1828

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

SGD_Tucker: A Novel Stochastic Optimization
Strategy for Parallel Sparse
Tucker Decomposition

Hao Li

, Student Member, IEEE, Zixuan Li, Kenli Li
Jan S. Rellermeyer™, Member, IEEE, Lydia Chen, Senior Member, IEEE, and Keqin Li

, Senior Member, IEEE,
, Fellow, IEEE

Abstract—Sparse Tucker Decomposition (STD) algorithms learn a core tensor and a group of factor matrices to obtain an optimal low-rank
representation feature for the High-Order, High-Dimension, and Sparse Tensor (HOHDST). However, existing STD algorithms face the
problem of intermediate variables explosion which results from the fact that the formation of those variables, i.e., matrices Khatri-Rao product,
Kronecker product, and matrix-matrix multiplication, follows the whole elements in sparse tensor. The above problems prevent deep fusion of
efficient computation and big data platforms. To overcome the bottleneck, a novel stochastic optimization strategy (SGD_Tucker) is proposed
for STD which can automatically divide the high-dimension intermediate variables into small batches of intermediate matrices. Specifically,
SGD_Tucker only follows the randomly selected small samples rather than the whole elements, while maintaining the overall accuracy and
convergence rate. In practice, SGD_Tucker features the two distinct advancements over the state of the art. First, SGD_Tucker can prune the
communication overhead for the core tensor in distributed settings. Second, the low data-dependence of SGD_Tucker enables fine-grained
parallelization, which makes SGD_Tucker obtaining lower computational overheads with the same accuracy. Experimental results show that

SGD_Tucker runs at least 2.X faster than the state of the art.

Index Terms—High-order, high-dimension and sparse tensor, low-rank representation learning, machine learning algorithm, sparse tucker

decomposition, stochastic optimization, parallel strategy

1 INTRODUCTION

TENSORS are a widely used data representation style for
interaction data in the Machine Learning (ML) applica-
tion community [1], e.g, in Recommendation Systems [2],
Quality of Service (QoS) [3], Network Flow [4], Cyber-Physi-
cal-Social (CPS) [5], or Social Networks [6]. In addition to
applications in which the data is naturally represented in
the form of tensors, another common used case is the fusion
in multi-view or multi-modality problems [7]. Here, during
the learning process, each modality corresponds to a feature
and the feature alignment involves fusion. Tensors are a
common form of feature fusion for multi-modal learning

e Hao Li is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha 410082, China, the National Supercom-
puting Center, Changsha, Hunan 410082, China, and also with the TU
Delft, 2628 CD Delft, Netherlands. E-mail: lihaol123@hnu.edu.cn.

o Zixuan Li and Kenli Li are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China, and
also with the National Supercomputing Center, Changsha, Hunan
410082, China. E-mail: {zixuanli, Ikl }@hnu.edu.cn.

o Jan S. Rellermeyer and Lydia Chen are with the TU Delft, 2628 CD Delft,
Netherlands. E-mail: {j.s.rellermeyer, Y.Chen-10j@tudelft.nl.

o Keqin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, the National Supercomputing
Center, Changsha, Hunan 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561
USA. E-mail: lik@newpaltz.edu.

Manuscript received 1 July 2020; revised 23 Oct. 2020; accepted 30 Nov. 2020.
Date of publication 25 Dec. 2020; date of current version 11 Feb. 2021.
(Corresponding author: Kenli Li.)

Recommended for acceptance by P. Balaji, |. Zhai, and M. Si.

Digital Object Identifier no. 10.1109/TPDS.2020.3047460

[7], [8], [9], [10]. Unfortunately, tensors can be difficult to
process in practice. For instance, an N-order tensor com-
prises of the interaction relationship between N kinds of
attributes and if each attribute has millions of items, this
results in a substantially large size of data [11]. As a remedy,
dimensionality reduction can be used to represent the original
state using much fewer parameters [12].

Specifically in the ML community, Tensor Factorization
(TF), as a classic dimensionality reduction technique, plays a
key role for low-rank representation. Xu et al., [13] proposed a
Spatio-temporal multi-task learning model via TF and in this
work, tensor data is of 5-order, i.e., weather, traffic volume,
crime rate, disease incidents, and time. Meanwhile, this model
made predictions through the time-order for the multi-task in
weather, traffic volume, crime rate, and disease incidents
orders and the relationship construction between those orders
is via TF. In the community of Natural Language Processing
(NLP), Liu et al., [14] organized a mass of texts into a tensor
and each slice is modeled as a sparse symmetric matrix. Fur-
thermore, the tensor representation is a widely-used form for
Convolutional Neural Networks (CNNs), e.g., in the popular
TensorFlow [15] framework, and Kossaifi et al., [16] took tenso-
rial parametrization of a CNNs and pruned the parametriza-
tion by Tensor Network Decomposition (TND). Meanwhile,
Ju, et al.,, [17] pruned and then accelerated the Restricted
Boltzmann Machine (RBM) coupling with TF. In the Computer
Vision (CV) community, Wang et al., [18] modeled various
factors, i.e., pose and illumination, as an unified tensor and
make disentangled representation by adversarial autoencoder
via TF. Zhang et al., [19] constructed multi subspaces of

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0003-3791-7114
https://orcid.org/0000-0003-3791-7114
https://orcid.org/0000-0003-3791-7114
https://orcid.org/0000-0003-3791-7114
https://orcid.org/0000-0003-3791-7114
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:lihao123@hnu.edu.cn
mailto:zixuanli@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:j.s.rellermeyer@tudelft.nl
mailto:Y.Chen-10@tudelft.nl
mailto:lik@newpaltz.edu

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

multi-view data and then abstract factor matrices via TF for the
unified latent of each view.

High-Order, High-Dimension, and Sparse Tensor
(HOHDST) is a common situation in the big-data processing
and ML application community [20], [21]. Dimensionality
reduction can also be used to find the low-rank space of
HOHDST in ML applications [22], which can help to make
prediction from existing data. Therefore, it is non-trivial to
learn the pattern from the existed information in a HOHDST
and then make the corresponding prediction. Sparse Tucker
Decomposition (STD) is one of the most popular TF models for
HOHDST, which can find the N-coordinate systems and those
systems are tangled by a core tensor between each other [23].
Liuet al., [24] proposed to accomplish the visual tensor comple-
tion via STD. The decomposition process of STD involves the
entanglement of N-factor matrices and core tensor and the
algorithms follow one of the following two directions: 1) search
for optimal orthogonal coordinate system of factor matrices,
e.g., High-order Orthogonal Iteration (HOOI) [25]; 2) designing
optimization solving algorithms [26]. HOOI is a common solu-
tion for STD [27] and able to find the N orthogonal coordinate
systems which are similar to Singular Value Decomposition
(SVD), but requires frequent intermediate variables of Khatri-
Rao and Kronecker products [28].

An interesting topic is that stochastic optimization [29], e.g.,
Count Sketch and Singleshot [30], [31], etc. can alleviate this
bottleneck to a certain extent, depending on the size of dataset.
However, those methods depend on the count sketch matrix,
which cannot be easily implemented in a distributed environ-
ment and is notoriously difficult to parallelize. The Stochastic
Gradient Descent (SGD) method can approximate the gradient
from randomly selected subset and it forms the basis of the
state of art methods, e.g., variance SGD [32], average SGD [33],
Stochastic Recursive Gradient [34], and momentum SGD [35].
SGD is adopted to approximate the eventual optimal solver
with lower space and computational complexities; meanwhile,
the low data-dependence makes the SGD method amenable to
parallelization [36]. The idea of construction for the computa-
tional graph of the mainstream platforms, e.g., Tensorflow [15]
and Pytorch [37], is based on the SGD [38] and practitioners
have already demonstrated its powerful capability on large-
scale optimization problems. The computational process of
SGD only needs a batch of training samples rather than the full
set which gives the ML algorithm the low-dependence between
each data block and low communication overhead [39].

There are three challenges to process HOHDST in a fast
and accurate way: 1) how to define a suitable optimization
function to find the optimal factor matrices and core tensor? 2)
how to find an appropriate optimization strategy in a low-
overhead way and then reduce the entanglement of the factor
matrices with core tensor which may produce massive inter-
mediate matrices? 3) how to parallelize STD algorithms and
make distributed computation with low communication cost?
In order to solve these problems, we present the main contri-
butions of this work which are listed as follows:

1) A novel optimization objective for STD is presented.
This proposed objective function not only has a low
number of parameters via coupling the Kruskal
product (Section 4.1) but also is approximated as a
convex function;

1829

2) A novel stochastic optimization strategy is proposed
for STD, SGD_Tucker, which can automatically divide
the high-dimension intermediate variables into small
batches of intermediate matrices that only follows the
index of the randomly selected small samples; mean-
while, the overall accuracy and convergence are kept
(Section 4.3);

3) The low data-dependence of SGD_Tucker creates
opportunities for fine-grained parallelization, which
makes SGD_Tucker obtaining lower computational
overhead with the same accuracy. Meanwhile,
SGD_Tucker does not rely on the specific compres-
sive structure of a sparse tensor (Section 4.4).

To our best knowledge, SGD_Tucker is the first work that
can divide the high-dimension intermediate matrices of
STD into small batches of intermediate variables, a critical
step for fine-grained parallelization with low communica-
tion overhead. In this work, the related work is presented in
Section 2. The notations and preliminaries are introduced in
Section 3. The SGD_Tucker model as well as parallel and
communication overhead on distributed environment for
STD are showed in Section 4. Experimental results are illus-
trated in Section 5.

2 RELATED STUDIES

For HOHDST, there are many studies to accelerate STD on the
state of the art parallel and distributed platforms, ie.,
OpenMP, MPI, CUDA, Hadoop, Spark, and OpenCL. Ge et al.,
[40] proposed distributed CANDECOMP /PARAFAC Decom-
position (CPD) which is a special STD for HOHDST. Shaden
et al., [41] used a Compressed Sparse Tensors (CSF) structure
which can optimize the access efficiency for HOHDST. Ten-
sor-Time-Matrix-chain (TTMc) [42] is a key part for Tucker
Decomposition (TD) and TTMc is a data intensive task. Ma
et al., [42] optimized the TTMc operation on GPU which can
take advantage of intensive and partitioned computational
resource of GPU, i.e., a warp threads (32) are automatically
synchronized and this mechanism is apt to matrices block-
block multiplication. Non-negative Tucker Decomposition
(NTD) can extract the non-negative latent factor of a HOHDST,
which is widely used in ML community. However, NTD need
to construct the numerator and denominator and both of them
involve TTMc. Chakaravarthy ef al., [43] designed a mecha-
nism which can divide the TTMc into multiple independent
blocks and then those tasks are allocated to distributed nodes.

HOOQOI is a common used TF algorithm which comprises
of a series of TTMc matrices and SVD for the TTMc. [44]
focused on dividing the computational task of TTMc into a
list of independent parts and a distributed HOOI for
HOHDST is presented in [45]. However, the intermediate
cache memory for TTMc of HOOI increased explosively.
Shaden et al., [41] presented a parallel HOOI algorithm and
this work used a Compressed Sparse Tensors structure
which can improve the access efficiency and save the mem-
ory for HOHDST. Oh and Park [46], [47] presented a paral-
lelization strategy of ALS and CD for STD on OpenMP. A
heterogeneous OpenCL parallel version of ALS for STD is
proposed on [48]. However, the above works are still
focused on the naive algorithm parallelization which can-
not solve the problem of fine-grained parallelization.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

1830
TABLE 1

Table of Symbols
Symbol Definition
I, The size of row in the nth factor matrix;
Jn The size of column in the nth factor matrix;
X Input N order tensor € Ry,
Ty iy 1,19, ...,1,th element of tensor X;

Core N order tensorl IS R”lx"’-’x"'x”N;
X Input matrix € R} “%;

X () nth unfolding matrlx for tensor X;

Vec, (X) nth vectorization of a tensor X;

Q Index (i1,...,4n,...,iy) of a tensor X;
Q(\n) Index (i, j) of nth unfolding matrix x (™,
@y Column index set in ith row of Q\;

(QX})) Row index set in jth column of Qg(}) ;

Qg}l) Index i of nth unfolding vector Vec, (X);
{N% The ordered set {1,2,...,N —1,N};

A nth feature matrix € R»*/n;

a(.y""): i,th row vector € REn of A™;

a,tz) jth column vector € R¥" of A™ ;

‘11(',, ?kyb k,th element of feature vector a,i:i ;
/(=) Element-wise multiplication/ division;

o Outer production of vectors;

® Khatri-Rao (columnwise Kronecker) product;
X Matrix product;

X (n) n-Mode Tensor-Matrix product;

® Kronecker product.

3 NOTATION AND PRELIMINARIES

The main notations include the tensors, matrices and vectors,
along with their basic elements and operations (in Table 1).
Fig. 1 illustrates the details of TD including the tanglement of
the core tensor G with the N factor matrices A", n € {N}.
The data styles for TF include sparse and dense tensors and
STD is devoted to HOHDST. Here, basic definitions for STD
and models are rendered in Section 3.1. Finally, the STD pro-
cess for the HOHDST is illustrated in Section 3.2.

3.1 Basic Definitions

Definition 1 (Tensor Unfolding (Matricization)). nth ten-
sor unfolding (Matricization) refers to that a low order matrix
XM e RIfvr-Invtnir=IN stores all information of a tensor
X € RIvbx-lnxIN gud the matrix element :z(:), of X at
the position j =1+ S 1 Lol (B — 1) | motn Im] contains
the tensor element x; ;, i, of a tensor X.

Jin

Definition 2 (Vectorization of a tensor X). nth tensor vec—
torization refers to that a vector ™ (Vec, (X) and Vec(X(™))
stores all elements in the nth matricization X™ of a tensor X
and x;) — X" where k = (j — 1)1, +i.

1,] 7

Definition 3 (Tensor Approximation). A N-order tensor X
€ RN can be approximated by X € RIIN | as well as
a N-order residual or noisy tensor £ € RI>>In The low-rank
approximation problem is defined as X = X + £, where X is
denoted by a low-rank tensor.

Definition 4 (n-Mode Tensor-Matrix product). n-Mode
Tensor-Matrix product is an operation which can reflect coordi-
nate projection of a tensor X € RIV*IN with projection matrix
U € R into a tensor (X x(,) U) € RIC*u-1xfwx-ly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Fig. 1. lllustration of TD.

where (X X, U)
XANUjy, i

n*

Definition 5 (R Kruskal Product). For an N-order tensor X
€ RIIN the R Kruskal Product of X is gwen by R Kruskal
product as: X- S al -oaly),

= S0 e
] X Xy X Jp Xl 1 X XA N =1 711 XXy X

oao.

Definition 6 (Sparse Tucker Decomposition). For a
N-order sparse tensor X € RN, the STD of the optlmal
approximated X s gzven by X = g X(1 @ X(2) " X(n)
A X(ng1) = X() AW where G is the core tensor and A™
n € {N}are the low-rank factor matrices. The rank of TF for a ten-
soris [J,...,Jy, ..., Jn|. The determination process for the core
tensor G and factor matrices A", n e {N} follows the sparsity
model of the sparse tensor X.

In the convex optimization community, the literature [49]
gives the definition of Lipschitz-continuity with constant L
and strong convexity with constant .

Definition 7 (L-Lipschitz continuity). A continuously dif-
ferentiable function f(x) is called L-smooth on R" if the gradient
Vf(x)is L- Lipschitz continuous for any x, y € R”, that is ||
VIx) = VIy) Iy < LIl x — y | where || o |1, is Ly-norm

Ix]l, = (Ekzlxk)l/z for a vector x.

Definition 8 (1-Convex). A continuously differentiable func-
tion f(x) is called strongly-convex on R" if there exists a con-
stant > 0 for any x,y € R”, that is f(x) > f(y) + V f(y)
(x=)" +gulx -yl
Due to limited spaces, we provide the description of basic

optimization as the supplementary material, which can be

found on the Computer Society Digital Library at http:/ /doi.
ieeecomputersociety.org/10.1109/TPDS.2020.3047460.

3.2 Problems for Large-Scale Optimization
Problems

Many ML tasks are transformed into the solvent of optimi-

zation problem [32], [33], [34], [35] and the basis optimiza-

tion problem is organized as

argmin f(w) = L<w

weRF

———

Regularization Item
Loss Function (1)

N
i=1

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3047460
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3047460

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

1) Original Process for
Core Tensor

15tVectorization for M’EEE P
the Optimization hav o/

Process of

| 1
| |
| b = = Vectorization 97 | NS h ; -
[= g ‘QA(Z)“z — ~ h;ﬂEﬂE = |
Sparse Tensor % O g |
1
Decomposition | A X1 |
| 2) Approximation
| Process for the Core Tensor I
- Core Tensor | & l
: % . RKruskal 1"Vec(onzat|un » |
g | ¥ Approxation For the E '
% | 9; ?”’I . Opllmll:tlor;” E M v]
. 3 Process of 5,17 [3] I
Z MY N y
A e T |
: I 2 i A HO
| AM |
e e ———————————————— |
l 3) Optimization for
Factor Matrices.

15 Matricization

A For the
~F R o
Ja‘\, a2

3 process of AV

Fig. 2. lllustration of Optimization Process for SGD_Tucker: 1) Original
problem for core tensor. 2) Kruskal product for approximating core ten-
sor. 3) Optimization process for factor matrices.

where y; € R!, z; € R®, i € {N}, w € R¥ and the original
optimization model needs gradient which should select all
the samples {z;| € {N}} from the dataset () and the GD is
presented as

W — W — y—afgi)w)
L B(Li(w) F AR (w)) 2)
YTV N ow '

i=1

The second-order solution, i.e., ALS and CD, etc, are
deduced from the construction of GD from the whole data-
set. In large-scale optimization scenarios, SGD is a common
strategy [32], [33], [34], [35] and promises to obtain the opti-
mal accuracy via a certain number of training epoches [32],
[33], [34], [35]. An M entries set ¥ is randomly selected
from the set (), and the SGD is presented as

B(Li(w) AR (w)) (3)
oyt
~w-rgY - |

Equ. (3) is an average SGD [33], and the averaged SG can be
applied to build the basic tool of the modern stochastic optimi-
zation strategies, e.g., Stochastic Recursive Gradient [34], vari-
ance SGD [32], or momentum SGD [35], which can retain
robustness and fast convergence. The optimization function
can be packaged in the form of SGD(M, A, y, w, af\l’(l”)).

4 SGD_TucCKER

Overview. In this section, SGD_Tucker is proposed to decom-
pose the optimization objectives which involves frequent
operations of intermediate matrices into a problem which
only needs the manipulations of small batches of intermediate

1831
TABLE 2
Table of Intermediate Varibles for SGD_Tucker
Symbol Description Emerging
Equations
Ge]Ril X2 Reore Kruskal Equ. (4);
product for G
B ¢ R/n*Reore nth Kruskal matrix Equ. (4);
for G ;
N
~(n) I Jn . .
g\") € Rn=1 nth vectorization Equ. (5);
of tensor G
ﬁ I, x F[J
H™ ¢ Rn=1 Coefficient for §(™) Equ. (5);
N
(n) l:[In : .
" € Rr=1 nth vectorization of Equ. (5);
Tensor X
ﬁ JrXReore
Q(”) € Rr=tr#n Coefficient of B(™ Equ. (6);
for constructing g
U™ e RJ"XJ" Unity matrix Equ. (7);
H Jex T N
O(”) € Rr=) Coefficient of b;(,r> Equ. (8);
for constructing g™
N
(n) I - -
Ty, € Rr=1 Intermediate vector Equ. (9);
of x(™ ;
LoxJy,
Hﬁf‘zw Rnﬂl) Coefficient of b(?) Equ. (9);
for constructing §(™)
F[Jn X ﬁ Iy (n)
JIn 3 ~(n
S(") g Rr=tik#n k=tizn Coefficient of A G~ Equ. (10);
for constructing X (n)
JIp X ﬁ Iy
EW e R k=ihzn Coefficient of A(™ Equ. (11);
for constructing X (n)
(YL(),,) € R‘\P(n” Partial vector (") Equ. (14);
from set ¥ ;
w1 1T I
Hf;()n) eR n=1 Partial matrix of H™ Equ. (14);
v o
X_<7(Ll)1/(n)) € RI¥I()in | Partial matrix of X) Equ. (17);
b M Jin
E~(7(131f<")) € R ¥I(¥i)inl Partial matrix of E™ Equ. (17).
] M Jin

matrices. Fig. 2 illustrates the framework for our work. As
Fig. 2 shows, SGD_Tucker comprises of an approximation
process of the core tensor and an optimization for factor matri-
ces. Table 2 records the intermediate variables which follow
the problem deduction process. Section 4.1 presents the
deduction process for the core tensor (Lines 1-16, Algorithm
1), and Section 4.2 presents the proceeding process for the fac-
tor matrices of SGD_Tucker (Lines 17-26, Algorithm 1).
Section 4.3 shows the stochastic optimization process for
the proposed novel optimization objectives, which illustrates
the details of the process that how can the SGD_ Tucker
divide the high-dimension intermediate matrices {H

s g |n € {N}} into a small batches of 1ntermed1ate
matrlces Section 4.4 shows the parallel and distributed
strategies for SGD_Tucker. Finally, Section 4.5 illustrates the
analysis of space and time complexities. Because the optimi-
zation process for approximating the core tensor and factor

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

1832

matrices are non-convex. We fix the core tensor and opti-
mize a factor matrix and fix factor matrices to optimize
Kruskal product for core tensor. This alternative minimiza-
tion strategy is a convex solution [46], [47], [48], [50].

4.1 Optimization Process for the Core Tensor

Due to the non-trivial coupling of the core tensor G, the effi-
cient and effective way to infer it is through an approxima-
tion. A tensor G can be approximated by R(W < Jn,m € {N}
Kruskal product of low-rank matrices {B™" € R/»*feore|p, €
{N}} to form G

Reore

a = Z b:(,lT)corc o

Teore=1

ob™ ...

STcore

o b (4)

STcore

As the direct approximation for the core tensor G may
result in instability, we propose to apply the coupling pro-
cess to approximate STD and tensor approximation. Specifi-
cally, we use Kruskal product of low-rank matrices

{B™ ¢ RI*Beore |y € {N}} as follows:
arg min f(ﬁ“’) x(”), {A(”’)}>
4
2 2 (5)
_ ‘,E(n) _ H(n)/g\(n) +)\;(n) /g(n)
2
where g Vec(Q™ T) and Q" =BM o...0 B o
B" Y @...©BW. The tanglement problem resulted from
Reore Kruskal product of low-rank matrices {B ")

R/ feore|p € {N'}} leads to a non-convex optimization prob—
lem for the optimization objective (5). The alternative optimi-
zation strategy [50] is adopted to update the parameters
{B™ ¢ R/*Beoe|p € {N}} and then the non-convex optimi-
zation objective (5) is turned into the objective as

argmin f <B<")
B ne{N}

™, {A("’)}, {B("’>}>
(6)

2 2
— || — H<")Vec(B(">Q(”)l)
2

where Vec(BWQ"") = Vee(Sleq bngn)’").

The optimization objective (6) is not explicit for the variable
B™, n 6 {N} and it is hard to find the gradient of the varia-
bles B™ 1 € {N} under the current formulation. Thus, we
borrow the intermediate variables with a unity matrix as O

€ RHk 17 1 € { Rygre } and the unity matrlx U e Rx ’"
n € {N} wh1ch can present the Varlables B " ne{N}ina
gradient-explicit formation. The matrix O!" is defmed as

+)\B B

)

2

O£Tl) = |:q1t,rU<n)a .. 7Q'm,,rU(n)a ceey

, (7)

U<">] :
qu\-]:Lk'%n T

The key transformatlon of the gradient-explicit formation
for the variables B™ n e {N} is as Vec(3 o b g T) =
Zf;‘f’" Oi"”b:(f;;). Then the optimization objective (6) is refor—
mulated into:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

arg min f (B (n)

B ne{N}

n), {A(”)}, {B(“')}>
®)

2

Reore

—H® Z O(rn) b(?;)
r=1

2
+ Ag||B
2

2

The cyclic block optimization strategy [51] is adopted to
update the variables {b") |r.,. € {R.}} within a low-
rank matrix B n € {N} and eventually the optimization
objective is reformulated into

sTcore

arg mln f< STeore (n)7 {A(n)}7 {B(”)}>
(n) 7
0. e e{N}) (9)
- xf"?o)re B H£;L(7)7(’ b:(f;lorc +)\B b 7007“6 ’
where z{") = 2" — H™ Zi‘”{ T reore 0"y and Hﬁ’:gre =
H(n)o(n c]RHn L In ><JT,

Tcore

Theorem 1. From the function form of (9), the optimization
objective for b") " is a u-convex and L-smooth function.

Proof. The proof is divided into the following two parts: 1)
The non-convex optimization problem is transformed
into fixing factor matrices A™ n € {N} and updating
core tensor part, and this transformation can keep prom-
ise that convex optimization for each part and appropri-
ate accuracy [46], [47], [48], [50]. 2) The distance function
[0 —H b |” is an euclidean distance with Lo
norm regularization Ag|[b®) |2 [52]. Thus, the optimiza-
tion objective (9) is a u-convex and L-smooth function
obviously [49], [50], [53]. The proof details are omitted
which can be found on [32], [54]. O

4.2 Optimization Process for Factor Matrices

After the optimization step is conducted for {B™ ¢

RJn*Feore|py € {N}}, the Kruskal product for approximated

core tensor ¢ is constructed by Equ. (4). Thus, we should

c0n51der the optimization problem for factor matrices
A" {n|n € {N}} as

arg min f (A(”)

A ne{N}

X (A0}, @(m)
(10)

2 2
+Aal|A®

2

I

_ H X _ R
2

where X = AWG®MSM" and M = AW ... A
A D g .o AW,

The optlmlzatlon process for the whole factor matrix set
{AW .., AM} is non-convex. The alternative optimization
strategy [50] is adopted to transform the non-convex optimi-
zation problem into N convex optimization problems under

a fine-tuned initialization as

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

2 2
argmin , (1) f(A(l)) — ’Xu) —AOEO| 4 Aa AWM
2 2
:) ,
arg min , () f(A(")) = ‘X(") —AWE® 4 Aa A
2 2
. : 2 12
arg min , (v f(A(M) = ’)((N) —AWMEM 4 Aa AN 7
2 2
(11)

where E™ = GMS™’ ¢ RJ"XH’» Lzt The optimization
objectives of the nth variables are presented as an indepen-
dent form as

2 2
argmin () f(agi’)) = Xg?) — aY;)Em) + Aa a(ﬁ) ;
1 2 2
T2 2
axgmin g al?) = [- w04 2o
Vi 2 2
T2 2
argmin () f(af) = || X}, = af E®|| +Aallaf)
In ' 2 '

(12)

Theorem 2. From the function form of (12), the optimization
objective for A" is a u-convex and L-smooth function.

Proof. By adopting the alternatlve strategy [46], [47], [48],
[50], we fix G and AWk +# n k € {N}. Then, we update
A" The distance function HXf:) <") 'E"

ean distance with L, norm regularlzatlon AA ||a,L-:.>: ||2, in € 1,
[52]. Thus, the optimization objective (9) is a u-convex and
L-smooth function obviously [49], [50], [53]. Due to the lim-
ited space, the proof details are omitted which can be found
on [32], [54]. O

J|I5 is an euclid-

4.3 Stochastic Optimization

The previous Sections 4.1 and 4.2 presented the transforma-
tion of the optimization problem. In this section, the solvent
is introduced. The average SGD method is a basic part of
state of the art stochastic optimization models. Thus, in this
section, we present the average SGD for our optimization
objectives. The optimization objectives for the core tensor
are presented in Equs. (8) and (9). The optimization objec-
tives for the factor matrix are presented in Equ. (12) which
are in the form of a basic optimization model. In the indus-
trial and big-data communities, the HOHDST is very
common. Thus, SGD is proposed to replace the original
optimization strategy.

The solution for bff}:}me is presented as

wonin £(0 o a0,)

bf,??(,we{N}
2
=) L (bfﬁlw >> +am|b) s
el

1833

If a set ¥ including M randomly entries is selected, the
approximated SGD solution for b") s presented as

arg min f (b.@ :v("()n),{A(")}7 {BW})
(/”/) ‘/ sl core '\I,V
b. e s ne{N}
2
=3 Li(b?’” 2" >) + B ‘b< ")
ie\l/(v",")
Reore 2 2
B ‘ gEE;gn) - H$L<)n>‘ OBl +Am|biy),,
Vv " or=1 2
2 2
H 5":‘70)7'8) <n()n OS‘ZIG)TP b(!’I:‘iOTP Jr AB b:(;”’];()’DTP
i
(14)
The SGD for the approximated function f (Tmenf;()n)?
{AM} {B™}) is deduced as v
oy (42, | LA, (B)
Vv
3™
1 . , (15)
= M < - O7CM€H l :(T:‘lgr()\llin)
T n n
+ 07(071 W(‘)ZL)JHEI,SZU? 07"(0>1L b(T’l’(um) +)\Bb sTeore”

The solution for factor matrices aEZL?:, in € {In},n € {N}is
presented as

argmln f(i ln , {A ")} G ”)>

a,i:; ne{N}

= > L (afn)
o

Jje(@

9 (16)

X))

2
M in

If a set ¥ including A randomly chosen entries is selected,
the SGD solution for aEZi can be expressed as

argmln fyn (afz) X@ » 7{A(”)}7(/§(n))
a;‘, 716{N} A ol
2

::Z%WM@HM” an

jeel,

(n) g(n) ’
x" —a"E" + A
H in(n>) e :’(\I’Exr;)hu 2 * Ln

The stochastlc gradlent for the approximated function

Lo e (|X) {A 11,G™) is deduced as
n) | y(n) n
a n) X (n A G
fq,((in (W))M { }) (18)
a0
1 (n) (n)T
-~ (-x
M ((), P,
+at")E(n) " + Aa al"
L,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

1834

The computational details are presented in Algorithm 1,
which shows that SGD_Tucker is able to divide the high-
dimension intermediate matrices {H (m)) |

o @),
in € {L,},n € {N}} 1nto small batches of intermediate matri-
ces {H(") S(")m) ,E" i, € {I,},n € {N}}. We sum-

(‘P)’in ” : (\I’A[)L,,

V’ M

marized all steps of SGD_Tucker in Algorithm 1.

Algorithm 1. Stochastic Optimization Strategies on a Train-
ing Epoch for SGD_Tucker
Input: Sparse tensor &, randomly selected set ¥ with M entries,
Learning step y 5, learning step yg;
Inltlahzmg B, n € {N}, core tensor G, A", n e {N}, H") ¢
N Wg:’x:
]\IxH":I o e {Rcorc}/ n e {N}, Or" c RH}«:I J};XJn’ r e

{Rcore}, ne {N} %\(71) c R]\[,
l

Output: B™, n e {N},G, A®™,n e {N}.
1: forn from1to N do
2: Obtain H()
3: for e from 1to Reore do
4: Obtain Or:fm by Equ. (7);
5. Obtain W[—H! O ;
6: end for v
7. forr... from1to R, do
~(n) () .
8 z«y%{” — :rly(;),
9: for r from 1 to Repre (1 # T'core) dO
0. 7"~z W,
Wg,l) W(‘?) T or
11: end for
B CL S WwW
13: Vg:lgrt . W7:Iz?rt \IJ n) + C“‘U”' 7‘(or(
14: bf(;’{()’ou (_SGD(A[AB’ VB> b(T()’rnr V’E”:lzlﬁ);
15: end for
16: end for _
17: Obtain G by Equ. (4);
18: forn from1to N do
19: for«, from1to I, do
20: Obtain S(n) (caches) ;
\1 177 T
21: E™ — Gmg™ cacheg);
¥, i, Locher)
22: C(n) — E(”) () E(nﬂ; L
o M Vi :‘(\PM)i" cache pactp cache pactvec
——
23: FWe—-x" - E" 4 GJWem
in (V) (V)
; cachepyero
cac lCFudl

240 o, —SGD(|(V)
25: end for

26: end for

27: Return: B”, n e {N},G, A", ne {N}.

)L,,|)‘A7 VA Q En) s F(n>)

Theorem 3. From the function forms of (9) and (12), the optimi-
zation objectives for the core tensor and factor matrics are both
u-convex and L-smooth functions. The stochastic update rules
of (15) and (18) can ensure the convergency of alternative opti-
mization objectives (9) and (12), respectively.

Proof. The two function forms of (9) and (12) can be con-
clude as f(z) =1>"", fi(x), where f(x) is a strongly-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

convex with constant p, and each f;(x) is smooth and Lip-
schitz-continuous with constant L. At tth iteration, for
chosen f;, randomly, and a learning rate sequence y, >
0, the expectation E[V fi(x:)|x:] of V f;, (x;) is equivalent to
V f(x;) [49], [53], [54], [55]. O

4.4 Parallel and Distributed Strategy

We first explain the naive parallel strategy (Section 4.4.1),
which relies on the coordinate continuity and the specific style
of matricization unfolding of the sparse tensor to keep the
entire continuous accessing in the process of updating A", n
€ {N}. Then, we present the improved parallel strategy
(Section 4.4.2), which can save the N compressive styles of the
sparse tensor X to just a compressive format. At last, the anal-
ysis of the communication cost is reported on Section 4.4.3.

4.4.1 Naive Parallel Strategy
To cater to the need of processing big data, the algorithm design
shall leverage the increasing number of cores while minimizing
the communication overehead among parallel threads. If there
are L threads, the randomly selected set W is divided into L
subsets {‘I’l, IR ,\I’L‘l IS {L}} and the parallel compu-
tation analysis follows each step in Algorithm 1 as:

(i) Updating the core tensor:

Line 2 The Computatlonal tasks of the L Intermediate matri-

ces {H € RW”XHH 1"l e {L},n € {N}} be allocated to L

threads,

Line 4: Intermediate matrix O &]RHk VI e
{Reore }, n € {N}; thus, the mdependent computat10nal tasks
of the []p, Jkzn Ji diagonal sub-matrices can be allocated to
the L threads;

Line 5: The Computational tasks of the L intermediate

matrices {H 0" e RMIXnjie {L},ne{N}} can be

allocated to L threads,

Line 8: The L assignment tasks {A(") g |l € {L}} can be allo-
cated to the L threads;

Line 10: The computational tasks of the L intermediate
matrices {(W ")y m b € RMilr € {Repe},n € {N}} can be

allocated to L threads
Line 12: The computatlonal tasks of the L intermediate
matrices {C] = (W ”>) n) (W,<.”))w(n e Rn|l e {L},r €

{Reore}sn € {N}} canbe allocated to L threads and the [thread

— W(”’) .
W

(W(”)) () - Then, the main thread sums C,,, = >}, ,m

i,

does the intra-thread summation Cln e

Line 13: The computatlonal tasks of the L intermediate

matrices {(W"));1;(”) A<”) , ERM, Cb™ € R7|r € {Reore},
by z

n € {N}}canbe allocated to L threads.

Line 14: This step can be processed by the main thread.

(ii) Updating factor matrices: I,, loops including the Lines
20 — 24, n € {N} are independent. Thus, the I,, n € {N}
loops can be allocated to L threads.

The parallel training process for B™), n € { N} does not need
the load balance. The Computatlonal Complex1ty of S for
each thread is proportional to \() |, and the L ﬂf é {N}

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

1835

|Q:16;
" = [W[:M=6; |~
Naive Parallelization L:3 I
for Core Tensor . !
D Thread 1 ‘
D Thread 2\
D Thread 3L ***************
|Q|:1 6 |
Sparse Tensor i
e
Decomposition DThread 1 i

|:|Thread 2‘

Naive and Load Balance
Parallelization for Factor
Matrices

Fig. 3. Naive parallel strategy for SGD_Tucker.

independent tasks are allocated to the L threads. Then, there is
load imbalance problem for updating the factor matrices A",
n € {N}. Load balance can fix the problem of non-even distri-
bution for non-zero elements.

A toy example is shown in Fig. 3 which comprises of:

(i) Each thread [first selects the even number of non—zero

elements The 3 threads {1,2,3} select {{ 931 ,Z } {
), 2y, {2, 2l 1), respectlvely Step 1: The 3

threads {1,2,3} construct {H\", H{} 15 H % }, respec-
t1vely Then, the 3 threads {1,2,3} compute {W(l
720", W) = H{) oW W<1) Hy) 0V}, respec-
tively. Step 2: The 3 threads {1,2,3} construct {H 607
H 110>/ Hy,. } respectlvely Then, the 3 threads {1,2,3}
compute (w = B0, W) = B} o vv<1>
H, 1> .o I respectlvely Each thread does the summa-
tron ‘within the thread and the 3 threads do the entire
summation by the code # pragma omp parallel for
reduction (+ : sum) for multi-thread summation. We
observe that the computational process of W()
W<1)b W ke {1,6,13,16,22,27} is d1V1ded into the
vectors reduct10n operatron p= W< b(and vec =
W, ay . Step 3: The b’ .1 is updated. The process of
updating b .1 1s similar the process of updating b . The
descr1pt10n is omitted. We observe that each thread
selects 2 elements. Thus, the load for the 3 threads is
balanced.

(ii) Each thread selects the independent rows and L threads
realize naive parallelization for A", n € { N'} by the nth
matricization X™, n € {N}: As show in Fig. 3, the 3
threads {1, 2, 3} update {a(f:), a(;:), aél)} explicitly. Thus,
the description is omitted. The 2 threads {1,2} update
{a] ,~{or21>,or3 >}} respectively and 1ndependently by
{{{Xl L sy, {Xﬁ?’s, S<3 bAXE ST AXT ST,
i, By (xS, {{Xd b 813} 1 respec:
tively, with the shared matrlx G®), Thread 1 selects 4
elements for updating al Thread 2 selects 2 elements

and 1 element for updating aé) and ag), respectively,

which can dynamically balance the load. In this condi-
tion, the load for the 3 threads is slightly more balanced.

Sparse Tensor

Decomposition
Improved
Parallelization for

|Q|:1 6; Core Tensor
|W|:M=6;
L:3. K S ——— o
D Thread 1 : rocess of A"ll : ,,,,,, : Pl %v
Lo XM | !
DThread 2 b
S— Improved Parallelization
[_I Thread 3 for Factor Matrices

Fig. 4. Improved parallel strategy for SGD_Tucker.

As shown in Fig. 3, the naive parallel strategy for {A"), ...,
A} relies on the matricization format { X, ..., XM} of a
sparse tensor X, respectively, which is used to avoid the read-
after-write and write-after-read conflicts. Meanwhile, the
transformation process for the compressive format to another
one is time consuming. Thus, the space and computational
overheads are not scalable.

4.4.2 Improved Parallel Strategy

The improved parallel strategy is developed to use only one
compressive format for the entire updating process and hence
save the memory requirements. At the same time, it can avoid
the read-after-write or write-after-read conflicts. In Fig. 4, a toy
example of improved parallel strategy is illustrated. As show
in Fig. 4, the 3 threads {1, 2, 3} select 6 non-zeros elements and
the Coordinate Format (COO) is {{ (1,1,1,2.0), (32,1,1.0) },
{(1,2220),(1,324.0) },{ (1,23,5.0), (3,3,3,2.0) } }, respectively.
By the structure of COO, the training process of B(") and B®)
does not need a specific shufﬂing order of a sparse tensor.
Thus, the descrlptlon of updatmg b and bf:‘? is omitted.

As for X toupdate A®), we neglect this condition because
the selected elements of 3 threads lie in independent rows and
it is trivial to parallellze In the style of X for updating A,
updating a1 / relies on {(1,1,1,2.0), S } (selected by thread

1,{{(1,2,2,2.0), :})},{(1,3,2,4.0), :16}}(selectedbythread
2), and {(1,2,3,5.0),852} (selected by thread 3) with the
shared matrix G'). It has following three steps.

(i) (Lines 20-21 in Algorithm 1) The 3 threads {1,2,3} com-
pute {EY = GUsY, (BY = GOsY Bl = GWsl)y,
E(l) (A}(I)S_(?T} 1ndependently, by the private cache matrix
{ cacheg, cacheg} of each thread;

(ii) (Lines 22-23 in Algorithm 1) The computational process
of a(:E< >E(1) k € {1,5,6,8} is divided into the vectors
reductron operatlon cachepuy = a; ">
cachefadp . The 3 threads {1, 2 3} compute {a("> E<1
{a : :4 UT (") E(l)E(" 1 a (") E(l)E()’ 1, respectrvely and
1ndependently, by the prwate cache cache Factp and. cache puetvec

of each thread. Then, the 3 threads {1, 2,3} can use the syn-

chronization mechanisms, i.e., atomic, cirtical or mutex, of
T
OpenMP to accomplish [[,_; 545 7() 1>E . Then, the

results are returned to global shared cache cache Fuct2;

1)
E< byt and cacheFa(m(=

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

1836

(iii) (Line 23 in Algorrthm 1. The 3 threads {1,2,3} com-
pute {z11, lE(l), {z12 2E(5),11 3, 2E b } T2, 3E s } respectively
and independently. Then, the 3 threads {1,2,3} can use the
synchroruzatlon mechanisms, i.e., atomic, cirtical or mutez, to
accomplish F(). Then, the results are returned to the global
shared cache cache Fuct1- Eventually, the I tasks SGD(6, Aa, ¥,
a<1>) be allocated to the the 3 threads {1, 2, 3} in a parallel
and load balance way. Due to the same condition of updating
a((;:) and limited space, the description of updating ag: is
omitted. '

By the global shared caches and private caches, SGD_Tucker
can handle the parallelization on OpenMP by just a compres-
sive format and the space overhead is much less than the com-
pressive data structure of a sparse tensor A; meanwhile, this
strategy does not increase extra computational overhead.

4.4.3 Communication in Distributed Platform

In distributed platform the communication overhead for a
core tensor is O(]]\,J,), which is non-scalable in
HOHDST scenarios. SGD_Tucker can prune the number of
the parameters for constructmg an updated core tensor
from O(Hn 1 Jn) to O(Zn 1 JnReore) Where Repe < Jp,m €
{N} while maintaining the same overall accuracy and lower
computational complexity. Hence, nodes only need to com-
municate the Kruckal product matrices {B(") € R”»*feore | €
{Recore},n € {N}} rather than the entire core tensor G €
RN ‘Hence, SGD_Tucker features that 1) a stochas-
tic optimization strategy is adopted to core tensor and factor
matrices which can keep the low computation overhead and
storage space while not compromising the accuracy; 2) each
minor node can select sub-samples from allocated sub-
tensor and then compute the partial gradient and the major
node gathers the partial gradient from all minor nodes and
then obtains and returns the full gradient; 3) the communi-
cation overhead for information exchange of the core tensor
g 15 O(Z Jan're)

4.5 Complexity Analysis
The space and complexity analyses follow the steps which
are presented in Algorithm 1 as

Theorem 4. The space overhead for updating B™, n € {N} is
O((A[N + Rwr(NJIL) Hk 1 Jk + R(OILMJIL + MN + JIL)

Theorem 5. The computational complexzt% for updating B™,
n € {N} is O((MN + ReoreNJ) [11y Jie + Reore M, +

Rcore(Rmre* 1)MN+ RCOT@NJ?I')'

Proof. In the process updating B, n € {N}, the space
overhead and computational complexity of intermediate

matrices {H ‘ Og’f(ﬁre,nge Ti;()”)) In € {N}, Teppe €

{Reore}} are {MHk /S Hk 1JA,MJ,,,]U J,,|ne {N},
Teore € {wa}} and {]UHk:l Jk‘?Hk:l Jk,MJnHk:l Jk,
(Reore — V)MJ,, MJ, + MJ*n € {N},7ere € {Reore}},
respectively.

T(ore

Theorem 6. The space overhead for updating A™, n € {N} is
O((max(|(¥§7),, 1) + D TIL, Ji + maa(|(¥5, >)L,J)J +)

Theorem 7. The computational complexzty for updating A™, n
€ {N}is O((N + MN + M) [ToL; Ju + 3000 Ludu)-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Proof. In the process updating A", n € { N}, the space over-
head and computational complexity of intermediate matri-
ces {GM. 8 B FOi, € {I,},nc{N}} are

i),

{IT2) T maz(|(P5)),)Ty Tk maz(|(4)

€ {I},n € {N}}and {TT, Ji, [(W5)), [TT0 T [(F5)), |
Ty Jnlin € {I,},n € {N}}, respectively. O

)in |)Jm Jn|in

5 [EVALUATION

The performance demonstration of SGD_Tucker comprises of
two parts: 1) SGD can split the high-dimension intermediate
variables into small batches of intermediate matrices and the
scalability and accuracy are presented; 2) SGD_Tucker can be
parallelized in a straightfoward manner and the speedup
results are illustrated. The experimental settings are presented
in Section 5.1. Sections 5.2 and 5.3 show the scalability and the
influence of parameters, respectively. At last, Section 5.4
presents the speedup performance of SGD_Tucker and com-
parison with the state of the art algorithms for STD, ie.,
P—Tucker [46], CD [47], and HOQI [41]. Due to the limited
space, the full experimental details for HOOI and 2 small data-
sets, i.e., Movielen-100K and Movielen-1M, are presented in
the supplementary material, available online.

5.1 Experimental Settings
The CPU server is equipped with 8 Intel(R) Xeon(R) E5-2620 v4
CPUs and each core has 2 hyperthreads, running on 2.10 GHz,
for the state of the art algorithms for STD, e.g., P—Tucker [46],
CD [47] and HOOQI [41]. The experiments are conducted 3
public datasets : Netflix,! Movielens,?> and Yahoo-music.®
The datasets which be used in our experiments can be down-
loaded in this link. https://drive.google.com/drive/folders/
1tenAsUSCYjFty7 AfWetb5R7nevIN2W UxH?usp=sharing

For Movielens, data cleaning is conducted and 0 values
are changed from zero to 0.5 and we make compression for
Yahoo-music dataset in which the maximum value 100 be
compressed to 5.0. The specific situation of datasets is
shown in Table 3. In this way, the ratings of the two data
sets are in the same interval, which facilitates the selection
of parameters. Gaussian distribution N(0.5,0.1?) is adopted
for initialization; meanwhile, the regularization parameters
{A\a,AB} are set as 0.01 and the learning rate {y,,yp} are
set as {0.002,0.001}, respectively. For simplification, we set
M = 1. The accuracy is measured by RMSE and MAE as

respectively, where I' denotes the test sets. All the experi-
ments are conducted on double-precision float numeric.

1. https:/ /www.netflixprize.com/
2. https:/ /grouplens.org/datasets /movielens/
3. https:/ /webscope.sandbox.yahoo.com/ catalog.php?datatype

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

https://drive.google.com/drive/folders/1tcnAsUSC9jFty7AfWetb5R7nevN2WUxH?usp=sharing
https://drive.google.com/drive/folders/1tcnAsUSC9jFty7AfWetb5R7nevN2WUxH?usp=sharing
https://www.netflixprize.com/
https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/catalog.php?datatype

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION 1837
TABLE 3
Datasets
Datasets
Parametors Movielens-100K Movielens-1IM Movielens-10M Movielens-20M Netflix-100M Yahoo-250M
Ny 943 6, 040 71,567 138, 493 480, 189 1, 000, 990
Ny 1, 682 3,706 10, 677 26, 744 17,770 624, 961
N3 2 4 15 21 2,182 133
Ny 24 24 24 24 - 24
| 90, 000 990, 252 9, 900, 655 19, 799, 448 99, 072, 112 227,520, 273
[T 10, 000 9, 956 99, 398 200, 815 1, 408, 395 25, 280, 002
Order 4 4 4 4 3 4
Max Value 5.0 5.0 5.0 5.0 5.0 5.0
Min Value 0.5 0.5 0.5 0.5 1.0 1.0

5.2 Scalability of the Approach

When ML algorithms process large-scale data, two factors to
influence the computational overhead are: 1) time spent for
data access on memory, i.e., reading and writing data; 2) time
spent on the computational components for executing the ML
algorithms. Fig. 5 presents the computational overhead per
training epoch. The codes of P—Tucker and CD have fixed set-
tings for the rank value, ie., J; =---=J, =--- = Jy. The
rank value is set as an increasing order, {3,5,7,9,11}. As
shown in Fig. 5, SGD_Tucker has the lowest computational
time overhead. HOOI needs to construct the intermediate

N
matrices Y, €]RI"XH/#" J"', n € {N} and SVD for Y, (In
supplementary material), available online. P—Tucker should
construct Hessian matrix and the computational complexity
of each Hessian matrix inversionis O(J?), n € {N}. P—Tucker
saves the memory overhead a lot at the expense of adding the
memory accessing overhead. Eventually, the accessing and
computational overheads for inverse operations of Hessian
matrices make the overall computational time of P—Tucker
surpass SGD_Tucker. The computational structure of CD has
linear scalability. However, the CD makes the update process

MovieLens-10M MovieLens-20M

‘
—¥— P-Tucker] 10 (= P-Tucker v
Hool v HoO!
v oo v <o v
0 —5&—SGD_Tucker v —3é— SGD_Tucker
= .
g % £ 10° v
& A & -
g v _ & v -
[B
2 1 / Y /
H £
8 / 8 402
8 // 3 10
“ ot @ /
10" —
»/ —
Y /
wl o
EE I S N
> o A o7 S o & AV K5
& € Q N & & & Q @ o
N &

Rank Rank

(a) Movielen-10M (b) Movielen-20M

Netflix-100M 'Yahoo-250M

—3f— P-Tucker
HoO! | Hool

—— SGD_Tucker

<
5 S
§
g - 2 /‘
i 4 | 3
o 2 Y / _—
e o
8 102 / 2 / R
§ 8
8 g —
@ Y 102
% — i
10" / : : o' l\ > N S S
S kS) R
o> a o > N " ® A o o
& @ S N S @ N & N o

Rank Rank

(c) Netflix-100M (d) Yahoo-250M

Fig. 5. Rank scalability for time overhead on full threads. The computa-
tional scalability for P—Tucker, HOOI, CD, and SGD_Tucker on the 4
datasets with successively increased number of total elements, i.e.,Mov-
ielen-10M, Movielen-20M, Netflix-100M, and Yahoo-250M.

of each feature element in a feature vector be discrete. Thus,
the addressing process is time-consuming. Meanwhile, as
Fig. 5 shows, the computational overhead satisfies the con-
straints of the time complexity analyses, i.e.,, P—Tucker,
HOOI, CD (Supplementary material, available online) and
SGD_Tucker (Section 4.5).

The main space overheads for STD comes from the storage
need of the intermediate matrices. The SVD operation for the

N
intermediate matrices Y, € RI"’XH"#" T one {N} makes the
HOOQI scale exponentially. P—Tucker constructs the eventual
Hessian matrices directly which can avoid the huge construc-
tion of intermediate matrices. However, the overhead for
addressing is huge and the long time-consuming for CD lies in
the same situation. CD is a linear approach from the update
equation (Supplementary material, available online). However,
in reality, the linearity comes from the approximation of the sec-
ond-order Hessian matrices and, thus, the accessing overhead
of discrete elements of CD overwhelms the accessing overhead
of continuous ones (P—Tucker and SGD_Tucker). As shown in
Fig. 6, SGD_Tucker has linear scalability for space overhead
and HOQI is exponentially scalable. P—Tucker and CD have

MovieLens-10M
| =3 == P-Tucker

MovielLens-20M
== P-Tucker

)i
o| === HoolI === HOOI
= W co = 4% cp
Q | g| === sGD_Tucker O |=—te=— SGD_Tucker
g 235
o S 9
£16 £
2 2
1.4 ~ 8 -
= AR R R~ — |
1.2¢ * v L DL e c— ——
> N D R P TP S
% LIS > NN - D A NN
< @ Q AN @ € Q < N
\,\’\~ \'\
Rank Rank
(a) Movielen-10M (b) Movielen-20M
Netflix-100M 162 Yahoo-250M
P Tuder
P-Tucker " _'_ggo‘
76 =g Heo NEZ .
& |==—sGD_Tucker st
= © 174+
§ o / g 1721
5 / §
= 17 /
e Yy Y
| 16.6
—
S A SN e)
N o N =] AS > & S > &
<& € Q < N o o A 5 W
N < € & N 5
< &
Rank Rank

(c) Netflix-100M (d) Yahoo-250M

Fig. 6. Rank scalability for memory overhead on a thread running. (In this
work, GB refers to GigaBytes and MB refers to Megabytes). The space
scalability for P—Tucker, CD, HOOI, and SGD_Tucker on the 4 datasets
with successively increased total elements, i.e., Movielen-10M, Movie-
len-20M, Netflix-100M, and Yahoo-250M.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

1838

) 4
=y

— T
/ === == Movielen-100K
—{— Movielen-1M
50
¢ | —A— Movielen-10Mm
. " Movielen-20M
B40r X v —&— Netflix-100M
f=
Q). 4 . 4
o 9 4
S 30r // / 4 X
© 4 . 4
£
=

. 4
R L AV A v
20 v A AAY LAY A
v 4 o’ \ v \ AA vy
AT AT A~ o \

L |
Ve A-A-A-A

0 9:0:0:0-0-9-0-0:-0-9:0:0:0-9-0-0-0-9.0:0:0
PLOPPLLLPLPLLLPLPL L L PP b P
@ @ @ @ @@ @@L L OO LG @ @ -

(a) Computational Time
—3l— Movielen-100K
0.96 — 1| —@&— i -1M
=l Movielen-10M "
0.94 "= Movielen-20M
—é— Netflix-100M
0.92 - o.
y 5 v
0.9 /‘ \ @
w ®o-e /
2L 088 A \
x
0.86 - / \s viv e ‘
. AV W 4 A
v N X s
0.84 vrm e ~‘
/ v
0.82 -
A
0.8 F— L F—
PPPLPLPLPPPPLPL PP PP P o('D/,@/,\Q,/\‘Q//q,Q:f)
© o 0 @ @ o o0 oo o000 e e el l 2 07
R N P P
B % By B By By Bt BY BY.BY D% 5% B ONB Sy s i Sl
RS A AR A A AN A AN MM D AR
h@"g?’@‘f’”g‘?”@f"@‘@”q?”qf"@» OO S LSRRI IR
N N N N S A A S S TIPS
AT T I TSI SIS EEE & &
RPGE P B P o B P 0P TP o F o o F o o e PP

Fig. 7. Computational overhead, RMSE, and MAE VS. various rank val-
ues for SGD_Tucker on 8 Cores. Due to limited space, each dataset is
presented in 4-order. As Netflix-100M data set only has 3-order, its 4th
index shall be neglected.

the near-linear space overhead. However, as Fig. 5 shows, the
computational overheads of P—Tucker and CD is significantly
higher than SGD_Tucker. Meanwhile, as Fig. 6 shows, the space
overhead satisfies the constraints of the space complexity analy-
ses, i.e.,, HOOI, P—Tucker, and CD (Supplementary material,
available online) and SGD_Tucker (Section 4.5).

5.3 The Influence of Parameters

In this section, the influence of the rank on the behavior of the
algorithm is presented. We summarize the influence on the
computational time and the RMSE are presented in Fig. 7. The
Netflix-100M dataset has only 3-order. Owing to the limited
space, the performances on Netflix-100M dataset are combined
with other 5 datasets (Netflix-100M dataset has only 3-order
and the performances on the 4th order of Netflix-100M dataset
should be negligible). The update for the Kruskal matrices
B, n € N on the steps of beginning and last epochs can also
obtain a comparable results. Thus, the presentation for the
Kruskal matrices B™, n € N is omitted. The influence for
computational time is divided into 5 sets, ie., {J1 € {5, 10,
15,20,25}, J; = 5,k # 1, Reye = 5}, {2 € {5,10,15,20, 25},
Je =5,k #2,Reoe =5}, {J5 € {5,10,15,20,25}, J;, = 5,k #
3,Reore =5}, {Ji € {5,10,15,20,25}, J, = 5,k # 4, Reore =
5}, {Jn =5,n € {N}, Roure € {10,15,20,25}}. As the Fig. 7a
shows, the computation time increases with J,, n € {N}
increasing linearly and the R, only has slight influence for
computational time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

MovieLens-10M MovieLens-20M

= RISE on Tranng St

——

e
= MAE on Tesing St I

08
07

0 100 200 300 400 500 600 700 800
Time (Second)

(b) Movielen-20M

100 150 200 250 300 30 400

Time (Second)

(-]

(a) Movielen-10M

Netflix-100M Yahoo-250M

—— RMSE on Testng Set I
— ¥ MAE on Testing Set I

1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Second)

(d) Yahoo-250M

0 200 400 600 800
Time (Second)

(c) Netflix-100M

1000 1200 1400

Fig. 8. RMSE and MAE versus time for SGD_Tucker on training set Q
and testing set I'.

The codes of P—Tucker and CD have fixed settings for the
rank value (J; = --- = J,, = --- = Jy). For a fair comparison,
the rank values that we select should have slight changes with
the RMSE performances of other rank values. The computa-
tional overhead of P—Tucker and CD is sensitive to the rank
value and RMSE is comparable non-sensitive. Hence, we
choose a slightly small value J,, =5|n € {N}. As Fig. 7b
shows, when rank is set as J, =5,n € {N}, the RMSE is
equivalent to other situations on average.

5.4 Speedup and Comparisons

We test the RMSE performances on the 6 datasets and the
RMSE is used to estimate the missing entries. The speedup
is evaluated as Time; /Timer where Timer is the running
time with T threads. When T' = {1,...,8}, as the Fig. 10
shows, the speedup performance of SGD_Tucker has a
near-linear speedup. The speedup performance is pre-
sented in Fig. 10 which shows the whole speedup perfor-
mance of the SGD_Tucker. The speedup performance is a
bit more slower when the number of threads is larger than
8. The reason is that the thread scheduling and synchroni-
zation occupies a large part of time. When we use 16
threads, there is still a 11X speedup and the efficiency is
11/16 = 68%.

The rank value for 3-order tensor is set to [5,5,5] and the
rank value for 4-order tensor is set to [5,5,5,5]. To demon-
strate the convergence of SGD_Tucker, the convergence per-
formances of SGD_Tucker for the Movielen and Netflix are
presented in Fig. 8. As shown in Fig. 8, SGD_Tucker can get
more stable RMSE and MAE metrices which mean that
SGD_Tucker has more robustness in large-scale datasets
than in small datasets. As Fig. 9 shows, SGD_Tucker can not
only run faster than the state of the art approaches, i.e.,
P—Tucker and CD, but also can obtain higher RMSE value.
SGE_Tucker runs 2X and 20X faster than P—Tucker and
CD, respectively, to obtain the optimal RMSE value.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

MovieLens-10M MovieLens-20M
e
@

——SGD_Tucker

i A

08
0 500 1000 1500 2000 2500 3000 0
Time (Second)

(a) Movielen-10M

——P-Tucker
o

—— SGD_Tucker

1000 2000 3000 4000 5000 6000 7000

Time (Second)

(b) Movielen-20M

Netflix-100M Yahoo-250M

—h—P-Tucker

4
—¥%— SGD_Tucker,

14 1
14
1
135
09! 1
13
0

1000 2000 3000 4000 5000 6000 7000 0 5 10 15
Time (Second) “Time (Second) *10*

(c) Netflix-100M (d) Yahoo-250M

Fig. 9. RMSE comparison of SGD_Tucker, P—Tucker, and CD on the 4
datasets.

6 CONCLUSION AND FUTURE WORKS

STD is widely used in low-rank representation learning for
sparse big data analysis. Due to the entanglement problem
of core tensor and factor matrices, the computational pro-
cess for STD has the intermediate variables explosion prob-
lem due to following all elements in HOHDST. To solve this
problem, we first derive novel optimization objection func-
tion for STD and then propose SGD_Tucker to solve it by
dividing the high-dimension intermediate variables into
small batches of intermediate matrices. Meanwhile, the low
data-dependence of SGD_Tucker makes it amenable to fine-
grained parallelization. The experimental results show that
SGD_Tucker has linear computational time and space over-
heads and SGD_Tucker runs at least 2.X faster than the state
of the art STD solutions. In the future works, we plan to
explore how to accelerate the SGD_Tucker by the state of
the art stochastic models, e.g., variance SGD [32], Stochastic
Recursive Gradient [34], or momentum SGD [35].
SGD_Tucker is a linearly scalable method for STD on
big-data platforms. For the future work, we will embed

16 T T — T T
I *Linear Speedup 7z

=== Movielen-100K s
14T | —=@=— Movielen-1M , 7
13 [| === Movielen-10M 7’
12 L |="W Movielen-20M L
111 |V Netfix-100M ,
—&— Yahoo-250M = g
-

10

Speedup
©o

N WA O N ®
e e e e

| | I
5 6 7 8 9 10 11 12 13 14 15 16
The Number of Threads

Fig. 10. Speedup performance on the 6 datasets.

1839

SGD_Tucker into popular distributed data processing plat-
forms such as Hadoop, Spark, or Flink. We will also aim to
extend SGD_Tucker to GPU platforms, i.e., OpenCL and
CUDA.

ACKNOWLEDGMENTS

This work has been partly funded by the Swiss National Sci-
ence Foundation NRP75 project (Grant No. 407540_167266),
the China Scholarship Council (CSC) (Grant No. CSC20190
6130109). This work has also been partly funded by the Pro-
gram of National Natural Science Foundation of China (Grant
No. 61751204), the National Outstanding Youth Science Pro-
gram of National Natural Science Foundation of China (Grant
No. 61625202), and the International (Regional) Cooperation
and Exchange Program of National Natural Science Founda-
tion of China (Grant No. 61860206011). We would like to
express our gratitude to Smith, Shaden and De-nian Yang
who help us to finish the overall experiments.

REFERENCES

[11 A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. P. Mandic, “Tensor networks for dimensionality reduction
and large-scale optimization: Part 1 low-rank tensor decom-
positions,” Found. Trends® Mach. Learn., vol. 9, no. 4/5,
pp. 249-429, 2016.

[2] V.N.Ioannidis, A.S. Zamzam, G. B. Giannakis, and N. D. Sidiropou-
los, “Coupled graph and tensor factorization for recommender sys-
tems and community detection,” IEEE Trans. Knowl. Data Eng., to be
published, doi: 10.1109/TKDE.2019.2941716.

[3] X.Luo, H. Wu, H. Yuan, and M. Zhou, “Temporal pattern-aware
QoS prediction via biased non-negative latent factorization of
tensors,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1798-1809,
May 2020.

[4] K Xie, X.Li, X. Wang, G. Xie,]. Wen, and D. Zhang, “Active sparse
mobile crowd sensing based on matrix completion,” in Proc. Int.
Conf. Manage. Data, 2019, pp. 195-210.

[5] X.Wang, L. T. Yang, X. Xie, J. Jin, and M.]J. Deen, “A cloud-edge
computing framework for cyber-physical-social services,” IEEE
Commun. Mag., vol. 55, no. 11, pp. 80-85, Nov. 2017.

[6] P.Wang, L. T. Yang, G. Qian,]J. Li, and Z. Yan, “HO-OTSVD: A
novel tensor decomposition and its incremental decomposition
for cyber-physical-social networks (CPSN),” IEEE Trans. Netw.
Sci. Eng., vol. 7, no. 2, pp. 713-725, Second Quarter 2020.

[71 T. Wang, X. Xu, Y. Yang, A. Hanjalic, H. T. Shen, and]. Song,
“Matching images and text with multi-modal tensor fusion and re-
ranking,” in Proc. 27th ACM Int. Conf. Multimedia, 2019, pp. 12-20.

[8] M. Hou, J. Tang, J. Zhang, W. Kong, and Q. Zhao, “Deep multi-
modal multilinear fusion with high-order polynomial pooling,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2019, pp. 12 113-12 122.

[91 P.P.Liang, Z. Liu, Y.-H. H. Tsai, Q. Zhao, R. Salakhutdinov, and
L.-P. Morency, “Learning representations from imperfect time
series data via tensor rank regularization,” in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, 2019, pp. 1569-1576.

[10] Y. Liu, L. He, B. Cao, S. Y. Philip, A. B. Ragin, and A. D. Leow,
“Multi-view multi-graph embedding for brain network clustering
analysis,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 117-124.

[11] A. Cichocki et al., “Tensor networks for dimensionality reduction and
large-scale optimizations: Part 2 applications and future perspectives,”
Found. Trends Mach. Learn., vol. 9, no. 6, pp. 431-673,2017.

[12] L.Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative,” J. Mach. Learn. Res., vol. 10, no. 66/71, 2009,
Art.no. 13.

[13] J. Xu, J. Zhou, P.-N. Tan, X. Liu, and L. Luo, “Spatio-temporal
multi-task learning via tensor decomposition,” IEEE Trans. Knowl.
Data Eng., to be published, doi: 10.1109/TKDE.2019.2956713.

[14] X.Liu, X. You, X. Zhang,]. Wu, and P. Lv, “Tensor graph convolu-
tional networks for text classification,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 8409-8416.

[15] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. USENIX Symp. Operating Syst. Des. Implementation,
2016, pp. 265-283.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2019.2941716
http://dx.doi.org/10.1109/TKDE.2019.2956713

1840

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

J. Kossaifi, A. Bulat, G. Tzimiropoulos, and M. Pantic, “T-net: Param-
etrizing fully convolutional nets with a single high-order tensor,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 7822-7831.
F.Ju, Y. Sun,]. Gao, M. Antolovich, J. Dong, and B. Yin, “Tensorizing
restricted Boltzmann machine,” ACM Trans. Knowl. Discov. Data,
vol. 13, no. 3, pp. 1-16, 2019.

M. Wang, Z. Shu, S. Cheng, Y. Panagakis, D. Samaras, and S. Zafeiriou,
“An adversarial neuro-tensorial approach for learning disentangled
representations,” Int. J. Comput. Vis., vol. 127, no. 6/7, pp. 743-762,
2019.

C. Zhang, H. Fu,]. Wang, W. Li, X. Cao, and Q. Hu, “Tensorized
multi-view subspace representation learning,” Int. . Comput. Vis.,
vol. 128, pp. 2344-2361, 2020.

Y. Luo, D. Tao, K. Ramamohanarao, C. Xu, and Y. Wen, “Tensor
canonical correlation analysis for multi-view dimension reduction,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 3111-3124,
Nov. 2015.

X. Liu et al., “Multiple kernel k-means with incomplete kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 5, pp. 1191-1204,
May 2020.

P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “Tag recom-
mendations based on tensor dimensionality reduction,” in Proc.
ACM Conf. Recommender Syst., 2008, pp. 43-50.

I. Balazevic, C. Allen, and T. Hospedales, “TuckER: Tensor factori-
zation for knowledge graph completion,” in Proc. Conf. Empir.
Methods Natural Lang. Process. and the 9th Int. Joint Conf. Natural
Lang. Process., 2019, pp. 5188-5197.

J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 208-220, Jan. 2013.

S. Zubair and W. Wang, “Tensor dictionary learning with sparse
tucker decomposition,” in Proc. Int. Conf. Digit. Signal Process.,
2013, pp. 1-6.

S. Oh, N. Park, S. Lee, and U. Kang, “Scalable tucker factorization
for sparse tensors-algorithms and discoveries,” in Proc. IEEE Int.
Conf. Data Eng., 2018, pp. 1120-1131.

V. T. Chakaravarthy et al., “On optimizing distributed tucker
decomposition for sparse tensors,” in Proc. Int. Conf. Supercomput-
ing, 2018, pp. 374-384.

B. N. Sheehan and Y. Saad, “Higher order orthogonal iteration of
tensors (HOOI) and its relation to PCA and GLRAM,” in Proc.
SIAM Int. Conf. Data Mining, 2007, pp. 355-365.

A. Kulunchakov and J. Mairal, “A generic acceleration framework
for stochastic composite optimization,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2019, pp. 12 556-12 567.

A. Traoré, M. Berar, and A. Rakotomamonjy, “Singleshot: A scalable
tucker tensor decomposition,” in Proc. 33rd Int. Conf. Neural Inf. Pro-
cess. Syst., 2019, pp. 6301-6312.

O. A. Malik and S. Becker, “Low-rank tucker decomposition of
large tensors using TensorSketch,” in Proc. 32nd Int. Conf. Neural
Inf. Process. Syst., 2018, pp. 10 096-10 106.

R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Proc. 26th Int.
Conf. Neural Inf. Process. Syst., 2013, pp. 315-323.

M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums
with the stochastic average gradient,” Math. Program., vol. 162,
no. 1/2, pp. 83-112, 2017.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac, “SARAH: A
novel method for machine learning problems using stochastic
recursive gradient,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp- 2613-2621.

H. Yu, R.Jin, and S. Yang, “On the linear speedup analysis of commu-
nication efficient momentum SGD for distributed non-convex opti-
mization,” in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 7184-7193.

S. Shalev-Shwartz et al., “Online learning and online convex opti-
mization,” Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107-194, 2012.
N. Ketkar, “Introduction to pytorch,” in Deep Learning With
Python. Berlin, Germany: Springer, 2017, pp. 195-208.

J. Verbraeken, M. Wolting, J. Katzy, . Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Comput. Surv., vol. 53, no. 2, Mar. 2020, Art. no. 30.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow
and stale gradients can win the race: Error-runtime trade-offs in
distributed SGD,” in Proc. 21st Int. Conf. Artif. Intell. Statist., 2018,
pp- 803-812.

H. Ge, K. Zhang, M. Alfifi, X. Hu, and]. Caverlee, “DisTenC: A
distributed algorithm for scalable tensor completion on spark,” in
Proc. IEEE 34th Int. Conf. Data Eng., 2018, pp. 137-148.

S. Smith and G. Karypis, “Accelerating the tucker decomposition
with compressed sparse tensors,” in Proc. Eur. Conf. Parallel Process.,
2017, pp. 653-668.

Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc, “Optimizing
sparse tensor times matrix on GPUs,”]. Parallel Distrib. Comput.,
vol. 129, pp. 99-109, 2019.

V. T. Chakaravarthy, S. S. Pandian, S. Raje, and Y. Sabharwal, “On
optimizing distributed non-negative tucker decomposition,” in
Proc. ACM Int. Conf. Supercomputing, 2019, pp. 238-249.

O. Kaya and B. Ucar, “High performance parallel algorithms for
the tucker decomposition of sparse tensors,” in Proc. 45th Int.
Conf. Parallel Process., 2016, pp. 103-112.

V. T. Chakaravarthy et al., “On optimizing distributed tucker
decomposition for sparse tensors,” in Proc. Int. Conf. Supercomput-
ing, 2018, pp. 374-384.

S. Oh, N. Park, S. Lee, and U. Kang, “Scalable tucker factorization
for sparse tensors-algorithms and discoveries,” in Proc. IEEE Int.
Conf. Data Eng., 2018, pp. 1120-1131.

M. Park, J.-G. Jang, and S. Lee, “VeST: Very sparse tucker factori-
zation of large-scale tensors,” 2019, arXiv: 1904.02603.

S. Oh, N. Park, J.-G. Jang, L. Sael, and U. Kang, “High-performance
tucker factorization on heterogeneous platforms,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 30, no. 10, pp. 2237-2248, Oct. 2019.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Berlin, Germany: Springer Science & Business
Media, 2013.

Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets
low-rank matrix factorization: An overview,” IEEE Trans. Signal
Process., vol. 67, no. 20, pp. 5239-5269, Oct. 2019.

Y. Xuand W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative
tensor factorization and completion,” SIAM . Imag. Sci., vol. 6, no. 3,
pp- 1758-1789, 2013.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

H. Li, C. Fang, and Z. Lin, “Accelerated first-order optimization
algorithms for machine learning,” Proc. IEEE, vol. 108, no. 11,
pp- 2067-2082, Nov. 2020.

S.J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic
variance reduction for nonconvex optimization,” in Proc. 33rd Int.
Conf. Mach. Learn., 2016, pp. 314-323.

H. Li, K. Li,J. An, and K. Li, “MSGD: A novel matrix factorization
approach for large-scale collaborative filtering recommender sys-
tems on GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7,
pp- 1530-1544, Jul. 2018.

Hao Li (Student Member, IEEE) is currently work-
ing toward the PhD degree at Hunan University,
China. He is currently a visiting PhD student with
TU Delft, Netherlands, 2019-2021. His research
interests are mainly in large-scale sparse matrix
and tensor factorization, recommender systems,
machine learning, and parallel and distributed
computing. He has published several journal and
conference papers in the IEEE Transactions on
Parallel and Distributed Systems, Information Sci-
ences, IEEE Transactions on Industrial Informat-

ics, CIKM, and ISPA. He also serves reviewer of the top-tier conferences
and journals, e.g., HPCC, IJCAI, WWW, the Neurocomputing, the IEEE
Access, Journal of Parallel and Distributed Computing, the Information
Sciences, |IEEE Transactions on Network and Service Management,
IEEE Internet of Things Journal, ACM Transactions on Knowledge Dis-
covery from Data and IEEE Transactions on Dependable and Secure
Computing.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: SGD_TUCKER: A NOVEL STOCHASTIC OPTIMIZATION STRATEGY FOR PARALLEL SPARSE TUCKER DECOMPOSITION

Zixuan Li received the graduated degree from
the College of Mathematics and Econometrics,
Hunan University, China, in 2017. He is currently
working toward the master's degree at Hunan
University, China. His research interests are
mainly in large-scale sparse matrix and tensor
factorization, recommender systems, data min-
ing, graph neural network, bayesian inference
and probabilistic graph model.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong
University of Science and Technology, China, in
20083. He was a visiting scholar with the University
of lllinois at Urbana-Champaign, Champaign, llli-
nois from 2004 to 2005. He is currently a full profes-
sor of computer science and technology at Hunan
University, China, and deputy director of National
Supercomputing Center in Changsha. His major
research areas include parallel computing, high-
performance computing, grid and cloud computing.
He has published more than 130 research papers in international conferen-
ces and journals such as the IEEE Transactions on Computers, |IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Signal Processing, Journal of Parallel and Distributed Computing, ICPP,
CCGrid. He is an outstanding member of CCF. He is serves on the editorial
board of the IEEE Transactions on Computers.

Jan S. Rellermeyer (Member, |IEEE) received the
MSc and PhD degrees in distributed systems from
ETH Zirich, Switzerland and spent several years in
industry. He is currently an assistant professor with
the Department of Computer Science, TU Delft,
Netherlands. He was an Apache Committer and is
an active Eclipse committer and projet lead of the
loT Concierge project. His research revolves
around the system architecture and the depend-
ability aspects of large-scale distributed systems
for demanding applications like big data processing
and distributed machine learning. He authored several highly cited peer-
reviewed publications, has been an active reviewer for a variety of top-tier
conferences and journals, and, together with his co-authors Gustavo
Alonso and Timothy Roscoe, received the 10 Years Test-of-Time Award at
the ACM/IFIP/USENIX Middleware Conference ins 2017 for his work on R-
OSGii: Distributed Applications through Software Modularization.

1841

Lydia Chen (Senior Member, IEEE) received the
BA degree from National Taiwan University, Taiwan,
and the PhD degree from Pennsylvania State Uni-
versity, State College, Pennsylvania, in 2002 and
2006, respectively. She is currently an associate
professor with the Department of Computer Sci-
ence, Delft University of Technology, Netherlands.
Her research interests center around dependability
management, resource allocation and privacy
enhancement for large scale data processing sys-
tems and services. More specifically, her work
focuses on developing stochastic and machine learning models and applying
these techniques to application domains, such as datacenters and Al sys-
tems. She has published more than 80 papers in journals, e.g., the IEEE
Transactions on Distributed Systems, IEEE Transactions on Service Com-
puting, and conference proceedings, e.g., INFOCOM, Sigmetrics, DSN, and
Eurosys. She was a co-recipient of the best paper awards at CCgrid’15 and
eEnergy’15. She received TU Delft Professor fellowship, in 2018. She was
program co-chair for Middleware Industry Track 2017 and IEEE ICAC 2019
and track vice-chair for ICDCS 2018. She has served on the editorial boards
of the IEEE Transactions on Network and Service Management, IEEE
Transactions on Service Computing, IEEE Transactions on Dependable and
Secure Computing and IEEE Transactions on Parallel and Distributed
Systems.

Keqin Li (Fellow, IEEE) is currently a SUNY distin-
guished professor of computer science. His current
research interests include parallel computing and
high-performance computing, distributed computing,
energy-efficient computing and communication, het-
erogeneous computing systems, cloud computing,
big data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems. He has published more than 480 journal
articles, book chapters, and refereed conference
papers, and has received several best paper
awards. He is currently or has served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on
Services Computing, and IEEE Transactions on Sustainable Computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2021 at 18:47:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

