
1664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

End-Edge-Cloud Heterogeneous Resources
Scheduling Method Based on RNN and Particle

Swarm Optimization
Haijie Wu , Wangbo Shen , Weiwei Lin , Senior Member, IEEE, Wei Li , Senior Member, IEEE,

and Keqin Li , Fellow, IEEE

Abstract—Task scheduling in cloud computing is a challeng-
ing but crucial task for ensuring service quality and load
balance. Mainstream scheduling algorithms, such as heuristic
algorithms and reinforcement learning, have made progress in
this area. However, online task scheduling algorithms, such as
reinforcement learning, can pose computational challenges in
scenarios with limited computational power and heterogeneous
resources. Heuristic algorithms, which are more suitable for
offline scheduling where the types and quantities of tasks
are known in advance, also require substantial computational
resources for online scheduling. In this work, we propose the end-
edge-cloud (EEC) heterogeneous resources scheduling method
(EHRSM) based on a recurrent neural network (RNN) model
and particle swarm optimization (PSO). EHRSM uses an RNN
model trained on a dataset generated by dynamic programming
to recognize and cache online tasks, efficiently transforming
online task scheduling into offline scheduling. Additionally, a PSO
algorithm with Cantor expansion (CE) for coding optimization
is used to complete the offline scheduling. Experimental results
show that the method is effective in converting online scheduling
to offline scheduling, reducing the average task completion
time and waiting time. Compared with existing online schedul-
ing methods, EHRSM reduces task completion time by up
to 48.24%.

Index Terms—Cantor expansion, end-edge-cloud, particle
swarm optimization, recurrent neural network.

I. INTRODUCTION

W ITH the explosive growth of the number of terminal
devices and network service demand soaring, emerging

Received 17 March 2024; revised 27 September 2024; accepted
23 November 2024. Date of publication 27 November 2024; date of current
version 22 April 2025. This work is supported by National Natural Science
Foundation of China (62072187), Guangzhou Development Zone Science
and Technology Project (2023GH02) and the Major Key Project of PCL,
China under Grant PCL2023A09. The associate editor coordinating the
review of this article and approving it for publication was N. Kamiyama.
(Corresponding author: Weiwei Lin.)

Haijie Wu and Wangbo Shen are with the School of Computer
Science and Engineering, South China University of Technology,
Guangzhou 510006, China (e-mail: 202030442496@mail.scut.edu.cn;
202010107337@mail.scut.edu.cn).

Weiwei Lin is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
the Department of New Networks, Pengcheng Laboratory, Shenzhen 518055,
China (e-mail: linww@scut.edu.cn).

Wei Li is with the School of Computer Science, The University of Sydney,
Sydney, NSW 2006, Australia (e-mail: weiwilson.li@sydney.edu.au).

Keqin Li is with the Department of Computer Science, State
University of New York at New Paltz, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TNSM.2024.3507017

industries such as driverless and smart home have a higher
and higher demand for computing services. The traditional
framework of cloud computing is unable to provide the
corresponding efficient computing services. Therefore, many
emerging cloud computing frameworks such as EEC have
appeared. EEC aims to shorten the distance between users and
fully cooperate with the computing resources of each device,
to bring low latency services.

In recent years, there have been many scientific researches
and applications related to EEC. Yang et al. presented an EEC
framework that optimizes the efficiency of data processing
and deployment of nodes, which tackles the difficulty of the
calculation and transmission of data produced by healthcare
devices [1]. Liu et al. proposed an adaptive DNN infer-
ence acceleration framework, accelerating DNN inference by
fully utilizing the EEC collaborative computing, and reduc-
ing end-to-end inference latency caused by long wide-area
massive data transmission and performance degeneration [2].
Ding et al. proposed an EEC collaborative emotion perception
network model, and its cloud control terminal performs online
training to dynamically adjust the parameters of the model
in edge devices which efficiently perceives the emotion of
the driver and reduces the occurrence of traffic accidents [3].
Duan et al. presented an exhaustive survey on the dis-
tributed artificial intelligence facilitated by EEC computing
and showed the benefits of the EEC in supporting distributed
AI [4]. These studies show that EEC is used in many
scenarios, and many industries with lower network latency
requirements and higher service quality requirements combine
many artificial intelligence technologies with EEC to achieve
better results. It also suggests that the EEC is becoming a
research hotspot, optimized by more and more technologies
so that it can be better applied in various scenarios.

Like traditional cloud computing frameworks, EEC also has
resource allocation and scheduling issues. In traditional cloud
computing services, users deliver tasks to the cloud, and the
framework automatically completes the allocation of comput-
ing resources without user involvement. Resource allocation
and scheduling are extremely important in this process, which
determines how and how much computing resources the tasks
will be executed and affects the task completion time, resource
utilization, and device load. Therefore, the scheduling problem
has become a valuable and difficult topic to solve. There is
several scientific work related to scheduling tasks. In [5], a
swarm-intelligence-based approach, specifically a hybridized

1932-4537 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6876-1795
https://orcid.org/0000-0003-3761-843X
https://orcid.org/0000-0001-6876-1795
https://orcid.org/0000-0003-4731-3226
https://orcid.org/0000-0001-5224-4048

WU et al.: EHRSM BASED ON RNN AND PSO 1665

bat algorithm, is proposed as a method for approximating
solutions for multi-objective task scheduling problems in the
cloud environment. A new task scheduling method, I-FASC,
was proposed for the characteristics of tasks and resources, to
deal with the less computing resources and weak processing
ability of fog devices [6]. The author in [7] proposed a
modified PSO technique, which focused on average scheduling
length and the ratio of successful execution. These studies
reveal the importance of scheduling for improving cloud
computing services, impacting the experience of users and
device costs. In addition, scheduling policies are often different
with different application environments, so it is necessary to
design efficient scheduling policies for different scenarios.

The goal of scheduling is often based on two considerations.
On the one hand, from the user’s perspective, short task
execution times will improve the user’s experience. This often
includes some explicit metrics such as the time between
task delivery and completion, the sum of task wait times,
etc. [8], [9], [10]. On the other hand from the performance
loss of equipment, clusters tend to pursue a load-balanced
state, so it’s improper to overload powerful servers and leave
mediocre ones idle which can lead the server overloaded
to shorter life and degrade performance. Therefore, many
scheduling algorithms also consider the problem of load bal-
ancing [11], [12], [13]. In addition, there are some scheduling
algorithms, which are oriented to other optimization goals
according to their different application environments. Such as
methods based on reducing energy consumption [14], focusing
on fault-tolerance [15], facing fair scheduling [16], and so on
have been studied.

However, it is precisely because of the emergence of the
EEC, that the devices managed by the EEC show diversity
in performance, and the computing resources are gradually
heterogeneous, which leads to a decrease in system resource
utilization and the difficulty of coordinating heterogeneous
resources. Under such challenges, traditional algorithms will
find it difficult to play a good role in EEC. Therefore, many
scheduling algorithms for heterogeneous resources have been
proposed in recent years [17], [18], [19]. These achievements
take into account the heterogeneity of resources and improve
the performance of scheduling to a certain extent.

Despite this, there are still many problems in solving the
scheduling of heterogeneous resources in the EEC. In an
online scheduling system, tasks are dispatched at irregular
intervals. Because of the heterogeneity of resources, there
are often higher dimensions in the expression of data, and
the calculation of scheduling is more complicated. Some
classic algorithms, such as greedy algorithms, have signifi-
cant room for improvement in scheduling performance due
to limited considerations. Reinforcement learning methods,
which explore the optimization space of scheduling from
a more comprehensive perspective [20], are often applied
to online task scheduling. However, reinforcement learning
faces problems of lengthy training and a large amount of
data demand, and there are also shortcomings in the com-
plex and ever-changing EEC. Many metaheuristics have been
applied to cloud computing scheduling, and have shown good
performance, but most of them can only be applied to offline

task scheduling, and because of the long execution time of the
algorithm, they are rarely used in real-time scenarios such as
EEC or edge computing.

In this paper, we summarize several problems in the
scheduling of heterogeneous resources in the EEC:

• Due to the heterogeneity of resources, modeling tasks and
cluster resources is more complex and high-dimensional,
and there is currently a lack of effective scheduling algo-
rithms for collaborative EEC heterogeneous resources.

• Compared to traditional cloud computing, the node
information of EEC is more prone to change, so schedul-
ing algorithms need to be as lightweight and stable as
possible to cope with changing tasks and node structures
and reduce algorithm costs, which is difficult for main-
stream online scheduling algorithms to achieve.

Given this, we propose an End-edge-cloud Heterogeneous
Resources Scheduling Method (EHRSM) based on RNN and
Particle Swarm Optimization. This method integrates real-
time heterogeneous resources of clusters to facilitate efficient
scheduling of online tasks. The effectiveness of this method
within the EEC context is substantiated through experimen-
tation. For this method, we summarize the contributions and
innovations points as follows:

1) We propose an RNN-based method for batching online
tasks, which converts online task scheduling into batch
scheduling, and a computationally fast and efficient
batch task scheduling method based on PSO, which
satisfies the timeliness of EEC scheduling while making
efficient scheduling. Our proposed method does not
require a large amount of computing resources and long
training time, achieving resource collaboration in EEC.

2) In the training of RNN, we use a data labeling method
based on dynamic programming to eliminate errors in
manually labeling datasets and give RNN the ability to
batch tasks correctly. In addition, we optimize the encod-
ing and inertia weight of PSO using CE and logistic
function, respectively, to achieve excellent scheduling
performance while fast convergence.

3) We evaluate the feasibility and effectiveness of the
proposed method through comparative experiments,
proving that it can be efficiently applied to heteroge-
neous resource scheduling in EEC and improve service
quality.

The rest of this paper is organized as follows: Section II
introduces some background and related work. Section III
presents the formulation of the scheduling problems. Section IV
provides a detailed description of the design and analysis of
the proposed method. Section V carries out experiments and
the analysis of the results. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. EEC Framework and Its Heterogeneity

With the development of the Internet, the explosive growth
of terminal equipment has aggravated network congestion and
high latency, while emerging industries such as autonomous
driving and smart homes have higher and higher demand for
network quality. A framework that can cooperate with terminal

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

1666 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

equipment, edge servers, and cloud servers, called EEC, has
emerged to reduce the transmission time of computing data
and improve the quality of service. In this framework, the
cloud server usually takes charge of the whole system, and its
responsibilities include the management of the system struc-
ture, the storage of important data, and complex computational
tasks such as model training. As a node closes to the terminal,
the edge server can transmit data quickly, so it is often used
for real-time data processing. The computing resources of the
terminals are also coordinated to obtain data from outside the
device and process information received from other terminals.
These three parts cooperate and perform their duties to make
full use of the resources and performance of devices.

EEC is currently used in many industries such as medical
devices, traffic safety, etc. [1], [3] where large amounts of data
and complex calculations need to be processed. This is due to
the efficient collaboration of nodes on the EEC, including data
collaboration, computing resource collaboration, and so on.
However, it is precisely this collaboration that requires systems
deploying EEC to model the heterogeneous resources of the
nodes it manages. For example, many devices carry the GPU
or NPU which is different from the CPU computing resources
and they usually have a lot of differences in performance. This
means that if there are no appropriate scheduling algorithms,
it will result in low resource utilization and long waiting
times for computing services. In recent years, there has
been some research on scheduling algorithms for EEC or
similar scenarios. In [21], a Content-Aware Task Scheduling
Algorithm framework was proposed to solve the scheduling
problem in heterogeneous mobile edge cloud paradigms.
Reference [22] proposed an adaptive application-aware task
scheduling algorithm for running over heterogeneous edge
cloud. The use of ant colony algorithm to optimize the cloud-
edge collaborative task scheduling was proposed in [23]. These
studies have further promoted the development of EEC.

B. Optimization Methods and Scheduling Applications of
PSO

As a swarm intelligence algorithm with low computational
complexity and fast convergence, PSO has been widely studied
and there is much literature that optimizes it. Inertia weight,
one of the parameters in PSO, has a significant impact on
the convergence performance of PSO, and much literature has
optimized the inertia weight. In [24], a time-vary adaptive
inertia weight parameter was proposed to increase the diversity
of particles and showed that the proposed method has suc-
ceeded in finding a better UAV path. Also, different particles
can have different inertia weights according to [25], which
proposed an inertia weight adjustment method based on the
optimal fitness value of individual particles. Reference [26]
proposed 5 strategies for inertia weight reduction, including
sigmod decreasing, simulated annealing, etc., and compares
their performance advantages and disadvantages.

Another parameter of PSO, the acceleration constant, is also
the direction for optimizing PSO. In [27], the acceleration con-
stant is designed to be adaptive and automatically change over
time, while another literature [28] designed the acceleration

constant based on sine cosine. However, the optimization of
acceleration coefficients and inertia weight is not contradictory
to each other, so there is some literature that simultaneously
optimizes both [29], [30], [31].

PSO is widely used in task scheduling in cloud computing
scenarios due to its strong optimization ability and fast
convergence. Generally speaking, for a group of tasks and a
group of virtual machines, the scheduling situation of the task
is encoded, and then PSO is used to obtain the scheduling
strategy with different optimization targets [26], [32]. Many
applications of PSO are combined with other algorithms or
optimization methods [33], [34], [35], [36]. However, as an
offline algorithm, PSO can only schedule known task sets and
therefore is unsuitable to complete online task scheduling.

III. PROBLEM FORMULATION

In the cloud computing environment, users submit tasks
to the cloud and wait for the tasks to be executed. We
assume that tasks are executed in an environment where EEC
is deployed and each user request is handed over to the
cloud server for scheduling. Task information, including CPU,
memory, and execution time, is crucial for scheduling and
can be obtained from historical running information. Due to
the inclusion of cloud, edge, and terminal devices in the
cluster, there is a diversity among the devices. Many devices
have inconsistent architectural compositions, such as CPUs
with arm64 and x86 architectures. Even CPUs with the same
architecture may have different task execution times due to
quality differences. Therefore, it is also necessary to obtain
execution information for the same task on all nodes. More
importantly, the heterogeneity of the EEC determines that there
is more than one way to run tasks. Many servers are equipped
with chips such as GPUs and NPUs that outperform CPUs.
For tasks that require AI model training and inference, using
GPUs can lead to better execution efficiency. Therefore, the
difference in execution performance of tasks using different
chips of the same device also needs to be considered in
scheduling.

We first model the problem. In an EEC system, the nodes
are denoted as E = {e1, e2, . . . , e|E |} and the sequence of
tasks is N = {n1,n2, . . . ,n|N |}. For these tasks, their arrival
time is denoted as S = {s1, s2, . . . , s|N |}. There are R types
of resources we are considering, including CPU usage, CPU
memory remaining, GPU usage, etc. The number of running
modes a task can support is K, such as using CPU mode,
GPU mode, NPU mode, etc. When a task is executed using
GPU mode, the task will occupy most of the GPU chip, and a
small portion of the CPU chip, while other chips will not be
used. Therefore, different running modes will consume different
computational resources. Note that in the actual scheduling
process, we cannot predict the arrival time and type of tasks, but
the resource requirements and execution time of each task can
be predicted from historical records. Specifically, the running
resource requirement of a task is denoted as Q

(r)
i ,j ,k , which

represents the rth resource where the ith task runs in the kth mode
on the jth node and ni ∈ N , ej ∈ E , 1 ≤ k ≤ K , 1 ≤ r ≤ R,

and Q
(R+1)
i ,j ,k represents the corresponding runtime of the task.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EHRSM BASED ON RNN AND PSO 1667

If the task cannot run in this mode on the node, then Q
(r)
i ,j ,k =

+∞, 1 ≤ r ≤ R and Q
(R+1)
i ,j ,k = 0. The real-time resource of

a node is denoted as A
(r)
j (τ), which represents the remaining

amount of the rth resource in the jth node at time τ and ej ∈
E , 1 ≤ r ≤ R. For these tasks, the scheduling result is denoted
asG = {g1, g2, . . . , g|N |}. As mentioned earlier, the scheduling
result should contain the running node and the running mode.
However, due to the limited resources, each arriving task does
not always get enough resources to run immediately, and thus
the scheduling result also contains the waiting time, i.e., gi =<
ξi , ζi , νi >, where ξi represents the node number where the
ith task runs, ζi represents the mode the task run, and νi
represents the time the task needs to wait, and eξi ∈ E , 1 ≤
ζi ≤ K . The time from submission to completion of task ni
includes the following parts: the transmission delay T ↑

i from
the user to the cloud scheduler, the waiting time Tw

i for task
scheduling, the transmission delayT ↓

ξi
from the cloud scheduler

to the node ξi , the waiting time νi for the task to run on the
node, and the execution time Q

(R+1)
i ,ξi ,ζi

of the task. Therefore,

the completion time T
�
i of task ni is represented as

T�
i = T ↑

i + Tw
i + T ↓

ξi
+ νi +Q

(R+1)
i ,ξi ,ζi

(1)

The goal of the scheduling policy is to find the optimal G
with the minimum total task completion time (TCT) and total
waiting time (TWT), which are computed by the following
equations:

TCT =

|N |∑

i=1

T�
i (2)

TWT =

|N |∑

i=1

(
T

↑
i + Tw

i + T
↓
ξi
+ νi

)
(3)

Our goal is expressed as

min α× TCT + (1− α)× TWT

s. t.

{
A
(r)
ξi

(si + νi) ≥ Q
(r)
i ,ξi ,ζi

A
(r)
j (τ) ≥ 0, ∀r ≤ R, ∀τ ≥ 0, ∀ej ∈ E

(4)

α is used to weight TCT and TWT and 0 ≤ α ≤ 1.
Scheduling policy may make tasks wait a long time to run
on nodes with fast execution to reduce completion time, or
it may minimize the waiting time but result in an increase
in completion time. Therefore TCT and TWT need to be
weighted even though they are related to each other. The
constraint of resources reflects the limited resources of EEC,
and tasks can only be executed on nodes with sufficient
resources. Unlike existing work, EEC requires the efficient
collaboration of heterogeneous resources, not just CPU and
memory. The multiple running modes of tasks determine the
utilization performance of heterogeneous resources, which
leads to more complex scheduling scenarios.

IV. ALGORITHM DESIGN AND ANALYSIS

Based on the above modeling, we propose EHRSM, a
scheduling method for EEC heterogeneous resources, to

Fig. 1. Process diagram of EHRSM. The online task ni first calculates the
scheduling time τ ′ by RNN. When τ ′ is less than the current time τ , all
tasks in the cache area Γ are scheduled by PSO. Otherwise, task ni will be
temporarily stored in the cache area.

achieve the goal of Eq. (4). The overall process of EHRSM is
shown in Fig. 1. EHRSM uses an RNN model to adaptively
batch online tasks and employs PSO for batch scheduling,
transforming online scheduling into offline scheduling. Next,
we describe in detail how these techniques can be used to
achieve efficient scheduling.

A. Process of Task Batching

We batch tasks based on their runtime and arrival time.
When the scheduling timing is triggered, all cached tasks are
scheduled. Generally speaking, for tasks with a long runtime,
we hope it can wait for a longer time to accumulate more
tasks and make better scheduling strategies. For tasks with
short runtimes, we hope they can be executed as soon as
possible because making the cache time longer than the task’s
runtime can bring a poor experience. The batch method for
tasks requires providing appropriate scheduling time for each
task.

For the above description, we design an RNN model as
a task buffer. The RNN model can analyze and calculate
current inputs based on historical inputs and is easy to train
and converge for its simple construction. Enabling the RNN
model to have the ability to adaptively batch tasks is one of
the key components of EHRSM. RNNs can only have the
ability to batch tasks if they are trained with the right dataset.
Therefore, we focus on obtaining the right dataset, including
the sequence of tasks and the optimal scheduling time as
labels, which is one of the innovations of this paper. The label
acquisition of datasets in traditional neural network models is
usually based on manual annotations, nevertheless, the optimal
scheduling time of a task sequence is difficult to obtain through
manual annotations, since we cannot intuitively and artificially
batch the overall task sequences to obtain efficient scheduling
performance. Therefore, we propose the following method for
optimal scheduling time labeling of task sequences, which is
based on a dataset with known task arrival times and types.

The process of labeling the dataset is shown in
Fig. 2. Assuming the task sequence in the dataset is

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

1668 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

Fig. 2. The generation process of RNN training dataset. The task sequence
is first calculated for the average running time, and then the scheduling
time of the task is further calculated. To segment the labels of the data,
dynamic programming divides the task sequence to minimize the difference
in scheduling time for each segment. The final scheduling time is the average
of the scheduling times of the tasks in the same segment.

N ′ = {n ′
1,n

′
2, . . . ,n

′
|N ′|} and the arrival time is S ′ =

{s ′1, s ′2, . . . , s ′|N ′|}. Due to the varying running times of a task
at different nodes and running modes, we calculate the average
running time of the task. Define γi ,j ,k as the maximum number
of times the ith task can run in parallel in the kth mode when
the jth node is empty:

γi ,j ,k = min
1≤r≤R

⎢⎢⎢⎣A
(r)
j (0)

Q
(r)
i ,j ,k

⎥⎥⎥⎦ (5)

where 1 ≤ i ≤ |N ′|, 1 ≤ j ≤ |E |, 1 ≤ k ≤ K . Define δi ,j ,k
as the popularity of the ith task to run in the kth mode on the
jth node:

δi ,j ,k =
γi ,j ,k

∑|E |
q=1

∑K
l=1 γi ,q,l

(6)

The higher the popularity, the more likely the task is to run
in this mode on that node. Therefore, the average runtime of
the ith task is defined as ARi :

ARi =

|E |∑

j=1

K∑

k=1

δi ,j ,k ×Q
(R+1)
i ,j ,k (7)

As mentioned earlier, tasks with longer runtimes are suitable
for scheduling later. Therefore, the scheduling time STi of the
ith task is calculated using the following equation:

STi = s ′i + β × ARi (8)

where β is the waiting coefficient. The larger the β, the later
the scheduling time of the task. However, the final labels
should be segmented, as they indicate which tasks need to
be divided into the same batch. For example, there are a
total of 7 tasks in the task sequence, labeled as {1, 1, 1,
3, 3, 4, 4}, which indicates that tasks 1-3 are scheduled in
the first second, while tasks 4-5 are scheduled in the third
second. Therefore, further, assuming that the scheduling time
of all tasks is Λ = {ST1,ST2, . . . ,ST|N ′|}. We assume to
schedule a total of |M| times to complete these tasks, which

means that Λ will be divided into |M| segments. We hope
that the difference in a segment is as small as possible, as
tasks in the same segment will be scheduled at the same time.
Since variance can well reflect the degree of difference in
a sequence, we use variance to calculate the difference in
each segment. The optimal division scheme can minimize the
variance of all segments. We define the division scheme as
M = {m1,m2, . . . ,m|M |}, where 1 < m1 < m2 < · · · <
m|M | = |N ′|. The problem description is as follows:

min

|M |∑

i=1

σ2mi−1+1∼mi
(Λ) (9)

where m0 = 0, σ2mi−1+1∼mi
(Λ) denotes the variance of the

subarray of Λ subscripts from mi−1 + 1 to mi . For this
problem, we use a dynamic programming approach to solve
it. Specifically, define Di ,j as the minimum total variance of
the first i tasks divided into j segments, hence the following
transfer equation:

Di ,j =

⎧
⎪⎨

⎪⎩

0, i = 0&&j = 0
+∞, j > i

min
j−1≤k≤i−1

(
Dk ,j−1 + σ2k+1∼i (Λ)

)
, otherwise

(10)

Ultimately, D|N ′|,|M | denotes the sum of the minimum vari-
ances of dividing Λ into |M| segments, whose corresponding
division schemes are obtained during the transfer process.
Define the final scheduling time FSTi of the ith task as the
mean value of the segment in which the task is located:

FSTi = μmj−1+1,mj (Λ), mj−1 + 1 ≤ i ≤ mj (11)

where μmj−1+1,mj (Λ) denotes the mean of the subarray of
Λ subscripts from mj−1 + 1 to mj , 2 ≤ j ≤ |M|. Therefore,
the ith sample input for training RNN is < ARi , s

′
i > and the

output is < FSTi >.
The trained RNN will be used for batching the actual online

task sequences, as shown in Fig. 1. Γ is defined as the cache
area for batch processing tasks. For task ni that arrives at time
si , it is placed in the cache area, i.e., Γ ∪ {ni}. We calculate
the average running time ARi based on the task type, input
the trained RNN, and update the scheduling timing τ ′:

τ ′ = min
(
τ ′,RNN (< AR, s >)

)
(12)

where RNN (< AR, s >) represents the output of the RNN
model when the input is < AR, s >. If τ ′ is greater than the
current time, continue to wait for the task to arrive. Otherwise,
schedule all tasks in Γ and clear Γ.

We further describe why we use this approach. For each
task, we can compute the scheduling time ST, which, although
it takes into account the arrival time and the running time of the
task, does not take into account the effects of the tasks before
and after. Therefore, we further compute the FST to synthesize
the before and after information of the task sequence to get the
optimal scheduling time. Since future task information cannot
be accurately obtained in real scheduling scenarios, for the
current task, we can only utilize the information before that
task, however, RNN can handle the problem well. On the one

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EHRSM BASED ON RNN AND PSO 1669

hand, RNN can predict future task characteristics, on the other
hand, RNN extracts the features of the sequence of arrived
tasks to give the proper scheduling time. Traditional caching
approaches may be based on either a number threshold or a
time threshold, but either one is not very adaptable, as we will
demonstrate in Section V.

B. Batch Scheduling

For the batch tasks obtained using RNN batching, we
use PSO for globally optimal scheduling. Similar to edge
computing, scheduling in EEC scenarios also needs to take
into account the execution time of the scheduling algorithm
itself, while PSO converges quickly and can find the optimal
solution in a shorter time. PSO is based on the following two
equations:

vel
(k)
i = w · vel (k−1)

i + ϕ1rand()
(
pbesti − pos

(k−1)
i

)

+ϕ2rand()
(
gbest − pos

(k−1)
i

)
(13)

pos
(k)
i = pos

(k−1)
i + vel

(k)
i (14)

where vel
(k)
i indicates the velocity of the ith particle at the

kth round, w indicates the inertia weight, pos(k)i indicates the
position of the ith particle at the kth round, ϕ1 and ϕ2 indi-
cate the acceleration coefficients, rand() indicates a random
number from 0 to 1, pbesti indicates the optimal historical
position of the ith particle, and gbest indicates the optimal
historical position of all particles. Despite its advantage of
fast convergence, PSO is used for online task scheduling in
the proposed EHRSM, which has greater requirements for
execution speed and optimization performance, and naive PSO
is difficult to meet these requirements. Therefore, we improve
the coding and inertia weights of PSO to provide better
scheduling performance.

For a scheduling strategy, its content generally includes the
mapping of tasks to nodes. However, due to the heterogeneity
of devices, tasks have multiple running modes on nodes.
Therefore, in addition to the mapping from task to node,
coding should also include the running mode of the task. To
further optimize the scheduling results, we also consider the
execution order of tasks into coding, which is very beneficial
for improving scheduling performance. Let’s give a simple
example. Assuming that both task a and task b are scheduled to
the same node, and task a arrives before task b. Task a requires
8000MB of memory with a running time of 30 seconds, and
task b requires 3000MB of memory with a running time
of 20 seconds. The node currently has 5000MB of memory
and after 20 seconds, an additional 5000MB of memory will
be released. It is easy to calculate that the time required to
complete both task a and task b is 20s + 30s + 20s = 70s,
while if task b runs before task a, the time required is 20s
+ 30s = 50s. Therefore, it is also important to consider the
execution order of tasks in coding.

Define the batch task to be scheduled as N ′′ =
{n ′′

1 ,n
′′
2 , . . . ,n

′′
|N ′′|}, the corresponding scheduling strategy

is G ′ = {g ′1, g ′2, . . . , g ′|N ′′|}, where g ′i =< ξ′i , ζ ′i , ν′i >,

1 ≤ i ≤ |N ′′|, ξ′i , ζ ′i and ν′i respectively represent node

Fig. 3. Transformation from encoding to scheduling strategy.

number, running mode, and waiting time, as mentioned in
Section III. Therefore, the encoding of the particle is code =<
x1, x2, . . . , x|N ′′|, a1, a2, . . . , ap >, which consists of two
parts. The schematic diagram from encoding to scheduling
strategy is as Fig. 3. The first part represents the node and
running mode. For g ′i , it can calculate nodes and running
modes using the following equations:

ξ′i = xi%K + 1 (15)

ζ ′i =
⌊ xi
K

⌋
+ 1 (16)

ν′i is the minimum waiting time that the ith task can run in
the ζ ′i th mode on the ξ′i th node, which means that when the
node’s resources are sufficient, the task does not need to wait.
The second part is used to represent the scheduling order of
tasks, which is decoded through the inverse operation of CE.

CE is an algorithm that maps a full permutation to an
integer, and the integer mapped from a full permutation can
also calculate the corresponding full permutation. This integer
is essentially the lexicographic ranking of all permutations
with the same length as it, defined as �, and the length of the
permutation is the number of tasks |N ′′|. Assuming that the
order of the current tasks is represented by a full permutation
as (b1, b2, . . . , b|N ′′|), then calculated by CE:

� =

|N ′′|∑

i=1

⎛

⎝
|N ′′|∑

j=i

[
bi > bj

]
⎞

⎠(∣∣N ′′∣∣− i
)
! (17)

where [bi > bj] = 1 when bi > bj and [bi > bj] = 0 when
bi ≤ bj . Since � represents the lexicographic ranking of a full
permutation, and it starts counting from 0, 0 ≤ � ≤ |N ′′|!−1.
Our idea is to calculate � through the part representing the
tasks order in the code and obtain the order of the tasks from �.
This is the inverse operation of CE. The pseudo-code of the
algorithm is as Algorithm 1.

Due to the maximum value of � reaching |N ′′|! − 1, it
is not appropriate to directly use � as a dimension in the
encoding. On the one hand, the large range of encoding values
makes it difficult to search for the best results, and on the
other hand, a small number of dimensions can also make
the search difficult. Of course, a large number of dimensions
is not conducive to search, as it can lead to a long search
time. We use the n-base method to split the � to obtain the

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

1670 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

Algorithm 1: Inverse Operation of CE

Data: �; |N ′′|.
Result: Permutation Ξ.
Ξ = null ;
List L = {1, 2, 3, ..., |N ′′|} ;
if � > |N ′′|!− 1 then

� = |N ′′|!− 1;

for i=1 to —N”— do

index =
⌊

�
(|N ′′|−i)!

⌋
;

Append L[index] to Ξ;
Delete the number L[index] from L;
Update � to �%(|N ′′| − i)!;

return Ξ

appropriate number of dimensions and narrow the range of
encoding values. Assuming the base number used is c, which
means ai < c, 1 ≤ i ≤ p, the equation is as follows:

� =

p∑

i=1

cp−iai (18)

where p is the length of the second part of the code. If �
is greater than |N ′′|! − 1, let � become |N ′′|! − 1. c − 1 is
the maximum value of ai , so the selection of c should be
comprehensively determined based on the number of cluster
nodes. Since the encoding needs to cover all permutations,
satisfying |N ′′|! ≤ cp , the value of p can be obtained
according to the following equation:

p =
⌈
logc

(|N ′′|!)⌉ (19)

After completing the coding, we use PSO for solving
optimization problems. It is easy to see that the distribution
of the solution to the problem in the search space is discrete
and irregular, which means that naive PSO may find it difficult
to find the optimal solution. Therefore, we use PSO based on
inertia weight optimization.

Many optimization methods for inertia weights are based
in such a way: In the early stage of the search, the global
search of PSO should be encouraged, which means increasing
the speed of particles in the first few rounds of the search, as
a high-speed is beneficial for particles to jump out of local
optima, and reducing the speed of particles appropriately in
the later stages of the search, as a small speed is beneficial for
particles to find the optimal solution near the current solution,
enabling the algorithm to converge at the end. In our modeling,
the solution space is discrete and irregular, so it is necessary to
encourage global search as much as possible, but for algorithm
convergence, local search in the later stage is also required.
We propose an inertia weight optimization method based on
logistic function. We define the equation for the variation of
inertia weight:

w =
1

1 + e
− epoch_num−epoch

epoch_num·λ
(20)

where w indicates the inertia weight, epoch_num indicates the
total number of rounds, epoch indicates the number of rounds
searched, λ is the descent coefficient, which meets λ > 0,
representing the descent speed of w. The smaller the descent

Algorithm 2: Processing RNN Datasets and Using RNN
for Batching Online Tasks and Scheduling

Data: Tasks submitted online; Task sequence for training
RNN, i.e., the dataset.

Obtain the submitted task type and arrive time s from the
dataset;

Obtain resource requirements of tasks Q, including all
types of resources running in all modes on all nodes;

Calculate δ and AR for all tasks in the dataset;
Determine β and calculate ST, obtaining Λ;
Process Λ through dynamic programming and obtain the
label of the dataset;

Design the structure of RNN and train it using the
dataset, saving the trained model;
Γ = ∅;
τ ′ = +∞;
while scheduling system startup do

if Received a new task n at current time τ then
Γ ∪ {n};
τ ′ = min(τ ′,RNN (< AR, τ >));
if τ ′ <τ then

Schedule all cached tasks in Γ;
Γ = ∅;
τ ′ = +∞;

else
Continue to wait;

else
Continue to wait;

coefficient, the longer the global search process of PSO, but
it may lead to non convergence of the algorithm. Therefore,
an appropriate λ is helpful for the search of solutions.

The fitness function of PSO is designed based on Eq. (4),
which is the weighted sum of TCT and TWT for this batch
task. Therefore, PSO will optimize both TCT and TWT, and α
determines the degree of dominance of TCT and TWT. When
α is larger, TCT will be optimized preferentially. However,
TCT and TWT are not always negatively correlated, which
means that a larger α does not necessarily lead to a worse
TWT. After the scheduling strategy is calculated, batch tasks
are assigned to the corresponding nodes in the calculated
order and nodes. At this point, the entire scheduling process
is completed. The pseudocode for the entire process is as
Algorithm 2.

V. EXPERIMENTS

In this section, we discuss the practical application scenarios
and effectiveness of the proposed EHRSM. In addition, we will
also design comparative experiments to verify the superiority
of the proposed method.

A. Establishment of Experimental Environment

EHRSM is mainly applied to EEC. To build such an EEC
system, we have prepared cloud servers, edge servers, and
end devices as nodes of the cluster. Among these devices,

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EHRSM BASED ON RNN AND PSO 1671

all are equipped with CPU chips, but there are differences
in architecture. In addition, some devices are equipped with
GPU and NPU chips, so the resources of the cluster are
heterogeneous.

To deploy and manage these devices, we use Kubernetes to
build an EEC system. Kubernetes is an open-source container
cluster management system that supports resource manage-
ment and task dispatch functions for cluster nodes. However,
Kubernetes does not support the monitoring of heterogeneous
resources and can only obtain CPU-related information about
nodes. Therefore, we have implemented a system ourselves
to obtain heterogeneous resource information of nodes, and
then use the proposed method for task scheduling. Finally, we
deliver the task image and scheduling node ID together to
Kubernetes for task dispatch.

For the tasks to be scheduled, we design three dif-
ferent types of computational tasks, namely AI-intensive,
memory-intensive, and disk-intensive. Specifically, images of
5 AI-intensive tasks, 10 memory-intensive tasks, and 10 disk-
intensive tasks are made. The AI-intensive task uses the
MNIST dataset to train multiple CNN models and perform
inference. Since neural network models can be accelerated
using GPUs and NPUs, the AI-intensive task supports three
running modes: CPU, GPU, and NPU. Memory-intensive
tasks request a lot of memory for storing temporary data at
runtime, so they have high demands on the CPU memory
resources. Disk-intensive tasks use large files to perform
frequent operations on the node’s file system, thus placing a
high demand on disk resources. These three types of tasks
simulate the diversity of computational resource requirements
in real-world scenarios.

Through the above environment construction, in our EEC
system, the cluster has heterogeneous resources, and tasks
can run in different modes on different devices with different
running effects, which meets the required running environment
for the proposed method.

B. Experimental Equipment Information

The experimental equipment consists of three parts, namely
cloud servers, edge servers, and end devices. The specific
hardware configurations of these devices are as follows:

Cloud server (x86): 1 server equipped with 8 Intel Xeon
E5-2620 v4@2.10GHz CPUs (64G) and with 2 Nvidia Tesla
T4 GPUs (16G); 1000GB disk capacity;

Edge server: 3 Atlas 200 DKs equipped with 2 A55 Arm
core@1.6GHz CPUs (8G) with 2 Davinci AI core NPUs (8G);
50GB disk capacity;

End device: 4 Raspberry Pis equipped with 4 ARM cortex-
A72@1.5GHz CPUs (8G) and with Broadcom VideoCore
VI@500MHz (4G); 59GB disk capacity;

C. Experimental Design

In this section, we will provide a detailed explanation of the
experimental process, showcasing the experimental data and
the effectiveness of the proposed method.

1) Deployment Process: Firstly, we calculate the resource
requirements of all tasks at different nodes and running modes,

Fig. 4. The RNN structure used in our experiment.

including CPU usage, CPU memory requirements, GPU usage,
task runtime, and so on. For node resource requirements, as
scheduling is real-time, the system will obtain the latest node
information before each scheduling.

In the proposed method, RNN training requires obtaining
historical task submission records. We randomly generate 1000
tasks and arrive within 1000 seconds, as a submission task
history record, which is used for model training. Because
the scheduling of EEC requires real-time performance, the
execution time of the scheduling algorithm should not be
too long. For training the RNN with 1000 tasks, we set
100 schedulings to be able to schedule all the tasks, which
represents an average number of tasks per batch of about
10. The RNN trained in this way adaptively adjusts the
batch sizes of the tasks and does not deviate significantly
from 10. The training dataset of RNN is processed using
Eqs. (5)-(11), where β = 0.05, |M | = 100. Once the RNN
training is complete, our method can be applied to the system
for scheduling.

2) Method Parameters and Baseline Algorithms: In this
section, the parameters of the proposed method will be
provided in detail. At the same time, we will introduce several
baseline algorithms for comparison, and their parameters will
also be provided in detail.

EHRSM Firstly, we need to design a specific RNN structure
that is required to have learning and predictive abilities. In our
experiment, the RNN is designed with the structure shown in
Fig. 4. The input dimension is a 1 * 2 vector < AR, s >.
Firstly, preprocessing is performed to compress the data to
[−2,2] for faster learning. We use a 2 * 4 linear layer to expand
the input dimension, and then input it into RNNCell, including
a 4 * 8 linear layer and an 8 * 8 linear layer. Finally, we use
two linear layers 8 * 16 and 16 * 1 to enhance the learning
and memory abilities of the model. The learning rate of the
RNN is set to 0.05.

As for the setting of PSO, the base number c is set to
256, and the length p of order encoding will be calculated by
Eq. (19). For example, when the number of batch tasks is 5,
p = 1, and when the number of batch tasks is 10, p = 3.
The particle number of PSO is set to 40, and the number of
iterations is set to 50, which is a parameter setting that can
ensure the algorithm can execute quickly.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

1672 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

Fig. 5. The scheduling performance of different algorithms under different task sequences.

DACS [37] DACS was proposed to solve heterogeneous
IoT node scheduling in edge computing. DACS improves
the native scheduling algorithm of Kubernetes by adding
processing latency and network latency to the optimization
objective. When the latency of multiple nodes is similar to
the optimal value, these nodes are further filtered to the final
node based on the remaining resources. In this experiment, the
delay of the nodes is calculated by Eq. (4).

DQN-scheduler [38] DQN-scheduler uses DQN-based rein-
forcement learning for job scheduling in Spark to reduce the
completion time and cost of scheduling. The state space con-
tains the heterogeneous resource information of the nodes and
the task resource requirements, with a total of 106 dimensions.
The action space includes the selection of different nodes
and running modes, a total of 12 actions. During the training
process, Eq. (4) is used to evaluate the model, and the best
model parameters will be saved.

Greedy Greedy algorithm is a classic scheduling algorithm
that makes the current optimal decision for each task without
considering subsequent tasks.

Random Random algorithm selects nodes and running
modes with equal probability for each task.

LJFP-PSO [32] LJFP-PSO is also an algorithm that uses
PSO for scheduling. LJFP-PSO first preprocesses particles
using the longest job to fastest processor (LJFP), and in
addition, uses a binary matrix to represent the encoding of a
particle. We set the number of particles to 40 and the number
of iteration rounds to 50 to ensure the fairness of the baseline
algorithm. According to the experimental setup in [32], the
inertia weight uses a linear descent function, with a maximum
value of 0.9, a minimum value of 0.2, and an acceleration
coefficient of 2. All other settings are the same as those
in [32].

GWO-GA [39] GWO-GA uses hybrid optimization meth-
ods to solve scheduling problems. This article is based on grey
wolf optimization (GWO) and uses the crossover and mutation
ideas of genetic algorithm (GA) to process the encoding, in
order to improve the diversity of the population. The encoding
method is the same as our proposed encoding, but there is no
order encoding part. The number of groups is set to 40 and
the number of iteration rounds is set to 50.

PSO-sigmoid [26] PSO-sigmoid uses inertia weight based
on the sigmoid function to optimize PSO and applies it to
scheduling. Compared with the logistic function we proposed,
PSO-sigmoid has a shorter global search period. Its encoding

method is the same as GWO-GA, and all other parameter
settings related to PSO are the same as EHRSM.

Next, we will compare the performance of these algorithms.
3) Performance Experiments on the Online Scheduling

System: To validate the performance of EHRSM on online
scheduling, DACS, DQN-scheduler, Greedy and Random are
used for comparison and different task sequences need to be
designed. We design three kinds of task sequences, arriving
at 100 tasks in 100s, arriving at 100 tasks in 200s, and
arriving at 200 tasks in 100s, which are referred to as Normal,
Sparse, and Dense task sequences, respectively, and are used
to simulate the different tasks densities on the EEC scheduling
system. In addition, we focus on whether the performance of
the algorithm is significantly affected in scenarios with more
heterogeneous tasks. Therefore, in terms of the types of tasks,
we design equal proportional task sequences, which implies
that the ratio of the number of AI-intensive, memory-intensive,
and disk-intensive tasks is 1:1:1, and AI-intensive biased task
sequences, which implies that the ratio of the number of AI-
intensive, memory-intensive, and disk-intensive tasks is 3:1:1.
Therefore, there are a total of six different task sequences,
and in our experiments, we statistically measure the TCT and
TWT of these algorithms. α in Eq. (4) is set to 0.5.

The experimental results are shown in Fig. 5. It can be
intuitively seen that when the task sequence is dense, both TCT
and TWT significantly increase. This is because more dense
task sequences often lead to insufficient cluster resources,
resulting in more tasks requiring long waiting times. It can
be observed that EHRSM generally outperforms the baseline
algorithm across task sequences. On the Equally proportional
Sparse task sequence, EHRSM reduces TCT by 48.24%,
27.17%, 39.31%, and 51.68%, and TWT by 62.83%, 40.87%,
48.62%, and 63.20%, respectively, compared to DACS, DQN
scheduler, Greedy, and Random, which demonstrates the
ability of EHRSM to efficiently optimize the task completion
time and waiting time simultaneously. DACS and Greedy
differ only in that DACS further selects the node with the
most remaining resources when multiple nodes have similar
latencies, but due to the heterogeneity, this consideration is
not always effective, and thus the performance of DACS
and Greedy have similar performance. DQN-scheduler per-
forms poorly in Dense task sequences, this is because the
optimization strategy of DQN learns from historical task
information, and the performance of DQN degrades when the
real task sequences deviate from the training data. In addition,

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EHRSM BASED ON RNN AND PSO 1673

Fig. 6. The scheduling performance of different algorithms under different task sequences and α.

denser task sequences have a larger optimization space, which
means that DQN’s decision errors are magnified, resulting in
DQN being inferior to DACS and Greedy.

To further observe the performance of these algorithms
under different α, we set the α at 0.1, 0.3, 0.5, 0.7, 0.9 and
validate them using different task sequences. The experimental
results are shown in Fig. 6. Intuitively, the EHRSM is always
in the lower left of the scatterplot, which is the position
indicating the minimum of both TCT and TWT. Thus, EHRSM
is further validated to have the best optimization capability
compared to the baseline algorithm. Different α indicates
that the optimization objective focuses on TCT and TWT
differently, but experimentally, different α do not show this
in the distribution, and only EHRSM show this distribution
in Sparse (Equally proportional) and Normal (AI-intensive
biased). This is mainly due to the inherent correlation between
TCT and TWT, as TWT is a part of TCT, although minimizing
TWT may lead to an increase in TCT due to neglecting task
runtime.

4) Batch Task Scheduling Performance: In this section,
we first compare the performance of EHRSM, LJFP-PSO,
GWO-GA, and PSO-sigmoid in batch task scheduling. Then,
we validate the performance improvement of our proposed
EHRSM algorithm by utilizing CE and logistic function.
Finally, we evaluate the algorithm execution time for single
batch scheduling to discuss the feasibility of EHRSM. In the
next experiments we keep α = 0.5.

The scheduling performance of EHRSM is mainly derived
from the optimization-seeking capability of the improved PSO.
Therefore, the batch scheduling performance of EHRSM needs
to be compared with other metaheuristic algorithms. We set up
batch tasks of different lengths and count the TCT and TWT
of a batch of tasks.

The experimental results are shown in Fig. 7. It can be seen
that the TCT and TWT of EHRSM are always minimized

Fig. 7. Scheduling performance of various algorithms under different batch
task lengths.

among all the algorithms. When the batch size is 40, the
TCT of EHRSM is reduced by 9.72%, 8.62%, and 5.45%,
while the TWT is reduced by 40.97%, 36.97%, and 33.06%,
respectively, compared with LJFP-PSO, GWO-GA, and PSO-
sigmoid. This shows that the batch scheduling part of EHRSM
also has good scheduling performance when the task batch
is large. On the one hand, the sequential coding of EHRSM
brings a larger optimization space, and on the other hand,
the inertia weights of the logistic function enhance the
optimization ability of PSO, which is the reason why the
batch scheduling algorithm of EHRSM outperforms other
metaheuristics.

To better validate the effect of CE and logistic function
inertia weights in EHRSM batch scheduling, we perform
ablation experiments on these methods. The method that uses
CE and logistic function is referred to as PSO&CE&W, the
method that only uses CE is referred to as PSO&CE, the
method that only uses logistic function is referred to as
PSO&W, and the method that neither method uses is referred
to as PSO. For the method with constant inertia weight, we set
the inertia weight to 1. We validate their performance using
batch tasks of different sizes.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

1674 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

Fig. 8. The impact of CE and logistic function on algorithm performance.

TABLE I
THE EXECUTION SPEED OF THE BATCH SCHEDULING OF EHRSM UNDER

DIFFERENT TASK BATCH LENGTHS

The experimental results are shown in Fig. 8. It can be
seen that PSO&CE&W outperforms the other three methods,
and both PSO&CE and PSO&W outperform PSO. It indicates
that both CE and inertia weight optimization enhance the
performance of PSO and that these two optimizations are
fusible due to their different optimization angles. Therefore,
the efficient batch scheduling performance of PSO&CE&W
ensures the effectiveness of EHRSM.

Finally, we evaluate the impact of the execution time of
the batch scheduling to ensure whether it hinders the real-
time performance of EEC scheduling. We set up different task
lengths and count the execution time of the batch scheduling
algorithm, denoted as T c . The experimental results are shown
in Table I. Obviously, the larger the batch of tasks leads to a
longer execution time, but accordingly, the completion time of
the batch is also larger. When the batch task length is 10, the
execution time of the scheduling algorithm accounts for only
0.66% of the time, while when the batch task length is 20,
although the scheduling algorithm executes for 8.40s, it only
accounts for 0.59% of the completion time, which shows that
the execution time of the batch scheduling algorithm of the
EHRSM is fast enough to satisfy the real-time requirement.

5) The Effectiveness of RNN: In this section, we verify
the effectiveness of batching online tasks using RNNs. We
compare methods of batching using a number threshold and a
time threshold, perform scheduling using the proposed batch
scheduling algorithm, and ultimately compare the TCT and
TWT of these batching methods. For the method of batching
using a quantity threshold, all the arrived tasks are scheduled
when the number of arriving tasks reaches a specified number.
We set three quantities of 5, 10, and 15, denoted as 5n, 10n,
and 15n. For the method of batching using a time threshold,
all the arrived tasks are scheduled at fixed intervals. We set
three intervals of 5s, 10s, and 15s, denoted as 5s, 10s, and 15s.
In addition, we count the time spent on all tasks waiting for
scheduling execution during the batching process, i.e., Tw =

TABLE II
PERFORMANCE COMPARISON OF RNN, NUMBER THRESHOLD, AND TIME

THRESHOLD BATCHING METHODS FOR EQUALLY PROPORTIONAL TASK

SEQUENCES AND THE DATA IS IN SECONDS

TABLE III
PERFORMANCE COMPARISON OF RNN, NUMBER THRESHOLD, AND TIME

THRESHOLD BATCHING METHODS FOR AI-INTENSIVE BIASED TASK

SEQUENCES AND THE DATA IS IN SECONDS

∑|N |
i=1 T

w
i . We conduct experiments with different intensities

and different proportions of task types, which are similar to
the first experiment. α is set to 0.5.

The experimental results are shown in Tables II, III. From
the tables, it can be seen that no matter which kind of task
sequence, the performance of RNN is better than the other
methods in the vast majority of cases, which is since RNN
can adaptively adjust the number of tasks in a batch according
to the characteristics of the tasks. Since the arrival time of the
tasks is random, even with a Normal task sequence, there will
be some periods when tasks arrive in bursts and some periods
when tasks arrive sparsely. In this case, the adaptation of RNN
is crucial. Different batching strategies work differently when
the densities of the tasks change drastically. It shows that the
RNN is indeed effective in batching the tasks and transforming
online task scheduling into offline scheduling.

VI. CONCLUSION

In this paper, an EEC heterogeneous resources scheduling
method based on RNN and PSO is proposed. The tasks
published online are cached using an RNN trained from a
dataset processed through dynamic programming, transform-
ing online task scheduling into offline task scheduling. The
cached batch tasks use PSO optimized by CE for encoding
to schedule heterogeneous resources in the EEC, thereby
achieving efficient task scheduling and improving the quality
of cloud services. The experiment has proven that compared
with some mainstream scheduling algorithms, the proposed
method has more efficient scheduling performance, can greatly
reduce task waiting time, improve response speed, and thus
improve service quality. In the experiment, we also found some

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EHRSM BASED ON RNN AND PSO 1675

areas worth improving. As a heuristic search algorithm, PSO
requires the support of computing resources for its operation.
Therefore, in different scenarios, an appropriate number of
particles and search rounds is beneficial for saving computing
resources and improving computing speed. In addition, in
practical application scenarios, tasks may have characteristics
such as priority or dependency relationships, in which case
more complex modeling is needed to solve the problem. In
future work, we will further address and research these issues.

REFERENCES

[1] Z. Yang, B. Liang, and W. Ji, “An intelligent end–edge–cloud architec-
ture for visual IoT-assisted healthcare systems,” IEEE Internet Things
J., vol. 8, no. 23, pp. 16779–16786, Dec. 2021.

[2] G. Liu et al., “An adaptive DNN inference acceleration framework with
end–edge–cloud collaborative computing,” Future Gener. Comput. Syst.,
vol. 140, pp. 422–435, Mar. 2023. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167739X22003570

[3] C. Ding, F. Ding, S. Gorbachev, D. Yue, and D. Zhang, “A learnable end-
edge-cloud cooperative network for driving emotion sensing,” Comput.
Elect. Eng., vol. 103, Oct. 2022, Art. no. 108378. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S004579062200595X

[4] S. Duan et al., “Distributed artificial intelligence empowered by end-
edge-cloud computing: A survey,” IEEE Commun. Surveys Tuts., vol. 25,
no. 1, pp. 591–624, 1st Quart., 2023.

[5] T. Bezdan, M. Zivkovic, N. Bacanin, I. Strumberger, E. Tuba, and
M. Tuba, “Multi-objective task scheduling in cloud computing environ-
ment by hybridized bat algorithm,” J. Intell. Fuzzy Syst., Appl. Eng.
Technol., vol. 42, no. 1, pp. 411–423, 2022.

[6] S. Wang, T. Zhao, and S. Pang, “Task scheduling algorithm based on
improved firework algorithm in fog computing,” IEEE Access, vol. 8,
pp. 32385–32394, 2020.

[7] B. Jana, M. Chakraborty, and T. Mandal, “A task schedul-
ing technique based on particle swarm optimization algorithm
in cloud environment,” in Proc. SoCTA, 2019, pp. 525–536,
doi: 10.1007/978-981-13-0589-4_49.

[8] M. H. Shirvani and R. N. Talouki, “A novel hybrid heuristic-based list
scheduling algorithm in heterogeneous cloud computing environment
for makspan optimization,” Parallel Comput., vol. 108, Dec. 2021,
Art. no. 102828.

[9] S. Gupta et al., “Efficient prioritization and processor selection schemes
for HEFT algorithm: A makespan optimizer for task scheduling in cloud
environment,” Electronics, vol. 11, no. 16, p. 2557, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/16/2557

[10] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, “A
job scheduling algorithm for delay and performance optimization in
fog computing,” Concurr. Comput., Pract. Exp., vol. 32, no. 7, 2020,
Art. no. e5581. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.5581

[11] F. Ebadifard and S. M. Babamir, “Autonomic task scheduling algorithm
for dynamic workloads through a load balancing technique for the
cloud-computing environment,” Clust. Comput., vol. 24, pp. 1075–1101,
Jun. 2021.

[12] F. Ebadifard, S. M. Babamir, and S. Barani, “A dynamic task scheduling
algorithm improved by load balancing in cloud computing,” in Proc. 6th
Int. Conf. Web Res. (ICWR), 2020, pp. 177–183.

[13] S. Nabi, M. Ibrahim, and J. M. Jimenez, “DRALBA: Dynamic and
resource aware load balanced scheduling approach for cloud comput-
ing,” IEEE Access, vol. 9, pp. 61283–61297, 2021.

[14] N. P. S. Kumar, S. Arjun, B. Dhivya, and S. K. S. Sri, “Determining
energy consumption in heterogenous cloud computing by usage of
RMRECFS workflow with cost confinement,” in Proc. 4th Int. Conf.
Invent. Res. Comput. Appl. (ICIRCA), 2022, pp. 1287–1292.

[15] T. Long et al., “A novel fault-tolerant scheduling approach for collabo-
rative workflows in an edge-IoT environment,” Digit. Commun. Netw.,
vol. 8, no. 6, pp. 911–922, 2022.

[16] S. Souravlas and S. Katsavounis, “Scheduling fair resource allocation
policies for cloud computing through flow control,” Electronics, vol. 8,
no. 11, p. 1348, 2019. [Online]. Available: https://www.mdpi.com/2079-
9292/8/11/1348

[17] M. Hosseini Shirvani and R. Noorian Talouki, “A novel hybrid
heuristic-based list scheduling algorithm in heterogeneous cloud com-
puting environment for makespan optimization,” Parallel Comput.,
vol. 108, Dec. 2021, Art. no. 102828. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167819121000764

[18] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim, “Deep-Q
learning-based heterogeneous earliest finish time scheduling algorithm
for scientific workflows in cloud,” Softw., Pract. Exp., vol. 52, no. 3,
pp. 689–709, 2022. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/spe.2802

[19] K. Li, “Design and analysis of heuristic algorithms for energy-
constrained task scheduling with device-edge-cloud fusion,” IEEE Trans.
Sustain. Comput., vol. 8, no. 2, pp. 208–221, Apr.–Jun. 2023.

[20] V. P. Verma, N. S. Naik, and S. Kumar, “Reinforcement learning based
scheduling for spark jobs in cloud environment,” in Proc. IEEE 9th Uttar
Pradesh Sect. Int. Conf. Elect., Electron. Comput. Eng. (UPCON), 2022,
pp. 1–6.

[21] A. Lakhan and X. Li, “Content aware task scheduling framework
for mobile Workflow applications in heterogeneous mobile-edge-cloud
paradigms: CATSA framework,” in Proc. IEEE Int. Conf Parallel
Distrib. Process. Appl., Big Data Cloud Comput., Sustain. Comput.
Commun., Soc. Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom),
2019, pp. 242–249.

[22] T. Oo and Y.-B. Ko, “Application-aware task scheduling in heteroge-
neous edge cloud,” in Proc. Int. Conf. Inf. Commun. Technol. Converg.
(ICTC), 2019, pp. 1316–1320.

[23] H. Wang, “Intelligent scheduling strategy for heterogeneous
multi-terminal access tasks for complex cloud-edge collaborative
computing,” in Proc. 4th Int. Conf. Inf. Sci., Parallel Distrib. Syst.
(ISPDS), 2023, pp. 412–417.

[24] G. M. Nayeem, M. Fan, and Y. Akhter, “A time-varying adaptive inertia
weight based modified PSO algorithm for UAV path planning,” in Proc.
2nd Int. Conf. Robot., Elect. Signal Process. Techn. (ICREST), 2021,
pp. 573–576.

[25] M. Li, H. Chen, X. Wang, N. Zhong, and S. Lu, “An improved particle
swarm optimization algorithm with adaptive inertia weights,” Int. J.
of Inf. Technol. Decis. Making, vol. 18, no. 03, pp. 833–866, 2019.
[Online]. Available: https://doi.org/10.1142/S0219622019500147

[26] X. Huang, C. Li, H. Chen, and D. An, “Task scheduling in cloud
computing using particle swarm optimization with time varying inertia
weight strategies,” Clust. Comput., vol. 23, no. 2, pp. 1137–1147, 2020.

[27] N. Kardani, A. Bardhan, P. Samui, M. Nazem, P. G. Asteris, and
A. Zhou, “Predicting the thermal conductivity of soils using inte-
grated approach of ANN and PSO with adaptive and time-varying
acceleration coefficients,” Int. J. Thermal Sci., vol. 173, Mar. 2022,
Art. no. 107427. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1290072921005822

[28] R. Li, Q. Zhuang, N. Yu, R. Li, and H. Zhang, “Improved hybrid particle
swarm Optimizer with sine-cosine acceleration coefficients for transient
electromagnetic inversion,” Curr. Bioinf., vol. 17, no. 1, pp. 60–76, 2022.

[29] W. Yang, X. Zhou, and Y. Luo, “Simultaneously optimizing inertia
weight and acceleration coefficients via introducing new functions into
PSO algorithm,” J. Phys., Conf. Ser., vol. 1754, no. 1, Feb. 2021,
Art. no. 12195. [Online]. Available: https://dx.doi.org/10.1088/1742-
6596/1754/1/012195

[30] A. T. Kiani et al., “An improved particle swarm optimization with
chaotic inertia weight and acceleration coefficients for optimal extraction
of PV models parameters,” Energies, vol. 14, no. 11, p. 2980, 2021.
[Online]. Available: https://www.mdpi.com/1996-1073/14/11/2980

[31] Y. Du and F. Xu, “A hybrid multi-step probability selection particle
swarm optimization with dynamic chaotic inertial weight and accelera-
tion coefficients for numerical function optimization,” Symmetry, vol. 12,
no. 6, p. 922, 2020. [Online]. Available: https://www.mdpi.com/2073-
8994/12/6/922

[32] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initializa-
tion of PSO task scheduling algorithm in cloud computing,” J. King
Saud Univ., Comput. Inf. Sci., vol. 34, no. 6, pp. 2370–2382, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157820305279

[33] R. M. A. N. I. J. Abdullayeva, “PSO-based load balancing method
in cloud computing,” Autom. Control Comput. Sci., vol. 53, no. 1,
pp. 45–55, 2019.

[34] A. M. Senthil Kumar, P. Krishnamoorthy, S. Soubraylu, J. K. Venugopal,
and K. Marimuthu, “An efficient task scheduling using GWO-PSO
algorithm in a cloud computing environment,” in Proc. Int. Conf. Intell.
Comput., Inf. Control Syst., pp. 751–761.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-981-13-0589-4_49

1676 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 2, APRIL 2025

[35] Richa and B. N. Keshavamurthy, “Improved PSO for task scheduling in
cloud computing,” in Evolution in Computational Intelligence: Frontiers
in Intelligent Computing: Theory and Applications, vol. 1, V. Bhateja,
S.-L. Peng, S. C. Satapathy, and Y.-D. Zhang, Eds., Singapore: Springer,
2021, pp. 467–474, doi: 10.1007/978-981-15-5788-0_45.

[36] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud com-
puting using hybrid optimization algorithm,” Soft Comput., vol. 26,
pp. 13069–1307, Dec. 2022.

[37] W.-K. Lai, Y.-C. Wang, and S.-C. Wei, “Delay-aware container
scheduling in Kubernetes,” IEEE Internet Things J., vol. 10, no. 13,
pp. 11813–11824, Jul. 2023.

[38] M. T. Islam, S. Karunasekera, and R. Buyya, “Performance and cost-
efficient spark job scheduling based on deep reinforcement learning
in cloud computing environments,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 7, pp. 1695–1710, Jul. 2022.

[39] I. Behera and S. Sobhanayak, “Task scheduling optimization in heteroge-
neous cloud computing environments: A hybrid GA-GWO approach,” J.
Parallel Distrib. Comput., vol. 183, Jan. 2024, Art. no. 104766.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731523001363

Haijie Wu is currently pursuing the M.S.
degree with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China, supervised by Dr. W. Lin. His
research interests mainly include cloud edge collab-
oration, edge computing, and AI algorithms.

Wangbo Shen received the B.S. degrees from
Changsha University, Changsha, China, in 2012
and 2016, respectively, and the M.S. degrees
from Central South University, Changsha, in 2016
and 2019, respectively. He is currently pursuing
the Ph.D. degree with the School of Computer
Science and Engineering, South China University of
Technology, Guangzhou, China, supervised by Dr.
W. Lin. His research interests mainly include Kernel
learning, AutoML, and edge computing.

Weiwei Lin (Senior Member, IEEE) received the
B.S. and M.S. degrees from Nanchang University
in 2001 and 2004, respectively, and the Ph.D.
degree in computer application from the South China
University of Technology in 2007, where he is
currently a Professor with the School of Computer
Science and Engineering. He was a Visiting Scholar
with Clemson University from 2016 to 2017. He
has published more than 150 papers in refereed
journals and conference proceedings. His research
interests include distributed systems, cloud comput-

ing, and AI application technologies. He has been a Reviewer for many
international journals, including the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON SERVICES

COMPUTING, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the
IEEE TRANSACTIONS ON COMPUTERS, and the IEEE TRANSACTIONS ON

CYBERNETICS. He is a Distinguished Member of CCF.

Wei Li (Senior Member, IEEE) received the Ph.D.
degree from the School of Information Technologies,
The University of Sydney, where he is cur-
rently an ARC DECRA Fellow with the Centre
for Distributed and High Performance Computing,
School of Computer Science. His research interests
include edge computing, sustainable computing, task
scheduling, energy efficiency, and the Internet of
Things. He is the recipient of four IEEE or ACM
conference best paper awards. He received the IEEE
TCSC Award for Excellence in Scalable Computing

for Early Career Researchers in 2018 and the IEEE Outstanding Leadership
Award in 2018. He is a Senior Member of IEEE Computer Society and a
member of ACM.

Keqin Li (Fellow, IEEE) is a SUNY Distinguished
Professor of computer science with the State
University of New York. He is also a National
Distinguished Professor with Hunan University,
China. His current research interests include, fog
computing and mobile edge computing, energy-
efficient computing and communication, embedded
systems and cyber-physical systems, heterogeneous
computing systems, big data computing, high
performance computing, computer architectures and
systems, computer networking, ML, and intelli-

gent and soft computing. He is currently an Associate Editor of the
ACM Computing Surveys and the CCF Transactions on High Performance
Computing. He has served an Editorial Boards of the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING. He is an AAIA Fellow. He is also a member
of Academia Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 23:19:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-981-15-5788-0_45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

