
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

1

MSGD: A Novel Matrix Factorization Approach
for Large-scale Collaborative Filtering

Recommender Systems on GPUs
Hao Li, Kenli Li, Senior Member, IEEE, Jiyao An, Member, IEEE, Keqin Li, Fellow, IEEE

Abstract— Real-time accurate recommendation of large-scale recommender systems is a challenging task. Matrix factorization (MF),
as one of the most accurate and scalable techniques to predict missing ratings, has become popular in the collaborative filtering (CF)
community. Currently, stochastic gradient descent (SGD) is one of the most famous approaches for MF. However, it is non-trivial to
parallelize SGD for large-scale problems due to the dependence on the user and item pair, which can cause parallelization over-writing.
To remove the dependence on the user and item pair, we propose a multi-stream SGD (MSGD) approach, for which the update process
is theoretically convergent. On that basis, we propose a CUDA (Compute Unified Device Architecture) parallelization MSGD (CUMSGD)
approach. CUMSGD can obtain high parallelism and scalability on Graphic Processing Units (GPUs). On Tesla K20m and K40c GPUs,
the experimental results show that CUMSGD outperforms prior works that accelerated MF on shared memory systems, e.g., DSGD,
FPSGD, Hogwild!, and CCD++. For large-scale CF problems, we propose multiple GPUs (multi-GPU) CUMSGD (MCUMSGD). The
experimental results show that MCUMSGD can improve MSGD performance further. With a K20m GPU card, CUMSGD can be 5-10
times as fast compared with the state-of-the-art approaches on shared memory platform.

Index Terms—Collaborative filtering (CF), CUDA parallelization algorithm, Matrix factorization (MF), Multi-GPU implementation,
Stochastic gradient descent (SGD).

✦

1 INTRODUCTION

IN the era of e-commerce, recommender systems have
been applied to all aspects of commercial fields. The

following topics are two challenges in the development of
personalized recommender systems: (1) making recommen-
dations in real-time, i.e., making recommendations when
they are needed, and (2) making recommendations that suit
users’ tastes, i.e., recommendation accuracy. CF, as one of
the most popular recommender systems, relies on past user
behavior and does not need domain knowledge or extensive
and specialized data collection [1]. The main task of CF is
to estimate the missing data of user-interested items, e.g.,
scores, clicks, purchase records, etc. However, data sparsity
because of missing data makes it hard to provide accurate
prediction [2]. MF, as a dimensionality reduction technique,
that maps both users and items into the same latent factor
space, updating user/item feature vectors for existing rating
and then predicting the unknown ratings relying on the
inner products of related user-item feature vector pairs[3],
can address the problem of sparsity and has enjoyed surge
in research after the Netflix competition [4], [5], [6].

There are several MF techniques that have been applied
to CF recommender systems, e.g., Maximum Margin Matrix
Factorization (MMMF) [3], [7], Alternating Least Squares

• Hao Li, Kenli Li, Jiyao An, and Keqin Li are with the College of Computer
Science and Electronic Engineering, Hunan University, and National
Supercomputing Center in Changsha, Hunan, China, 410082.

• Corresponding author: Kenli Li.
E-mail: lihao123@hnu.edu.cn, lkl@hnu.edu.cn, jt anbob@hnu.edu.cn,
lik@newpaltz.edu.

• Keqin Li is also with the Department of Computer Science, State Univer-
sity of New York, New Paltz, New York 12561, USA.

(ALS) [8], [9], Cyclic Coordinate Descent (CCD++) [10–12],
Non-negative Matrix Factorization (NMF) [13] and Stochas-
tic Gradient Descent (SGD) [4], [5]. Among them, SGD is a
popular and efficient approach due to its low time complex-
ity and convenient implementation, which have been drawn
wide attention [5]. Many recent works integrate factors and
neighbors, and SGD can fuse the factors and neighbors into
the update process [4], [5].

Although SGD has been applied to MF recommender
systems successfully, due to high scalability and accuracy,
it is difficult to parallelize SGD because of the sequential
inherence of SGD, which makes SGD infeasible for large-
scale CF data sets. With the rapid development of graphics
processing hardware, GPU is becoming common; moreover,
CUDA programming makes it possible to harness the com-
putation power of GPU efficiently. However, given the se-
quential essence of SGD, there is a great obstacle preventing
SGD from obtaining the efficiency of GPU computation.

In this paper, we find that the main obstacle to paral-
lelize SGD is the dependence on the user and item pair
by theoretical analysis. We apply the MSGD to remove the
dependence on the user and item pair. On that basis, we
propose a CUDA parallelization approach on GPU, namely
CUMSGD. CUMSGD divides the task into coarse sub-tasks
that are mapped to independent thread blocks, and then be
solved by those independent thread blocks. Each sub-task
is divided into finer pieces that map to threads within the
thread block, then be solved cooperatively by those threads
in parallel.

MSGD can split the MF optimization objective into many
separable optimization sub-objectives, and these indepen-
dent optimization sub-objectives are distributed to CUDA



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

2

thread blocks. There is no data dependence between those
thread blocks. Thus, CUMSGD does not require thread
block synchronization. CUMSGD updates user and item
feature matrices alternatively. Thus, in multi-GPU environ-
ment, MCUMSGD can update user sub-matrix with emit-
ting and receiving item feature sub-matrix concurrently. The
main contributions of this paper are summarized as follows:

• Theoretic convergence and local minimum escaping:
MSGD updates the user feature matrix and item
feature matrix alternatively, which is under the con-
vergence promise. Stochastic Gradient (SG) based
approaches can be used to escape local minimums.
Thus, MSGD can obtain reasonable accuracy.

• CUDA parallelization: Considering the fine grained
parallelism of MSGD, we propose a CUMSGD ap-
proach. The CUMSGD approach can be brought to
CUDA-supported GPUs, and can be applied to in-
dustrial applications of MF.

• Multi-GPU implementation for large-scale data sets:
For web-level CF data sets, we propose the MCUMS-
GD. We adopt an asynchronous communication s-
trategy to hide data access overhead between the
multi-GPU and cyclic update strategy to allocate
rating sub-matrices and item feature sub-matrices.

The extensive experimental results show that CUMSGD
not only outperforms the state-of-the-art parallelized SGD
MF algorithms in a shared memory setting, e.g., fast parallel
SGD (FPSGD) [14], [15], distributed SGD (DSGD) [16], [17]
and Hogwild! [18], but also outperforms state-of-the-art
non-SG algorithm CCD++ [10], [11].

The paper is organized as follows. We introduce relat-
ed work in Section 2. We describe the MF problem and
related notions in Section 3. We derive the update rule of
MSGD, and propose parallelization strategy in Section 4.
We provide the parallelization strategies of CUMSGD and
MCUMSGD in Section 5. We report experimental results of
MSGD and the performance comparison with the state-of-
the-art parallel approach in Section 6. Finally, in Section 7,
conclusions are drawn.

2 RELATED WORK
MF-based techniques have been proposed as collabora-

tive prediction. The idea of MF-based CF has been applied to
many related areas, and there are a large number of studies
on this topic. Sarwar et al. [19] proposed MF-based di-
mensionality reduction in CF recommender systems, which
can solve several limitations of neighbor-based techniques,
e.g., sparsity, scalability, and synonymy. Weng et al. [20]
presented CF semantic video indexing by adopting MF,
which takes into account the correlation of concepts and
similarity of shots within the score matrix. Zheng et al.
[21], proposed neighborhood-integrated MF for quality-of-
service (QoS) prediction in service computing, which can
avoid time-consuming web service invocation. Lian et al.
[22] proposed point-of-interest (PoI) recommendation by
adopting weight MF to cope with the challenges of the
extreme sparsity of user-POI matrices.

SGD has been extensively studied, due to its easy im-
plementation and reasonable accuracy. Langford et al. [23]

proved that the online learning approach (delayed SGD)
is convergent. Zinkevich et al. [24] proposed parallelized
SGD under convergence guarantees. Agarwal and Duchi
[25] proposed distributed delayed SGD, in which the master
nodes update parameters and the other nodes perform
SGD in parallel. Many works have been conducted on
parallelized and distributed SGD to accelerate MF on CF
recommender systems in the literatures [14–18], [26], [27].
Chin et al. [14] focused on a shared memory multi-core
environment to parallelize SGD MF. FPSGD cannot solve
large-scale CF problem because FPSGD must load CF data
into shared memory. Gemulla et al. [16] focused on DSGD
in a distributed environment. DSGD took the property that
some blocks which share no common columns or common
rows of the rating matrix. DSGD needs the data communi-
cation overhead on nodes. Because of non-even distribution
of the rating matrix, the workloads on different nodes may
be different. Thus, each node requires synchronization. Yun
et al. [26] proposed asynchronous and decentralized SGD
(NOMAD) in distributed and shared memory multi-core
environments. This approach can hide communication time
in SGD execution by NOMAD asynchronous via a non-
blocking mechanism and can handle different hardware
and system loads by balancing the workload dynamically.
NOMAD does not need extra time for data exchanges.
However, when the number of nodes increases, there is a
large extra execution of uniform sampling instructions for
each node or core, and the cost of communication will be
larger than the cost of computation. Niu et al. [18] proposed
Hogwild! to parallelize SGD MF. This approach assumes
that the rating matrix is highly sparse and deduced that,
for two randomly sampled ratings, two serial updates are
likely to be independent. Jin et al. [27] presented GPUSGD
to accelerate MF. This approach must load the whole data
into global memory, and it is unsuited to large-scale CF
problems.

Owens et al. [28] introduced general purpose computing
on GPU and listed GPU computing applications, e.g., game
physics and computational biophysics. Pratx and Xing [29]
reviewed GPU computing applications in medical physics,
including three areas: dose calculation, treatment plan op-
timization, and image processing. There are some works to
analyze and predict GPU performance. Guo et al. [30] pre-
sented a performance modeling and optimization analysis
tool that can provide optimal SPMV solutions based on CSR,
ELL, COO, and HYB formats. To improve the performance
of SPMV, Li et al. [31] considered the probability of the row
non-zero element probability distribution to use four sparse
matrix storage formats efficiently. In CF recommender sys-
tems, Gao et al. [32] proposed item-based CF recommender
systems on GPU. Kato and Hosino [33] proposed singular
value decomposition (SVD) based CF on GPU. However,
this approach is not suitable for large-scale CF problems.

To solve the problem of large-scale decision variables,
known as the curse of dimensionality, Cano and Garcia-
Martinez [34] proposed distributed GPU computing for
large-scale global optimization. To solve the problem of non-
even distribution of a sparse matrix, which can lead to load
imbalance on GPUs and multi-core CPUs, Yang et al. [35]
proposed a probability-based partition strategy. A. Stuart
and D. Owens [36] proposed MapReduce-based GPU clus-



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

3

tering. MapReduce is focused the parallelization rather than
the details of communication and resource allocation. Thus,
this approach integrates large numbers of map and reduce
chunks and uses partial reductions and accumulations to
harness the GPU clusters. Chen et al. [37] proposed an in-
memory heterogeneous CPU-GPU computing architecture
to process high data-intensive applications.

3 PRELIMINARY
In this section, we give the problem definition of MF

and set up some notions in Section 3.1. We present the
state-of-the-art parallelized and distributed SGD and non-
SG approach in Section 3.2. CUDA and multi-GPU details
are given in Section 3.3.

3.1 Problem and Notation

We denote matrices by uppercase letters and vectors by
bold-faced lowercase letters. Let A ∈ R

m×n be the rating
matrix in a recommender system, where m and n are the
numbers of users and items, respectively. ai,j will denote
the (i, j) entry of A. We denote U ∈ R

m×r and V ∈ R
n×r as

the user feature matrix and item feature matrix, respectively.
Because of the sparsity of CF problems, we use Ω to denote
sparse matrix indices. We use Ωi and Ωj to denote the
column indices and row indices in the ith row and jth
column, respectively. We also denote the kth column of U
by uk, and the kth column of V by vk. The kth elements
of ui and vj are represented by ui,k and vj,k, respectively.
The ith elements of uk is uk,i, and the jth element of vk is
vk,j . In CF MF recommenders, most of algorithms in related
literatures take UV T as the low-rank approximation matrix
to predict the non-rated or zero entries of the sparse rating
matrix A, and the approximation process is accomplished
by minimizing the Euclidean distance function to measure
the approximation degree [3–5], [7]. The MF problem for
recommender systems is defined as following [3–5], [7]:

argmin
U,V

d
A↔U,V

=
∑

(i,j)∈Ω

(
(ai,j − âi,j)

2 + λU‖ui‖
2

+ λV ‖vj‖
2
)
,

(1)

where âi,j = uiv
T
j , ‖ · ‖ is the Euclidean norms, and λu and

λv are regularization parameters to avoid over-fitting. We
observe that problem (1) involves two parameters, U and
V . Problem (1) is non-convex. Thus, the distance parameter
d may fall into local minima. The SG-based approach can
escape the local minima by randomly selecting a (i, j) entry.
Once ai,j is chosen, the objective function in problem (1) is
reduced to

di,j = (ai,j − âi,j)
2 + λU‖ui‖

2 + λV ‖vj‖
2. (2)

After calculating the sub-gradient over ui and vj , and se-
lecting the regularization parameters λU and λV , the update
rule is formulated as:

{
vj ← vj + γ(ei,jui − λV vj);

ui ← ui + γ(ei,jvj − λUui),
(3)

where
ei,j = ai,j − âi,j , (4)

is the error between the existing rating and predicted rating
of the (i, j) entry, and γ is the learning rate.

The update rule (3) is inherently sequential. We random-
ly select three entry indices {(i0, j0), (i0, j1), (i0, j2)}, where
{j0, j1, j2} ∈ Ωi0 . We select three threads {T0, T1, T2} to
update the specific feature vector of {ai0,j0 , ai0,j1 , ai0,j2},
respectively. The update process is as follows:

T0 :

{
vj0 ← vj0 + γ(ei0,j0ui0 − λV vj0);

ui0 ← ui0 + γ(ei0,j0vj0 − λUui0),

T1 :

{
vj1 ← vj1 + γ(ei0,j1ui0 − λV vj1);

ui0 ← ui0 + γ(ei0,j1vj1 − λUui0),

T2 :

{
vj2 ← vj2 + γ(ei0,j2ui0 − λV vj2);

ui0 ← ui0 + γ(ei0,j2vj2 − λUui0).

We observe that three threads {T0, T1, T2} update ui0 simul-
taneously, which is the parallelization over-writing problem.
The update process cannot be separated into independent
parts because of the dependence on the user and item pair.

3.2 The State-of-the-Art Parallelization Approaches

3.2.1 SG Based

Limited by the over-writing problem, i.e., the depen-
dence on the user-item pair, prior works focus on splitting
the rating matrix into several independent blocks that do
not share the same row and column and applying SGD on
those independent blocks.

Fig. 1. An illustration of DSGD synchronous cyclic update.

DSGD In the following discussion, the independent
blocks share neither common column nor common row
of the rating matrix. Given a 2-by-2 divided rating matrix
and 2 nodes, cyclic update approach of DSGD is illustrated
in Fig. 1. The first training iteration assigns 2 diagonal
matrix blocks to 2 nodes {Node 0, Node 1}; Node 0 up-
dates {U0, V0}, Node 1 updates {U1, V1}. In the last iter-
ation, Node 0 and Node 1 update {U0, V1} and {U1, V0},
respectively. In distributed systems, data communication,
synchronization, and data imbalance prevent DSGD from
obtaining scalable speedup.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

4

Fig. 2. An illustration of FPSGD.

FPSGD Fig. 2 illustrates FPSGD. FPSGD splits the rating
matrix into several independent blocks and implants SGD
in each independent block. The first iteration assigns 2 diag-
onal matrix blocks to 2 threads {T0, T1}; thread T0 updates
{U0, V0}, and thread T1 updates {U1, V1}. We assume that
thread T0 accomplishes the update at first, and then thread
T0 has three choices, e.g., {U2, V0}, {U0, V2}, {U2, V2} to the
next iteration.

Hogwild! The intuition of Hogwild! is that the rating
matrix is very sparse. Thus, the occurrence probability of
the over-writing problem is low.

3.2.2 Non-SG Based
CCD++ Based on the idea of coordinate descent, CCD++

updates (u1, v1) until (ur , vr) cyclically. Updating uk can
be converted into updating uk,i in parallel, and updating
vk can be converted into updating vk,j in parallel. The one-
variable subproblem of updating uk is reformulated into

uk,i ← argmin
z

∑

j∈Ωi

{ (ai,j − (âi,j − uk,ivk,j)− zvk,j)
2

+ λUz
2 } ,

(5)
and the one-variable subproblem of updating vk is reformu-
lated into

vk,j ← argmin
w

∑

i∈Ωj

{ (ai,j − (âi,j − uk,ivk,j)− zuk,j)
2

+ λV w
2 } .

(6)
The solution of (5) is

z ←

∑
j∈Ωi

(ai,j − (âi,j − uk,ivk,j))vk,j

λU +
∑

j∈Ωi
v2k,j

, uk,i ← z, (7)

and the solution of (6) is

w ←

∑
j∈Ωi

(ai,j − (âi,j − vk,juk,i))uk,i

λU +
∑

i∈Ωj
u2k,i

, vk,j ← w. (8)

3.3 GPU-Based Computing

The GPU resides on a device, and a GPU consists of many
stream multiprocessors (SMs). Each SM contains a number of
stream processors (SPs). CUDA is a programming interface
that can enable GPU to be compatible with various pro-
gramming languages and applications. In CUDA, kernels
are functions that are executed on GPU. A kernel function
is executed by a batch of threads. The batch of threads is
organized as a grid of thread blocks. The thread blocks

Fig. 3. CUDA kernel and thread batching.

Fig. 4. Multi-GPU parallel computing model.

map to SMs. As shown in Fig. 3, the greater the number
of SMs a GPU has, the higher the parallelism degree the
GPU has. Thus, a GPU with more SMs will execute a
CUDA program in less time than a GPU with fewer SMs.
Threads in a blocks are organized into small groups of 32
called warps for execution on the processors, and warps are
implicitly synchronous; however, threads in different blocks
are asynchronous. CUDA assumes that CUDA kernel, i.e.,
CUDA program, is executed on a GPU (device) and the rest
of the C program is executed on the CPU (host). CUDA
threads access data from multiple memory hierarchies. Each
thread has private local memory, and each thread block
has shared memory that is visible to all threads within the
thread block. All threads can access global memory.

Multiple GPUs are connected to the host by
peripheral communication interconnect express (PCIe) in
Fig. 4. CUDA can perform computation on the device and
data transfers between the device and host concurrently.
More state-of-the-art GPUs (K20m, K40c) have two copy
engines, which can operate data transfers to and from a
device, and among devices concurrently. CUDA provides
synchronization instructions, which can ensure the correct
execution on multi-GPU, and each GPU of the multi-GPU
has a consumer/producer relationship. Memory copies
between two different devices can be performed after the
instruction of CUDA peer-to-peer memory access has been
enabled.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

5

4 A MSGD MF APPROACH

In Section 4.1, we propose the MSGD MF approach,
which can remove the dependence on the user and item pair.
We present the parallelization design of MSGD in Section
4.2.

4.1 Proposed MSGD Approach

The essence of SGD parallelization over-writing problem
is that the variables that are selected by multiple threads
may share the same row or column identity. In a training e-
poch, multiple threads select ai,j belonging to the same row
of A, and SGD only updates V . Correspondingly, multiple
threads selected ai,j belonging to the same column ofA, and
SGD only updates U . Then, the parallelization over-writing
problem can be solved. However, how can the convergence
and accuracy be guaranteed? In the following section, we
will give the derivation of MSGD update rules.

MSGD splits the distance function d of problem (1) into

d =
m∑

i=1

|Ωi|di, (9)

and

d =
n∑

j=1

|Ωj |dj , (10)

where

di =
1

|Ωi|

∑

j∈Ωi

(
e2i,j + λU‖ui‖

2 + λV ‖vj‖
2
)

=
1

|Ωi|

∑

j∈Ωi

ψj(ui),
(11)

and

dj =
1

|Ωj |

∑

i∈Ωj

(
e2i,j + λU‖ui‖

2 + λV ‖vj‖
2
)

=
1

|Ωj |

∑

i∈Ωj

ψi(vj).
(12)

Thus, minimizing d is equivalent to minimize
∑

j∈Ωi

|Ωi|di

and
∑

i∈Ωj

|Ωj |dj alternatively. Furthermore, minimizing

|Ωi|di is equivalent to minimize di, and minimizing |Ωj |dj
is equivalent to minimize dj . If we fix vj , j ∈ Ωi for di,
then the di, i ∈ {1, 2, · · · ,m} are independent of each other.
Therefore, applying gradient decent with learning rate γ to
search for the optimal solution to minimize di and dj is
derived as follows:

argmin
ui

di ⇒ ui ← ui − γ∇di(ui)

= ui −
2γ

|Ωi|


∑

j∈Ωi

∇ψj(ui)




= ui −
2γ

|Ωi|


∑

j∈Ωi

(−ei,jvj + λUui)


 ,

(13)

and

argmin
vj

dj ⇒ vj ← vj − γ∇dj(vj)

= vj −
2γ

|Ωj |


∑

i∈Ωj

∇ψi(vj)




= vj −
2γ

|Ωj |




∑

i∈Ωj

(−ei,jui + λV vj)


 .

(14)
However, at each step, gradient descent requires the eval-
uation of |Ωi| and |Ωj | to update ui and vj respectively,
which is expensive. SGD is a popular modification for the
gradient descent update rule (13) [38–43], where at each
training epoch t = 1, 2, . . ., we randomly draw jt, jt ∈ Ωi,
and the modification for the gradient descent update rule
(13) to update U is as follows:

ut
i = ut−1

i − γ∇ψjt(u
t−1
i )

= ut−1
i + γ(ei,jvt−1

jt
− λUut−1

i ).
(15)

The same modification for the gradient descent update rule
(14) to update V is as follows:

vt
j = vt−1

j − γ∇ψit
(vt−1

j )

= vt−1
j + γ(ei,jut−1

it
− λV vt−1

j ),
(16)

where at each epoch t = 1, 2, . . ., we randomly draw
it, it ∈ Ωj . The expectation E[ut

i|u
t−1
i ] is identical to (13),

and the expectation E[vt
j |v

t−1
j ] is identical to (14) [38–42].

The algorithm of MSGD is described in Algorithm 1.

Algorithm 1 MSGD

Input: Initial U and V , rating matrix A, learning rate γ,
regularization parameters λV and λU , training epoch epo.
Output: U , V .

1: for loop from epo to 0 do
2: for j from 0 to n− 1 do
3: for i from the first to the last element of Ωj do
4: Update vj by update rule (16).
5: end for
6: end for
7: for i from 0 to m− 1 do
8: for j from the first to the last element of Ωi do
9: Update ui by update rule (15).

10: end for
11: end for
12: end for
13: return (U, V ).

Since problems (11) and (12) are symmetric, we only
consider the example of problem (11). In general, under
two constraint conditions where ψj is smooth and Lipschitz-
continuous with constant L and di is strongly-convex with
constant µ, the MSGD is convergent, and as long as we pick
a small constant step size γ < 1/L, gradient descent of di
obtains linear convergence rate O(1/t) [39], [44]. We present
the convergence analysis of MSGD in the supplementary
material. Furthermore, MSGD has the same time complexity
as SGD, i.e., O(r|Ω|).



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

6

4.2 Parallelization Design

We report two parallelization approaches of MSGD, e.g.,
a decentralized approach and a centralized approach.

We select three entry indices {(i0, j0), (i0, j1), (i0, j2)},
where {j0, j1, j2} ∈ Ωi0 . We select three threads {T0, T1, T2}
to update {vj0 , vj1 , vj2}, respectively. As decentralized ap-
proach, threads {T0, T1, T2} update {vj0 , vj1 , vj2} in parallel
as follows:




vt
j0

vt
j1

vt
j2


 =




vt−1
j0

+ γ(ei0,j0ut−1
i0
− λV vt−1

j0
)

vt−1
j1

+ γ(ei0,j1ut−1
i0
− λV vt−1

j1
)

vt−1
j2

+ γ(ei0,j2ut−1
i0
− λV vt−1

j2
)


 . (17)

In the (i0 + 1)th iteration, threads {T0, T1, T2} selec-
t three different column indices from Ωi0 , and update
{vj0 , vj1 , vj2} in parallel.

We select three entry indices {(i0, j0), (i1, j1), (i1, j2)},
where i0 ∈ Ωj0 , i1 ∈ Ωj1 , i2 ∈ Ωj2 . We select three
threads {T0, T1, T2} to update {vj0 , vj1 , vj2}, respective-
ly. As centralized approach, threads {T0, T1, T2} update
{vj0 , vj1 , vj2} in parallel as follows:




vt
j0

vt
j1

vt
j2


 =




vt−1
j0

+ γ(ei0,j0ut−1
i0
− λV vt−1

j0
)

vt−1
j1

+ γ(ei1,j1ut−1
i1
− λV vt−1

j1
)

vt−1
j2

+ γ(ei2,j2ut−1
i2
− λV vt−1

j2
)


 . (18)

Furthermore, we report two approaches to update U in
parallel.

We select three entry indices {(i0, j0), (i1, j0), (i2, j0)},
where {i0, i1, i2} ∈ Ωj0 . We select three threads {T0, T1, T2}
to update {ui0 ,ui1 ,ui2}, respectively. The decentralized ap-
proach of threads {T0, T1, T2} to update {ui0 ,ui1 ,ui2} is as
follows:




ut
i0

ut
i1

ut
i2


 =




ut−1
i0

+ γ(ei0,j0vt−1
j0
− λUut−1

i0
)

ut−1
i1

+ γ(ei1,j0vt−1
j0
− λUut−1

i1
)

ut−1
i2

+ γ(ei2,j0vt−1
j0
− λUut−1

i2
)


 . (19)

We select three entry indices {(i0, j0), (i1, j1), (i1, j2)},
where j0 ∈ Ωi0 , j1 ∈ Ωi1 , j2 ∈ Ωi2 . We select three
threads {T0, T1, T2} to update {ui0 ,ui1 ,ui2}, respectively.
The centralized approach of threads {T0, T1, T2} to update
{ui0 ,ui1 ,ui2} is as follows:




ut
i0

ut
i1

ut
i2


 =




ut−1
i0

+ γ(ei0,j0vt−1
j0
− λUut−1

i0
)

ut−1
i1

+ γ(ei1,j1vt−1
j1
− λUut−1

i1
)

ut−1
i2

+ γ(ei2,j2vt−1
j2
− λUut−1

i2
)


 . (20)

There are two parallelization approaches to update both
U and V . We only discuss MSGD updating V in the follow-
ing sections due to limited space.

Based on the idea of MSGD parallelization designs, we
consider some CUDA programming problems as follows:

• Which is the highest efficiency CUDA parallelization
approach?

• How can GPU memory accommodate large-scale
recommender systems data sets?

5 CUDA PARALLELIZATION DESIGN
In this section, we report two scheduling strategies of

CUDA thread in Section 5.1. We introduce CUMSGD coa-
lesced memory access in Section 5.2. We present the details
of multi-GPU implementation in Section 5.3.

Fig. 5. CUDA decentralized updating V .

5.1 Two Parallelization Approaches

In this section, we show the scheduling strategies of
thread block. The scheduling strategy is how thread blocks
select entries in the rating matrix A. It is necessary to give
attention to the difference between the two approaches, e.g.,
the decentralized and centralized approach. In the decen-
tralized approach, thread blocks select entries in a row of
A. In the centralized approach, first, a thread block selects a
column index j; then, the thread block selects an entry index
(i, j), where i ∈ Ωj .

Algorithm 2 CUDA decentralized updating V

Input: Initial U and V , rating matrix A, learning rate γ,
regularization parameter λV , training epoches epo, and total
number of thread blocks C.
Output: V .

1: T ← Thread block id.
2: for loop from epo to 0 do
3: for i = 0, 2, . . . ,m− 1 do
4: parallel: % Each thread block T updates its own vj

by for loop independently
5: Select column index j ∈ Ωi.
6: Update vj by update rule (16).
7: end parallel
8: end for
9: end for

10: return V .

Fig. 5 illustrates a toy example of the decentralized
updating V . As shown in Fig. 5, a training epoch is sep-
arated into 6 steps. Taking the 1st and 2nd steps as an
example, after thread block 0 updates v0, 0 ∈ Ω0, thread
block 0 selects v1, 1 ∈ Ω1, which is not updated in the 2nd
step. We observed that a rating matrix has a large number
of zero entries, whereas only non-zero rating entries are
typically stored on GPU global memory with their indices.
The distribution of non-zero entries is random in a rating
matrix. CUMSGD cannot guarantee that a thread block
selects the same column index on two neighbouring update
steps. Meanwhile, the shared memory of a thread block only
occupies a small part. Thus, after a thread block updating vj ,
the thread block loads vj back to GPU global memory for
the next update step. Algorithm 2 describes the thread block
scheduling strategy of the decentralized approach.

Fig. 6 illustrates a toy example of the centralized updat-
ing V . The three different colored boxes on three columns
{0, 2, 4} in rating matrixA represent that three thread blocks
update the corresponding {v0, v2, v4} by {{ai,0,ui, v0, i ∈



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

7

Fig. 6. CUDA centralized updating V .

Algorithm 3 CUDA centralized updating V

Input: Initial U and V , rating matrix A, learning rate γ,
regularization parameter λV , training epoches epo, and total
number of thread blocks C.
Output: V .

1: T ← Thread block id.
2: for loop from epo to 0 do
3: for j from T to n− 1 on the interval of C do
4: parallel: % Each thread block T updates its own vj

by for loop independently
5: Select i ∈ Ωj .
6: Update vj by update rule (16).
7: end parallel
8: end for
9: end for

10: return V .

Ω0}, {ai,2,ui, v2, i ∈ Ω2}, {ai,4,ui, v4, i ∈ Ω4}}, respective-
ly. After one training iteration, a thread block will select a
vj which isn’t updated in current training epoch. Algorithm
3 shows thread block scheduling strategy of the centralized
update approach.

5.2 Coalesced Memory Access

We set the parameter r as an integral multiple of 32
(warpsize), for warp synchronization execution and coa-
lesced global memory access.

Fig. 7 illustrates coalesced access of CUMSGD to U and
V in global memory. As shown in Fig. 7, a thread block can
access vj , j ∈ Ωi continuously due to the coalesced access
on GPU global memory via 32-, 64- or 128-byte memory
transactions [45]. A warp (warpsize=32) accesses the suc-
cessive 128-bytes in global memory at the same time if the
memory access is aligned. For a 128-byte memory transac-
tion, a warp fetches aligned 16 double-type elements from
global memory to local memory two times. We set the num-
ber of threads per thread block as r ∈ {32, 64, 128, 256, 512},
to synchronize warp execution.

5.3 Multi-GPU Approach

We extend CUMSGD to MCUMSGD when the size of
a data set is larger than the memory capacity of a single
GPU. We present multi-GPU data allocation and scheduling
strategies, and provide space and time complexity analysis
of MCUMSGD on p GPUs.

To improve speedup performance on multi-GPU, we
consider how to reduce the task dependence. It is that the

Fig. 7. Coalesced access on V and U in global memory.

Algorithm 4 The basic MCUMSGD approach

Input: Initial U and V , rating matrix A, learning rate γ,
column index matrix Q, the number of GPU p, training
epoches epo, and regularization parameters λU , λV .
Output: U ,V .

1: for loop from epo to 0 do
2: for q ∈ {0, 1, · · · , p− 1} do
3: Load {Aq, U q, V q} to GPU q.%GPUs Initial work-

load
4: end for
5: parallel: % GPU q, q ∈ {0, · · · , p− 1}
6: for l ∈ {0, 1, · · · , p− 1} do
7: j ← Ql,q .
8: Update V j by {Aq,j , U q, V j}.
9: Synchronization on all GPUs.

10: Update U q by {Aq,j , U q, V j}.
11: Load V j to GPU

(
(q − 1 + p) mod p

)
.

12: end for
13: end parallel
14: end for
15: return (U, V ).

rating matrix A is divided into p2 sub-matrix blocks, then
the cyclic update strategy is adopted. It is very different
from DSGD cyclic update strategy in Fig. 1, which needs
data communication cost between the p nodes. Each GPU
updates the item feature sub-matrix, then updates the user
feature sub-matrix with emitting item feature sub-matrix to
other GPU concurrently, which can hide the communication
overhead of loading the item feature sub-matrix. Thus, each
GPU needs cache area to store the received item feature sub-
matrix. MCUMSGD can operate multi-GPU synchronization
and data access instructions by PCIe. Thus, it can extend the

Fig. 8. Two GPUs asynchronous cyclic update.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

8

data splitting strategy of DSGD and asynchronous commu-
nication mechanism to MCUSGD on multi-GPU.

Given p GPUs, we divide A into p parts {A0, · · · , Ap−1}
by row, and the qth part is divided into p sub-parts,
{Aq,0, · · · , Aq,p−1}. We define S = {S0, S1, . . . , Sp−1} as
a partition of row indices of U , and we define G =
{G0, G1, . . . , Gp−1} as a partition of column indices of V .
We divide U into p parts {U0, U1, . . . , Up−1}, where U q is
a vector set, and the row indices of U q correspond to Sq.
We divide V into p parts {V 0, V 1, . . . , V p−1}, where V q is a
vector set, and the column indices of V q correspond to Gq .
Then, we load {Aq, U q, V q} to GPU q at initial step.

We define a column index matrix Q ∈ R
p×p, where

Q =




0 1 . . . p-2 p-1
1 2 . . . p-1 0
...

...
. . .

...
...

p-2 p-1 . . . p-4 p-3
p-1 0 . . . p-3 p-2



.

For example, in a training epoch, (l + 1)th iteration, l ∈
{0, 1, . . . , p − 1}, GPU q updates (U q ,V j), j = Ql,q. We
now formally define the MCUMSGD (see Algorithm 4).
GPU q updates j, j ∈ Ql,q in its own processing queue
(line 7), and updates V j (line 8). Then, GPU q loads V j to
GPU

(
(q − 1 + p) mod p

)
, and updates U q asynchronously

(line 10-11). The computation time cost of each GPU is
different due to those p GPUs owning different numbers
of rating non-zero entries, and the asynchrony problem can
be handled by synchronization (line 9). We assume two
GPUs {GPU 0, GPU 1}. Fig. 8 illustrates that the two GPUs
update {V 0, V 1} cyclically, and the illustration is as follows:

Step 1. GPU 0 updates V 0 by {A0,0, U0, V 0}. GPU 1
updates V 1 by {A1,1, U1, V 1}.

Step 2. GPU 0 updates U0 by {A0,0, U0, V 0} with GPU
0 emitting V 0 to GPU 1 asynchronously. GPU
1 updates U1 by {A1,1, U1, V 1} with GPU 1
emitting V 1 to GPU 0 asynchronously.

We consider the complexity analysis in the following
cases:

Case 1. The rating matrix and two feature matrices
{A,U, V } are distributed among p GPUs. Each
GPU also store a 1/p fraction of non-zero entries
of rating matrix A. Each GPU has to store a
1/p fraction of the user feature matrix U and
the item feature matrix V . Because storing a row
of U or V requires r space, cache area on each
GPU needsO(nk/p) space. The maximum space
complexity per GPU is O

(
(mk+2nk+2|Ω|)/p

)
.

The cost of communication time complexity is
O(nk/p). It is difficult to define the time com-
plexity of CUDA kernels due to the execution
time of a CUDA kernel depending on many
elements, e.g., thread blocks, space complexity,
and the two update approaches, as mentioned
in Section 4.2.

Case 2. The number of GPUs, p, increases. We distribute
{A,U, V } across p GPUs. As expected, when p
increases, the nk/p decreases more slowly than
|Ω|/p2. Thus, the cost of communication will

32 64 128 256 512
0

10

20

30

40

50

60

70

80

90

100

110

Rank

Tim
e(s

)

 

 

MSGD
SGD

(a) MovieLens

32 64 128 256 512
0

100

200

300

400

500

600

700

800

900

1000

Rank

Tim
e(s

)

 

 

MSGD
SGD

(b) Netflix

Fig. 9. The time of sequential MSGD versus sequential SGD on CPU.

overwhelm the cost of updating V j , which will
lead to slowdown.

Case 3. MCUMSGD integrates the two approaches men-
tioned in Section 4.2 to save space cost. We
consider two sparse matrix storage formats, e.g.,
CSR and CSC. CUMSGD can use the user-
oriented CSR format for decentralized updating
V and centralized updating U , and use item-
oriented CSC format for decentralized updating
U and centralized updating V . Thus, the mini-
mum space complexity of the hybrid approach
is O

(
(mk + 2nk + |Ω|)/p

)
.

6 EXPERIMENTS

In this section, the experimental results of MSGD and the
comparison with state-of-the-art approaches are presented.
We provide the details of experimental settings in supple-
mentary material. We compare MSGD and SGD in Section
6.1. We present the speedup performance of CUMSGD in
Section 6.2. We compare CUMSGD with state-of-the-art
approaches in Section 6.3. Finally, in Section 6.4 and Section
6.5, we answer the two questions mentioned in Section 4.2.

6.1 MSGD versus SGD

We compare the sequential approach of MSGD and SGD
on CPU, and the comparison is illustrated in Fig. 9. As
shown in Fig. 9, the time of the sequential part increases
linearly as the r increases, and MSGD takes longer time
than SGD because of the increased fetching times of U and
V . Thus, we can conclude that the SGD outperforms the
MSGD on one CPU due to less fetching times of U and V .



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

9

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 
Before optimizing
After optimizing

(a) MovieLens

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 
Before optimizing
After optimizing

(b) Netflix

Fig. 10. A comparison between the maximum synchronization instruc-
tion method (Before optimizing) and the reduced synchronization in-
struction method (After optimizing).

However, this advantage cannot guarantee the higher per-
formance in the parallel case. Because of SGD parallelization
over-writing problem, SGD suffers from low parallelism.
Furthermore, we present the accuracy comparison of MSGD
and SGD in supplementary material to demonstrate that
MSGD can achieve the comparable accuracy than SGD.

6.2 CUMSGD Speedup

In this section, we report the performance of GPU
speedup, and give some ideas of how to improve the
speedup by optimizing reduction, tuning parameters, e.g.,
r, the number of thread blocks, and GPU hardware param-
eters.

6.2.1 Optimizing Reduction

Increasing the rank (r) of the feature matrix can improve
the accuracy of CF MF to a certain degree [4], [5], in addition
to three parameters, e.g., {λU , λV , γ}. The time complexity
of the sequential multiplication of two vectors is O(r).
The two-vector multiplication on CUMSGD only needs
O
(
log2(r)

)
. Thus, a larger r can improve GPU speedup

performance further. Meanwhile, improving the efficiency
of vector multiplication and reduction can improve the
efficiency of CUMSGD significantly. From CUDA update
process described in Algorithms 2 and 3, a thread block that
has r threads can update a vj only once by {ei,j ,ui, vj}. The
value of ei,j needs the pre-computation of uiv

T
j , and vector

dot multiplication needs the cooperation of the r threads
within the thread block. Thus, the ui and vj are stored in
shared memory of the thread block. Thread synchronization
instruction can be saved from log2(r) to log2(r) − 5 by

32 64 128 256 512
0

0.5

1

1.5

2

2.5

Rank

Tim
e(s

)

 

 

t
h2d

+t
d2h

t
U

+t
V

(a) MovieLens

32 64 128 256 512
0

2

4

6

8

10

12

14

16

18

20

Rank

Tim
e(s

)

 

 

t
h2d

+t
d2h

t
U

+t
V

(b) Netflix

Fig. 11. tU + tV versus th2d + td2h of CUMSGD.

the warp synchronization mechanism presented in [45].
Fig. 10 illustrates the comparison between the maximum
synchronization instruction method (before optimizing) and
the reduced synchronization instruction method (after op-
timizing). As shown in Fig. 10, the saved synchronization
instruction method can improve speedup after r larger than
128 because the saved cost of warp synchronization is larger
than the cost of warp scheduling.

TABLE 1
The occupancy of CUMSGD on K20m and K40c GPU.

Rank(Threads Per Block) 32 64 128 256 512

Register Per thread 21 21 21 21 21

Shared memory Per block(bytes) 256 512 1024 2048 4096

Active Thread Per SM 512 1024 2048 2048 2048

Active Warps Per SM 16 32 64 64 64

Active Thread Blocks Per SM 16 16 16 8 4

Occupancy of per SM 25% 50% 100% 100% 100%

6.2.2 Speedup on K20m GPU

For the comparability of speedup on various state-of-the-
art MF parallelization methods, we compare the CUMSGD
on a single K20m GPU and the MSGD on a single CPU core.

Fig. 11 illustrates the comparison on tU + tV versus
th2d + td2h. As shown in Fig. 11, tU + tV is larger than
th2d + td2h. Thus, we can draw the conclusion that the time
cost of updating U and V is much longer than the cost of
data copies between CPU (host) and GPU (device). CUMSGD
needs more than one training epoch to obtain a reasonable



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

10

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 
Block=52
Block=104
Block=208
Block=416

(a) MovieLens

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 
Block=52
Block=104
Block=208
Block=416

(b) Netflix

Fig. 12. Speedup on K20m GPU. K20m GPU has 13 SMs. We test S
on five r, e.g., r ∈ {32, 64, 128, 256, 512}. We fix r, and test S on four
different number of thread blocks, e.g., {52, 104, 208, 416}.

RMSE, and we suppose that CUMSGD needs epo training
epoches. Thus, the speedup (S) is approximated by

S =
epo · T1

epo(tU + tV )

=
T1

tU + tV
.

(21)

The choice of the appropriate r of feature matrices can
guarantee the reasonable accuracy, and spend less train-
ing time in CF MF problem [4], [5], [46]. In our work,
because we focus on the speedup performance on vari-
ous r of feature matrices rather than the choice of ap-
propriate r, we test five sets of experiments on various
r, e.g., r ∈ {32, 64, 128, 256, 512}. GPU occupancy is the
ratio of the number of active threads to the total number
of threads, and high occupancy means that the GPU is
working in high efficiency. The GPU occupancy is calculated
by CUDA Occupancy Calculator [45]. In CUMSGD, a thread
block has r threads, and the number of thread blocks is tun-
able, which can control the occupancy. Table 1 lists occupancy
under various conditions, e.g., r ∈ {32, 64, 128, 256, 512}.

As shown in Fig. 12, in the case of 100% occupancy,
r ∈ {128, 256, 512} can obtain optimal speedup perfor-
mance. In the case of 52 thread blocks, the speedup (S)
increases as r increases, because the occupancy is not
full until r = 512. In fact, when r = 512, the case
with 52 thread blocks can obtain a 40x speedup, which
is almost the best one in this condition. Table 1 and Fig.
12 demonstrate that the optimal setting of thread blocks
to achieve the optimal speedup performance on GPU is
the total number of SMs · active thread blocks per SM.

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 

Block=60
Block=120
Block=240
Block=480

(a) MovieLens

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 
Block=60
Block=120
Block=240
Block=480

(b) Netflix

Fig. 13. Speedup on K40c GPU. K40c GPU has 15 SMs. We test S
on five r, e.g., r ∈ {32, 64, 128, 256, 512}. We fix r, and test S on four
various number of thread blocks, e.g., {60, 120, 240, 480}.

6.2.3 Speedup on K40c GPU
Scalability is an evaluation indicator in industrial ap-

plications [47], [48]. It is difficult to implant prior parallel
approach onto GPU because block partitioning prevents the
GPU from allocating the optimal number of thread blocks
dynamically, which makes the GPU unable to obtain the
optimal computing power. CUMSGD removes the depen-
dence on the user-item pair, which enables SGD to acquire
high scalability and high parallelism. Fig. 13 illustrates the
speedup performance of CUMSGD on K40c GPU. Because
of the higher bandwidth, increased memory clock rate and
more number of SMs compared with K20m GPU, K40c GPU
obtains better speedup performance than K20m GPU. Thus,
we firmly confirm that CUMSGD has high scalability and
applicability to industrial applications.

6.3 Comparisons with State-of-the-Art Methods

We compared CUMSGD with various parallel matrix
factorization methods on r = 128, including two SG-
based methods, e.g., DSGD, Hogwild!, and a non-SG-based
method, CCD++, in Fig. 14. Fig. 14 illustrates the test RMSE
versus training time. Among the three parallel stochastic
gradient methods, CUMSGD is faster than DSGD, and Hog-
wild!. We believe that this result is because MSGD has high
parallelism and GPU has high computing power.

The reasons that we compare RMSE versus computation
time on various MF parallelization are as follows:

• In the Hogwild!, each thread selects ratings random-
ly. It is difficult to identify a full training epoch.

• FPSGD may not have a full training epoch because
each thread selects an unprocessed block randomly.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

11

0 20 40 60 80 100 120

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Time(s)

RM
SE

 

 
HogWild!
DSGD
CCD++
CUMSGD

(a) MovieLens

0 200 400 600 800 1000 1200
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

Time(s)

RM
SE

 

 
HogWild!
DSGD
CCD++
CUMSGD

(b) Netflix

Fig. 14. RMSE versus computation time on a 16-core system for Hog-
wild!, DSGD, and CCD++, and a K20m GPU for CUMSGD(Time in
seconds) using double-precision floating point arithmetic.

As shown in Fig. 14, CCD++ can obtain the same speed
in the beginning and then becomes more stable than DSGD
and CUMSGD. We suspect that CCD++ may converge to
some local minimum. Fig. 14 shows that Hogwild! perform
relatively poorer than DSGD and CUMSGD. We suspect that
this result is because Hogwild! randomly select ratings and
blocks, and the over-writing problem might decrease the
convergence of HogWilg!. SG-based methods can escape
local minima, and obtain slightly better test RMSE than
the non-SG method, CCD++. The speedup performance on
shared memory platform of prior methods, e.g., DSGD,
FPSGD, Hogwild! and CCD++, are presented in Fig. 15.
We observe that the speedup of the four methods grow
slower as the number of cores increase linearly. We present
the comparison of CUMSGD and FPSGD in supplementary
material.

6.4 User-oriented or Item-oriented Setting?

MSGD updates U and V alternatively. We consider that
which one of user-oriented ordering and item-oriented or-
dering can obtain higher performance on GPU. Recall that,
in Sections 4 and 5, the both orderings can be adopted by
CUMSGD. We observe that there are four update combina-
tions in an update epoch as follows:

• Updating U on user-oriented ordering (centralized
approach) and updating V on user-oriented ordering
(decentralized approach).

• Updating U on item-oriented ordering (decentral-
ized approach) and updating V on item-oriented
ordering (centralized approach).

0 2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

Number of cores

S
p

e
e

d
u

p

 

 

DSGD
Hogwild
CCD++
FPSGD

(a) MovieLens

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

Number of cores

S
p

e
e

d
u

p
 

 

DSGD
Hogwild
CCD++
FPSGD

(b) Netflix

Fig. 15. Speedup of various MF methods on a 16-cores system.

• Updating U on item-oriented ordering (decentral-
ized approach) and updating V on user-oriented
ordering (decentralized approach).

• Updating U on user-oriented ordering (centralized
approach) and updating V on item-oriented ordering
(centralized approach).

Fig. 16 illustrates the GPU running time of a training
epoch for the four combinations. We test the GPU running
time on the optimal number of thread blocks mentioned
in Section 6.2. We suspect that the reasons for the gaps
between the GPU running times of the four approaches are
as follows:

• As illustrated in Section 4, decentralized updating
V needs more data access times than centralized
updating V from GPU global memory.

• The data load of decentralized updating V is more
balanced than centralized updating V .

From the experimental results, the combination of
user-oriented and item-oriented setting can obtain higher
speedup performance than a single user-oriented or item-
oriented setting; however, a single setting can save space
cost.

6.5 Multi-GPU Implementation

Multi-GPU can solve the problem that large-scale data
sets cannot be loaded into a single GPU. The dependence on
{(Ai,j , U i, V j)|i, j ∈ 0, 1, · · · , p− 1} may be the bottleneck
of improving the performance of multi-GPU speedup due
to huge cost of synchronization and communication within
multi-GPU. As shown in Fig. 8, MCUMSGD hides the data
access time into updating U , but the synchronization cost



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

12

32 64 128 256 512
0

0.5

1

1.5

2

2.5

Rank

Tim
e(s

)

 

 

User oriented updating U + User oriented updating V
Item oriented updating U + Item oriented updating V
Item oriented updating U + User oriented updating V
User oriented updating U + Item oriented updating V

(a) MovieLens

32 64 128 256 512
0

2

4

6

8

10

12

14

16

18

20

Rank

Tim
e(s

)

 

 

User oriented updating U + User oriented updating V
Item oriented updating U + Item oriented updating V
Item oriented updating U + User oriented updating V
User oriented updating U + Item oriented updating V

(b) Netflix

Fig. 16. User-oriented update and item-oriented update. User-oriented
and item-oriented settings can be combined in four approaches.

is still existing. Compared with Fig. 12, the speedup perfor-
mance on a single K20m GPU, Fig. 17 illustrates the speedup
performance on two K20m GPUs. We observe that the
two K20m GPUs can obtain a higher speedup performance
than on a single K20m GPU, whereas the improvement
of speedup performance doesn’t increase linearly with the
increase of the number of GPUs. We recall the cyclic update
process in Section 5.3. We observe that the parallelism is
reduced when two GPUs update {V 0, V 1} cyclically. Fur-
thermore, the reduced parallelism and unbalanced load of
each SMs owing to the irregular distribution of non-zero
entries in the rating matrixA, may make some SMs be idle in
the update process, which may lead to nonlinear speedup.

7 CONCLUSION AND FUTURE WORKS
In this paper, we propose a CUDA parallelization ap-

proach of SGD, which is named MSGD, to accelerate the MF.
MSGD removes the dependence on the user-item pair and s-
plits the optimization objective of MF into multiple indepen-
dent sub-objectives. For large-scale data sets, we propose a
multi-GPU strategy to solve large-scale MF problems. From
the experimental results, we observe that CUMSGD is faster
than FPSGD, DSGD, Hogwild!, and CCD++. CUMSGD can
obtain 50x speedup on a K20m GPU, 60x speedup on a K40c
GPU, and 70x speedup on two K20m GPUs.

The multi-GPU approach cannot obtain linear speedup.
We explain the reason as reduced parallelism and load
unbalance. We attempt to solve this problem by the combi-
nation of centralized and decentralized update approaches.
The centralized approach of CUMSGD is based on evenly
dividing rows and columns of sparse rating matrix, and this
approach is not necessarily load balance among SMs. Thus,

32 64 128 256 512
0

10

20

30

40

50

60

70

Rank

S

 

 

Block=52
Block=104
Block=208
Block=416

(a) MovieLens

32 64 128 256 512
0

10

20

30

40

50

60

70

80

Rank

S

 

 
Block=52
Block=104
Block=208
Block=416

(b) Netflix

Fig. 17. Multi-GPU: two GPUs cyclic update.

we are interested in using intelligent approach to make an
even distribution among SMs. We would like to improve
the convergence rate of MSGD, and integrate MSGD with
state-of-the-art learning model of CF MF. Online learning or
incremental learning is a widely used approach to real-time
system [49]. Thus, we would like to expand MSGD to online
learning model of CF MF problem.

To solve the large-scale MF problem, we can extend
MCUMSGD to heterogeneous CPU-GPU. MSGD has inher-
ent parallelism, so we plan to extend MSGD to parallel
and distributed platforms, e.g., OPENMP, MapReduce, and
Hadoop.

ACKNOWLEGEMENT
The research was partially funded by the Key Program

of National Natural Science Foundation of China (Grant No.
61432005), the National Outstanding Youth Science Program
of National Natural Science Foundation of China (Grant
No. 61625202), the National Natural Science Foundation of
China (Grant Nos. 61370095, 61370097, 61472124, 61572175,
and 61672224). The International Science & Technology Co-
operation Program of China (Grant Nos. 2015DFA11240,
2014DFB30010), and the National High-tech R&D Program
of China (Grant No. 2015AA015305).

REFERENCES

[1] Y. Cai, H.-f. Leung, Q. Li, H. Min, J. Tang, and J. Li,
“Typicality-based collaborative filtering recommenda-
tion,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 26, no. 3, pp. 766–779, 2014.

[2] G. Adomavicius and A. Tuzhilin, “Toward the next
generation of recommender systems: A survey of the



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

13

state-of-the-art and possible extensions,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 17, no. 6,
pp. 734–749, 2005.

[3] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-
margin matrix factorization,” in Advances in neural in-
formation processing systems, 2004, pp. 1329–1336.

[4] Y. Koren, “Factor in the neighbors: Scalable and ac-
curate collaborative filtering,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 4, no. 1,
p. 1, 2010.

[5] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, no. 8,
pp. 30–37, 2009.

[6] J. Bennett and S. Lanning, “The netflix prize,” in Pro-
ceedings of KDD cup and workshop, vol. 2007, 2007, p. 35.

[7] N. Srebro, “Learning with matrix factorizations,” Ph.D.
dissertation, Citeseer, 2004.

[8] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan,
“Large-scale parallel collaborative filtering for the net-
flix prize,” in Algorithmic Aspects in Information and
Management. Springer, 2008, pp. 337–348.

[9] W. Tan, L. Cao, and L. Fong, “Faster and cheaper:
Parallelizing large-scale matrix factorization on gpus,”
in Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing.
ACM, 2016, pp. 219–230.

[10] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, “Scalable
coordinate descent approaches to parallel matrix fac-
torization for recommender systems,” in Data Mining
(ICDM), 2012 IEEE 12th International Conference on.
IEEE, 2012, pp. 765–774.

[11] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Parallel
matrix factorization for recommender systems,” Knowl-
edge and Information Systems, vol. 41, no. 3, pp. 793–819,
2014.

[12] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate de-
scent methods with variable selection for non-negative
matrix factorization,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2011, pp. 1064–1072.

[13] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” in Advances in neural
information processing systems, 2001, pp. 556–562.

[14] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, “A fast
parallel stochastic gradient method for matrix factor-
ization in shared memory systems,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 6, no. 1,
p. 2, 2015.

[15] ——, “A learning-rate schedule for stochastic gradient
methods to matrix factorization,” in Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. Springer,
2015, pp. 442–455.

[16] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sisman-
is, “Large-scale matrix factorization with distributed
stochastic gradient descent,” in Proceedings of the 17th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2011, pp. 69–77.

[17] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed
matrix completion,” in 2012 IEEE 12th International
Conference on Data Mining (ICDM). IEEE, 2012, pp.
655–664.

[18] F. Niu, B. Recht, C. Re, and S. Wright, “Hogwild!: A
lock-free approach to parallelizing stochastic gradient
descent,” in Advances in Neural Information Processing
Systems, 2011, pp. 693–701.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Ap-
plication of dimensionality reduction in recommender
system-a case study,” DTIC Document, Tech. Rep.,
2000.

[20] M.-F. Weng and Y.-Y. Chuang, “Collaborative video
reindexing via matrix factorization,” ACM Transactions
on Multimedia Computing, Communications, and Applica-
tions (TOMM), vol. 8, no. 2, p. 23, 2012.

[21] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative
web service qos prediction via neighborhood integrat-
ed matrix factorization,” IEEE Transactions on Services
Computing, vol. 6, no. 3, pp. 289–299, 2013.

[22] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui,
“Geomf: joint geographical modeling and matrix fac-
torization for point-of-interest recommendation,” in
Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM,
2014, pp. 831–840.

[23] J. Langford, M. Zinkevich, and A. J. Smola, “Slow
learners are fast,” in Advances in Neural Information
Processing Systems, 2009, pp. 2331–2339.

[24] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola,
“Parallelized stochastic gradient descent,” in Advances
in neural information processing systems, 2010, pp. 2595–
2603.

[25] A. Agarwal and J. C. Duchi, “Distributed delayed
stochastic optimization,” in Advances in Neural Informa-
tion Processing Systems, 2011, pp. 873–881.

[26] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and
I. Dhillon, “Nomad: Non-locking, stochastic multi-
machine algorithm for asynchronous and decentralized
matrix completion,” Proceedings of the VLDB Endowmen-
t, vol. 7, no. 11, pp. 975–986, 2014.

[27] J. Jin, S. Lai, S. Hu, J. Lin, and X. Lin, “Gpusgd: A
gpu-accelerated stochastic gradient descent algorithm
for matrix factorization,” Concurrency and Computation:
Practice and Experience, 2015.

[28] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips, “Gpu computing,” Proceedings
of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[29] G. Pratx and L. Xing, “Gpu computing in medical
physics: A review,” Medical physics, vol. 38, no. 5, pp.
2685–2697, 2011.

[30] P. Guo, L. Wang, and P. Chen, “A performance model-
ing and optimization analysis tool for sparse matrix-
vector multiplication on gpus,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 5, pp. 1112–
1123, 2014.

[31] K. Li, W. Yang, and K. Li, “Performance analysis
and optimization for spmv on gpu using probabilistic
modeling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 1, pp. 196–205, 2015.

[32] Z. Gao, Y. Liang, and Y. Jiang, “Implement of item-
based recommendation on gpu,” in 2012 IEEE 2nd In-
ternational Conference on Cloud Computing and Intelligent
Systems (CCIS), vol. 2. IEEE, 2012, pp. 587–590.

[33] K. Kato and T. Hosino, “Singular value decomposition



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2718515, IEEE
Transactions on Parallel and Distributed Systems

14

for collaborative filtering on a gpu,” in IOP Conference
Series: Materials Science and Engineering, vol. 10, no. 1.
IOP Publishing, 2010, pp. 012–017.

[34] A. Cano and C. Garcia-Martinez, “100 million dimen-
sions large-scale global optimization using distributed
gpu computing,” in 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2016, pp. 3566–3573.

[35] W. Yang, K. Li, Z. Mo, and K. Li, “Performance op-
timization using partitioned spmv on gpus and mul-
ticore cpus,” IEEE Transactions on Computers, vol. 64,
no. 9, pp. 2623–2636, 2015.

[36] J. A. Stuart and J. D. Owens, “Multi-gpu mapreduce
on gpu clusters,” in 2011 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2011,
pp. 1068–1079.

[37] C. Chen, K. Li, A. Ouyang, and K. Li, “Gflink: An
in-memory computing architecture on heterogeneous
cpu-gpu clusters for big data,” in 2016 IEEE 45th Inter-
national Conference on Parallel Processing (ICPP). IEEE,
2016, pp. 542–551.

[38] L. Bottou, “Large-scale machine learning with s-
tochastic gradient descent,” in Proceedings of COMP-
STAT’2010. Springer, 2010, pp. 177–186.

[39] R. Johnson and T. Zhang, “Accelerating stochastic gra-
dient descent using predictive variance reduction,” in
Advances in Neural Information Processing Systems, 2013,
pp. 315–323.

[40] T. Zhang, “Solving large scale linear prediction prob-
lems using stochastic gradient descent algorithms,” in
Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004, p. 116.

[41] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochas-
tic gradient method with an exponential convergence

rate for finite training sets,” in Advances in Neural
Information Processing Systems, 2012, pp. 2663–2671.

[42] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola,
“Stochastic variance reduction for nonconvex optimiza-
tion,” in Proceedings of The 33rd International Conference
on Machine Learning, 2016, pp. 314–323.

[43] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro,
“Robust stochastic approximation approach to stochas-
tic programming,” SIAM Journal on optimization, vol. 19,
no. 4, pp. 1574–1609, 2009.

[44] Y. Nesterov, Introductory lectures on convex optimization:
A basic course. Springer Science & Business Media,
2013, vol. 87.

[45] C. Nvidia, “Nvidia cuda c programming guide,” N-
VIDIA Corporation, vol. 120, p. 18, 2011.

[46] S. D. Babacan, M. Luessi, R. Molina, and A. K. Kat-
saggelos, “Sparse bayesian methods for low-rank ma-
trix estimation,” IEEE Transactions on Signal Processing,
vol. 60, no. 8, pp. 3964–3977, 2012.

[47] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic
gradient boosted distributed decision trees,” in Pro-
ceedings of the 18th ACM conference on Information and
knowledge management. ACM, 2009, pp. 2061–2064.

[48] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scal-
able parallel programming with cuda,” Queue, vol. 6,
no. 2, pp. 40–53, 2008.

[49] E. Hazan et al., “Introduction to online convex op-
timization,” Foundations and Trends R© in Optimization,

vol. 2, no. 3-4, pp. 157–325, 2016.

Hao Li is currently working toward the Ph.D.
degree at Hunan University, China. His research
interests are mainly in large-scale sparse matrix
and tensor factorization, recommender systems,
social network, data mining, machine learning,
and GPU and multi-GPU computing.

Kenli Li received the Ph.D. degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a vis-
iting scholar at University of Illinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and deputy director of
National Supercomputing Center in Changsha.
His major research areas include parallel com-
puting, high-performance computing, grid and
cloud computing. He has published more than

130 research papers in international conferences and journals such
as IEEE-TC, IEEE-TPDS, IEEE-TSP, JPDC, ICPP, CCGrid. He is an
outstanding member of CCF. He is a senior member of the IEEE and
serves on the editorial board of IEEE Transactions on Computers.

Jiyao An received the Ph.D. degree in Mechan-
ical Engineering from Hunan University, China,
in 2012. He was a Visiting Scholar with the De-
partment of Applied Mathematics, University of
Waterloo, Ontario, Canada. He is currently a full
Professor in the College of Computer Science
and Electronic Engineering in Hunan University,
Changsha, China. His research interests include
Cyber-Physical Systems (CPS), Takagi-Sugeno
fuzzy systems, Parallel and Distributed Com-
puting, and Computational Intelligence. He has

publish more than 50 papers in international and domestic journals and
refereed conference papers. He is a member of the IEEE and ACM,
and a senior member of CCF. He is an active reviewer of international
journals.

Keqin Li is a SUNY Distinguished Professor
of computer science. His current research in-
terests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems. He has published
over 480 journal articles, book chapters, and
refereed conference papers, and has received

several best paper awards. He is currently or has served on the editorial
boards of IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, IEEE Transactions on Cloud Computing,
IEEE Transactions on Services Computing, and IEEE Transactions on
Sustainable Computing. He is an IEEE Fellow.


