where bgðnÞ ¼ VecðBðnÞQðnÞT Þ andQðnÞ ¼BðNÞ 
 � � � 
Bðnþ1Þ 

Bðn�1Þ 
 � � � 
Bð1Þ. The tanglement problem resulted from
Rcore Kruskal product of low-rank matrices fBðnÞ 2
RJn�Rcore jn 2 fNgg leads to a non-convex optimization prob-
lem for the optimization objective (5). The alternative optimi-
zation strategy [50] is adopted to update the parameters

fBðnÞ 2 RJn�Rcore jn 2 fNgg and then the non-convex optimi-
zation objective (5) is turned into the objective as

argmin
BðnÞ;n2fNg

f

�
BðnÞ

����xðnÞ; fAðnÞg; fBðnÞg
�

¼
����xðnÞ �HðnÞVecðBðnÞQðnÞT Þ

����2
2

þ �B

����B
����2
2

;

(6)

where VecðBðnÞQðnÞT Þ ¼ VecðPRcore
r¼1 bðnÞ:;r q

ðnÞT
:;r Þ.

The optimization objective (6) is not explicit for the variable
BðnÞ; n 2 fNg and it is hard to find the gradient of the varia-
bles BðnÞ; n 2 fNg under the current formulation. Thus, we
borrow the intermediate variables with a unity matrix asOðnÞr

2 R
QN

k¼1 Jk�Jn , r 2 fRcoreg and the unity matrixUðnÞ 2 RJn�Jn ,
n 2 fNg which can present the variables BðnÞ; n 2 fNg in a
gradient-explicit formation. ThematrixOðnÞr is defined as

OðnÞr ¼
�
q1;rU

ðnÞ; . . . ; qm;rU
ðnÞ; . . . ;

qQN

k¼1;k6¼n Jk;r
UðnÞ

	T
:

(7)

The key transformation of the gradient-explicit formation
for the variables BðnÞ; n 2 fNg is as VecðPRcore

r¼1 bðnÞ:;r q
ðnÞT
:;r Þ ¼PRcore

r¼1 OðnÞr bðnÞ:;r . Then the optimization objective (6) is refor-
mulated into:

argmin
BðnÞ;n2fNg

f

�
BðnÞ

����xðnÞ; fAðnÞg; fBðnÞg
�

¼
����xðnÞ �HðnÞ

XRcore

r¼1
OðnÞr bðnÞ:;r

����2
2

þ �B

����B
����2
2

:

(8)

The cyclic block optimization strategy [51] is adopted to
update the variables



bðnÞ:;rcore

jrcore 2 fRcoreg
�

within a low-

rank matrix BðnÞ; n 2 fNg and eventually the optimization
objective is reformulated into

argmin
b
ðnÞ
:;rcore ;n2fNg

f

�
bðnÞ:;rcore

����xðnÞ; fAðnÞg; fBðnÞg
�

¼
����xðnÞrcore

�HðnÞrcore
bðnÞ:;rcore

����2
2

þ �B

����bðnÞ:;rcore

����2
2

;

(9)

where xðnÞrcore
¼ xðnÞ �HðnÞ

PRcore
r¼1;r 6¼rcore O

ðnÞ
r bðnÞ:;r and HðnÞrcore

¼
HðnÞOðnÞrcore

2 R
QN

n¼1 In�Jn .

Theorem 1. From the function form of (9), the optimization
objective for bðnÞ:;rcore

is a u-convex and L-smooth function.

Proof. The proof is divided into the following two parts: 1)
The non-convex optimization problem is transformed
into fixing factor matrices AðnÞ; n 2 fNg and updating
core tensor part, and this transformation can keep prom-
ise that convex optimization for each part and appropri-
ate accuracy [46], [47], [48], [50]. 2) The distance function��xðnÞrcore

�HðnÞrcore
bðnÞ:;rcore

��2
2
is an euclidean distance with L2

norm regularization �B

��bðnÞ:;rcore

��2
2
[52]. Thus, the optimiza-

tion objective (9) is a u-convex and L-smooth function

obviously [49], [50], [53]. The proof details are omitted

which can be found on [32], [54]. tu

4.2 Optimization Process for Factor Matrices

After the optimization step is conducted for fBðnÞ 2
RJn�Rcore jn 2 fNgg, the Kruskal product for approximated
core tensor ĝðnÞ is constructed by Equ. (4). Thus, we should
consider the optimization problem for factor matrices
AðnÞ; fnjn 2 fNgg as

argmin
AðnÞ;n2fNg

f

�
AðnÞ

����XXðnÞ;
AðnÞ�; bGðnÞ
�

¼
����XXðnÞ � bXXðnÞ����2

2

þ �A

����AðnÞ
����2
2

;

(10)

where bXXðnÞ ¼ AðnÞ bGðnÞSðnÞT and SðnÞ ¼ AðNÞ � � � � �Aðnþ1Þ�
Aðn�1Þ � � � � �Að1Þ.

The optimization process for the whole factor matrix set
fAð1Þ; . . . ;AðNÞg is non-convex. The alternative optimization
strategy [50] is adopted to transform the non-convex optimi-
zation problem into N convex optimization problems under
a fine-tuned initialization as
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argmin
Að1Þ f

�
Að1Þ

�
¼

����XXð1Þ �Að1ÞEð1Þ
����2
2

þ �A

����Að1Þ
����2
2

;

..

.

argmin
AðnÞ f

�
AðnÞ

�
¼

����XXðnÞ �AðnÞEðnÞ
����2
2

þ �A

����AðnÞ
����2
2

;

..

.

argmin
AðNÞ f

�
AðNÞ

�
¼

����XXðNÞ �AðNÞEðNÞ
����2
2

þ �A

����AðNÞ
����2
2

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

where EðnÞ ¼ bGðnÞSðnÞT 2 R
Jn�

QN

k¼1;k6¼n Ik . The optimization
objectives of the nth variables are presented as an indepen-
dent form as

argmin
a
ðnÞ
1;:

fðaðnÞ1;: Þ ¼
����XðnÞ1;: � a

ðnÞ
1;: E

ðnÞ
����2
2

þ �A

����aðnÞ1;:

����2
2

;

..

.

argmin
a
ðnÞ
in;:

fðaðnÞin;:
Þ ¼

����XðnÞin;:
� a

ðnÞ
in;:

EðnÞ
����2
2

þ �A

����aðnÞin;:

����2
2

;

..

.

argmin
a
ðnÞ
In;:

fðaðnÞIn;:
Þ ¼

����XðnÞIn;:
� a

ðnÞ
In;:

EðnÞ
����2
2

þ �A

����aðnÞIn;:

����2
2

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(12)

Theorem 2. From the function form of (12), the optimization
objective forAðnÞ is a u-convex and L-smooth function.

Proof. By adopting the alternative strategy [46], [47], [48],
[50], we fix bGG and AðkÞ; k 6¼ n; k 2 fNg. Then, we update

AðnÞ. The distance function kXðnÞin;:
� a

ðnÞ
in;:

EðnÞk22 is an euclid-

ean distancewithL2 norm regularization �AkaðnÞin;:
k22, in 2 In

[52]. Thus, the optimization objective (9) is a u-convex and

L-smooth function obviously [49], [50], [53]. Due to the lim-

ited space, the proof details are omittedwhich can be found

on [32], [54]. tu

4.3 Stochastic Optimization

The previous Sections 4.1 and 4.2 presented the transforma-
tion of the optimization problem. In this section, the solvent
is introduced. The average SGD method is a basic part of
state of the art stochastic optimization models. Thus, in this
section, we present the average SGD for our optimization
objectives. The optimization objectives for the core tensor
are presented in Equs. (8) and (9). The optimization objec-
tives for the factor matrix are presented in Equ. (12) which
are in the form of a basic optimization model. In the indus-
trial and big-data communities, the HOHDST is very
common. Thus, SGD is proposed to replace the original
optimization strategy.

The solution for bðnÞ:;rcore
is presented as

argmin
b
ðnÞ
:;rcore ;n2fNg

f

�
bðnÞ:;rcore

����xðnÞ; fAðnÞg; fBðnÞg
�

¼
X
i2VðnÞ

V

Li

�
bðnÞ:;rcore

����xðnÞ
�
þ �B

����bðnÞ:;rcore

����2
2

: (13)

If a set C including M randomly entries is selected, the
approximated SGD solution for bðnÞ:;rcore

is presented as

argmin
b
ðnÞ
:;rcore ;n2fNg

f
C
ðnÞ
V

�
bðnÞ:;rcore

����xðnÞC
ðnÞ
V

; fAðnÞg; fBðnÞg
�

¼
X

i2CðnÞ
V

Li

�
bðnÞ:;rcore

����xðnÞ
�
þ �B

����bðnÞ:;rcore

����2
2

¼
����xðnÞC

ðnÞ
V

�H
ðnÞ
C
ðnÞ
V

;:

XRcore

r¼1
OðnÞr bðnÞ:;r

����2
2

þ �B

����bðnÞ:;rcore

����2
2

¼
����ðxðnÞrcore

Þ
C
ðnÞ
V

�H
ðnÞ
C
ðnÞ
V

;:
OðnÞrcore

bðnÞ:;rcore

����2
2

þ �B

����bðnÞ:;rcore

����2
2

:

(14)

The SGD for the approximated function f
C
ðnÞ
V

ðbðnÞ:;rcore
jxðnÞ

C
ðnÞ
V

;
fAðnÞg; fBðnÞgÞ is deduced as

@f
C
ðnÞ
V

�
bðnÞ:;rcore

����xðnÞC
ðnÞ
V

; fAðnÞg; fBðnÞg
�

@b
ðnÞ
:;rcore

¼ 1

M

�
�OðnÞTrcore

H
ðnÞT
C
ðnÞ
V

;:
ðxðnÞrcore

Þ
C
ðnÞ
V

þOðnÞTrcore
H
ðnÞT
C
ðnÞ
V

;:
H
ðnÞ
C
ðnÞ
V

;:
OðnÞrcore

bðnÞ:;rcore

�
þ �Bb

ðnÞ
:;rcore

:

(15)

The solution for factor matrices a
ðnÞ
in;:

, in 2 fINg, n 2 fNg is
presented as

argmin
a
ðnÞ
in;:

;n2fNg
f

�
a
ðnÞ
in;:

����XXðnÞin;:
;


AðnÞ

�
; bGðnÞ�

¼
X

j2ðVðnÞ
M
Þin

Lj

�
a
ðnÞ
in;:

����XXðnÞin;j

�
þ �A

����aðnÞin;:

����2
2

:

(16)

If a set C including M randomly chosen entries is selected,
the SGD solution for a

ðnÞ
in;:

can be expressed as

argmin
a
ðnÞ
in;:

;n2fNg
f
C
ðnÞ
M

�
a
ðnÞ
in;:

����XXðnÞin;ðCðnÞM
Þin
;


AðnÞ

�
; bGðnÞ�

¼
X

j2ðCðnÞ
M
Þin

Lj

�
a
ðnÞ
in;:

����XXðnÞin;j

�
þ �A

����aðnÞin;:

����2
2

¼
����XðnÞin;ðCðnÞM

Þin
� a

ðnÞ
in;:

E
ðnÞ
:;ðCðnÞ

M
Þin

����2
2

þ �A

����aðnÞin;:

����2
2

:

(17)

The stochastic gradient for the approximated function
f
C
ðnÞ
V

ðaðnÞin;:
jXXðnÞ

in;ðCðnÞM
Þin
;


AðnÞ

�
;GðnÞÞ is deduced as

@f
C
ðnÞ
V

�
a
ðnÞ
in;:

����XXðnÞin;ðCðnÞM
Þin
;


AðnÞ

�
; bGðnÞ�

@a
ðnÞ
in;:

(18)

¼ 1

M

�
�X

ðnÞ
in;ðCðnÞM

Þin
E
ðnÞT
:;ðCðnÞ

M
Þin

þ a
ðnÞ
in;:

E
ðnÞ
:;ðCðnÞ

M
Þin
E
ðnÞT
:;ðCðnÞ

M
Þin

�
þ �Aa

ðnÞ
in;:

:

LI ET AL.: SGD\_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION 1833

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore.  Restrictions apply. 



The computational details are presented in Algorithm 1,
which shows that SGD Tucker is able to divide the high-
dimension intermediate matrices fHðnÞ

V
ðnÞ
V

;:
;S
ðnÞ
ðVðnÞ

M
Þin ;:

;E
ðnÞ
:;ðVðnÞ

M
Þin
j

in 2 fIng; n 2 fNgg into small batches of intermediate matri-

ces fHðnÞ
C
ðnÞ
V

;:
;S
ðnÞ
ðCðnÞ

M
Þin ;:

;E
ðnÞ
:;ðCðnÞ

M
Þin
jin 2 fIng; n 2 fNgg. We sum-

marized all steps of SGD Tucker inAlgorithm 1.

Algorithm 1. Stochastic Optimization Strategies on a Train-
ing Epoch for SGD Tucker

Input: Sparse tensor X , randomly selected setCwithM entries,
Learning step gA, learning step gB;
Initializing BðnÞ, n 2 fNg, core tensor bG, AðnÞ, n 2 fNg, HðnÞ

C
ðnÞ
V

;:
2

R
M�

QN

n¼1 Jn , r 2 fRcoreg, n 2 fNg, OðnÞr 2 R
QN

k¼1 Jk�Jn , r 2
fRcoreg, n 2 fNg, bxðnÞ

C
ðnÞ
V

2 RM .

Output:BðnÞ, n 2 fNg, bG,AðnÞ, n 2 fNg.
1: for n from 1 toN do
2: ObtainH

ðnÞ
C
ðnÞ
V

;:
;

3: for rcore from 1 to Rcore do
4: ObtainOðnÞrcore

by Equ. (7);

5: ObtainWðnÞ
rcore
 H

ðnÞ
C
ðnÞ
V

;:
OðnÞrcore

;

6: end for
7: for rcore from 1 to Rcore do

8: bxðnÞ
C
ðnÞ
V

 x
ðnÞ
C
ðnÞ
V

;

9: for r from 1 to Rcore (r 6¼ rcore) do
10: bxðnÞ

C
ðnÞ
V

 bxðnÞ
C
ðnÞ
V

�WðnÞ
r bðnÞ:;r ;

11: end for
12: Crcore  WðnÞT

rcore
WðnÞ

rcore
;

13: VðnÞrcore
 �WðnÞT

rcore
bxðnÞ
C
ðnÞ
V

þCrcore b
ðnÞ
:;rcore

;

14: bðnÞ:;rcore
 SGDðM;�B; gB; b

ðnÞ
:;rcore

;VðnÞrcore
Þ;

15: end for
16: end for
17: Obtain bGG by Equ. (4);
18: for n from 1 toN do
19: for in from 1 to In do
20: Obtain S

ðnÞ
ðCðnÞ

M
Þin ;:
ðcacheSÞ;

21: E
ðnÞ
:;ðCðnÞ

M
Þin
 bGðnÞSðnÞT

ðCðnÞ
M
Þin ;:
ðcacheEÞ;

22: CðnÞ  E
ðnÞ
:;ðCðnÞ

M
Þin
E
ðnÞT
:;ðCðnÞ

M
Þin
;

23: FðnÞ  �XðnÞ
in;ðCðnÞM

Þin
E
ðnÞT
:;ðCðnÞ

M
Þin|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cacheFact1

þ a
ðnÞ
in;:

CðnÞ|fflfflfflffl{zfflfflfflffl}
cacheFact2

zfflfflfflfflffl}|fflfflfflfflffl{cacheFactp;cacheFactvec

;

24: a
ðnÞ
in;:
 SGDðjðCðnÞM Þin j; �A; gA; a

ðnÞ
in;:

;FðnÞÞ.
25: end for
26: end for
27: Return:BðnÞ, n 2 fNg, bG,AðnÞ, n 2 fNg.
Theorem 3. From the function forms of (9) and (12), the optimi-

zation objectives for the core tensor and factor matrics are both
u-convex and L-smooth functions. The stochastic update rules
of (15) and (18) can ensure the convergency of alternative opti-
mization objectives (9) and (12), respectively.

Proof. The two function forms of (9) and (12) can be con-
clude as fðxÞ ¼ 1

n

Pn
i¼1 fiðxÞ, where fðxÞ is a strongly-

convex with constant m, and each fiðxÞ is smooth and Lip-
schitz-continuous with constant L. At tth iteration, for
chosen fit randomly, and a learning rate sequence gt >
0, the expectation E½rfiðxtÞjxt� ofrfitðxtÞ is equivalent to
rfðxtÞ [49], [53], [54], [55]. tu

4.4 Parallel and Distributed Strategy

We first explain the naive parallel strategy (Section 4.4.1),
which relies on the coordinate continuity and the specific style
of matricization unfolding of the sparse tensor to keep the
entire continuous accessing in the process of updatingAðnÞ, n
2 fNg. Then, we present the improved parallel strategy
(Section 4.4.2), which can save theN compressive styles of the
sparse tensor X to just a compressive format. At last, the anal-
ysis of the communication cost is reported on Section 4.4.3.

4.4.1 Naive Parallel Strategy

To cater to the need of processing bigdata, the algorithmdesign
shall leverage the increasing number of coreswhileminimizing
the communication overehead among parallel threads. If there
are L threads, the randomly selected set C is divided into L
subsets



C1; . . . ;Cl; . . . ;CL

��l 2 fLg� and the parallel compu-
tation analysis follows each step inAlgorithm 1 as:

(i) Updating the core tensor:
Line 2: The computational tasks of theL Intermediatematri-

ces fHðnÞ
C
ðnÞ
lV ;:

2 R
jClj�

QN

n¼1 Jn jl 2 fLg; n 2 fNgg be allocated to L

threads;

Line 4: Intermediate matrix OðnÞr 2 R
QN

k¼1 Jk�Jn , r 2
fRcoreg, n 2 fNg; thus, the independent computational tasks
of the

QN
k¼1;k6¼n Jk diagonal sub-matrices can be allocated to

the L threads;

Line 5: The computational tasks of the L intermediate

matrices fHðnÞ
C
ðnÞ
lV ;:

OðnÞr 2 RjClj�Jn jl 2 fLg; n 2 fNgg can be

allocated to L threads;

Line 8: The L assignment tasks fbxðnÞ
C
ðnÞ
lV

jl 2 fLgg can be allo-
cated to the L threads;

Line 10: The computational tasks of the L intermediate
matrices fðWðnÞ

r ÞCðnÞ
lV ;:

bðnÞ:;r 2 RjCljjr 2 fRcoreg; n 2 fNgg can be

allocated to L threads;

Line 12: The computational tasks of the L intermediate
matrices fCl

rcore
¼ ðWðnÞ

r ÞTCðnÞ
lV ;:

ðWðnÞ
r ÞCðnÞ

lV ;:

2 RJn�Jn jl 2 fLg; r 2
fRcoreg; n 2 fNgg can be allocated toL threads and the l thread

does the intra-thread summation Cl
rcore

¼ ðWðnÞ
r ÞTCðnÞ

lV ;:

ðWðnÞ
r ÞCðnÞ

lV ;:

. Then, themain thread sumsCrcore ¼
PL

l¼1 C
l
rcore

;

Line 13: The computational tasks of the L intermediate
matrices fðWðnÞ

r ÞTCðnÞ
lV ;:

bxðnÞ
C
ðnÞ
lV

2 RJn , Crb
ðnÞ
:;r 2 RJn jr 2 fRcoreg;

n 2 fNgg can be allocated toL threads.

Line 14: This step can be processed by the main thread.
(ii) Updating factor matrices: In loops including the Lines

20� 24, n 2 fNg are independent. Thus, the In, n 2 fNg
loops can be allocated to L threads.

Theparallel trainingprocess forBðnÞ, n2 fNgdoes not need
the load balance. The computational complexity ofS

ðnÞ
ðCðnÞ

M
Þin ;:

for
each thread is proportional to jðCðnÞM Þin j, and the In, n 2 fNg
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independent tasks are allocated to the L threads. Then, there is
load imbalance problem for updating the factor matricesAðnÞ,
n 2 fNg. Load balance can fix the problem of non-even distri-
bution for non-zero elements.

A toy example is shown in Fig. 3 which comprises of:

(i) Each thread l first selects the even number of non-zero
elements: The 3 threads f1; 2; 3g select 
f xxð1Þ1 ; xx

ð1Þ
6 g, f

xx
ð1Þ
13 ; xx

ð1Þ
16 g, f xx

ð1Þ
22 ; xx

ð1Þ
27 g

�
, respectively. Step 1: The 3

threads f1; 2; 3g construct 
HHð1Þ1;: , HH
ð1Þ
13;:, HH

ð1Þ
22;:

�
, respec-

tively. Then, the 3 threads f1; 2; 3g compute


W
ð1Þ
1 ¼

HH
ð1Þ
1;:O

ð1Þ, Wð1Þ
13 ¼ HH

ð1Þ
13;:O

ð1Þ, Wð1Þ
22 ¼ HH

ð1Þ
22;:O

ð1Þ�, respec-
tively. Step 2: The 3 threads f1; 2; 3g construct 
HHð1Þ6;: ,

HH
ð1Þ
16;:, HH

ð1Þ
27;:

�
, respectively. Then, the 3 threads f1; 2; 3g

compute


W
ð1Þ
6 ¼ HH

ð1Þ
6;:O

ð1Þ, Wð1Þ
16 ¼ HH

ð1Þ
16;:O

ð1Þ, Wð1Þ
27 ¼

HH
ð1Þ
27;: O

ð1Þ�, respectively. Each thread does the summa-
tion within the thread and the 3 threads do the entire
summation by the code # pragma omp parallel for
reduction ðþ : sumÞ for multi-thread summation. We

observe that the computational process of W
ð1ÞT
k

W
ð1Þ
k b
ð1Þ
1;: , k 2 f1; 6; 13; 16; 22; 27g is divided into the

vectors reduction operation p ¼W
ð1Þ
k b
ð1Þ
1;: and vec ¼

W
ð1ÞT
k p. Step 3: The b

ð1Þ
:;1 is updated. The process of

updating b
ð3Þ
:;1 is similar the process of updating b

ð1Þ
:;1 . The

description is omitted. We observe that each thread
selects 2 elements. Thus, the load for the 3 threads is
balanced.

(ii) Each thread selects the independent rows andL threads
realize naive parallelization forAðnÞ, n2 fNg by thenth
matricization XðnÞ, n 2 fNg: As show in Fig. 3, the 3

threads f1; 2; 3g update fað1Þ1;: ; a
ð1Þ
2;: ; a

ð1Þ
3;: g explicitly. Thus,

the description is omitted. The 2 threads f1; 2g update
fað1Þ1;: ; fað1Þ2;: ; a

ð1Þ
3;: gg, respectively and independently by

fffXXð3Þ1;1, SS
ð3Þ
:;1 g, fXXð3Þ1;5, SS

ð3Þ
:;5 g, fXXð3Þ1;8, SS

ð3Þ
:;8 , fXXð3Þ1;9, SS

ð3Þ
:;9 g

�
,

ffXXð3Þ2;2, SS
ð3Þ
:;2 g, fXXð3Þ2;7, SS

ð3Þ
:;7 gg, ffXXð3Þ3;5, SS

ð3Þ
:;5 g gg, respec-

tively, with the shared matrix bGð3Þ. Thread 1 selects 4
elements for updating a

ð3Þ
1;: . Thread 2 selects 2 elements

and 1 element for updating a
ð3Þ
2;: and a

ð3Þ
3;: , respectively,

which can dynamically balance the load. In this condi-
tion, the load for the 3 threads is slightlymore balanced.

As shown in Fig. 3, the naive parallel strategy for fAð1Þ; . . . ;
AðNÞg relies on the matricization format fXXð1Þ; . . . ; XXðNÞg of a
sparse tensor X , respectively, which is used to avoid the read-
after-write and write-after-read conflicts. Meanwhile, the
transformation process for the compressive format to another
one is time consuming. Thus, the space and computational
overheads are not scalable.

4.4.2 Improved Parallel Strategy

The improved parallel strategy is developed to use only one
compressive format for the entire updating process and hence
save the memory requirements. At the same time, it can avoid
the read-after-write or write-after-read conflicts. In Fig. 4, a toy
example of improved parallel strategy is illustrated. As show
in Fig. 4, the 3 threads f1; 2; 3g select 6 non-zeros elements and
the Coordinate Format (COO) is ff (1,1,1,2.0), (3,2,1,1.0) g,
f (1,2,2,2.0), (1,3,2,4.0) g, f (1,2,3,5.0), (3,3,3,2.0) gg, respectively.
By the structure of COO, the training process of Bð1Þ and Bð3Þ

does not need a specific shuffling order of a sparse tensor.

Thus, the description of updating b
ð1Þ
:;1 and b

ð3Þ
:;1 is omitted.

As forXXð3Þ to updateAð3Þ, we neglect this condition because
the selected elements of 3 threads lie in independent rows and
it is trivial to parallelize. In the style of XXð1Þ for updating Að1Þ,
updating a

ð1Þ
1;: relies on fð1; 1; 1; 2:0Þ;Sð1Þ:;1 g (selected by thread

1), ffð1; 2; 2; 2:0Þ;Sð1Þ:;5 g; fð1; 3; 2; 4:0Þ;Sð1Þ:;6 gg (selected by thread

2), and

ð1; 2; 3; 5:0Þ;Sð1Þ:;8

�
(selected by thread 3) with the

sharedmatrix bGð1Þ. It has following three steps.

(i) (Lines 20-21 in Algorithm 1) The 3 threads f1; 2; 3g com-

pute fEð1Þ:;1 ¼ bGð1ÞSð1ÞT:;1 ,


E
ð1Þ
:;5 ¼ bGð1ÞSð1ÞT:;5 ;E

ð1Þ
:;6 ¼ bGð1ÞSð1ÞT:;6 g,

E
ð1Þ
:;8 ¼ bGð1ÞSð1ÞT:;8 g independently, by the private cache matrix
fcacheS; cacheEg of each thread;

(ii) (Lines 22-23 in Algorithm 1) The computational process

of a
ðnÞ
in;:

E
ð1Þ
:;kE

ð1ÞT
:;k , k 2 f1; 5; 6; 8g is divided into the vectors

reduction operation cacheFactp ¼ a
ðnÞ
in;:

E
ð1Þ
:;k and cacheFactvec ¼

cacheFactpE
ð1ÞT
:;k . The 3 threads f1; 2; 3g compute faðnÞin;:

E
ð1Þ
:;1 E

ð1ÞT
:;1 ,

faðnÞin;:
E
ð1Þ
:;5 E

ð1ÞT
:;5 ; a

ðnÞ
in;:

E
ð1Þ
:;6 E

ð1ÞT
:;6 g, aðnÞin;:

E
ð1Þ
:;8 E

ð1ÞT
:;8 g, respectively and

independently, by the private cache cacheFactp and cacheFactvec
of each thread. Then, the 3 threads f1; 2; 3g can use the syn-
chronization mechanisms, i.e., atomic, cirtical or mutex, of

OpenMP to accomplish
Q

k¼1;5;6;8 a
ðnÞ
in;:

E
ð1Þ
:;kE

ð1ÞT
:;k . Then, the

results are returned to global shared cache cacheFact2;

Fig. 3. Naive parallel strategy for SGD Tucker.

Fig. 4. Improved parallel strategy for SGD Tucker.
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(iii) (Line 23 in Algorithm 1). The 3 threads f1; 2; 3g com-
pute fx1;1;1Eð1Þ:;1 , fx1;2;2E

ð1Þ
:;5 ; x1;3;2E

ð1Þ
:;6 g, x1;2;3E

ð1Þ
:;8 g, respectively

and independently. Then, the 3 threads f1; 2; 3g can use the
synchronizationmechanisms, i.e., atomic, cirtical ormutex, to
accomplish F

ð1Þ
1 . Then, the results are returned to the global

shared cache cacheFact1. Eventually, the I1 tasks SGDð6; �A; gA;
a
ð1Þ
1;: ;F

ð1Þ
1 Þ be allocated to the the 3 threads f1; 2; 3g in a parallel

and load balance way. Due to the same condition of updating
a
ð1Þ
3;: and limited space, the description of updating a

ð1Þ
3;: is

omitted.
By the global shared caches and private caches, SGD_Tucker

can handle the parallelization on OpenMP by just a compres-
sive format and the space overhead ismuch less than the com-
pressive data structure of a sparse tensor X ; meanwhile, this
strategy does not increase extra computational overhead.

4.4.3 Communication in Distributed Platform

In distributed platform, the communication overhead for a
core tensor is OðQN

n¼1 JnÞ, which is non-scalable in
HOHDST scenarios. SGD Tucker can prune the number of
the parameters for constructing an updated core tensor
from OðQN

n¼1 JnÞ to OðPN
n¼1 JnRcoreÞ where Rcore 
 Jn; n 2

fNgwhile maintaining the same overall accuracy and lower
computational complexity. Hence, nodes only need to com-
municate the Kruckal product matrices fBðnÞr 2 RJn�Rcore jr 2
fRcoreg; n 2 fNgg rather than the entire core tensor G 2
R

J1�J2�����JNþ . Hence, SGD Tucker features that 1) a stochas-
tic optimization strategy is adopted to core tensor and factor
matrices which can keep the low computation overhead and
storage space while not compromising the accuracy; 2) each
minor node can select sub-samples from allocated sub-
tensor and then compute the partial gradient and the major
node gathers the partial gradient from all minor nodes and
then obtains and returns the full gradient; 3) the communi-
cation overhead for information exchange of the core tensor
GG is OðPN

n¼1 JnRcoreÞ.

4.5 Complexity Analysis

The space and complexity analyses follow the steps which
are presented in Algorithm 1 as

Theorem 4. The space overhead for updating BðnÞ, n 2 fNg is
Oð�MN þRcoreNJn


QN
k¼1 Jk þRcoreMJn þMN þ JnÞ.

Theorem 5. The computational complexity for updating BðnÞ,
n 2 fNg is OððMN þRcoreNJnÞ

QN
k¼1 Jk þRcoreMJn þ

RcoreðRcore� 1ÞMNþ RcoreNJnÞ.
Proof. In the process updating BðnÞ, n 2 fNg, the space

overhead and computational complexity of intermediate

matrices fHðnÞ
C
ðnÞ
V

;:
;OðnÞrcore

;WðnÞ
rcore

; bxðnÞ
C
ðnÞ
V

;VðnÞrcore
jn 2 fNg; rcore 2

fRcoregg are fMQN
k¼1 Jk; Jn

QN
k¼1 Jk;MJn;M;Jnjn 2 fNg;

rcore 2 fRcoregg and fMQN
k¼1 Jk;

QN
k¼1 Jk;MJn

QN
k¼1 Jk,

ðRcore � 1ÞMJn;MJn þ MJ2
njn 2 fNg; rcore 2 fRcoregg,

respectively. tu
Theorem 6. The space overhead for updating AðnÞ, n 2 fNg is

OððmaxðjðCðnÞM Þin jÞ þ 1ÞQN
k¼1 Jk þmaxðjðCðnÞM Þin jÞJnþ JnÞ.

Theorem 7. The computational complexity for updating AðnÞ, n
2 fNg is OððN þMN þMÞQN

n¼1 Jn þ
PN

n¼1 InJnÞ.

Proof. In the process updatingAðnÞ, n 2 fNg, the space over-
head and computational complexity of intermediate matri-

ces f bGðnÞ;SðnÞ
ðCðnÞ

M
Þin ;:

;E
ðnÞ
:;ðCðnÞ

M
Þin
;FðnÞjin 2 fIng; n 2 fNgg are

fQN
k¼1 Jk;maxðjðCðnÞM Þin jÞ

QN
k¼1 Jk;maxðjðCðnÞM Þin jÞJn; Jnjin

2 fIng; n 2 fNgg and f
QN

k¼1 Jk; jðCðnÞM Þin j
QN

k¼1 Jk; jðCðnÞM Þin j
Jn, Jnjin 2 fIng; n 2 fNgg, respectively. tu

5 EVALUATION

The performance demonstration of SGD Tucker comprises of
two parts: 1) SGD can split the high-dimension intermediate
variables into small batches of intermediate matrices and the
scalability and accuracy are presented; 2) SGD Tucker can be
parallelized in a straightfoward manner and the speedup
results are illustrated. The experimental settings are presented
in Section 5.1. Sections 5.2 and 5.3 show the scalability and the
influence of parameters, respectively. At last, Section 5.4
presents the speedup performance of SGD Tucker and com-
parison with the state of the art algorithms for STD, i.e.,
P�Tucker [46], CD [47], and HOOI [41]. Due to the limited
space, the full experimental details forHOOI and 2 small data-
sets, i.e., Movielen-100K and Movielen-1M, are presented in
the supplementarymaterial, available online.

5.1 Experimental Settings

TheCPU server is equippedwith 8 Intel(R) Xeon(R) E5-2620 v4
CPUs and each core has 2 hyperthreads, running on 2.10 GHz,
for the state of the art algorithms for STD, e.g., P�Tucker [46],
CD [47] and HOOI [41]. The experiments are conducted 3
public datasets : Netflix,1 Movielens,2 and Yahoo-music.3

The datasets which be used in our experiments can be down-
loaded in this link. https://drive.google.com/drive/folders/
1tcnAsUSC9jFty7AfWetb5R7nevN2WUxH?usp=sharing

For Movielens, data cleaning is conducted and 0 values
are changed from zero to 0.5 and we make compression for
Yahoo-music dataset in which the maximum value 100 be
compressed to 5.0. The specific situation of datasets is
shown in Table 3. In this way, the ratings of the two data
sets are in the same interval, which facilitates the selection
of parameters. Gaussian distribution Nð0:5; 0:12Þ is adopted
for initialization; meanwhile, the regularization parameters
f�A; �Bg are set as 0.01 and the learning rate fgA; gBg are
set as f0:002; 0:001g, respectively. For simplification, we set
M ¼ 1. The accuracy is measured by RMSE andMAE as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� X
ði1;...;iN Þ2G

ðxi1;...;iN � bxi1;...;iN Þ2
��
jGj

vuut ;

MAE ¼
� X
ði1;...;iN Þ2G

����xi1;...;iN � bxi1;...;iN

����
��
jGj;

(19)

respectively, where G denotes the test sets. All the experi-
ments are conducted on double-precision float numeric.

1. https://www.netflixprize.com/
2. https://grouplens.org/datasets/movielens/
3. https://webscope.sandbox.yahoo.com/catalog.php?datatype

1836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore.  Restrictions apply. 

https://drive.google.com/drive/folders/1tcnAsUSC9jFty7AfWetb5R7nevN2WUxH?usp=sharing 
https://drive.google.com/drive/folders/1tcnAsUSC9jFty7AfWetb5R7nevN2WUxH?usp=sharing 
https://www.netflixprize.com/
https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/catalog.php?datatype


5.2 Scalability of the Approach

When ML algorithms process large-scale data, two factors to
influence the computational overhead are: 1) time spent for
data access onmemory, i.e., reading and writing data; 2) time
spent on the computational components for executing theML
algorithms. Fig. 5 presents the computational overhead per
training epoch. The codes of P�Tucker andCDhave fixed set-
tings for the rank value, i.e., J1 ¼ � � � ¼ Jn ¼ � � � ¼ JN . The
rank value is set as an increasing order, f3; 5; 7; 9; 11g. As
shown in Fig. 5, SGD Tucker has the lowest computational
time overhead. HOOI needs to construct the intermediate

matrices YðnÞ 2 R
In�

QN

k6¼n Jk , n 2 fNg and SVD for YðnÞ (In
supplementary material), available online. P�Tucker should
construct Hessian matrix and the computational complexity

of eachHessianmatrix inversion isOðJ3
nÞ, n2 fNg. P�Tucker

saves thememory overhead a lot at the expense of adding the
memory accessing overhead. Eventually, the accessing and
computational overheads for inverse operations of Hessian
matrices make the overall computational time of P�Tucker
surpass SGD Tucker. The computational structure of CD has
linear scalability. However, the CDmakes the update process

of each feature element in a feature vector be discrete. Thus,
the addressing process is time-consuming. Meanwhile, as
Fig. 5 shows, the computational overhead satisfies the con-
straints of the time complexity analyses, i.e., P�Tucker,
HOOI, CD (Supplementary material, available online) and
SGD Tucker (Section 4.5).

The main space overheads for STD comes from the storage
need of the intermediate matrices. The SVD operation for the

intermediate matrices YðnÞ 2 R
In�

QN

k6¼n Jk , n 2 fNg makes the
HOOI scale exponentially. P�Tucker constructs the eventual
Hessian matrices directly which can avoid the huge construc-
tion of intermediate matrices. However, the overhead for
addressing is huge and the long time-consuming for CD lies in
the same situation. CD is a linear approach from the update
equation (Supplementarymaterial, available online). However,
in reality, the linearity comes from the approximation of the sec-
ond-order Hessian matrices and, thus, the accessing overhead
of discrete elements of CD overwhelms the accessing overhead
of continuous ones (P�Tucker and SGD Tucker). As shown in
Fig. 6, SGD Tucker has linear scalability for space overhead
and HOOI is exponentially scalable. P�Tucker and CD have

Fig. 6. Rank scalability for memory overhead on a thread running. (In this
work, GB refers to GigaBytes and MB refers to Megabytes). The space
scalability for P�Tucker, CD, HOOI, and SGD Tucker on the 4 datasets
with successively increased total elements, i.e., Movielen-10M, Movie-
len-20M, Netflix-100M, and Yahoo-250M.

TABLE 3
Datasets

Fig. 5. Rank scalability for time overhead on full threads. The computa-
tional scalability for P�Tucker, HOOI, CD, and SGD Tucker on the 4
datasets with successively increased number of total elements, i.e.,Mov-
ielen-10M, Movielen-20M, Netflix-100M, and Yahoo-250M.
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the near-linear space overhead. However, as Fig. 5 shows, the
computational overheads of P�Tucker and CD is significantly
higher than SGD Tucker.Meanwhile, as Fig. 6 shows, the space
overhead satisfies the constraints of the space complexity analy-
ses, i.e., HOOI, P�Tucker, and CD (Supplementary material,
available online) and SGD Tucker (Section 4.5).

5.3 The Influence of Parameters

In this section, the influence of the rank on the behavior of the
algorithm is presented. We summarize the influence on the
computational time and the RMSE are presented in Fig. 7. The
Netflix-100M dataset has only 3-order. Owing to the limited
space, the performances onNetflix-100Mdataset are combined
with other 5 datasets (Netflix-100M dataset has only 3-order
and the performances on the 4th order of Netflix-100M dataset
should be negligible). The update for the Kruskal matrices
BðnÞ, n 2 N on the steps of beginning and last epochs can also
obtain a comparable results. Thus, the presentation for the
Kruskal matrices BðnÞ, n 2 N is omitted. The influence for
computational time is divided into 5 sets, i.e.,



J1 2 f5; 10;

15; 20; 25g; Jk ¼ 5; k 6¼ 1;RCore ¼ 5
�
,


J2 2 f5; 10; 15; 20; 25g;

Jk ¼ 5; k 6¼ 2;RCore ¼ 5
�
,


J3 2 f5; 10; 15; 20; 25g; Jk ¼ 5; k 6¼

3;RCore ¼ 5
�
,



J4 2 f5; 10; 15; 20; 25g; Jk ¼ 5; k 6¼ 4;RCore ¼

5
�
,


Jn ¼ 5; n 2 fNg;RCore 2 f10; 15; 20; 25g

�
. As the Fig. 7a

shows, the computation time increases with Jn, n 2 fNg
increasing linearly and the RCore only has slight influence for
computational time.

The codes of P�Tucker and CD have fixed settings for the
rank value (J1 ¼ � � � ¼ Jn ¼ � � � ¼ JN ). For a fair comparison,
the rank values thatwe select should have slight changeswith
the RMSE performances of other rank values. The computa-
tional overhead of P�Tucker and CD is sensitive to the rank
value and RMSE is comparable non-sensitive. Hence, we
choose a slightly small value Jn ¼ 5jn 2 fNg. As Fig. 7b
shows, when rank is set as Jn ¼ 5; n 2 fNg, the RMSE is
equivalent to other situations on average.

5.4 Speedup and Comparisons

We test the RMSE performances on the 6 datasets and the
RMSE is used to estimate the missing entries. The speedup
is evaluated as Time1=TimeT where TimeT is the running
time with T threads. When T ¼ f1; . . . ; 8g, as the Fig. 10
shows, the speedup performance of SGD Tucker has a
near-linear speedup. The speedup performance is pre-
sented in Fig. 10 which shows the whole speedup perfor-
mance of the SGD Tucker. The speedup performance is a
bit more slower when the number of threads is larger than
8. The reason is that the thread scheduling and synchroni-
zation occupies a large part of time. When we use 16
threads, there is still a 11X speedup and the efficiency is
11=16 ¼ 68%.

The rank value for 3-order tensor is set to [5,5,5] and the
rank value for 4-order tensor is set to [5,5,5,5]. To demon-
strate the convergence of SGD Tucker, the convergence per-
formances of SGD Tucker for the Movielen and Netflix are
presented in Fig. 8. As shown in Fig. 8, SGD Tucker can get
more stable RMSE and MAE metrices which mean that
SGD Tucker has more robustness in large-scale datasets
than in small datasets. As Fig. 9 shows, SGD Tucker can not
only run faster than the state of the art approaches, i.e.,
P�Tucker and CD, but also can obtain higher RMSE value.
SGE Tucker runs 2X and 20X faster than P�Tucker and
CD, respectively, to obtain the optimal RMSE value.

Fig. 8. RMSE and MAE versus time for SGD Tucker on training set V
and testing set G.

Fig. 7. Computational overhead, RMSE, and MAE VS. various rank val-
ues for SGD Tucker on 8 Cores. Due to limited space, each dataset is
presented in 4-order. As Netflix-100M data set only has 3-order, its 4th
index shall be neglected.
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6 CONCLUSION AND FUTURE WORKS

STD is widely used in low-rank representation learning for
sparse big data analysis. Due to the entanglement problem
of core tensor and factor matrices, the computational pro-
cess for STD has the intermediate variables explosion prob-
lem due to following all elements in HOHDST. To solve this
problem, we first derive novel optimization objection func-
tion for STD and then propose SGD Tucker to solve it by
dividing the high-dimension intermediate variables into
small batches of intermediate matrices. Meanwhile, the low
data-dependence of SGD Tucker makes it amenable to fine-
grained parallelization. The experimental results show that
SGD Tucker has linear computational time and space over-
heads and SGD Tucker runs at least 2X faster than the state
of the art STD solutions. In the future works, we plan to
explore how to accelerate the SGD Tucker by the state of
the art stochastic models, e.g., variance SGD [32], Stochastic
Recursive Gradient [34], or momentum SGD [35].

SGD Tucker is a linearly scalable method for STD on
big-data platforms. For the future work, we will embed

SGD Tucker into popular distributed data processing plat-
forms such as Hadoop, Spark, or Flink. We will also aim to
extend SGD Tucker to GPU platforms, i.e., OpenCL and
CUDA.
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