
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022 437

An Online and Scalable Model for Generalized
Sparse Nonnegative Matrix Factorization in

Industrial Applications on Multi-GPU
Hao Li , Kenli Li , Senior Member, IEEE, Jiyao An , Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Generalized sparse nonnegative matrix factor-
ization (SNMF) has been proven useful in extracting infor-
mation and representing sparse data with various types of
probabilistic distributions from industrial applications, e.g.,
recommender systems and social networks.However, cur-
rent solution approaches for generalized SNMF are based
on the manipulation of whole sparse matrices and fac-
tor matrices, which will result in large-scale intermediate
data.Thus, these approaches cannot describe the high-
dimensional and sparse matrices in mainstream indus-
trial and big data platforms, e.g., graphics processing unit
(GPU) and multi-GPU, in an online and scalable manner.
To overcome these issues, an online, scalable, and single-
thread-based SNMF for CUDA parallelization on GPU (CUS-
NMF) and multi-GPU (MCUSNMF) is proposed in this article.
First, theoretical derivation is conducted, which demon-
strates that the CUSNMF depends only on the products and
sums of the involved feature tuples. Next, the compactness,
which can follow the sparsity pattern of sparse matrices,
endows the CUSNMF with online learning capability and
the fine granularity gives it high parallelization potential
on GPU and multi-GPU. Finally, the performance results
on several real industrial datasets demonstrate the linear
scalability of the time overhead and the space requirement
and the validity of the extension to online learning. More-
over, CUSNMF obtains speedup of 7X on a P100 GPU com-
pared to that of the state-of-the-art parallel approaches on
a shared memory platform.

Index Terms—Big data and industrial applications,
graphics processing unit (GPU) and multi-GPU, generalized

Manuscript received August 2, 2018; revised November 5, 2018; ac-
cepted January 15, 2019. Date of publication January 31, 2019; date
of current version September 29, 2021. This research was supported
in part by the National Key Research and Development Program of
China under Grant 2016YFB0201303 and Grant SQ2018YFB020061,
in part by the National Outstanding Youth Science Program of the
National Natural Science Foundation of China under Grant 61625202,
in part by the Natural Science Foundation of Hunan Province, China
under Grant 2018JJ2063, in part by the Program of National Natural
Science Foundation of China under Grant 61751204, and in part by the
International (Regional) Cooperation and Exchange Program of National
Natural Science Foundation of China under Grant 61661146006 and
Grant 61860206011. Paper no. TII-18-2021. (Corresponding author:
Kenli Li.)

Hao Li, Kenli Li, and Jiyao An are with the College of Com-
puter Science and Electronic Engineering, Hunan University, Changsha
410082, China, and also with National Supercomputing Center, Chang-
sha 410082, China (e-mail: lihao123@hnu.edu.cn; lkl@hnu.edu.cn;
jt_anbob@hnu.edu.cn).

Keqin Li is with the Department of Computer Science, State Univer-
sity of New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2019.2896634.

Digital Object Identifier 10.1109/TII.2019.2896634

divergence styles, online learning, recommender systems
and social networks, single-thread-based model, sparse
nonnegative matrix factorization (SNMF).

I. INTRODUCTION

FACING data explosion problems in the era of big data,
the techniques for real-time and accurate analysis and

their scalability to big data and industrial platforms have been
explored perseveringly and extensively [1]–[3]. Dimensionality
reduction is a widely used model in big data representation,
analysis, modeling, and monitoring [4] because it is a simple
approach that can be used to represent various types of data and
can extract the core information from big data [5]. Nonnegative
matrix factorization (NMF) has become one of the most popular
models for dimensionality reduction over the past few decades
due to the properties of various data types, such as low rank and
nonnegativity. This approach factorizes the original matrix into
two low-rank factor matrices with nonnegativity constraints, and
the two factor matrices are combined to represent the original
matrix [6]–[10].

The NMF can approximate the original matrix under low-
rank and nonnegativity constraints and can represent various
types of probabilistic distributions via maximum likelihood,
which is equivalent to solving various divergence minimization
problems, e.g., Euclidean distance, Kullback–Leibler (KL), and
Itakura-Saito (IS) divergence [11]–[15]. Lee et al. [16] proposed
using NMF to approximate a face image via multiplicative
update (MU) with nonnegative initialization factor matrices
to minimize the Euclidean distance and the KL divergence.
Thus, the training process of the NMF involves only solving
the corresponding optimization problem for a distribution style
and updating the factor matrices, which is equivalent to solving
a generalized NMF model. After that, the NMF plays a sub-
stantial role in hyperspectral image processing [6], [7], image
clustering [8], [9], [15], [17], etc.; in such cases, it is called
dense NMF (DNMF) because the input data are in the form of a
dense matrix and the dataset is of small scale, e.g., COLT20
(1440× 1024) or PIE (2856× 1024). Currently, performing
DNMF in mainstream code libraries, e.g., MATLAB, Open-
BLAS in C, Numpy in Python, and Armadillo in C++, involves
frequent manipulations of matrices. Those libraries can support
manipulations of small matrices on a single server. However, for
large-scale datasets, the intermediate generated matrices may

1551-3203 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2989-0679
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-9439-9563
https://orcid.org/0000-0001-5224-4048
mailto:lihao123@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:jt_anbob@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1109/TII.2019.2896634

438 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

result in memory overload. Hence, those libraries must utilize
the big data and industrial platforms.

With the rapidly increasing numbers of netizens, commodi-
ties, and network nodes, the relationships among those entities
are of the extremely sparse and large-scale form [18]–[20] due
to missing information and can be modeled as high-dimensional
and sparse (HiDS) matrices intuitively. Several proposed ap-
proaches extract the data features from the HiDS matrices us-
ing dimension reduction, including Bayesian and autoencoder
approaches in deep-learning communities [21], the kernel ap-
proach [22], and sparse NMF (SNMF). The Bayesian, autoen-
coder, and kernel methods are nonlinear dimension reduction
approaches. Compared to the SNMF, the three approaches can
extract more accurate features but require much higher time
overhead. The SNMF is a linear approach for dimension re-
duction, which can realize a balance between time overhead and
accuracy. The main difference between the SNMF and DNMF
is that the DNMF considers the whole original matrix via the
approximation matrix; however, the SNMF updates the two
factor matrices by the observed nonzero elements and should
distinguish between the observed and unobserved elements,
which requires additional matrices and operations [23], [24].
Thus, the SNMF can be used to analyze the users’ preferences
for commodities in recommender systems [25]; facilitate analy-
sis in bioinformatics [26], [27]; identify potential relationships
among users and detect communities in social networks [28],
[29]; detect outliers in massive text data, which can facilitate
the identification of rumors in Internet environments [30]; and
quickly detect anomalies among network nodes in industrial
applications [31] based on historical HiDS matrices. Those ap-
plications provide important motivation to improve the accuracy
and to model data to obtain useful information, which makes
substantial contributions to the SNMF via dimension reduction;
however, operation when the local server cannot accommodate
full HiDS matrices is not considered. Thus, the main motivation
of this work is to realize a scalable, fine-grained parallelizing
model for the generalized SNMF that caters to the computational
characteristics of industrial platforms.

Satisfying the requirements of real-time performances and ac-
curate processing results for big data requires suitable industrial
platforms and mathematical models. Recently, the U.S. Summit
strikes back to the top supercomputer [32], which consists of
27648 Tesla V100 GPUs, 9216 IBM Power CPUs, and 10 PB
memory. This situation implies the following.

1) In the era of big data, high-capacity and high-speed
processors are required to obtain real-time analysis
results [33], [34].

2) The processing approach should be well suited to the com-
putation structures of big data and industrial platforms so
that it can obtain optimal performance [35]–[37].

The graphics processing unit (GPU) performs well for stream-
like and fine-grained processing styles [38], [39], and the two
mainstream big data and industrial platforms, namely, Spark
and Flink, performs well for stream-like computations [40]–
[43]. Thus, Spark, Flink, and GPU can complement one another.
However, current parallel and distributed models for the SNMF
involve only the basic optimization approaches [44], such as
gradient descent (GD), alternative least square (ALS) [45]–[47],

coordinate cyclic descent (CCD) [48], [49], and MU [11], [50].
We observe the following:

1) in addition to the HiDS matrices, many acquired datasets
from big data include other information, such as geo-
graphical and temporal-spatio attributes [51], [52];

2) many acceleration algorithms have been developed, such
as alternative direction multiplier method (ADMM) and
the Nesterov approach [53];

3) the massive volume of big data requires sufficient memory
capacity on distributed nodes, and the emerging edge
computing approach collects data on local nodes directly;

4) parallel and distributed models do not take into account
the variety of big data.

However, current solution approaches for parallel models do
not integrate with acceleration algorithms and online learning
on an incremental manner and require frequent manipulations
of HiDS matrices and low-rank matrices, which will result in
intermediate data explosion problems; at the same time, frequent
communication patterns, which are due to iterative nature of
current algorithms, and quadratic communication overhead pre-
vent the distributed approaches from obtaining high efficiency
[54]–[59].

To overcome the aforementioned problems, a single-thread-
based model for the generalized SNMF is proposed, which can
transform whole factor matrix manipulations into the constituent
feature element operations and is amenable to fine-grained par-
allelization. To the best of our knowledge, this is the first work
that realizes linear scalability, online learning, and GPU and
multi-GPU parallelization for the generalized SNMF. The main
contributions of this work are as follows:

1) we present a theoretical derivation and proof of linear
time complexity and space requirements for the single-
thread-based model;

2) we demonstrate that the streamline-like style of the single-
thread-based model gives the generalized SNMF online
manner capability with linear scalability;

3) the fine-grained parallelizability enables the single-
thread-based model to be extended to CUDA paral-
lelization on GPU (CUSNMF) and multi-GPU (MCUS-
NMF), with linear time complexity and communication
overhead.

The remainder of this article is organized as follows. Section II
presents the preliminaries. Section III introduces the single-
thread-based model for generalized SNMF, online learning,
CUSNMF, and MCUSNMF. Section IV discusses experimental
results. Finally, Section V concludes this article.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem and Notations

In this section, the main notations include the matrices and
vectors, along with their basic elements and basic operations,
and the compressed format of sparse matrices (in Table I).

Definition 1 (SNMF): Given a HiDS matrix V ∈ Rm×n
+ and

a divergence function D(PΩ(V)‖PΩ(Ṽ)), which evaluates the
distance between the two specified matrices on the nonzero
elements, where PΩ is the projection operator on the index set,
which is denoted byΩ. The SNMF problem is to findW∈Rm×r

+

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE AND SCALABLE MODEL FOR GSNNM FACTORIZATION IN INDUSTRIAL APPLICATIONS ON MULTI-GPU 439

TABLE I
TABLE OF SYMBOLS

and H ∈ Rn×r
+ such that D(PΩ(V)‖PΩ(Ṽ)) is minimized,

where Ṽ = WHT .
A probabilistic interpretation of the SNMF is to con-

sider vi,j an observation from a distribution. When we
take vi,j ∼ Gaussian(ṽi,j , σ2), vi,j ∼ Poisson(ṽi,j), and vi,j ∼
Exponential(ṽi,j), the three maximum-likelihood problems be-
come minimization problems of the Euclidean distance (DEu),
KL-divergence (DKL), and IS-divergence (DKL), which are
widely used [11]–[16], and defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

argminW,H dEu = ‖PΩ(V)− PΩ(Ṽ)‖2

argminW,H dKL=
∑

Ω

(
PΩ(Ṽ)− PΩ(V) ◦ log(PΩ(Ṽ)

))
argminW,H dIS =

∑
Ω

(
PΩ(V)

PΩ(Ṽ)
+ log(PΩ(Ṽ))

)
(1)

respectively, with nonnegativity constraints W,H ≥ 0, where
ṽi,j =

∑r−1
k=0 wi,khj,k.

B. MU for Generalized SNMF

The three optimization problems in (1) are nonconvex; how-
ever, when W is fixed, the Bregman divergence with a con-
vex function can be minimized to update H; this alternative
optimization approach can be used to solve the three optimiza-
tion problems and vice versa [6]–[16]. We observe that when
V = Ṽ, the value of the Bregman divergence function is 0.
In the collaborative filtering (CF) problems, V is sparse and
the distribution of nonzero entries is nonuniform. To adopt
the sparse matrix factorization to the CF problem, an indicator
matrix of the weighted NMF (WNMF) is introduced [11], [23],
[24]. Applying GD and omitting the negative items with guaran-
teed convergence [6]–[16], the update rules for the generalized
SNMF of DEu, DKL, and DIS are as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W←W ◦ VH

(G◦Ṽ)H
,H← H ◦ VTW

(G◦Ṽ)TW

W←W ◦
(G◦V

Ṽ
)H

GH ,H← H ◦
(G◦V

Ṽ
)TW

GTW

W←W ◦
(G◦ V

Ṽ2
)H

(G◦ 1

Ṽ
)H

,H← H ◦
(G◦ V

Ṽ2
)TW

(G◦ 1

Ṽ
)TW

(2)

respectively, where G ∈ Rm×n, Gi,j = 1, if (i, j) ∈ Ω, and
Gi,j = 0, if (i, j) /∈ Ω. This update rule can be applied to the
SNMF; however the manipulation of the HiDS matrices and
factor matrices will result in the following problems.

1) Intermediate data explosion: The time and space
complexities for {G ◦ (WHT),G ◦ V

WHT ,G ◦
V

(WHT)2 ,G ◦ 1
WHT } are O(|Ω|r) and O(|Ω|),

respectively.
2) Online learning obstruction: When new entries are added

into the HiDS matrix, the current update rule (2) must
be reconstructed. The number of new elements is smaller
than the number of old ones [54]–[59]. When the update
rules (2) are applied to online problems, the time com-
plexity is not scalable with the number of new entries.

C. Solution Approaches for the Euclidean Distance (DEu)

The solution approaches for the minimization of DEu in (1)
with L2 regularization include GD, ALS, MU, and CCD [45]–
[50]. The main differences among the four approaches are the
choice of training step and the number of training parameters of
a feature vector. DEu with L2 regularization is given by

dEu =
∑

(i,j)∈Ω
(vi,j − ṽi,j)

2 + λW‖W‖2
F + λH‖H‖2

F (3)

where ‖ • ‖F is the Frobenius norm. dEu can be split
into many independent subproblems: dEu =

∑m−1
i=0 (dEu)i

anddEu =
∑n−1

j=0(dEu)j , where (dEu)i =
∑

j∈Ωi
(vi,j − ṽi,j)

2 +

λW‖wi‖2
F , and (dEu)j =

∑
i∈Ωj

(vi,j − ṽi,j)
2 + λH‖hj‖2

F .
The gradient is given by ∂(dEu)i/∂wi = wiBi − ci and
(dEu)j/∂hj = hjBj − cj , where Bi =

∑
j∈Ωi

hT
j hj + λWIr

and Bj =
∑

i∈Ωj
wT

i wi + λHIr, and ci =
∑

j∈Ωi
vi,jhj and

cj =
∑

i∈Ωj
vi,jwi. Ir is the r by r identity matrix.

1) Alternative Least Square (ALS): When the gradients
{∂(dEu)i/∂wi, (dEu)j/∂hj} are set to 0, we can determine the
optimal training parameters [45]–[47]. The update rule for the
ALS is formulated as

wi ← ciB
−1
i ;hj ← cjB

−1
j . (4)

Updating a row wi of the factor matrix W, for example,
using (4), involves taking O(|Ωi|(r + r2) + r3), which consists
of O(|Ωi|r), to calculate

∑
j∈Ωi

vi,jhj for all the entries in
Ωi, O(|Ωi|r2) to build Bi, and O(r3) to obtain B−1

i . Thus,
updating every row of the two factor matrices, namely, {W,H},
which corresponds to a full ALS per training epoch, utilizes
O(2|Ω|(r + r2) + (m+ n)r3).

2) Multiplicative Update (MU): The update rule of MU is
derived from GD [16]. With nonnegative initial W and H and
autoadjusted training steps, the update rule can make the distance
between V and Ṽ monotonically decreasing and ensure that
the nonnegativity constraints are satisfied for factor matrices
{W,H}. There are two main approaches to utilizing MU for
SNMF, which are as follows.

a) Autoadjusted training steps: The alternative ap-
proach of GD on {wi, hj} are given by⎧⎪⎪⎨⎪⎪⎩

wi ← wi + γW ◦
(
ci − wiBi

)
hj ← hj + γH ◦

(
cj − hjBj

)
.

(5)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

440 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

respectively. If the training step is set as {γW =
hj/(wiBi), γH = wi/(hjBj)}, the negative items, namely,
{wiBi, hjBj}, in the update rule (5) of GD can be cancelled
out.

b) Fitting with a quadratic function: The Taylor
expansion of fitting functions FEu(wi, w

t
i) for approximating

dEu(wi) is given by FEu(wi, w
t
i) = (dEu)i(w

t
i) + (wi −

wt
i)(∂(dEu)i/∂wi)

T + 1
2 (wi − wt

i)K(wi)(wi − wt
i)

T , where
K(wi) are diagonal matrices with K(wi)k,k = (wiBi)k/wi,k.
FEu(w

t
i , w

t
i) = (dEu)i(w

t
i) and FEu(wi, w

t
i) > (dEu)i(wi)

elsewhere. In addition, FEu(wi, w
t
i) is a strictly convex function.

The optimal point, namely, wo
i , for FEu(wi, w

t
i), which satisfy

∂F (wo
i , w

t
i)/∂w

o
i = 0, yields FEu(w

o
i , w

t
i) ≤ FEu(w

t
i , w

t
i).

Thus, the monotonic decrease, which is expressed as
(dEu)i(w

o
i) ≤ (dEu)i(w

t
i), and the nonnegativity constraints for

wi can be satisfied simultaneously [6]–[16]. By reversing the
analysis of W and H, using the approximate optimum, namely,
ho
j , which is obtained by the Taylor expansion of the fitting

function F Eu(hj , h
t
j) to approximate dEu(hj), the update rule

for MU can be obtained as follows:⎧⎪⎨⎪⎩
wo

i = wt
i ◦

∑
j∈Ωi

vi,jh
t
j

wt
iBi

ho
j = ht

j ◦
∑

i∈Ωj
vi,jw

t
i

ht
jBj

.
(6)

Updating row wi for the factor matrix W, for example, using
(6), requires O(|Ωi|(r + r2) + r2), which consists of O(|Ωi|r),
to calculate

∑
j∈Ωi

vi,jhj for all the entries in Ωi; O(|Ωi|r2) to
build Bi; and O(r2) to obtain wiBi. Thus, updating every row
of the two factor matrices {W,H}, which corresponds to a full
MU per training epoch, requiresO(2|Ω|(r + r2) + (m+ n)r2).

3) CCD++: RewritingdEu in (3) in element-wise form, where
‖W‖2

F =
∑m−1

i=0

∑r−1
k=0 w

2
i,k, ‖H‖2

F =
∑n−1

j=0

∑r−1
k=0 h

2
j,k, and

ṽi,j =
∑r−1

k=0 wi,khj,k, and applying the alternative approach
and GD on {wi,k, hj,k}, the update rules for CCD are obtained
as {

wi,k ← wi,k − γW
∂(dEu)i
∂wi,k

hj,k ← hj,k − γH
(dEu)j
∂hj,k

(7)

respectively, where γ is the learning rate and the gra-
dients {∂(dEu)i/∂wi,k, ∂(dEu)j/∂hj,k} without constant 2
are given by{∑j∈Ωi

(ṽi,j − vi,j)hj,k + λWwi,k,
∑

i∈Ωj
(ṽi,j −

vi,j)wi,k + λHhj,k}, respectively. Based on the defining fea-
tures of CCD, CCD++ updates (w1,h1) until (wr,hr) cyclically.
Updating {wk, hk} can be converted into updating {wk,i, hk,j},
respectively, in parallel [48]. The solutions for {wk, hk} are
reformulated as⎧⎪⎨⎪⎩

u←
∑

j∈Ωi
(vi,j−v̂i,j)hk,j

λW+
∑

j∈Ωi
h

2
k,j

, wk,i ← u

v ←
∑

j∈Ωi
(vi,j−v̂i,j)wk,i

λW+
∑

i∈Ωj
w2

k,i
, hk,j ← v

(8)

respectively, where v̂i,j = (ṽi,j − wk,ihk,j). CCD++ is a par-
allel approach on shared memory [48]. More recently, a paral-
lelization extension of CCD++ was presented on a GPU [49];
however, no research on multi-GPU has been carried out.

D. Summary

Due to the limited space, the summary section has been
removed to supplementary material.

III. SINGLE-THREAD-BASED GENERALIZED SNMF

In this section, a single-thread-based model for the general-
ized SNMF is proposed, which consists of the following parts:

1) Update process (see Section III-A): The update process
for each feature vector {wi, hj} moves along the index set,
which is denoted as {Ωi,Ωj}, and can cooperate with the re-
lated elements, namely, {{vi,j , hj |j ∈ Ωi}, {vi,j , wi|i ∈ Ωj}},
respectively. The process follows a streamline-like style, namely,
first-come-first-compute.

2) Online approach (see Section III-B): The streamline-
like style gives SNMF online learning capability with linear
scalability.

3) Extension to big data platforms (see Section III-
C): The fine-grained parallelizability enables the single-thread-
based model to be extended to GPU and multi-GPU with linear
communication overhead.

A. Single-Thread-Based Model

1) Update Rule: The element-wise form of (1) with L2 reg-
ularization can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argminwi,hj
dEu =

∑
(i,j)∈Ω(vi,j − ṽi,j)

2

+λW

∑r−1
k=0 w

2
i,k + λH

∑r−1
k=0 h

2
j,k

argminwi,hj
dKL =

∑
(i,j)∈Ω

(
ṽi,j − vi,j log(ṽi,j)

)
+λW

∑r−1
k=0 w

2
i,k + λH

∑r−1
k=0 h

2
j,k

argminwi,hj
dIS =

∑
(i,j)∈Ω

(
vi,j

ṽi,j
+ log(ṽi,j)

)
+λW

∑r−1
k=0 w

2
i,k + λH

∑r−1
k=0 h

2
j,k.

(9)

Similar to DEu in (3), the minimization problems for DKL

and DIS can be split into many independent subproblems,
dKL =

∑m−1
i=0 (dKL)i and

∑n−1
j=0(dKL)j , dIS =

∑m−1
i=0 (dIS)i

and
∑n−1

j=0(dIS)j , where (dKL)i =
∑

j∈Ωi
(vi,j − ṽi,j)

2 +∑r−1
k=0 w

2
i,k and (dIS)i =

∑
j∈Ωi

vi,j

ṽi,j
+ log(ṽi,j) +

∑r−1
k=0 w

2
i,k.

Applying GD on ∂(dEu)i/∂wi,k, ∂(dKL)i/∂wi,k, and
∂(dIS)i/∂wi,k without constant 2 are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

wi ← wi + γ
(∑

j∈Ωi
(vi,jhj,k − ṽi,jhj,k)− λWwi,k

)
wi ← wi + γ

(∑
j∈Ωi

(
vi,j

ṽi,j
hj,k − hj,k)− λWwi,k

)
wi ← wi + γ

(∑
j∈Ωi

(
vi,j

ṽ2
i,j
hj,k − hj,k

ṽi,j
)− λWwi,k

)
.

(10)
When the learning rate γ for {dEu, dKL, dIS} are set
as {wi

/
(
∑

j∈Ωi
ṽi,jhj,k + λWwi,k), wi

/
(
∑

j∈Ωi
hj,k +

λWwi,k), wi

/
(
∑

j∈Ωi

hj,k

ṽi,j
+ λWwi,k)}, respec-

tively [14], the negative terms {−(∑j∈Ωi
ṽi,jhj,k +

λWwi,k),−(
∑

j∈Ωi
hj,k + λWwi,k),−(

∑
j∈Ωi

hj,k

ṽi,j
+

λWwi,k)} can be cancelled out. By inverting W and H,
the similar conclusions are obtained. For simplification,
let the intermediate values {cEu

i,j,k, c
KL
i,j,k, c

IS
i,j,k} denote

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE AND SCALABLE MODEL FOR GSNNM FACTORIZATION IN INDUSTRIAL APPLICATIONS ON MULTI-GPU 441

{vi,jhj,k, (vi,j/ṽi,j)hj,k, (vi,j/ṽ
2
i,j)hj,k}, respectively, and

{dEu
i,j,k, d

KL
i,j,k, d

IS
i,j,k} denote {ṽi,jhj,k, hj,k, (hj,k/ṽi,j)},

respectively. Let the intermediate values {cEu
j,i,k, c

KL
j,i,k, c

IS
j,i,k}

denote { vi,jwi,k, (vi,j/ṽi,j)wi,k, (vi,j/ṽ2
i,j)wi,k }, respectively,

and {dEu
j,i,k, d

KL
j,i,k, d

IS
j,i,k} denote {ṽi,jwi,k, wi,k, (wi,k/ṽi,j)},

respectively. Thus, the update rules for {dEu, dKL, dIS} of the
single-thread-based model can be expressed in a generalized
form as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wi,k ←
wi,k

∑
j∈Ωi

ci,j,k

∑
j∈Ωi

di,j,k+λWwi,k

hj,k ←
hj,k

∑
i∈Ωj

cj,i,k

∑
i∈Ωj

dj,i,k+λHhj,k

(11)

where parameters {ci,j,k, di,j,k} are the generalized form
of {{cEu

i,j,k, c
KL
i,j,k, c

IS
i,j,k}, {dEu

i,j,k, d
KL
i,j,k, d

IS
i,j,k}}, respec-

tively, and {cj,i,k, dj,i,k} are the generalized form of

{{cEu
j,i,k, c

KL
j,i,k, c

IS
j,i,k}, {d

Eu
j,i,k, d

KL
j,i,k, d

IS
j,i,k}}, respectively. The

serial version of the single-thread-based model is described in
Algorithm 1. According to Algorithm 1, the single-thread-based
model is transformed from the manipulations of the HiDS matrix
and factor matrix to intermediate parameter operations and
follows the order in Ωi and Ωj , which is the stream-like
computation style.

2) Complexity Analysis: Theorem 1 (Time complexity of Al-
gorithm 1 per training epoch): The time complexity of the
single-thread-based model (Algorithm 1) is O

(
6|Ω|r +mr +

nr
)
.

Proof: The proof is omitted due to space limitation.
Theorem 2 (Space complexity of Algorithm 1): The space

complexity of the single-thread-based model (Algorithm 1) is
O
(
2|Ω|+mr + nr + 2max(m,n)r

)
.

Proof: The proof is omitted due to space limitation.
Theorem 3 (Space complexity of CUSNMF): The space com-

plexity of CUSNMF is O
(
2|Ω|+mr + nr

)
.

Proof: The space complexity of the row and column com-
pressed formats for the HiDS matrix V is O(2|Ω|). The space
complexities of the factor matrices W and H are O(mr) and
O(nr), respectively. In CUSNMF, the update tasks of the m
feature vectors, namely, {wi|i ∈ {0, . . . ,m− 1}}, and the n
feature vectors, namely, {hj |j ∈ {0, . . . , n− 1}}, are allocated
to theTbCUDA thread blocks and thekth CUDA thread within a
thread block updates {wi,k, hj,k}. {Downj,k, Upj,k} are stored
in local memory in the kth CUDA thread and

∑r−1
k=0 wi,khj,k can

be solved by shared memory. More details will be presented in
Section III-C. W, H, and the compressed format of the HiDS
matrix V lie in global memory in CUSNMF. Thus, the space
complexity of CUSNMF is O

(
2|Ω|+mr + nr

)
.

3) Model Comparison: The comparisons are as follows.
a) Comparison with the model in Section II-B:

The single-thread-based model can avoid forming inter-
mediate matrices {G ◦ (WHT),G ◦ V

WHT ,G ◦ V
(WHT)2 ,G ◦

1
WHT }. Thus, the space complexity can be reduced from
O(6|Ω|+mr + nr + 2max(m,n)r) to O(2|Ω|+mr + nr +
2max(m,n)r).

b) Comparison with MU in Section II-C2: The single-
thread-based model for DEu can avoid forming interme-
diate Hessian matrices {{Bi|i ∈ {0, . . . ,m− 1}}, {Bj |j ∈
{0, . . . , n− 1}}} and has the same function as in the original
approach of MU. The time complexity can be reduced from
O(2|Ω|(r + r2) + (m+ n)r2) to O

(
6|Ω|r +mr + nr

)
. Thus,

the single-thread-based model has linear time complexity.
c) Comparison with CCD++ in Section II-C3: The

single-thread-based model and CCD++ are derived from GD
and the basic update element of the update rule only involves
a feature element with in a feature vector. In addition, the
single-thread-based model is a revised version of MU, which
takes advantage of the convexity of the Bregman divergence
function, e.g., dEu, dKL, and dIS [11]–[16], [23], [24]. Thus, the
update process of each feature element within a feature vector
takes the other feature elements information into consideration
for the single-thread-based model. However, CCD++ is based on
CCD and separate the correlations among those feature elements
within a feature vector.

B. Online Learning

In this section, online learning in an incremental manner for
the single-thread-based model is presented. The model of online
learning in the DNMF [57]–[59] involves the reconstruction of
Hessian matrices in an incremental manner. The extension from

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

442 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

the static single-thread-based model to the dynamic and online
learning model obeys the basic principle of the DNMF [57]–[59]
to ensure the accuracy; meanwhile, it can avoid the reconstruc-
tion and inverse operations of Hessian matrices, which can
extend the idea of the online learning in the DNMF [57]–[59]
to SNMF with linear scalability. Without loss of generality,
we follow the assumption [51],[56]–[59] that the row length
(the number of users) is growing over time in CF problems,
while the column size (the number of items) is constant over
time. We briefly introduce new notations for online learning.

An HiDS online matrix V ∈ R(mt+mt+1)×n
+ is used for time

from t to t+ 1, where V is expanded from Vt ∈ R(mt)×n
+ by

appending a new block of dataVt+1 ∈ R(mt+1)×n
+ . {Ωt,Ω

t} and

{Ωt
i,Ω

t
j} are the corresponding index sets for Vt. {Ωt+1,Ω

t+1}
and {Ωt+1

i ,Ω
t+1
j } are the corresponding index sets for Vt+1.

Considering that in most online systems, the size of the incoming
data at time t+ 1 is usually much smaller than that of the current
data before time t. Thus, we assume mt+1 	 mt. The online
SNMF finds the temporal factor matrices Wt+1 for time t+ 1,
which are based on the matrices {Vt+1,Wt+1,H}, where
Wt ∈ Rmt×r

+ andWt+1 ∈ Rmt+1×r
+ , to update the nontemporal

H by {Vt,Vt+1,Wt,Wt+1,H} in a linearly scalable manner.
The approximation function of the online problem is given by
D(V‖Ṽ) = D(Vt‖Ṽt) + ηD(Vt+1‖Ṽt+1), where η is the in-
fluence factor, which can measure the influence of the incoming
elements at time t+ 1.

1) Update Temporal Factor Matrix W: By fixing H, we
assume that the divergence D(Vt‖Ṽt) is minimized and the
factor matrices {Wt,H} are updated. Thus, updating Wt+1

is equivalent to minimizing D(Vt+1‖Ṽt+1). As a result, W is
updated by appending the projection Wt+1 of Vt+1 via loading
the factor matrices H of the previous time step. The update rule
for Wt+1 in element-wise form for online learning is given by

wt+1
i,k ←

wt+1
i,k

∑
j∈Ωt+1

i
ct+1
i,j,k∑

j∈Ωt+1
i

dt+1
i,j,k + λWwt+1

i,k

(12)

where (i, j) ∈ Ωt+1 and ṽt+1
i,j =

∑r−1
k=0 w

t+1
i,k hj,k. The inter-

mediate parameters {ct+1
i,j,k, d

t+1
i,j,k} are chosen according to

the divergence type. For {DEu,DKL,DIS}, ct+1
i,j,k are de-

noted as {vt+1
i,j hj,k, (v

t+1
i,j /ṽt+1

i,j)hj,k, (vt+1
i,j /(ṽt+1

i,j)2)hj,k}, re-

spectively, and dt+1
i,j,k for {DEu,DKL,DIS} are denoted as

{ṽt+1
i,j hj,k, hj,k, (hj,k/ṽ

t+1
i,j)}, respectively.

2) Update Nontemporal Factor Matrix H: We rewrite the
online problem as

argmin
hj

dj(hj) =
∑
i∈Ωt

j

D(vti,j‖ṽti,j) + η
∑

i∈Ωt+1
j

D(vt+1
i,j ‖ṽt+1

i,j)

+ λH‖hj‖2
F

(13)

Fig. 1. Toy example of CUSNMF.

whereD(vi,j‖ṽi,j) for {DEu,DKL,DIS} are denoted as {(vi,j −
ṽi,j)

2, ṽi,j − vi,j log(ṽi,j),
vi,j

ṽi,j
+ log(ṽi,j) }, respectively. Ap-

plying GD to minimize the error dj(hj) can be written as

hj ← hj + γW

(∑
i∈Ωt

j

ctj,i,k + η
∑

i∈Ωt+1
j

ct+1
j,i,k

− (
∑
i∈Ωt

j

d
t
j,i,k + η

∑
i∈Ωt+1

j

d
t+1
j,i,k + λHhj,k)

)
(14)

where ct+1
j,i,k are denoted as {vt+1

i,j wt+1
i,k , (vt+1

i,j /ṽt+1
i,j)wt+1

i,k ,

(vt+1
i,j /(ṽt+1

i,j)2)wt+1
i,k }, respectively, for {DEu,DKL,DIS}; dt+1

j,i,k

are denoted as {ṽt+1
i,j wt+1

i,k , wt+1
i,k , (wt+1

i,k /ṽt+1
i,j)}, respec-

tively, for {DEu,DKL,DIS}. When the learning rate γH is set

as hj

/
(
∑

i∈Ωt

j
d
t
j,i,k + η

∑
i∈Ωt+1

j
d
t+1
j,i,k + λHhj,k), the nega-

tive terms−(∑
i∈Ωt

j
d
t
j,i,k + η

∑
i∈Ωt+1

j
d
t+1
j,i,k + λHhj,k) can be

cancelled out. The update rule of H in element-wise form for
online learning for the single-thread-based model is given by

hj,k ← hj,k

∑
i∈Ωt

j
ctj,i,k + η

∑
i∈Ωt+1

j
ct+1
j,i,k∑

i∈Ωt

j

d
t
j,i,k + η

∑
i∈Ωt+1

j

d
t+1
j,i,k + λHhj,k

. (15)

C. CUSNMF and MCUSNMF

1) CUDA Parallelization: The single-thread-based model
gives the generalized SNMF fine-grained parallelizability. First,
according to Algorithm 1, the outer loop for updating W (Lines
2–10) can be divided intom independent parts and the outer loop
for updating H (Lines 12–20) can be divided into n independent
parts. Second, the precomputation of ṽi,j =

∑r−1
k=0 wi,khj,k can

be accomplished via the cooperation of the shared memory
within a thread block and the r threads within the thread block.
With the precomputed ṽi,j , the inner loop for updatingW (Lines
5–8) can be separated into r independent parts, and the inner
loop for updating H (Lines 15–18) can be separated into r
independent parts.

A toy example of CUSNMF is shown in Fig. 1. As Fig. 1 show,
the tasks for factorizing a sparse matrixV ∈ R8×8

+ into two factor
matrices, namely, W ∈ R8×2

+ and H ∈ R8×2
+ , are allocated to

eight thread blocks and a GPU has four SMs with two SPs per

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE AND SCALABLE MODEL FOR GSNNM FACTORIZATION IN INDUSTRIAL APPLICATIONS ON MULTI-GPU 443

Fig. 2. Toy example of MCUSNMF on four (CPU/GPU) nodes.

SM. Considering the updating of W as an example, a GPU
updates W, the eight feature vectors {w0, . . . , w7} are allocated
to the eight thread blocks {0, . . . , 7}, and the thread k within
thread block i updateswi,k. The eight thread blocks are allocated
to four SMs automatically by CUDA. Thus, the more SMs a GPU
has, the higher the computing speed of the GPU.

2) Multi-GPU Model: We extend CUSNMF to MCUSNMF
when size a dataset may exceed the memory capacity of a single
GPU. The data partition on multi-GPU utilizes the maximal
locality of the HiDS matrix V, which can minimize the commu-
nication overhead, which is the same as that of HPC-NMF [50].
However, the communication overhead of MCUSNMF is much
lower than of HPC-NMF. Given p× q GPUs, we divide V
into p parts, i.e., {V0, . . . ,Vp−1} by row, and the lth part
of Vl is divided into q subparts, i.e., {Vl,0, . . . ,Vl,q−1}. We
divide W into p parts, i.e., {W0, . . . ,Wp−1}, and the lth
part of Wl is divided into q parts, i.e., {Wl,0, . . . ,Wl,q−1}.
We divide H into q parts, i.e., {H0, . . . ,Hq−1}, and the oth
part of Ho is divided into p parts, i.e., {Ho,0, . . . ,Ho,p−1}.
Then, we load {Wl, Ho,Vl,o} to GPU l,o in the initial step.
Taking updating W as an example, each GPU l,o computes
local intermediate parameters {Upl, Downl} and sends the
local intermediate parameters {Upl,o, Downl,o} to GPU l,o,
where o ∈ {0, . . . , q − 1}. However, HPC-NMF and cuMF [45]
must compute and send each local Hessian Bi to other nodes;
thus, MCUSNMF can reduce the communication overhead from
O(m q−1

q r2 + np−1
p r2) to O(m q−1

q r + np−1
p r).

A toy example of MCUSNMF is shown in Fig. 2. Ac-
cording to Fig. 2, the local matrices {{V0,0,W0,H0},
{V0,1,W0,H1}, {V1,0,W1,H0}, {V1,1,W1,H1}} are allo-
cated to {GPU0,0, GPU0,1, GPU1,0, GPU1,1}, respectively.
We take updating W as an example. {GPU0,1, GPU0,0} send
intermediate parameters {{Up0, Up1}, {Down0, Down1}} and
{{Up2, Up3}, {Down2, Down3}} to {GPU0,0, GPU0,1}, re-
spectively, to update W0. {GPU1,1, GPU1,0} send inter-
mediate parameters {{Up4, Up5}, {Down4, Down5}} and
{{Up6, Up7}, {Down6, Down7}} to {GPU1,0, GPU1,1}, re-
spectively, to update W1.

IV. EXPERIMENTS

The experimental settings are presented in supplementary ma-
terial. We performed experiments with the objective answering
the following questions.

TABLE II
OCCUPANCY OF CUSNMF ON P100 GPU WITH DOUBLE-PRECISION

FLOATING-POINT ARITHMETIC

1) Q1: Scalability (see Section IV-A). How does CUSNMF
scale with regard to various conditions, e.g., the rank of
the feature matrix or different input HiDS matrices?

2) Q2: Convergence (see Section IV-B). How quickly and
accurately do CUSNMF, cuMF, HPC-NMF, and CCD++
factorize the real-world HiDS matrices and how much
does MCUSNMF improve the speed of CUSNMF?

3) Q3: Online learning (see Section IV-C). What levels
of correctness and efficiency are achieved with online
learning?

A. Scalability

We denoteDEu,DKL, andDIS of generalized MU as GMUEu,
GMUKL, and GMUIS; DEu is denoted as MUEu; DEu, DKL,
and DIS of the single-thread-based model for the SNMF are
denoted as SNMFEu, SNMFKL, and SNMFIS; DEu, DKL, and
DIS of CUSNMF are denoted as CUSNMFEu, CUSNMFKL, and
CUSNMFIS; and similar for MCUSNMF.

The process of obtaining scalability on CPU and GPU in-
cludes the following:

1) the process of parameter selection for CUSNMF, which
refer to the GPU occupancy;

2) space requirements and running time of SNMFEu,
SNMFKL, and SNMFIS.

Choosing an appropriate value of r for the feature matrices
can guarantee the reasonable accuracy and reduce the training
time that is spent in the CF MF problems [25]. In our work,
because we focus on the GPU acceleration performance for
various value of r for feature matrices rather than on choosing
an appropriate value of r, we conduct five sets of experiments
with various values of r, e.g., r ∈ {32, 64, 128, 256, 512, 1024}
or log2(r) ∈ {5, 6, 7, 8, 9, 10}. GPU occupancy is the ratio of
the number of active threads to the total number of threads; high
occupancy means that the GPU is working with high efficiency.
In CUSNMF, a thread block has r threads and the number of
thread blocks is tunable, through which the occupancy can be
controlled. Table II lists the occupancy under various value
of r, namely, log2(r) ∈ {5, 6, 7, 8, 9, 10}, and we set the opti-
mal number of thread blocks as {1792, 1792, 896448, 224112},
which is the number of active thread block per SM multiplying
the number of SMs ({32, 32, 16, 8, 4, 2} · 56).

We measure the scalability of SNMFEu, SNMFKL, and
SNMFIS in terms of the rank of the feature matrices and the
scale of the input sparse matrix and we test the scalability with
regard to double-precision floating-point arithmetic. As shown
in Fig. 3, the memory requirements of SNMFEu, SNMFKL, and

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

444 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

Fig. 3. Memory scalability: (a) (MovieLens-1 M), (c) (MovieLens-
10 M), and (e) (Netflix-100 M). Running time scalability: (b) (MovieLens-
1 M), (d) (MovieLens-10 M), and (f) (Netflix-100 M) with respect to the
rank of the feature matrices r and the scale of the dataset.

SNMFIS [see Fig. 3(a), (c), and (e)] scale with r and the volume
of the datasets. With the same space requirement, Fig. 3(b),
(d), and (f) illustrates that the computational overhead increase
linearly with both r and the volume of the input sparse matrix.
Furthermore, SNMFEu adopts a convex optimization strategy
and transforms the Moore Inverses

(∑
j∈Ωi

hT
j hj + λWI)

)−1

and
(∑

i∈Ωj
wT

i wi + λHI)
)−1

into the diagonal matrix inverse

operationsK(wi)
−1 andK(hj)

−1, respectively (see Sections II-
C1 and II-C2). SNMFEu has the same function as MUEu and
linear computational complexity (see Section III-A1). Thus, as
Fig. 3(b), (d), and (f) shows, SNMFEu can reduce the cubic
overhead of the ALS and quadratic computational overhead of
MUEu to linear cost.

B. Convergence and Multi-GPU

We compare how quickly and accurately each method factor-
izes real-world HiDS matrices. Fig. 4(a), (c), and (e) illustrates
the running time versus RMSE. As Fig. 4(a), (c), and (e) shows,
in all datasets, the ALS converges fastest to the baseline accu-
racy, followed by SNMF Eu; CCD++ converges slowest. Because
the maximum value for the rank r of cuMF is r = 100, cuMF
accelerates the ALS on GPU, and runs 2X faster than CUSNMF
with rank r = 100; however, cuMF of ALS requires cubic time
complexity, and CUSNMF has much better linear scalability
than the ALS does, as discussed in Sections II-C1, II-C2, and
III-A. SNMFKL and SNMFIS cannot obtain comparable accuracy
to that of SNMFEu; we deduce that the probabilistic distributions

Fig. 4. Running time versus RMSE: (a) (MovieLens-1 M),
(c) (MovieLens-10 M), and (e) (Netflix-100 M). Multi-GPU performance:
(b) (MovieLens-1 M), (d) (MovieLens-10 M), and (f) (Netflix-100 M) for
rank r = 100.

of the three datasets are apt to G aussian distributions. In image
clustering communities, NMF inDKL outperforms NMF inDEu

[17].
We evaluate the performance of MCUSNMF on 4 P100 GPUs.

Multi-GPU can solve the problem that large-scale datasets can-
not be loaded onto a single GPU. MCUSNMF can maintain
the maximal locality of a submatrix, which can minimize the
communication overhead. According to Fig. 4(b), (d), and (f),
we conclude the following.

1) The reduced parallelism and unbalanced load of each
SMs, which is due to the irregular distribution of nonzero
entries in the rating matrix V, may cause some SMs to
be idle during the update process, which may lead to the
sublinear speedup.

2) The speedup of four GPUs versus one GPU increases
with the scale of the dataset, e.g., 3.7X on Movielen-1 M,
3.74X on Movielen-10 M and 3.76X on Netflix-100 M.

We conclude that the reason is because the ratio of the com-
munication overhead to the scale of the HiDS matrix is inversely
proportional to the scale of the HiDS matrix.

C. Online Learning

In online learning of a generalized SNMF, new data can be
projected into the low-rank space that has already been deter-
mined, and slight adjustments can be made. The computational
overhead is far less than that of the process of retraining on
the combined data. The Movielen and Netflix datasets contain
spatio-temporal information, and they give online learning for

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ONLINE AND SCALABLE MODEL FOR GSNNM FACTORIZATION IN INDUSTRIAL APPLICATIONS ON MULTI-GPU 445

TABLE III
INFLUENCE OF η ON SNMFEU IN OBTAINING A BASELINE RMSE

generalized SNMF real significance. Table III presents per-
formance comparisons between online learning and retraining
when new data are added into HiDS matrices. We observe that
with the trained low-rank factor matrices {Wt,H}, the update
process forWt+1 and slight adjustment forH require much less
time than that for CUSNMFEu on P100 GPU and SNMFEu on
OpenMP and obtain the same baseline accuracy value, which
demonstrates the efficiency and correctness of online learning.

V. CONCLUSION

A. Summary of the Single-Thread-Based Model

This article focused on designing a single-thread-based model
for generalized SNMF, which could decompose manipulations
of whole feature matrices into the involved feature element op-
erations and has fine-grained parallelizability inherence. Mean-
while, the model had a streamline-like computing style, which
could cater to the computing characteristics of the mainstream
big data and industrial platforms, e.g., GPU, Spark, and Flink.
Furthermore, the streamline-like computing style could real-
ize the online learning and fine-grained parallelization with
CUDA parallelization ability on GPU (CUSNMF) and multi-
GPU (MCUSNMF). CUSNMF achieved at least 7X speedup on
P100 GPU compared to that of SNMF, CCD++, and HPC-NMF
on OpenMP. cuMF, which accelerates the ALS on GPU, runs
2X faster than CUSNMF does with rank r = 100; however,
CUSNMF had the advantages of linear computational scalability
compared to the cubic complexity of cuMF.

B. Industrial Usage

Industrial informatization depends on the techniques maturity
of mathematical application and the promotion of industrial
platforms for big data analysis. Generalized SNMF is a useful
dimension reduction technique and plays an important role in
large-scale data analysis due to the identity for some styles of
data, i.e., low-rank, nonnegativity, sparsity, and various styles
of probabilistic distribution, over the past few decades [6]–
[16]. The generalized SNMF takes only the combination of
the two factor matrices to represent the original matrix for
clustering, missing value prediction, anomaly detection and has
been widely used in industrial informatics applications, e.g.,
bioinformatics, recommender systems, network traffic analysis,
social network analysis, etc., [18]–[24],[26]–[31]. The single-
thread-based model is an optimized generalized SNMF, and
the training process of it depends only on the involved feature
elements operations and has fine-grained parallelizing inher-
ence and streamline-like computing style, rather than the whole

large-scale matrices manipulations. Thus, it has the following
contributions for industrial informatics communities:

1) low space requirements, time complexity, and simplifica-
tion on programming;

2) the more convenience for implementation on big data and
industrial platforms, e.g., GPU, Spark, and Flink;

3) the potential on online learning for incremental data.

C. Future Work

We observe that, on the one hand, the real-world data in indus-
trial applications, e.g., bioinformatics, recommender systems,
and social networks, may include not only the HiDS matrix but
also other information, e.g., geographical and spatio-temporal
attributes or disease-associated information, [26], [27], [51],
[52]. Thus, to describe those data more accurately, regulariza-
tion items must be added into the optimization formulae, e.g.,
graph regularization on manifold learning or weight matrices
for implicit and explicit information [9], [15], [17], [26], [27],
[51], [52]. On the other hand, in optimization communities,
in addition to L2 regularization, other norm, e.g., spectral and
kernel norms, are commonly encountered [19], [31], [51]. How-
ever, the aforementioned operations will increase the memory
and computational overheads substantially. Thus, decreasing
the memory requirement and computational complexity can
simplify the computational process, and then, it can promote
the rapid development of NMF. More recently, deep learning is
a rapid emerging technique for CF problems, which can extract
the features of HiDS matrices in a nonlinear and deeper manner;
thus, it can obtain a higher accuracy than SNMF [21], [22];
however, it runs much longer than SNMF. Thus, we want to
explore the acceleration approach from the views of optimization
and parallel and distributed computing. Furthermore, the im-
plantation of MCUSNMF on Spark and Flink will be developed,
which can complement each other.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous review-
ers to improve the quality of this work.

REFERENCES

[1] I. Stoica, “Trends and challenges in big data processing,” Proc. VLDB
Endowment, vol. 9, no. 13, pp. 1619–1619, 2016.

[2] Z. Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, “Next-generation
big data analytics: State of the art, challenges, and future research topics,”
IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1891–1899, Aug. 2017.

[3] P. Basanta-Val, “An efficient industrial big-data engine,” IEEE Trans. Ind.
Informat., vol. 14, no. 4, pp. 1361–1369, Apr. 2018.

[4] J. Zhu, Z. Ge, and Z. Song, “Distributed parallel PCA for modeling and
monitoring of large-scale plant-wide processes with big data,” IEEE Trans.
Ind. Informat., vol. 13, no. 4, pp. 1877–1885, Aug. 2017.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

446 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

[5] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A tensor-based
approach for big data representation and dimensionality reduction,” IEEE
Trans. Emerg. Topics Comput., vol. 2, no. 3, pp. 280–291, Sep. 2014.

[6] J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, “Robust collaborative
nonnegative matrix factorization for hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 10, pp. 6076–6090, Oct. 2016.

[7] W. He, H. Zhang, and L. Zhang, “Sparsity-regularized robust non-negative
matrix factorization for hyperspectral unmixing,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4267–4279, Sep. 2016.

[8] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient
algorithmic framework for constrained matrix and tensor factorization,”
IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5052–5065, Oct. 2016.

[9] X. Li, G. Cui, and Y. Dong, “Graph regularized non-negative low-rank
matrix factorization for image clustering,” IEEE Trans. Cybern., vol. 47,
no. 11, pp. 3840–3853, Nov. 2017.

[10] H. Li, K. Li, J. An, W. Zheng, and K. Li, “An efficient manifold reg-
ularized sparse non-negative matrix factorization model for large-scale
recommender systems on GPUs,” Inf. Sci., 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025518305875

[11] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on
mapreduce,” in Proc. 19th Int. Conf. World Wide Web, 2010, pp. 681–690.

[12] S. Sra and I. S. Dhillon, “Generalized nonnegative matrix approximations
with Bregman divergences,” in Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 283–290.

[13] I. S. Dhillon and J. A. Tropp, “Matrix nearness problems with Bregman
divergences,” SIAM J. Matrix Anal. Appl., vol. 29, no. 4, pp. 1120–1146,
2008.

[14] Y. Yuan and X. Luo, “Performance of nonnegative latent factor models
with β-distance functions in recommender systems,” in Proc. IEEE 15th
Int. Conf. Netw., Sens. Control, 2018, pp. 1–7.

[15] H. Li, K. Li, J. An, and K. Li, “Cusntf: A scalable sparse non-negative
tensor factorization model for large-scale industrial applications on
multi-GPU,” in Proc. 27th ACM Int. Conf. Inf. Knowl. Manage, 2018,
pp. 1113–1122. [Online]. Available: http://doi.acm.org/10.1145/3269206.
3271749

[16] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factor-
ization,” in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556–562.

[17] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Manifold regularized discrimi-
native nonnegative matrix factorization with fast gradient descent,” IEEE
Trans. Image Process., vol. 20, no. 7, pp. 2030–2048, Jul. 2011.

[18] X. Luo et al., “An efficient second-order approach to factorize sparse
matrices in recommender systems,” IEEE Trans. Ind. Informat., vol. 11,
no. 4, pp. 946–956, Aug. 2015.

[19] K. Xie et al., “Recover corrupted data in sensor networks: A matrix
completion solution,” IEEE Trans. Mobile Comput., vol. 16, no. 5,
pp. 1434–1448, May 2017.

[20] E. Baccarelli, M. Scarpiniti, P. G. V. Naranjo, and L. Vaca-Cardenas, “Fog
of social IoT: When the fog becomes social,” IEEE Netw., vol. 32, no. 4,
pp. 68–80, Jul./Aug. 2018.

[21] H. Wang and D. Y. Yeung, “Towards Bayesian deep learning: A framework
and some existing methods,” IEEE Trans. Knowl. Data Eng., vol. 28,
no. 12, pp. 3395–3408, Dec. 2016.

[22] X. Luo, M. Zhou, S. Li, and M. Shang, “An inherently nonnegative latent
factor model for high-dimensional and sparse matrices from industrial
applications,” IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 2011–2022,
May 2018.

[23] S. Zhang, W. Wang, J. Ford, and F. Makdon, “Learning from incomplete
ratings using non-negative matrix factorization,” in Proc. SIAM Int. Conf.
Data Mining, 2006, pp. 43–47.

[24] Y.-D. Kim and S. Choi, “Weighted nonnegative matrix factorization,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2009, pp. 1541–
1544.

[25] A. Paterek, “Improving regularized singular value decomposition for
collaborative filtering,” in Proc. KDD Cup Workshop, 2007, pp. 5–8.

[26] A. Ezzat, P. Zhao, M. Wu, X.-L. Li, and C.-K. Kwoh, “Drug-target inter-
action prediction with graph regularized matrix factorization,” IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 14, no. 3, pp. 646–656, May–Jun. 2017.

[27] Y. Zhong et al., “A non-negative matrix factorization based method for pre-
dicting disease-associated miRNAs in miRNA-disease bilayer network,”
Bioinformatics, vol. 34, no. 2, pp. 267–277, 2018.

[28] X. Luo, J. Sun, Z. Wang, S. Li, and M. Shang, “Symmetric and non-
negative latent factor models for undirected, high dimensional and sparse
networks in industrial applications,” IEEE Trans. Ind. Informat., vol. 13,
no. 6, pp. pp. 3098–3107, Dec. 2017.

[29] M. Congosto, P. Basanta-Val, and L. Sanchez-Fernandez, “T-hoarder: A
framework to process twitter data streams,” J. Netw. Comput. Appl., vol. 83,
pp. 28–39, 2017.

[30] R. Kannan, H. Woo, C. C. Aggarwal, and H. Park, “Outlier detection for
text data,” in Proc. SIAM Int. Conf. Data Mining, 2017, pp. 489–497.

[31] G. Xie, K. Xie, J. Huang, X. Wang, Y. Chen, and J. Wen, “Fast low-rank
matrix approximation with locality sensitive hashing for quick anomaly
detection,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[32] D. Schneider, “Us supercomputing strikes back,” IEEE Spectr., vol. 55,
no. 1, pp. 52–53, Jan. 2018.

[33] P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, and N. Fernan-
dezgarcia, “Architecting time-critical big-data systems,” IEEE Trans. Big
Data, vol. 2, no. 4, pp. 310–324, Dec. 2016.

[34] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive
resource management for real-time vehicular cloud services,” IEEE Trans.
Cloud Comput., vol. 7, no. 1, pp. pp. 196–209, Jan.–Mar. 2019.

[35] M. T. Higuera-Toledano, “Java technologies for cyber-physical systems,”
IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 680–687, Apr. 2017.

[36] T. Higuera, J. L. R. Martin, P. Arroba, and J. L. Ayala, “Green adaptation
of real-time web services for industrial CPS within a cloud environment,”
IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1249–1256, Jun. 2017.

[37] N. Cordeschi, D. Amendola, and E. Baccarelli, “Reliable adaptive resource
management for cognitive cloud vehicular networks,” IEEE Trans. Veh.
Technol., vol. 64, no. 6, pp. 2528–2537, Jun. 2015.

[38] J. Wu, L. Deng, and G. Jeon, “Image autoregressive interpolation model
using GPU-parallel optimization,” IEEE Trans. Ind. Informat., vol. 14,
no. 2, pp. 426–436, Feb. 2018.

[39] Z.-H. Liu, X.-H. Li, L.-H. Wu, S.-W. Zhou, and K. Liu, “Gpu-accelerated
parallel coevolutionary algorithm for parameters identification and tem-
perature monitoring in permanent magnet synchronous machines,” IEEE
Trans. Ind. Informat., vol. 11, no. 5, pp. 1220–1230, Oct. 2015.

[40] P. Li, Y. Luo, N. Zhang, and Y. Cao, “Heterospark: A heterogeneous
CPU/GPU spark platform for machine learning algorithms,” in Proc. IEEE
Int. Conf. Netw., Architecture Storage, 2015, pp. 347–348.

[41] C. Chen, K. Li, A. Ouyang, and K. Li, “FlinkCL: An openCL-based in-
memory computing architecture on heterogeneous CPU-GPU clusters for
big data,” IEEE Trans. Comput., vol. 67, no. 12, pp. 1765–1779, Dec. 2018.

[42] M. Zaharia et al., “Apache spark: A unified engine for big data processing,”
Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[43] E. Baccarelli, N. Cordeschi, A. Mei, M. Panella, M. Shojafar, and J.
Stefa, “Energy-efficient dynamic traffic offloading and reconfiguration of
networked data centers for big data stream mobile computing: Review,
challenges, and a case study,” IEEE Netw., vol. 30, no. 2, pp. 54–61,
Mar./Apr. 2016.

[44] E. Karydi and K. Margaritis, “Parallel and distributed collaborative filter-
ing: A survey,” ACM Comput. Surv., vol. 49, no. 2, p. 37, 2016.

[45] W. Tan, L. Cao, and L. Fong, “Faster and cheaper: Parallelizing large-
scale matrix factorization on GPUs,” in Proc. 25th ACM Int. Symp. High-
Perform. Parallel Distrib. Comput., 2016, pp. 219–230.

[46] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale par-
allel collaborative filtering for the netflix prize,” in Algorithmic As-
pects in Information and Management. Berlin, Germany: Springer, 2008,
pp. 337–348.

[47] K. Shin, L. Sael, and U. Kang, “Fully scalable methods for distributed
tensor factorization,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1,
pp. 100–113, Jan. 2017.

[48] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, “Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems,” in
Proc. IEEE 12th Int. Conf. Data Mining, 2012, pp. 765–774.

[49] I. Nisa, A. Sukumaran-Rajam, R. Kunchum, and P. Sadayappan, “Parallel
CCD on GPU for matrix factorization,” in Proc. Gen. Purpose GPUs,
2017, pp. 73–83.

[50] R. Kannan, G. Ballard, and H. Park, “MPI-FAUN: An MPI-based frame-
work for alternating-updating nonnegative matrix factorization,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 544–558, Mar. 2018.

[51] L. Xu and M. Davenport, “Dynamic matrix recovery from incomplete
observations under an exact low-rank constraint,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 3585–3593.

[52] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “GeoMF:
Joint geographical modeling and matrix factorization for point-of-interest
recommendation,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2014, pp. 831–840.

[53] N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An optimal gradient
method for nonnegative matrix factorization,” IEEE Trans. Signal Pro-
cess., vol. 60, no. 6, pp. 2882–2898, Jun. 2012.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

http://www.sciencedirect.com/science/article/pii/S0020025518305875
http://doi.acm.org/10.1145/3269206.3271749

LI et al.: ONLINE AND SCALABLE MODEL FOR GSNNM FACTORIZATION IN INDUSTRIAL APPLICATIONS ON MULTI-GPU 447

[54] C. Chen et al., “Online inductor parameters identification by small-signal
injection for sensorless predictive current controlled boost converter,”
IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1554–1564, Aug. 2017.

[55] K. Xie et al., “On-line anomaly detection with high accuracy,” IEEE/ACM
Trans. Netw., vol. 26, no. 3, pp. 1222–1235, Jun. 2018.

[56] S. Rendle and L. Schmidt-Thieme, “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems,” in
Proc. ACM Conf. Recommender Syst., Lausanne, Switzerland, Oct. 2008,
pp. 251–258.

[57] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating online
CP decompositions for higher order tensors,” in Proc. ACM SIGKDD Int.
Conf., 2016, pp. 1375–1384.

[58] R. Zhao and V. Y. F. Tan, “Online nonnegative matrix factorization
with outliers,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 555–570,
Feb. 2017.

[59] X. Zhao et al., “Scalable linear visual feature learning via online parallel
nonnegative matrix factorization,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 12, pp. 2628–2642, Dec. 2016.

Hao Li is currently working toward the Ph.D. de-
gree with Hunan University, Changsha, China.

His research interests include large-scale
sparse matrix and tensor factorization, recom-
mender systems, social network, data mining,
machine learning, and graphics processing unit
(GPU) and multi-GPU computing. He has au-
thored and coauthored six journal and con-
ference papers in the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, InforSci,
IEEE TRANSACTIONS ON INDUSTRIAL INFORMAT-

ICS, Conference on Information and Knowledge Management, and ISPA.

Kenli Li (Senior Member, IEEE) received the
Ph.D. degree in computer science from the
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2003.

He was a Visiting Scholar with the Univer-
sity of Illinois at Urbana-Champaign from 2004
to 2005. He is currently a Full Professor of
Computer Science and Technology with Hunan
University, Changsha, China, and the Deputy
Director with National Supercomputing Center,
Changsha. His main research interests include

parallel computing, high-performance computing, and grid and cloud
computing. He has authored and coauthored more than 130 research
papers in international conferences and journals such as the IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
Journal of Parallel and Distributed Computing, International Conference
on Parallel Processing, and IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing.

Dr. Li is an Outstanding Member of the China Computer Federation.
He serves on the editorial board of IEEE TRANSACTIONS ON COMPUTERS.

Jiyao An (Member, IEEE) received the Ph.D.
degree in mechanical engineering from Hunan
University, Changsha, China, in 2012.

He was a Visiting Scholar with the Depart-
ment of Applied Mathematics, University of Wa-
terloo, Waterloo, ON, Canada. He is currently a
Full Professor with the College of Computer Sci-
ence and Electronic Engineering, Hunan Uni-
versity. His research interests include cyber-
physical systems, Takagi–Sugeno fuzzy sys-
tems, parallel and distributed computing, and

computational intelligence. He has authored and coauthored more than
50 papers in international and domestic journals and refereed confer-
ence papers.

Dr. An is a Member of the Association for Computing Machinery, and
a Senior Member of the China Computer Federation. He is an Active
Reviewer for many international journals.

Keqin Li (Fellow, IEEE) is a Distinguished Pro-
fessor of Computer Science with the State
University of New York, New Paltz, NY, USA.
He has authored and coauthored more than
480 journal articles, book chapters, and refer-
eed conference papers. His current research
interests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU–GPU hybrid

and cooperative computing, multicore computing, and storage and file
systems.

Dr. Li was the recipient of several best paper awards. He is has
been on the editorial boards for the IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE
TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON SERVICES
COMPUTING, and IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 00:27:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

