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ARTICLE INFO ABSTRACT

Keywords: The solution of large-scale sparse linear systems of the form Ax = b is an important research problem in the field
Auto-selection of High-performance Computing (HPC). With the increasing scale of these systems and the development of both
HPC

HPC software and hardware, iterative solvers along with appropriate preconditioners have become mainstream
methods for efficiently solving these sparse linear systems that arise from real-world HPC applications. Among
abundant combinations of iterative solvers and preconditioners, the automatic selection of the optimal one has
become a vital problem for accelerating the solution of these sparse linear systems. Previous work has utilized
machine learning or deep learning algorithms to tackle this problem, but fails to abstract and exploit sufficient
features from sparse linear systems, thus unable to obtain satisfactory results. In this work, we propose to
address the automatic selection of the optimal combination of iterative solvers and preconditioners through the
powerful multimodal machine learning framework, in which features of different modalities can be fully extracted
and utilized to improve the results. Based on the multimodal machine learning framework, we put forward a
multimodal machine learning model called MM-AutoSolver for the auto-selection of the optimal combination for
a given sparse linear system. The experimental results based on a new large-scale matrix collection showcase
that the proposed MM-AutoSolver outperforms state-of-the-art methods in predictive performance and has the
capability to significantly accelerate the solution of large-scale sparse linear systems in HPC applications.

Iterative solver

Multimodal machine learning
Preconditioner

Sparse linear systems

convergence rate of iterative solvers is closely related to the numerical
properties of the sparse coefficient matrix A. To improve convergence

1. Introduction

In High-performance Computing (HPC) applications, Partial Differ-
ential Equations (PDEs) are commonly used for modeling complex pro-
cesses. To numerically solve these PDEs on high-performance comput-
ers, it is necessary to solve large-scale sparse linear systems of the form
Ax = b [1]. The solution time for linear systems largely determines the
total execution time of these HPC applications. Therefore, the efficient
solution to large-scale sparse linear systems is crucial for enhancing the
performance of HPC applications.

As HPC hardware, software, and application scales continue to ex-
pand, traditional direct solution methods [2] based on the matrix factor-
ization are gradually being replaced by iterative solvers [3] due to their
large memory overhead and poor parallelism. Iterative solvers offer
better parallelism and require lower memory overhead, thus demon-
strating significant advantages in large-scale HPC applications [4]. The

rate and stability, preconditioning methods are commonly employed
to transform the original sparse linear system into a new one with bet-
ter numerical properties. These transformation methods are also known
as preconditioners.

With the continuous advancement of HPC and numerical compu-
tation, a wide array of iterative solvers and preconditioners are now
available [5]. For a given sparse linear system, different combinations
of iterative solvers and preconditioners exhibit significant variations in
convergence properties. Table 1 showcases the solution results of sev-
eral sparse linear systems built from matrices within Suitesparse Matrix
Collection [6], and these systems are solved by adopting different com-
binations of iterative solvers and preconditioners. The results validate
significant performance differences caused by different combinations.
At present, it is challenging to select the optimal combination of iter-

* Corresponding author at: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China.

E-mail address: yangwangdong@hnu.edu.cn (W. Yang).

https://doi.org/10.1016/j.jpdc.2025.105144

Received 19 July 2024; Received in revised form 18 February 2025; Accepted 24 June 2025

Available online 1 July 2025

0743-7315/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://orcid.org/0009-0001-5972-4199
http://orcid.org/0009-0006-5219-6289
http://orcid.org/0000-0003-3329-0924
http://orcid.org/0000-0001-5224-4048
mailto:yangwangdong@hnu.edu.cn
https://doi.org/10.1016/j.jpdc.2025.105144
https://doi.org/10.1016/j.jpdc.2025.105144
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2025.105144&domain=pdf

H. Xiong, W. Yang, W. He et al.

Table 1
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Convergence speed (measured in seconds) of several combinations of iterative solvers and preconditioners. Combinations that do not converge are denoted as
Diverge, and convergence is detected if the relative residual is less than 10e-8. All solution processes are run on a HUAWEI Taishan Server. Solution results are

marked as Timeout if they neither converge nor diverge within 300 seconds.

Matrix name fbegs+jacobi  cg+ilu symmlg+jacobi  minres+gamg  cr+jacobi  symmlq+sor  fgmres+gamg  fbegs+ilu  cgs+gamg  symmlg+ice
2cubes_sphere 0.476 0.530 0.684 5.136 0.520 0.715 5.089 0.494 5.183 0.541
af shell3 11.376 6.189 17.469 Timeout 9.753 11.103 Timeout 7.703 Diverge 10.440
af_shell4 13.179 6.326 17.556 Timeout 9.882 13.070 Timeout 7.436 Timeout 10.515
airfoil 2d 0.949 0.683 Diverge Diverge Diverge Diverge 0.677 0.291 0.840 Diverge
Andrews 1.332 0.869 1.162 70.330 0.857 1.131 47.879 1.184 Diverge 1.225
FEM_3D_thermall  0.385 0.122 0.258 1.136 0.236 0.186 1.086 0.125 1.226 0.099
FEM_3D_thermal2 2.115 0.872 1.470 7.362 1.416 1.598 7.164 0.951 7.713 0.760
ML _Laplace 225.595 Timeout  Diverge Timeout Diverge Diverge 203.212 137.896 Diverge Diverge
rail 20209 3.393 1.737 Diverge Diverge Diverge Diverge 0.474 2.638 0.492 Diverge
poisson3Da 0.665 0.499 0.662 Diverge 0.634 Diverge 1.309 0.533 1.408 Diverge

ative solvers and preconditioners, especially for novice users without
much proficiency in HPC and numerical analysis. Therefore, the auto-
selection of the optimal combination of iterative solvers and precon-
ditioners has become an important research problem for the efficient
solution of sparse linear systems [7].

Machine learning [8] was first applied to the automatic selection
of solvers and preconditioners by Bhowmick et al. [9,10]. This initial
exploration led to the development of more machine learning based
methods [11-13], which have increasingly incorporated recent methods
focusing on feature selection [14] and specific applications [15]. Fur-
thermore, as deep learning [16] has advanced, there has been a growing
trend of employing deep learning based methods to predict the optimal
iterative solver and preconditioner [17-20]. However, both two types
of methods mentioned above fail to obtain excellent prediction perfor-
mance due to a common limitation: the insufficient exploration of
features from sparse linear systems.

Specifically, these methods employ either classical machine learning
or deep learning algorithms for the auto-selection modeling. The former
depends on numerical features derived from expert knowledge, offer-
ing strong interpretability, while the latter focuses on learning struc-
tural features from coefficient matrices, primarily linked to the topo-
logical arrangement of non-zero elements. Numerical features, including
the diagonal dominance, symmetry, etc, directly impact the selection
of iterative solvers and preconditioners [21]. Furthermore, structural
features, such as block structures [22], are crucial in the construction
and selection of sparse linear solvers and preconditioners. Deep learn-
ing has demonstrated the ability to effectively learn structural features,
thereby optimizing the choice of iterative solvers and preconditioners
[17-20]. However, both machine learning based methods and deep
learning based methods utilize either numerical or structural features,
without effectively combining the two to create a more comprehensive
feature representation for sparse linear systems. Consequently, they fail
to achieve satisfactory prediction accuracy in the auto-selection of the
optimal iterative solvers and preconditioners.

Inspired by the development of multimodal machine learning [23,
24], a powerful learning paradigm involving integrating and learning
features from multiple heterogeneous and interconnected sources of
data, we propose to rethink the auto-selection of the optimal combi-
nation of iterative solvers and preconditioners as a multimodal machine
learning problem that can be tackled in a multimodal machine learning
framework. To be specific, we regard numerical features and structural
features as two types of features with different modalities, which can be
learned separately. The feature representations learned from these two
modalities are then fused to create a more comprehensive feature rep-
resentation for the final auto-selection modeling, aiming at improving
prediction performance.

Based on the above insights and the mutimodal learning framework,
we further put forward a multimodal machine learning model called
MM-AutoSolver for the auto-selection of the optimal combination of it-
erative solvers and preconditioners for sparse linear systems. This model

can learn both numerical features and structural features from coeffi-
cient matrices using the Convolutional Neural Network (CNN) [25]. By
fusing these two types of features, the model is able to generate a more
holistic representation, leading to improved prediction accuracy. Exten-
sive experiments demonstrate that, based on the multimodal framework,
the proposed MM-AutoSolver outperforms existing methods in predic-
tion accuracy and is able to accelerate the solution of sparse linear
systems originated in various HPC applications.
The contributions of this work can be summarized as follows:

» We propose to address the auto-selection of the optimal combina-
tion of iterative solvers and preconditioners within a multimodal
machine learning framework, where numerical features and struc-
tural features learned are seen as the data of different modalities
that can be learned and fused to boost the prediction performance.
Based on the above multimodal machine learning framework, we
put forward a multimodal machine learning model named MM-
AutoSolver to predict (or select) the optimal combination of iter-
ative solvers and preconditioners for sparse linear systems.
Extensive experimental results demonstrate that the proposed MM-
AutoSolver outperforms existing methods in prediction accuracy
and is capable of accelerating the solution of large-scale sparse lin-
ear systems.

The rest of this work is organized as follows: In Section 2, we intro-
duce the background on various iterative solvers, preconditioners, and
multimodal machine learning techniques. The motivation for employing
multimodal machine learning is also discussed in this section. Section 3
describes the methodology that we propose for predicting the optimal
combinations of iterative solvers and preconditioners. In section 4, we
report experimental results. Section 5 describes related research work
on the auto-selection of iterative solvers and preconditioners. Finally,
the conclusion of the work is presented in Section 6.

2. Background and motivation

This section covers the fundamental concepts of iterative solvers and
preconditioners for addressing sparse linear systems, typically expressed
as:

Ax=b, (@)

and in this context, A =[a;;] denotes an n X n non-singular sparse co-
efficient matrix, while b is the specified right-hand side vector and x is
the solution vector to be determined.

2.1. Iterative solvers

Due to the expansion of the application size and advancements in
HPC, iterative solvers are increasingly favored for efficiently solving
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large-scale sparse linear systems. These methods are typically divided
into two primary categories: stationary iterative methods and non-
stationary iterative methods. Methods that can be represented in the
following straightforward form

x*tD = Bx® 4 ¢ k=0,1..., @

are known as stationary iterative methods, where B signifies a consis-
tently invariable iteration matrix, and ¢ represents a constant vector.
Among the most commonly used stationary iterative methods are the
Jacobi method, the Gauss-Seidel method, and the Successive Overrelax-
ation method [3].

The iterative mechanisms utilized in non-stationary iterative meth-
ods are notably more complex, posing difficulties in their direct rep-
resentation via matrix-based formulations. Non-stationary iterative
solvers are commonly associated with Krylov subspace methods [26],
including the Conjugate Gradient (CG) method [27] and the Generalized
Minimal Residual (GMRES) method [28]. Furthermore, non-stationary
iterative methods contain sophisticated approaches like the Algebraic
Multigrid method (AMG) [29], often utilized as preconditioners for
Krylov subspace methods. Amidst the array of iterative methodolo-
gies, Krylov subspace methods emerge as the most efficient and widely
adopted iterative solvers. Hence, in this work, our focus when discussing
iterative solvers primarily revolves around Krylov subspace methods.

Krylov subspace methods belong to the framework of the projection
based method. Considering A in Eq. (1) as an n X n real matrix, and
K, and L, as m-dimensional subspaces of R, (m < n), the projection
method is designed to discover an approximate solution X within the
affine space x; + K,,, with an initial guess x,, for the solution vector x.
This method imposes the condition that the new residual vector remains
orthogonal to L,,. Specifically, the approximate solution can be defined
as

r0=b—Ax0, (3)
X=xy+a,a €K,, (€))
(ro—Aa,p)=0,YBEL,. (5)

Two types of projection methods are commonly recognized: orthog-
onal and oblique. In an orthogonal projection method, L, is identical
to K,,, while in an oblique projection method, L,, differs from K,, and
may not be related to it in any way.

Krylov subspace methods are renowned as the predominant and ef-
fective projection-based methodologies, featuring the subspace denoted
as:

K, = span{rO,ArO,Azro,...,Am_er}, 6)

where r( = b — Ax. Referred to as the Krylov subspace, this mathemat-
ical construct serves as a fundamental component in iterative solving
techniques.

The CG is one of the most representative iterative solver, whose
search space is formed by a set of conjugate vectors and is widely used
for solving symmetric positive definite systems. In CG, the search space
is the same as the constraint space, i.e. L, = K,,. The GMRES is an
iterative solver commonly used to solve nonsymmetric linear systems.
It aims to minimize the residual error iteratively by generating a se-
quence of approximate solutions that converge to the true solution.
GMRES iteratively constructs an orthogonal basis for the Krylov sub-
space, which allows for the efficient solution of the linear system. In
GMRES, L,, = AK,,. Another class of Krylov subspace methods is based
on the equation L,, = AT K,,. Representative methods in this category
include the Biconjugate Gradient method (BCG) [30], Biconjugate Gra-
dient Stabilized (BCGS) [31] and others. These methods are primarily
used for solving nonsymmetric linear systems. In comparison to GMRES,
they do not require storing the basis vectors of the subspace, resulting
in lower memory overhead.
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2.2. Preconditioning methods

The efficiency of iterative solvers is greatly determined by the eigen-
value distribution of the coefficient matrix. Typically, solvers exhibit
better convergence when the condition numbers are smaller or when
the eigenvalues are more tightly clustered. To improve the convergence
rate, preconditioning methods are adopted to adjust the eigenvalue dis-
tribution [4]. There are several steps in preconditioning a given sparse
linear system. Initially, a preconditioning matrix M (preconditioner) is
specified. Matrix M is then used to convert the original linear system
Ax = b into a new form M~!'Ax = M~'b. Alternatively, the precondi-
tioning matrix can be applied on the right side, leading to AM ~'u = b,
with the solution x = M ~'u. Provided that the preconditioner M can be
decomposed into the product of two matrices, as M = M; Mg, the sys-
tem can be further transformed into the form M zl AM }_zl u=M Zl b, with
x= MElu. These preconditioned sparse linear systems are then solved
using different Krylov subspace methods such as CG or GMRES. By in-
corporating preconditioner, these methods become their corresponding
Preconditioned Krylov subspace solvers, which typically exhibit faster
convergence compared to their non-preconditioned counterparts.

For some preconditioning methods, a preconditioning matrix M is
constructed from the coefficient matrix A. Common approaches include
extracting the diagonal elements of A, the upper triangular part, or
performing incomplete LU and Cholesky decomposition of the coeffi-
cient matrix A [3]. In some more complex preconditioners, it is often
not feasible to explicitly construct the preconditioning matrix M. The
preconditioning process typically involves solving a linear system, rep-
resented by methods such as AMG [29].

2.3. Motivation

Multimodal machine learning is a method that aims to build mod-
els capable of processing data of multiple modalities [32]. In real-world
applications, multimodal data is prevalent. For instance, a multimedia
application might include a combination of images, text, audio, and
video contents [33]. Besides, the generalized multimodal data can be
seen as multiple groups of features from raw data using different feature
extraction methods [34,35]. Viewed from this perspective, numerical
features from expert knowledge and structural features learned by deep
learning models can be regarded as two different modalities of data ex-
tracted from sparse linear systems.

According to numerical theory, numerical features such as values
of non-zero elements, symmetry ratio, diagonal dominance, and others,
play a significant role in choosing appropriate solvers and precondition-
ers [21]. At the same time, the selection of solvers and preconditioners
depends on structural features, which deep learning models have proven
effective at extracting directly from coefficient matrices. In recent years,
CNN [25] has been employed to learn structural features from coeffi-
cient matrices and applied in both preconditioner generation [22] and
selection [18]. Furthermore, GNN [36] has been utilized for selecting
preconditioners and Krylov solvers [20], and other deep learning mod-
els, such as FCNN [37], have also been investigated by Funk et al.
[19] for the automatic selection of iterative solvers and precondition-
ers. These studies have all demonstrated the importance of structural
features in coefficient matrices for selecting iterative solvers and pre-
conditioners.

Although both numerical and structural features provide important
insights for selecting the optimal iterative solver and preconditioner, ex-
isting research has not yet combined these two types of features, which
has the potential to boost prediction performance. As a result, the pre-
diction accuracy remains suboptimal.

This motivates us to investigate multimodal machine learning ap-
proaches that fuse these two types of features, with the goal of enhancing
the prediction performance for the automatic selection of the optimal
combination of iterative solvers and preconditioners for sparse linear
systems.
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Fig. 1. The multimodal framework for the auto-selection of the optimal combination of iterative solvers and preconditioners, which can be used to learn and fuse

features of different modalities to boost the predictive accuracy.

3. Methodology

In this section, we begin by formulating the automatic selection
of the optimal combination of iterative solvers and preconditioners
within a multimodal multi-class machine learning framework. Follow-
ing this, we provide a detailed description of the proposed model MM-
AutoSolver.

3.1. Multimodal learning framework

For a given sparse linear system Ax = b, different combinations
of iterative solvers and preconditioners present different convergence
properties. The auto-selection of the optimal combination means that
given multiple candidate combinations, a model needs to be built to
predict the optimal combination in terms of convergence properties. In
this work, the optimal combination refers to the one with the shortest
solution time, meanwhile, meeting the convergence requirements. From
a machine learning perspective, this problem can be viewed as a super-
vised multi-class classification task, with labels representing all possible
candidate combinations. Each sparse linear system with its correspond-
ing optimal solution combination constitutes a sample.

To improve prediction accuracy, extracting informative features
from sparse linear systems has become a key challenge. From a nu-
merical analysis standpoint, the features from coefficient matrices play
a significant role in determining the iterative convergence rate of the
sparse linear system Ax = b. These features include both numerical fea-
tures and structural features.

Numerical features from the coefficient matrix A are important fac-
tors influencing the convergence properties of iterative solvers and serve
as crucial references for selecting iterative solvers and preconditioners.
For instance, the number and distribution of non-zero elements directly
influence the computational performance of Sparse Matrix-Vector Mul-
tiplication (SpMV) in iterative solvers, which is generally the most time-
consuming kernel. Another example is that diagonal dominance has a
direct impact on the number of iterations. Overall, numerical features
reflect both the computational cost per iteration, in terms of floating-
point operations, and the difficulty of achieving iterative convergence
(i.e., the number of iterations). These features offer valuable insights for
selecting the optimal iterative solvers and preconditioners.

Structural features of the coefficient matrix also have a significant
impact on the selection of iterative solvers and preconditioners. For in-
stance, Gotz et al. [22] suggested that sparse matrices with dense natural
blocks along their diagonal are particularly suitable for the Block Ja-
cobi preconditioner [3], and that CNN can be employed to detect these
blocks. Yamada et al. [18] proposed the use of CNN to predict the opti-

mal preconditioner for solving sparse linear systems. In their approach,
the input to the CNN is a down-sampled, fixed-size image derived from
the original coefficient matrix. These examples demonstrate the impor-
tance of structural features in selecting the combination of iterative
solvers and preconditioners.

Both numerical features and structural features are extracted from
sparse linear systems, but their forms are completely different, and
methods of extracting and learning these features are distinct. Therefore,
they can be attributed into the spectrum of generalized multimodal
data. Taking these factors into consideration, we propose to address
the automatic selection of the optimal combination of iterative solvers
and preconditioners through a powerful multimodal machine learning
framework, as shown in Fig. 1, and there are features of two different
modalities in this multimodal framework:

* Numerical Features. These are features derived from coefficient
matrices according to expertise in numerical analysis and HPC,
which mainly contain features that are used to distinguish different
iterative solvers and preconditioners and have good interpretabil-
ity. All the numerical features used in this work are shown in Ta-
ble 2. The main distinction of these features compared to existing
methods lies in their lower computational complexity. The max-
imum time complexity for their computation is O(n) or O(nnz),
where n and nnz represent the number of rows and the number
of non-zero elements in the matrix, respectively. In order to learn
the mapping between these features and target combinations, tradi-
tional machine learning algorithms and MLP are adopted for mod-
eling, since these algorithms can directly adopt numerical features
as the input and learn from these features directly and effectively.
Structural Features. Features of this type are mainly determined
by the sparsity pattern, namely the distribution of non-zero ele-
ments. The CNN has been shown to effectively extract structural
features from sparse matrices, which can be used to predict the
best performance for various numerical computation tasks. For ex-
ample, the CNN can be employed to predict optimal precondition-
ers [18], learn structural features from coefficient matrices for the
construction of Block Jacobi preconditioners [22], and predict the
best format for tasks like SpGEMM [38,39]. Inspired by the work
in [18,38,39], we use the CNN for feature extraction and learn-
ing to capture the structural features in this study. Since the CNN
require fixed-size input for model training and inference, we per-
form a downsampling-like operation on the original sparse matrices
of varying sizes to obtain a density representation matrix of fixed
size. Specifically, to compute the density representation, we di-
vide the sparse matrix into n equal partitions along both the rows
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Table 2

Numerical features from coefficient matrices.
Feature Definition
row_num Number of rows (or columns)
nnz Number of non-zero elements
nnz_ratio Ratio of non-zero elements
nnz_lower Nnz in the lower triangular part
nnz_upper Nnz in the upper triangular part

nnz_diagonal
ave_nnz_row
max_nnz_row
arr_nnz_rows
max_value
max_value diagonal
diagonal_dominance_ratio
is_symmetry
pattern_symmetry
value_symmetry
row_variability
col_variability

Nnz in the diagonal

Average nnz of all rows

Max nnz of all rows

Variance of nnz of all rows

Max absolute value in all off-diagonal elements

Max absolute value in all diagonal elements

Ratio of diagonal dominant rows

Symmetry of coefficient matrices

Symmetry ratio of non-zero distribution

Symmetry ratio of non-zero elements

Logarithm of the maximum row-wise max-to-min absolute ratio
Logarithm of the maximum column-wise max-to-min absolute ratio

: Data iNumerical Features; Feature Learning Modalityg
Preproccess : : Fusion
Linear H
: : ; : H . - Probability
: . : HE Rel : v Distributi
¢ Numerical : IEI P - . gj ; istribution
Feature . Barch Norm . =
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Extractor i i P Conv O
" ..J MaxPool
* Flatten

[ I

1. Input Layer 2. Feature Extractor Layer

3. Feature Learning and Fusing Layer

4. Combination Prediction Layer

Fig. 2. The model architecture of the proposed MM-AutoSolver.

and columns, forming n X n blocks. Then, we count the number of
non-zero elements in each block and assign this count as the cor-
responding value in the density representation matrix. Although
the density representation loses some information about the dis-
tribution of non-zero elements during downsampling, it can still
reflect structural features with lower computational and storage
costs, while also facilitating subsequent feature learning. Fig. 1 il-
lustrates how the density representation is derived from the input
sparse matrix, with n =4.

Based on above framework, a multimodal machine learning model
called MM-AutoSolver is proposed to predict the optimal combination
of iterative solvers and preconditioners for sparse linear systems, which
is covered in detail in the next subsection.

3.2. Model

In this section, we provide detailed descriptions of the proposed
MM-AutoSolver. It exploits multimodal machine learning framework
to learn and fuse features of different modalities extracted from sparse
linear systems, thereby able to improve the predictive accuracy of com-
binations of iterative solvers and preconditioners. The architecture of
MM-AutoSolver is demonstrated in Fig. 2, which mainly consists of four
parts: the input layer, the feature extractor layer, the feature learning
and fusing layer, and the combination prediction layer.

3.2.1. Input layer

The input layer is used for reading sparse linear equations and con-
verting them into the Compressed Sparse Row (CSR) [40] format to
facilitate subsequent feature extraction.

3.2.2. Feature extractor layer

The feature extractor layer is mainly used to preprocess the original
data, namely extracting features of different modalities from original
sparse linear systems. In this work, we mainly use features of two modal-
ities, including numerical features and structural features. Therefore, an
AnaMod [41] based numerical feature extractor is developed to extract
numerical features shown in Table 2, and these features will be orga-
nized into a normalized embedding vector. To extract structural features
from sparse linear systems, we transform coefficient matrices of differ-
ent sizes into fixed-size n X n (n = 128 in this study) matrices called
density representations. These fixed-size density representations can be
seen as images that are well-suited for processing by CNN.

3.2.3. Feature learning and fusing layer

The feature learning and fusing layer is a module that learns features
of different modalities and fuse them to obtain a more comprehensive
feature representation. Numerical features usually have a more direct re-
lationship with the selection of iterative solvers and preconditioners. We
argue that complicated deep learning models with too many layers will
fail to learn this direct relationship. Therefore, the MLP based module
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is designed to learn these numerical features. In this module, we adopt
two fully-connected layers to learn numerical features. Additionally, to
accelerate the convergence of model training, we apply batch normal-
ization before each fully-connected layer. The output of this module is a
numerical feature vector y,. In this work, structural features are learned
from density representations of coefficient matrices by executing CNN
on them. As can be seen from Fig. 2, these density representations pass
through two convolutional neural network layers with each followed by
a maxpooling layer. The output of CNN is finally flattened to obtain a
feature vector y,.

Inspired by insights from the field of multimodal machine learn-
ing [32,33], we argue that y, and y, are two feature representations
that learned from two kinds of features of different modalities, namely
representations learned from numerical features and structural features.
Given the numerical feature vector y, = {y;,¥,,....¥)} and the struc-
tural feature vector y, = {d,.d,,....dy}, where M and N are dimen-
sions of these two feature vectors respectively, we define the fusion layer
as a function:

faurput = FuSion(yn’ y;), ()

and in this work, function Fusion is defined as the element-wise addition
operation, and therefore, the vector size M is equal to the vector size
N.

3.2.4. Combination prediction layer

The output of the feature learning and fusing layer f,,,,,, is the fused
representation of numerical features and structural features, which is
denoted as [y, = ¥ @ y,4- A fully-connected layer in this module uses
this fused representation f,,,, as the input to calculate the final output
of MM-AutoSolver. A softmax function is adopted to convert the final
output into the probabilities of all candidate combinations of solvers
and preconditioners. The loss function of the work is defined as follows:

loss = Z CrossEntropy(p;, p;), 8
i€G

where p; is the predictive label of the combination, and p; is the ground-

truth label. The letter G denotes the number of the training samples and

CrossEntropy(.,.) is the cross entropy function.

4. Experiment and evaluation

In this part, we first give a description of the experimental setting.
Then we compare our proposed model MM-AutoSolver with several
baseline methods. We also conduct an ablation study to investigate
the effectiveness of the MM-AutoSolver. Finally, we evaluate the per-
formance improvements brought by the MM-AutoSolver for solving the
sparse linear system from the perspectives of speedup and overhead.

4.1. Experiment setting

4.1.1. Datasets

In this part, we describe the process of building the dataset for train-
ing the proposed MM-AutoSolver, which is a multi-class multimodal
machine learning model. The well-known SuiteSparse Matrix Collection
[6] has a limited number of matrices suitable for building sparse lin-
ear systems, with many being non-sparse, non-square, or pattern-type
matrices. After filtering these out, fewer than 1,700 matrices remain.
Additionally, many matrices are small, with over 50% having row sizes
under 5,000, and 5.21% exceeding 1 million. Moreover, many large-
scale matrices, such as those from graph applications, do not originate
from sparse linear systems, making their sparsity patterns unsuitable for
this purpose. Therefore, the SuiteSparse Matrix Collection is not ideal
as the dataset for automatic selection modeling. In this work, the finite
element based software FreeFEM [42] and the computational fluid dy-
namic software OpenFoam [43] are used to produce a large-scale sparse
matrix collection for constructing linear systems. We use well-defined
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Table 3

The statistics of labels in the training and

test sets.
Labels Training set  Test set
fbegs+jacobi 2,173 231
begsl+none 2,054 223
symmlg-+icc 1,201 125
symmlg+jacobi 923 99
dgmres+none 650 85
gmres+gamg 640 70
cr+eisenstat 598 66
symmlq+sor 582 57
fbegs+ilu 562 56
minres+gamg 524 61
fcg+gamg 342 41
cr+jacobi 310 40
cg+ilu 275 38
fgmres+gamg 226 34
cg+eisenstat 224 23
cg+bjacobi 193 29
cr+ilu 68 5
cgs+gamg 49 4
begsl+asm 29 4
Total 11,623 1,291

sample programs from packages FreeFEM and OpenFOAM, including
those governed by well-known equations such as the Stokes and Pois-
son equations. Solving these sample programs using finite element and
finite volume methods requires solving sparse linear systems, which typ-
ically results in sparse matrices that can be used to construct linear
systems. Furthermore, by varying the parameters in these samples, a
large number of sparse matrices can be generated. We have assembled
a new collection of 12,914 sparse matrices. Among these, 12,651 matri-
ces are generated from sample programs in FreeFEM and OpenFOAM,
with more than 4,000 matrices having sizes exceeding 1 million, better
reflecting the matrix sizes encountered in real-world applications. The
remaining 263 matrices come from the SuiteSparse Matrix Collection
[6]. Subsequently, for each sparse matrix, we generate the right-hand
side vector b by randomly assigning a value within the interval [0, 1)
to each element of the x vector, and obtaining the b vector by mul-
tiplying A with x. For all sparse linear systems, the combinations of
iterative solvers and preconditioners from PETSc [44] v3.17.3 are uti-
lized to solve them on a HUAWEI Taishan server (with 2 Kunpeng 920
processors [45]) with unified parameter settings. By analyzing the iter-
ative solution results of these linear systems, we screen out 19 optimal
combinations with high frequency as labels of the multi-class problem.
Note that for a given sparse linear system, the combination that meets
the convergence accuracy and takes the shortest time to solve is the op-
timal combination, namely the label. Each sparse linear system and its
corresponding label constitute a data sample. Among 12,914 data sam-
ples, one-tenth of them are used as the test set and the rest as the training
set. For the training set and test set, the number of sparse linear systems
corresponding to each label is shown in Table 3.

4.1.2. Evaluation metrics

Given that the task of predicting the optimal combination is framed
as a multi-class classification problem, we utilize four commonly used
metrics: Accuracy (Acc), Macro Precision (MP), Macro Recall (MR), and
Macro F1 score (F1). MP, MR, and F1 are computed as macro aver-
ages, treating all classes with equal importance. While Acc can indicate
the overall predictive accuracy, it may be skewed by classes with more
training samples. Consequently, MP, MR, and F1 are adopted to pro-
vide a more balanced and comprehensive assessment of the predictive
performance.

4.1.3. Baselines
In order to assess the performance of our proposed MM-AutoSolver,
we compare it against two notable baseline methods:
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Table 4

Hyper parameter setting.
Hyper parameters Values
Epoch 256
Batch size 512
Optimizer Adam
Cost function Cross Entropy
Learning rate le-3
Number of numerical features 17
Neuron number of hidden layers in MLP 1,024 & 128
Output vector size of MLP (y,) 19
Activation function of MLP Relu
Size of the density representation 128 x 128
Size of the first conv kernel 3%x3
Size of the second conv kernel 5%5
Size of the maxpooling 2%x2
Activation function of CNN Tanh
Output vector size of CNN (y,) 19

* Machine Learning Based Methods: For multi-class classification
tasks, we employ eXtreme Gradient Boosting (XGBoost) [46], a
powerful tree-based ensemble learning algorithm. XGBoost, an en-
hanced version of the ADT [47], is widely recognized for its ro-
bustness and efficiency in handling classification problems. Thus,
it serves as a strong benchmark representing traditional machine
learning approaches.

Deep Learning Based Methods: Inspired by the work of Funk et al.
[19], who introduced a deep learning model (denoted as DLSolver
in this work) for predicting the optimal solver for a given sparse
linear system, we use DLSolver as the deep learning baseline. This
model, designed for multi-class classification, is considered state-
of-the-art methodology in predicting iterative solvers, making it
an ideal candidate for comparison with the proposed model MM-
AutoSolver.

4.1.4. Implementation details

In this work, TensorFlow [48] is leveraged to implement the pro-
posed MM-AutoSolver model, which is trained by adopting the afore-
mentioned training set. MM-AutoSolver is trained on a heterogeneous
computing system with an Nvidia A100 GPU. The detailed settings for
hyper parameters in MM-AutoSolver are shown in Table 4. The density
representation size is chosen to be 128 x 128 from the evaluated options
of 64 x 64, 128 x 128, and 256 x 256, as it yields the best prediction
performance.

4.2. Overall prediction performance

Table 5 shows the overall prediction performance of this work, in-
cluding two parts. The first part showcases the performance evaluation
of the model MM-AutoSolver and baseline models that we employ: XG-
Boost and DLSolver. In the second part, we demonstrate the evaluation
results of the ablation study.

The results indicate that MM-AutoSolver consistently outperforms
both XGBoost and DLSolver across all four evaluation metrics, reach-
ing 78.54%, 63.41%, 62,81%, and 62.53%, respectively. Specifically,
it achieves improvements of 3.56% in accuracy (Acc), 2.95% in mean
precision (MP), 5.92% in mean recall (MR), and 4.84% in F1 score com-
pared to DLSolver, which can be seen as state-of-the-art methodology.
Additionally, MM-AutoSolver surpasses XGBoost by a significant margin
in all metrics, as illustrated in Table 5. XGBoost, known for its robust
ensemble learning capabilities in multi-class classification and regres-
sion, is a tree-based model that enhances prediction accuracy through
the integration of multiple decision trees. However, the lower accuracy
of XGBoost in Table 5 suggests that machine learning models struggle
to accurately predict multiple combinations of iterative solvers and pre-
conditioners, due to their inability in capturing complex relationships
within matrix features. MM-AutoSolver achieves improvements over DL-
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Table 5
The overall performance of different methods for predicting the optimal
combination of iterative solvers and preconditioners.

Metrics Acc MP MR F1

MM-AutoSolver 78.54%  63.41% 62.81% 62.53%
XGBoost 33.85% 17.33% 14.96% 12.56%
DLSolver 74.98% 60.46% 56.89% 57.69%
MM-AutoSolver w/o MLP 65.22% 43.80% 42.52% 41.92%
MM-AutoSolver w/o CNN 75.60% 59.87% 58.21% 57.67%

Solver in all metrics. The primary advantage of MM-AutoSolver lies in
its ability to incorporate structural features of matrices, which is further
combined with numerical features using multimodal machine learning
framework. We hypothesize that these features are crucial in enhanc-
ing prediction performance and will test this hypothesis in an ablation
study. Overall, our results demonstrate the superior efficacy of MM-
AutoSolver in predicting the optimal combinations of iterative solvers
and preconditioners.

4.3. Case analysis

This section presents a case analysis to demonstrate how MM-
AutoSolver interacts with several types of combinations and their cor-
responding matrices. For example, the fbcgs+jacobi combination, with
2,173 training and 231 test samples, achieves 98.19% prediction ac-
curacy. This combination performs best in linear systems from the
FreeFEM Elasticity routine, where homogeneous Dirichlet boundary
conditions are applied to two edges in 3D linear elasticity PDEs, re-
sulting in a lower triangular sparse matrix. Similarly, the bcgsl+none
combination, with 2,054 training and 223 test samples, reaches 99.10%
prediction accuracy, corresponding to nearly symmetric matrices from
FreeFEM solving Laplace and Stokes equations. The symmlq+icc com-
bination, with 1,201 training and 125 test samples, achieves 83.85%
prediction accuracy, corresponding to symmetric matrices with strong
diagonal dominance from the icoFoam sample program in OpenFOAM.

4.4. Ablation study

The second part of Table 5 demonstrates the results of the ablation
study. The key innovation of MM-AutoSolver lies in its utilization of
multimodal machine learning techniques to extract matrix features of
different modalities from sparse linear systems, namely numerical fea-
tures and structural features. Subsequently, these extracted features of
two modalities are learned using different machine learning or deep
learning modules. Finally, the learned information from both modali-
ties are fused to enhance the MM-AutoSolver’s prediction performance.
Specifically, as can be seen from Fig. 2, features of two different modal-
ities from sparse linear systems pass through an MLP based sub-model
and a CNN based sub-model that learn numerical features and struc-
tural features, respectively. The main purpose of the ablation study is
to validate the contribution of features of different modalities and their
corresponding learning components to the improvement of the model’s
effectiveness. Therefore, we conduct experiments by removing features
of different modalities separately to observe their impact on the model’s
performance. By this means, we construct two models, MM-AutoSolver
w/o0 MLP and MM-AutoSolver w/o CNN, to investigate the impact of nu-
merical features and structural features, along with their corresponding
learning components, on the model’s performance. Among these two
models, the former one removes numerical features and their learn-
ing components (MLP based sub-model), while the latter one eliminates
structural features and its corresponding machine learning components
(CNN-based sub-model).

As can be seen from Table 5, both MM-AutoSolver w/o0 MLP and
MM-AutoSolver w/o CNN have declined in all four metrics compared
to MM-AutoSolver. MM-AutoSolver w/o MLP’s four metrics decrease by
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Fig. 3. The overhead of model inference of MM-AutoSolver and extracting nu-
merical features and structural features. The horizontal axis represents the ma-
trix scale (number of rows) of all test sparse linear systems sorted in increasing
order of the base-10 logarithm.

13.32%, 19.61%, 20.29%, and 20.61%, respectively. Meanwhile, MM-
AutoSolver w/o0 CNN’s four metrics drop by 2.94%, 3.54%, 4.60%, and
4.86%, respectively. Clearly, the performance decline of MM-AutoSolver
w/0 MLP is much greater than that of MM-AutoSolver w/o CNN. There-
fore, we can conclude that both numerical features and structural fea-
tures are complementary to each other and play a positive role in
boosting the predictive accuracy. Excluding numerical features along
with their learning components leads to a notable drop in performance.
Therefore, we can conclude that numerical features are more signifi-
cant in predicting iterative solvers and preconditions. After removing
structural features along with their learning components, there is also a
decline in all four metrics. Hence, it can be concluded that the learned
structural features play a positive role in enhancing the model’s per-
formance. In summary, the ablation study confirms the validity of the
multimodal machine learning framework and the effectiveness of the
proposed MM-AutoSolver.

4.5. Speedup evaluation

In this part, we mainly evaluate the performance improvement
brought by the proposed MM-AutoSolver for large-scale sparse linear
systems from two aspects. The first aspect is the overhead incurred by
MM-AutoSolver, which primarily includes feature extraction overhead
and model inference overhead. The second aspect is the speedup effect
on solving sparse linear systems introduced by the automatic selection
model.

4.5.1. Overhead

MM-AutoSolver’s overhead for the automatic selection of the optimal
combination of iterative solvers and preconditioners mainly includes
two aspects: feature extraction overhead and model inference overhead.

In this work, we employ features of two different modalities, includ-
ing numerical features and structural features. The numerical features
that we adopt in this work are shown in Table 2. These features can be
obtained by traversing all nnz of the coefficient matrix, meaning that
the time complexity for calculating numerical features does not exceed
O(nnz). Therefore, theoretically, the feature extraction time should be
relatively low. The primary overhead for extracting structural features
is converting original coefficient matrices into fixed-size density rep-
resentations. This process still requires traversing all nnz, so the time
complexity remains O(nnz), resulting in relatively low theoretical over-
head. As shown in Fig. 2, we implement a data preprocess module in
feature extractor layer for extracting two different types of features.

Model inference overhead refers to the time cost of inputting numer-
ical and structural features into a trained automatic selection model and
performing forward inference computations to obtain the probabilities
corresponding to different candidate combinations. The inference over-
head of the model is mainly related to the model structure. Therefore, in
this work, the inference overhead of the model is essentially consistent
for all sparse linear systems.
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Fig. 4. The average solution time and the time of the predicted combination. The
horizontal axis represents the matrix scale (number of rows) of all test sparse
linear systems sorted in increasing order of the base-10 logarithm. The vertical
axis represents the base-10 logarithm of the time.

Therefore, in this work, we define the overhead of employing MM-
AutoSolver as

Toverhead = Tnumerical + Tstructural + Tinference’ ©)
where T, merical> Lstructural> @14 Tinference T€SPectively represent the nu-

merical feature extraction overhead, structural feature extraction over-
head, and model overhead. Fig. 3 shows the overhead of data preprocess
module for extracting numerical and structural features, as well as the
model inference overhead. The model inference cost remains essentially
at the millisecond level and largely unchanged, independent of the ma-
trix scale. The extraction overhead of both numerical and structural
features is positively correlated with the matrix scale. Because larger
matrices generally have more non-zero elements. Additionally, the ex-
traction overhead of numerical features is generally greater than that of
structural features.

4.5.2. Speedup

The automatic selection of the optimal combination of iterative
solvers and preconditioners aims to build an model that can automati-
cally specify the optimal combination for a given sparse linear system to
minimize the solution time. In this work, we define the average solution
time as

1
Tover = N
i

M=

T (10)
1

where T; represents the solution time of the i-th candidate combination,
and N is the number of total candidate combinations. Specifically, T, e,
represents the expectation of solution time without using any automatic
selection models. Ty;ediction 1S used to denote the solution time of the pre-
dictive combination. Fig. 4 describes the general trend of solution time
of the predictive combination and average solution time of all combina-
tions as the matrix size increases. It can be observed that, overall, the
prediction time is less than the average solution time, and both tend to
increase as the matrix size grows.
We define the speedup as

P, speedup = Taver/ Tprediction’ (€§9)
in which Pypeeqyp represents the ratio of Tyyer t0 Thrediction, thus can
be seen as the performance improvement factor brought by the auto-
matic selection model. Considering the overhead of feature extraction
and model inference, the speedup can be further defined as

P, speedup_over — aver/ (Tprediction + Toverhead)’ 12)

which can be used to evaluate the performance improvement that MM-
AutoSolver brings to the solution of sparse linear systems.

Fig. 5 illustrates the performance speedup brought by MM-Auto-
Solver in solving 1,291 sparse linear systems from the test set. It is
evident that for the majority of sparse linear systems in the test set, both
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Fig. 5. The speedup that MM-AutoSolver brings to the solution of sparse linear
systems in the test set. The horizontal axis represents the matrix scale (number
of rows) of all test sparse linear systems sorted in increasing order of the base-10
logarithm.
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Fig. 6. The overview of the speedup ratios for sparse linear systems in the test
set under two evaluation metrics.

metrics Pyyeedqup a0 Popeedup over SHOW a speedup ratio greater than 1.0
(10°), indicating a positive acceleration effect. In fact, among the 1,291
test cases, 1,105 (85.6%) of them have Pye.q,, greater than 1.0 and
1,006 (77.9%) of them have Py,eeqyp over greater than 1.0. Specifically,
a significant portion of the test cases achieve speedup ratios of several
tens, and a few sparse linear systems achieve nearly 100x speedup. Fig. 6
further illustrates the speedup achieved by MM-AutoSolver for sparse
linear systems in the test set under two speedup metrics. These results
clearly demonstrate that MM-AutoSolver can significantly enhance the
solution of large-scale sparse linear systems.

5. Related work

Recent advancements in machine learning [8], with a particular
focus on deep learning [16], have created new opportunities to auto-
mate the selection process of iterative solvers and preconditioners for
sparse linear systems. This section delves into a thorough review of con-
temporary research that leverages machine learning and deep learning
methodologies to improve the automatic selection or prediction of suit-
able iterative solvers and preconditioners.

Bhowmick et al. [9] pioneered the use of machine learning tech-
niques for the auto-selection of solvers in sparse linear systems. They
provided a comprehensive methodology for the organization of datasets,
the identification of crucial features, the formulation of selection criteria
for various iterative solvers, and the training of machine learning models
(e.g., SVM [49] and Adaboost [50]). This work clearly exemplifies the
use of machine learning for solver selection in a structured and system-
atic manner. In their later work, Bhowmick et al. [10] introduced a low-
cost strategy for feature computation and selection. The strategy enables
the streamlined development of conventional machine learning models,
including Nearest Neighbor [51], Naive Bayes [52], and SVM, which
are leveraged to forecast the most suitable iterative solver and precon-
ditioner. Eijkhout et al. [53] proposed a comprehensive framework for
advising on numerical methods and created supporting libraries to apply
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the principles set forth in this framework. Eller et al. [11] applied ma-
chine learning algorithms to determine the best combination of iterative
solvers and preconditioners for transient simulations. These simulations
often involve larger-scale linear systems than those from the SuiteS-
parse Matrix Collection [6]. Sakurai et al. [12] developed a method
using historical residual data to anticipate the best pairing of iterative
solvers and preconditioning methods. Jessup et al. [13,54] launched the
Lighthouse project [55], which utilizes machine learning models to pre-
dict the effectiveness of various combinations of iterative solvers and
preconditioners for sparse linear systems. Moreover, they developed a
performance model to analyze the communication overhead of differ-
ent iterative methods, with the goal of identifying the most suitable
solver for distributed computing environments [56]. Recently, Sun et al.
[14] introduced a feature selection strategy for machine learning models
predicting Krylov subspace solvers. Zabegaev et al. [15] proposed to au-
tomate the selection of linear solvers for time-dependent problems. The
aforementioned research work primarily explores the use of traditional
machine learning methods to predict appropriate iterative solvers and
preconditioners. These approaches are notable for their interpretabil-
ity, enabling them to elucidate the relationship between sparse linear
systems and the suitable iterative solvers or preconditioners.

In recent years, researchers have been leveraging deep learning mod-
els to harness the structural features of coefficient matrices, aiming to
predict the optimal iterative solver and preconditioner for sparse linear
systems. Holloway et al. [57] introduced the application of neural net-
works [16] for forecasting the performance of preconditioned iterative
solvers, specifically predicting their capability to effectively solve given
problems. Similarly, Kuefler et al. [58] explored the use of reinforce-
ment learning [59] to address sparse linear systems. They highlighted
that reinforcement learning could not only recommend suitable solvers
but also directly solve these systems without needing labeled data. Yeom
et al. [17] took insights from natural language processing to create a
performance vector space [60], mapping different combinations of it-
erative solvers and preconditioners into the space. For the prediction,
they projected the sparse linear system into the vector space and used
the nearest neighbor algorithm to identify the most effective combina-
tion. Yamada et al. [18] applied CNN [25] to identify patterns directly
from the coefficient matrix for predicting the best preconditioner for
sparse linear systems. Their method involves converting the coefficient
matrix into a fixed-size, three-channel color image. CNN is then used to
process this image, extracting feature maps that assist in the precondi-
tioner prediction. Funk et al. [19] explored several deep learning models
(e.g., MLP [61], FCNN [37], etc.) to automatically select appropriate it-
erative solvers for a given sparse linear system. More recently, Tang et
al. [20] proposed the use of the GNN [36] for predicting the optimal
combination of iterative solvers and preconditioners. Their motivation
stems from the observation that non-zero elements of coefficient matri-
ces can be perfectly represented as graphs, and GNN is well-suited for
learning informative features from such graph representations. These
deep learning based methods excel at directly learning features from
the coefficient matrix. However, as the size of the matrix grows, their
efficiency in processing data diminishes, and they suffer from a lack
of interpretability as well. Thus, it becomes imperative to integrate the
strengths of both traditional machine learning models and deep learning
algorithms to achieve more efficient auto-selection of iterative solvers
and preconditioners.

6. Conclusion

In this paper, we propose to solve the problem of the automatic selec-
tion of the optimal combination of iterative solvers and preconditioners
for sparse linear systems by employing a multimodal machine learn-
ing framework, and then put forward MM-AutoSolver, a multimodal
machine learning model to predict the optimal combination among can-
didate ones for a given sparse linear system. MM-AutoSolver aims to
learn from numerical features and structural features and fuse these
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two kinds of features of different modalities to boost the prediction per-
formance. Experimental results on the real-world sparse linear systems
demonstrate the advantage of the proposed MM-AutoSolver over state-
of-art baselines and the performance speedup that it can bring to the
solution of large-scale sparse linear systems.

CRediT authorship contribution statement

Hantao Xiong: Writing — original draft, Methodology, Investigation.
Wangdong Yang: Project administration, Conceptualization. Weiqing
He: Data curation. Shengle Lin: Visualization, Validation. Keqin Li:
Writing — review & editing. Kenli Li: Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors sincerely thank the editors and all the anonymous re-
viewers for their comments, which are valuable and constructive. The
research was partially funded by the Major Projects of Xiangjiang Labo-
ratory (22xj01011), the Key Program of National Natural Science Foun-
dation of China (Grant No. U21A20461), the National Natural Science
Foundation of China (Grant Nos. 61872127 and 61751204), the Re-
search Innovation Project for Postgraduate Students of Hunan Province
(No. CX20220412), and Guangdong Province Core Software Research
and Development Project (No. 2024QT006).

Data availability
Data will be made available on request.

References

[1] H. Anzt, E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L. Curfman McInnes, R.
Tran Mills, S. Rajamanickam, K. Rupp, et al., Preparing sparse solvers for exascale
computing, Philos. Trans. R. Soc. A 378 (2166) (2020) 20190053.

[2] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[4] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput.

Phys. 182 (2) (2002) 418-477.

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, H. Van der Vorst, Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, 1994.

T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans.

Math. Softw. 38 (1) (2011) 1-25.

H. Zou, X. Xu, C.-S. Zhang, A survey on intelligent iterative methods for solving

sparse linear algebraic equations, arXiv preprint, arXiv:2310.06630, 2023.

T.M. Mitchell, Machine Learning, 1997.

S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, D. Keyes, Application of machine

learning to the selection of sparse linear solvers, Int. J. High Perform. Comput. Appl.

(2006).

S. Bhowmick, B. Toth, P. Raghavan, Towards low-cost, high-accuracy classifiers for

linear solver selection, in: Computational Science-ICCS 2009: 9th International Con-

ference, Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part I, Springer,

2009, pp. 463-472.

P.R. Eller, J.-R.C. Cheng, R.S. Maier, Dynamic linear solver selection for transient

simulations using machine learning on distributed systems, in: 2012 IEEE 26th Inter-

national Parallel and Distributed Processing Symposium Workshops & PhD Forum,

IEEE, 2012, pp. 1915-1924.

T. Sakurai, T. Katagiri, H. Kuroda, K. Naono, M. Igai, S. Ohshima, A sparse matrix

library with automatic selection of iterative solvers and preconditioners, Proc. Com-

put. Sci. 18 (2013) 1332-1341.

E. Jessup, P. Motter, B. Norris, K. Sood, Performance-based numerical solver selec-

tion in the lighthouse framework, SIAM J. Sci. Comput. 38 (5) (2016) S750-S771.

H.-B. Sun, Y.-F. Jing, X.-W. Xu, A new matrix feature selection strategy in machine

learning models for certain Krylov solver prediction, J. Classif. (2024) 1-18.

Y. Zabegaev, E. Keilegavlen, E. Iversen, I. Berre, Automated linear solver selection

for simulation of multiphysics processes in porous media, Comput. Methods Appl.

Mech. Eng. 426 (2024) 117031.

[5

—

[6]

71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

10

Journal of Parallel and Distributed Computing 205 (2025) 105144

[16] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444.

[17] J.-S. Yeom, J.J. Thiagarajan, A. Bhatele, G. Bronevetsky, T. Kolev, Data-driven per-

formance modeling of linear solvers for sparse matrices, in: 2016 7th International

Workshop on Performance Modeling, Benchmarking and Simulation of High Perfor-

mance Computer Systems (PMBS), IEEE, 2016, pp. 32-42.

K. Yamada, T. Katagiri, H. Takizawa, K. Minami, M. Yokokawa, T. Nagai, M. Ogino,

Preconditioner auto-tuning using deep learning for sparse iterative algorithms, in:

2018 Sixth International Symposium on Computing and Networking Workshops

(CANDARW), IEEE, 2018, pp. 257-262.

Y. Funk, M. G6tz, H. Anzt, Prediction of optimal solvers for sparse linear systems

using deep learning, in: Proceedings of the 2022 SIAM Conference on Parallel Pro-

cessing for Scientific Computing, SIAM, 2022, pp. 14-24.

Z. Tang, H. Zhang, J. Chen, Graph neural networks for selection of preconditioners

and Krylov solvers, in: NeurIPS 2022 Workshop: New Frontiers in Graph Learning,

2022.

R.L. Burden, Numerical Analysis, Brooks/Cole Cengage Learning, 2011.

M. G6tz, H. Anzt, Machine learning-aided numerical linear algebra: convolutional

neural networks for the efficient preconditioner generation, in: 2018 IEEE/ACM

9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems

(ScalA), IEEE, 2018, pp. 49-56.

L.-P. Morency, P.P. Liang, A. Zadeh, Tutorial on multimodal machine learning, in:

Proceedings of the 2022 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies: Tutorial

Abstracts, 2022, pp. 33-38.

C. Chen, K. Li, C. Zhongyao, F. Piccialli, S.C. Hoi, Z. Zeng, A hybrid deep learning

based framework for component defect detection of moving trains, IEEE Trans. Intell.

Transp. Syst. 23 (4) (2020) 3268-3280.

[25] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural Com-
put. 1 (4) (1989) 541-551.

[26] S.J. Wright, Numerical Optimization, 2006.

[27] M.R. Hestenes, E. Stiefel, et al., Methods of Conjugate Gradients for Solving Linear
Systems, vol. 49, NBS, Washington, DC, 1952.

[28] Y. Saad, M.H. Schultz, Gmres: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (3) (1986) 856-869.

[29] J.W. Ruge, K. Stiiben, Algebraic multigrid, in: Multigrid Methods, SIAM, 1987,
pp. 73-130.

[30] R. Fletcher, Conjugate gradient methods for indefinite systems, in: Numerical Anal-

ysis: Proceedings of the Dundee Conference on Numerical Analysis, 1975, Springer,

2006, pp. 73-89.

H.A. Van der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the

solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (2) (1992)

631-644.

T. Baltrusaitis, C. Ahuja, L.-P. Morency, Multimodal machine learning: a survey and

taxonomy, IEEE Trans. Pattern Anal. Mach. Intell. 41 (2) (2018) 423-443.

X. Zou, L. Zhou, K. Li, A. Ouyang, C. Chen, Multi-task cascade deep convolutional

neural networks for large-scale commodity recognition, Neural Comput. Appl. 32

(2020) 5633-5647.

X. Liang, Y. Qian, Q. Guo, H. Cheng, J. Liang, Af: an association-based fusion method

for multi-modal classification, IEEE Trans. Pattern Anal. Mach. Intell. 44 (12) (2022)

9236-9254, https://doi.org/10.1109/TPAMI.2021.3125995.

[35] H. Tao, C. Hou, Y. Qian, J. Zhu, D. Yi, Latent complete row space recovery for multi-
view subspace clustering, IEEE Trans. Image Process. 29 (2020) 8083-8096, https://
doi.org/10.1109/TIP.2020.3010631.

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on
graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2020) 4-24.

[37] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic seg-
mentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3431-3440.

[38] Z. Xie, G. Tan, W. Liu, N. Sun, Ia-spgemm: an input-aware auto-tuning framework
for parallel sparse matrix-matrix multiplication, in: Proceedings of the ACM Inter-
national Conference on Supercomputing, 2019, pp. 94-105.

[39] Z. Xie, G. Tan, W. Liu, N. Sun, A pattern-based spgemm library for multi-core and
many-core architectures, IEEE Trans. Parallel Distrib. Syst. 33 (1) (2021) 159-175.

[40] A. Bulug, J.T. Fineman, M. Frigo, J.R. Gilbert, C.E. Leiserson, Parallel sparse matrix-

vector and matrix-transpose-vector multiplication using compressed sparse blocks,

in: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms

and Architectures, 2009, pp. 233-244.

V. Eijkhout, E. Fuentes, A standard and software for numerical metadata, ACM Trans.

Math. Softw. 35 (4) (2009) 1-20.

F. Hecht, New development in FreeFEM++, J. Numer. Math. 20 (3-4) (2012)

251-265, https://freefem.org/.

H. Jasak, A. Jemcov, Z. Tukovic, et al., OpenFOAM: a C++ library for complex

physics simulations, in: International Workshop on Coupled Methods in Numerical

Dynamics, 2007, pp. 1-20.

S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,

E.M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W.D. Gropp,

V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S.

Kruger, D.A. May, L.C. McInnes, R.T. Mills, L. Mitchell, T. Munson, J.E. Roman, K.

Rupp, P. Sanan, J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang,

PETSc web page, https://petsc.org/, 2023.

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[31]

[32]

[33]

[34]

[41]

[42]

[43]

[44]


http://refhub.elsevier.com/S0743-7315(25)00111-X/bib677876196641EA3FE86F77F7A3F8A3E1s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib677876196641EA3FE86F77F7A3F8A3E1s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib677876196641EA3FE86F77F7A3F8A3E1s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2052FA294B227BEDBF8B00C6132F74B6s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib6105C7F8961F61F3470DF04A4B27832As1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib73783795A7137937B49F85A79EE11582s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib73783795A7137937B49F85A79EE11582s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF25A80052513BE911E1E5047021486E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF25A80052513BE911E1E5047021486E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF25A80052513BE911E1E5047021486E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib4C6A38314A30BB083DD988BDB765E7A5s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib4C6A38314A30BB083DD988BDB765E7A5s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA08FE7DCF3B00778EA07569B85DBD2EDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA08FE7DCF3B00778EA07569B85DBD2EDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA420BA536E383EFD18A548ECE9C821BBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib973E6016D5F2E81E6B70AF66043665BBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib973E6016D5F2E81E6B70AF66043665BBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib973E6016D5F2E81E6B70AF66043665BBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2DA5C6F9829254BC3BF347C713AAC09Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2DA5C6F9829254BC3BF347C713AAC09Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2DA5C6F9829254BC3BF347C713AAC09Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2DA5C6F9829254BC3BF347C713AAC09Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib57555BFA7FD2E07AD87372B529F0AD7Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib57555BFA7FD2E07AD87372B529F0AD7Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib57555BFA7FD2E07AD87372B529F0AD7Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib57555BFA7FD2E07AD87372B529F0AD7Bs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB48789819026864084F4DFDDD9275ED2s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB48789819026864084F4DFDDD9275ED2s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB48789819026864084F4DFDDD9275ED2s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5EFE65AA3CAB18588191669E304BF85Cs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5EFE65AA3CAB18588191669E304BF85Cs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5D2941D907C6BAE07DEE308D8FB9866Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5D2941D907C6BAE07DEE308D8FB9866Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib3D9F3FDBE17BF47D5ABC7BB06F1884A3s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib3D9F3FDBE17BF47D5ABC7BB06F1884A3s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib3D9F3FDBE17BF47D5ABC7BB06F1884A3s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibDC27EB94C773F24746A96FC0013D6A0Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB051CB32E1983A6BDF09859478988A19s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB051CB32E1983A6BDF09859478988A19s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB051CB32E1983A6BDF09859478988A19s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibB051CB32E1983A6BDF09859478988A19s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA6242F8CF0A0DCC984E4F6962FFE40ECs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA6242F8CF0A0DCC984E4F6962FFE40ECs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA6242F8CF0A0DCC984E4F6962FFE40ECs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA6242F8CF0A0DCC984E4F6962FFE40ECs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5BA279CBE3E5633D4926E7983AD7F134s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5BA279CBE3E5633D4926E7983AD7F134s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5BA279CBE3E5633D4926E7983AD7F134s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib713EE522ACF24DC2BFEAFB4312082AC6s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib713EE522ACF24DC2BFEAFB4312082AC6s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib713EE522ACF24DC2BFEAFB4312082AC6s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib19665B579DFDCDFAAC07F932227F6FDAs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2AAB6139EBAF06B92C6334A1361FC2CBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2AAB6139EBAF06B92C6334A1361FC2CBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2AAB6139EBAF06B92C6334A1361FC2CBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2AAB6139EBAF06B92C6334A1361FC2CBs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1A97A0F195686914A1FB5F433A7C68DDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1A97A0F195686914A1FB5F433A7C68DDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1A97A0F195686914A1FB5F433A7C68DDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1A97A0F195686914A1FB5F433A7C68DDs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF15CD4FEB091E424DD96BCF8F13022CCs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF15CD4FEB091E424DD96BCF8F13022CCs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF15CD4FEB091E424DD96BCF8F13022CCs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5DF4A1705235B9FB604D9C3C944073F0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5DF4A1705235B9FB604D9C3C944073F0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib5DF4A1705235B9FB604D9C3C944073F0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib4682419F7E6AE59DCA2056222F4066A1s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib69840A84AB83ADE05BC65B65FBA95DCAs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib69840A84AB83ADE05BC65B65FBA95DCAs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibABBE5BEB5441B2C45B798A5BD38D6113s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibABBE5BEB5441B2C45B798A5BD38D6113s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF95A213629CA96529C27E0DB32D2AC61s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF95A213629CA96529C27E0DB32D2AC61s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF95A213629CA96529C27E0DB32D2AC61s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8D23D1C7D7CD7B8E6B21AB00088FB21Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8D23D1C7D7CD7B8E6B21AB00088FB21Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8D23D1C7D7CD7B8E6B21AB00088FB21Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAC5EE3A9106379AB16D67B4839CA32BAs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAC5EE3A9106379AB16D67B4839CA32BAs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib15EEE065A3289A660BED919A065CC21Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib15EEE065A3289A660BED919A065CC21Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib15EEE065A3289A660BED919A065CC21Fs1
https://doi.org/10.1109/TPAMI.2021.3125995
https://doi.org/10.1109/TIP.2020.3010631
https://doi.org/10.1109/TIP.2020.3010631
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib7128E57902328DE2D239A164E7F00D0Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib7128E57902328DE2D239A164E7F00D0Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib37F9527D2DE0656396B619EB0561FC0Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib37F9527D2DE0656396B619EB0561FC0Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib37F9527D2DE0656396B619EB0561FC0Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibC200740EE28359BFCE9B2884A79A50E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibC200740EE28359BFCE9B2884A79A50E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibC200740EE28359BFCE9B2884A79A50E9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8D98C98EF32A7DE38FE64A914A8C5A1As1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8D98C98EF32A7DE38FE64A914A8C5A1As1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD152C0F1F8BD3AC4C013F82C030B0B22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD152C0F1F8BD3AC4C013F82C030B0B22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD152C0F1F8BD3AC4C013F82C030B0B22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD152C0F1F8BD3AC4C013F82C030B0B22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibE7FC24D298F125F6B4B73A38AB723392s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibE7FC24D298F125F6B4B73A38AB723392s1
https://freefem.org/
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibCA3914240A10B37DA66A62C44847DE22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibCA3914240A10B37DA66A62C44847DE22s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibCA3914240A10B37DA66A62C44847DE22s1
https://petsc.org/

H. Xiong, W. Yang, W. He et al.

[45] J. Xia, C. Cheng, X. Zhou, Y. Hu, P. Chun, Kunpeng 920: the first 7-nm chiplet-based
64-core arm soc for cloud services, IEEE MICRO 41 (5) (2021) 67-75.

T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 785-794.

Y. Freund, L. Mason, The alternating decision tree learning algorithm, in: ICML,
vol. 99, 1999, pp. 124-133.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., TensorFlow: a system for large-scale machine learning, in:
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI
16, 2016, pp. 265-283.

C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273-297.
Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and
an application to boosting, in: European Conference on Computational Learning The-
ory, Springer, 1995, pp. 23-37.

T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory
13 (1) (1967) 21-27.

G.I. Webb, E. Keogh, R. Miikkulainen, Naive Bayes, Encycl. Mach. Learn. 15 (1)
(2010) 713-714.

V. Eijkhout, E. Fuentes, Machine learning for multi-stage selection of numerical
methods, in: New Advances in Machine Learning, INTECH, 2010, pp. 117-136.

K. Sood, Iterative solver selection techniques for sparse linear systems, Ph.D. thesis,
University of Oregon, 2019.

P. Motter, K. Sood, E. Jessup, B. Norris, Lighthouse: an automated solver selection
tool, in: Proceedings of the 3rd International Workshop on Software Engineering
for High Performance Computing in Computational Science and Engineering, 2015,
pp. 16-24.

K. Sood, B. Norris, E. Jessup, Comparative performance modeling of parallel pre-
conditioned Krylov methods, in: 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), IEEE, 2017, pp. 26-33.

A. Holloway, T.-Y. Chen, Neural networks for predicting the behavior of precon-
ditioned iterative solvers, in: Computational Science-ICCS 2007: 7th International
Conference, Beijing, China, May 27-30, 2007, Proceedings, Part I 7, Springer, 2007,
pp. 302-309.

E. Kuefler, T.-Y. Chen, On using reinforcement learning to solve sparse linear sys-
tems, in: Computational Science-ICCS 2008: 8th International Conference, Krakéw,
Poland, June 23-25, 2008, Proceedings, Part I 8, Springer, 2008, pp. 955-964.

L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey, J. Artif.
Intell. Res. 4 (1996) 237-285.

K. Erk, S. Padd, A structured vector space model for word meaning in context, in:
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Pro-
cessing, 2008, pp. 897-906.

1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

Hantao Xiong is currently working toward the Ph.D. degree
in Computer Science and Technology with the College of Infor-
mation Science and Electronic Engineering, Hunan University,
Changsha, China. His research interests include parallel comput-
ing, numerical computation, and artificial intelligence.

Wangdong Yang received the Ph.D. degree in computer sci-
ence from Hunan University, China, and the M.S. degree in com-
puter science from Central South University, China. He is a profes-

11

Journal of Parallel and Distributed Computing 205 (2025) 105144

sor of computer science and technology at Hunan University, China. His research interests
include modeling and programming for heterogeneous computing systems, parallel and
distributed computing, and numerical computation. He has published more than 60 papers
in International conferences and journals. He is currently served on the editorial boards
of IEEE Internet of Things Journal.

Weiqing He received the B.E. degree in 2022 from College of
Computer Science and Technology, Hainan University, China. He
is currently pursuing the PhD degree with the College of Infor-
mation Science and Engineering, Hunan University, China. His

g research interests include parallel computing, artificial intelli-
-~ gence, and numerical computation.
v 4

Shengle Lin is currently working toward the Ph.D. de-
gree in Computer Science and Technology with the College of
Information Science and Electronic Engineering, Hunan Uni-
versity, Changsha, China. He is now working on a one-year
joint Ph.D. program at Agency for Science, Technology and Re-
search (A*STAR), Singapore. His research interests include high-
performance computing, parallel computing, numerical compu-
tation and artificial intelligence.

Dr. Keqgin Li is a SUNY Distinguished Professor of com-
puter science with the State University of New York. He is also a
National Distinguished Professor with Hunan University, China.
His current research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient computing
and communication, embedded systems and cyber-physical sys-
tems, heterogeneous computing systems, big data computing,
high-performance computing, CPU-GPU hybrid and cooperative
computing, computer architectures and systems, computer net-
working, machine learning, intelligent and soft computing. He
has authored or coauthored more than 780 journal articles, book chapters, and refereed
conference papers, and has received several best paper awards. He holds over 60 patents
announced or authorized by the Chinese National Intellectual Property Administration.
He is among the world’s top 10 most influential scientists in distributed computing based
on a composite indicator of Scopus citation database. He has chaired many international
conferences. He is currently an associate editor of the ACM Computing Surveys and the
CCF Transactions on High Performance Computing. He has served on the editorial boards
of the IEEE Transactions on Parallel and Distributed Systems, the IEEE Transactions on
Computers, the IEEE Transactions on Cloud Computing, the IEEE Transactions on Services
Computing, and the IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.

Kenli Li received the Ph.D. degree in computer science from
Huazhong University of Science and Technology, China, in 2003.
and the M.S. degree in mathematics from Central South Univer-
sity, China, in 2000. He was a visiting scholar at University of
Illinois at Urbana-Champaign from 2004 to 2005. He is a full
professor of computer science and technology at Hunan Univer-
sity. The main research fields are parallel and distributed pro-
cessing, supercomputing and cloud computing, high-performance
computing for big data and artificial intelligence, etc. He has pub-
lished more than 300 papers in international conferences and
journals. He is currently served on the editorial boards of IEEE Transactions on Com-
puters. He is an outstanding member of CCF and a member of the IEEE.

a


http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1ABB0BB02F2AF7FEEC0B606B1429FCEEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib1ABB0BB02F2AF7FEEC0B606B1429FCEEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibBB9560544AEED59BE00EB56AF2EC514Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibBB9560544AEED59BE00EB56AF2EC514Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibBB9560544AEED59BE00EB56AF2EC514Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib19C52B803C0CCAD298351415FA318A53s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib19C52B803C0CCAD298351415FA318A53s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD69FB439F8EE7A63AF89B730F1D0E578s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib3ED656A03C6EFF5CE3B498EFB821A256s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib3ED656A03C6EFF5CE3B498EFB821A256s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD64577B638989F94A7B14070030DA4D9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibD64577B638989F94A7B14070030DA4D9s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF1EC41C4B1ACFB5904B6787F4FB57D52s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibF1EC41C4B1ACFB5904B6787F4FB57D52s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA0AFCAA6AF42FA079C7F8DDB52570C6Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibA0AFCAA6AF42FA079C7F8DDB52570C6Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAF4E9562245FFE9C42361B1CDE4DA303s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAF4E9562245FFE9C42361B1CDE4DA303s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAF4E9562245FFE9C42361B1CDE4DA303s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibAF4E9562245FFE9C42361B1CDE4DA303s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib514753FDF6DDB17F6B1B075CE40125EEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib514753FDF6DDB17F6B1B075CE40125EEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib514753FDF6DDB17F6B1B075CE40125EEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib514753FDF6DDB17F6B1B075CE40125EEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib514753FDF6DDB17F6B1B075CE40125EEs1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2E878EACD573555EEF1D32855AEDB3B0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2E878EACD573555EEF1D32855AEDB3B0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2E878EACD573555EEF1D32855AEDB3B0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib2E878EACD573555EEF1D32855AEDB3B0s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8C345F2E835E336C9C9C5A35B3E3A94Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8C345F2E835E336C9C9C5A35B3E3A94Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib8C345F2E835E336C9C9C5A35B3E3A94Ds1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibFA8338B83CE7E1FEF54AA80740D33FC3s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bibFA8338B83CE7E1FEF54AA80740D33FC3s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib661BD90ADD921FC343C92670A0661372s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib661BD90ADD921FC343C92670A0661372s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib661BD90ADD921FC343C92670A0661372s1
http://refhub.elsevier.com/S0743-7315(25)00111-X/bib379B5402A47C72C9098151A28A448188s1

	MM-AutoSolver: A multimodal machine learning method for the auto-selection of iterative solvers and preconditioners
	1 Introduction
	2 Background and motivation
	2.1 Iterative solvers
	2.2 Preconditioning methods
	2.3 Motivation

	3 Methodology
	3.1 Multimodal learning framework
	3.2 Model
	3.2.1 Input layer
	3.2.2 Feature extractor layer
	3.2.3 Feature learning and fusing layer
	3.2.4 Combination prediction layer


	4 Experiment and evaluation
	4.1 Experiment setting
	4.1.1 Datasets
	4.1.2 Evaluation metrics
	4.1.3 Baselines
	4.1.4 Implementation details

	4.2 Overall prediction performance
	4.3 Case analysis
	4.4 Ablation study
	4.5 Speedup evaluation
	4.5.1 Overhead
	4.5.2 Speedup


	5 Related work
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References




