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Abstract—In Mobile Edge Computing (MEC) scenarios, com-
putational tasks are popularly deployed using containerization to
isolate the runtime environment. To complete the execution of the
task, the edge server first pulls the image, then instantiates and
runs the container. Since it takes a lot of time for the edge server
to download the image from the cloud, image reuse reduces the
pulling latency significantly. However, the limited storage capacity
of edge servers hinders image reuse. Recent works have enhanced
reuse efficiency by leveraging the hierarchical structure of images
and caching high-value layers. However, their efficiency remains
limited due to the lack of multi-container collaboration. This paper
proposes a novel container scheduling strategy based on image
layer reuse and sequence arrangement (ILR-SA) for MEC scenar-
ios, which achieves efficient scheduling by collaborating multiple
containers. First, containers are greedily deployed into the edge
cluster. Then, the execution sequence of containers is modeled as
an optimal Hamiltonian path problem, efficiently solved by our
proposed decomposition algorithm. Finally, an efficient image layer
update strategy is used to achieve layer reuse. We conduct rigorous
experiments to demonstrate that our proposed container schedul-
ing strategy reduces the computational task completion time by up
to 91.3% compared to existing approaches.
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I. INTRODUCTION

IN Mobile Edge Computing (MEC) scenarios [1], container-
ization has become a key technology for deploying appli-

cations [2]. By encapsulating applications and their dependent
environments in containers, containerization ensures the con-
sistency and portability of applications across different com-
puting environments, thus improving application development
efficiency. Due to the distributed characteristics of MEC and its
need for low latency, applications need to be managed efficiently
and deployed and launched quickly, and these requirements are
met by containerization, thus containerization plays a crucial
role in MEC.

As one of the most popular containerization tools, Docker is
widely used to provide lightweight deployment of applications
or computing tasks. In the review [3], the authors revealed that
containerization is considered a substitute for virtualization, and
Docker has become the most popular tool among container ven-
dors for deploying software applications or services, indicating
that Docker containers have gained a huge market share. Further-
more, the Docker containers are orchestrated through some tools
to achieve efficient management [4]. For example, Kubernetes
has the ability to manage and automate the deployment of large-
scale Docker container clusters and provides a high availability
and scalability solution [5]. Different container orchestration
tools have different security, stability, and scalability [6], but
they all provide unified management of containers and achieve
distributed application management. These orchestration tools
have been widely applied in different fields. For example, Ku-
bernetes is used to build a blockchain [7] that can predict health
diseases. Due to Kubernetes’ ability to automate the deploy-
ment, scaling, and management of containerized applications,
it will facilitate container orchestration and efficient blockchain
deployment. A cloud-edge collaborative architecture-based in-
dustrial robot platform was proposed in [8], and container or-
chestration technology was used to facilitate the deployment of
cloud-edge collaborative services. The paper [9] implemented
a testing platform in a Kubernetes environment to generate a
dataset of 5G network resources that is closer to real-world
data for deep learning model training, and evaluated the best
performance model for predicting resource usage. These studies
fully demonstrate the high application value of containers and
their orchestration tools.
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The container depends on an image, a static file containing
the initial file system, which is the foundation for the container
to run. Before starting the container, the device needs to pull the
corresponding image file for the container. When the image file
is missing, the device will pull the image from a remote image
repository, such as DockerHub. The speed of pulling is affected
by network bandwidth, so storing the image on the local disk for
reuse can avoid the latency caused by pulling the image. How-
ever, in the MEC scenario, edge devices’ storage capacity and
network bandwidth are limited, resulting in the image-pulling
delay becoming a challenge that cannot be ignored. Kubernetes
provides a default scheduler that takes into account the latency
of image pulls. This default scheduler assigns a higher score to
nodes that already have the corresponding image in their local
image repository when selecting nodes for containers. Thus,
the node’s image repository is used as a metric for scheduling
consideration along with computational resources. Some works
reduce the pulling latency of images by pre-placing them on
edge devices. For example, Sun et al. proposed an image-based
microservice placement algorithm that places microservice im-
ages on edge devices based on the frequency of microservice
requests [10]. As images with higher usage frequency are more
likely to be used in the future, this method will effectively reduce
the image retrieval time. Some works are optimized from a
caching perspective, which means that during the scheduling
process, the images on edge devices will be updated based on
their value. Limited storage capacity will prioritize retaining
the most valuable images, while the least valuable images will
be evicted because they have the lowest possibility of being
reused. Mou et al. considered the image cache on edge devices in
the process of using reinforcement learning for task scheduling
optimization, and the value of the image was defined as the
product of the frequency of use and the size of the image [11].
These works have fundamental significance for MEC scheduling
optimization.

However, the method of reusing the entire image has its
limitations, as once there are too many different containers, their
images are considered entirely different, and the efficiency of
reuse will be significantly degraded. In fact, images often have a
hierarchical structure, forming a tree structure if these images all
develop from the same basic image [12]. Therefore, the reuse of
the image layer will bring greater pull latency optimization when
compared to the entire image, as two nonidentical images may
have the same image layers. Many works utilize the hierarchical
structure of images to optimize scheduling [13], [14], where con-
tainers tend to be scheduled to devices with more corresponding
image layers. The caching of the image layer is also a popular
research topic [12], [15], [16]. When the storage space of edge
devices is insufficient, managing the image layer correctly can
help improve the scheduling efficiency of containers.

While these works alleviate the image-pulling latency, the
lack of multi-container collaboration results in limited container
scheduling performance. When co-scheduling a batch of con-
tainers, the scheduler can obtain more prior knowledge [17],
[18], [19], with greater optimization space, and the correspond-
ing solution becomes the NP-hard problem [20], [21]. Since
batch scheduling is a significant challenge in MEC [18], [19],

[22], it is significant to study how to achieve efficient collabo-
rative scheduling of multiple containers by using the hierarchi-
cal structure of images. However, existing works on container
scheduling in MEC scenarios do not work well by image layer
reuse to synergize the scheduling of multiple containers, result-
ing in excessive image pulling latency and container completion
time, and aggravating the burden on the edge network.

In this paper, we innovatively propose an efficient container
scheduling algorithm based on Image Layer Reuse and Se-
quential Arrangement (ILR-SA). We collaborate with multiple
containers and reduce the pulling latency of images and the
total completion time of containers by reusing image layers.
ILR-SA considers the constraints of computational resources
and disk space, heuristically deploys containers to edge devices,
and reuses the image layer by caching and updating the image
layer dynamically. By sequential arrangement of containers, the
reusing rate of the image layer is greatly enhanced, which allevi-
ates the bandwidth burden and reduces the response time in MEC
scenarios. ILR-SA can quickly obtain scheduling strategies with
a small computational burden. The main contributions of this
paper are summarized as follows:

1) We address the container scheduling problem from the
perspective of multiple containers collaborating and re-
ducing image-pulling latency through image layer reuse.
Since multiple containers can collaborate, we focus on
maximizing the reuse rate of the containers’ image layers,
thereby reducing the completion time of the containers.

2) We design a scheduling algorithm for containers, named
ILR-SA. First, containers are greedily deployed to edge
nodes to wait for further processing. Then, we model the
execution sequence of multiple containers on a single edge
node as the optimal Hamiltonian path, since containers
with similar image layers should be run adjacent to each
other. We design a fast and efficient method based on the
idea of decomposition and justify the method theoreti-
cally. Finally, the optimal image layer caching strategy
is proposed to improve the reuse efficiency of containers
running on the edge device.

3) We have conducted rigorous comparative experiments to
fully validate that ILR-SA can significantly reduce the
container completion time and improve the image layer
reuse rate within a very short algorithm execution time.

The rest of this paper is organized as follows: Section II
introduces the background and related work. Section III formally
describes the scheduling problem of this paper. Section IV
introduces the design and analysis of the proposed method.
Section V conducts the experiments and analyzes the results.
Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Container Scheduling

Containers, with their independent runtime environment, are
very popular tools for deploying applications. However, the
scheduling performance of containers determines whether ap-
plications can be deployed quickly or computational tasks can
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be completed promptly. When the image pulling time is not con-
sidered as the bottleneck of scheduling performance, the device’s
performance becomes a key indicator for container scheduling.
Lai et al. proposed a delay-aware container scheduling (DACS)
algorithm to achieve container scheduling on heterogeneous
devices in edge clusters [23]. Due to the heterogeneity of edge
devices, worker nodes exhibit varying performance, resulting
in different computational resources and latency for different
worker nodes. DACS integrates these indicators into scheduling
algorithms to achieve container scheduling on heterogeneous
clusters by predicting remaining resources and latency. Tang
et al. proposed a priority-aware greedy container scheduling
strategy (PGT) to optimize the container scheduling perfor-
mance in cloud-edge collaborative environments, using response
time, energy consumption, and task execution cost as indicators
to be optimized [24]. A novel network-aware framework for
Kubernetes was proposed by [25] to determine the placement
of microservices, focusing on reducing end-to-end latency of
applications and saving bandwidth. Wang et al. proposed a new
load prediction model CNN-BiGRU-Attention to predict the
future load of containers and generate scheduling strategies to
cope with changes in load [26]. These tasks are often based on
the assumption that the image has already been pre-pulled to
the worker node, without considering the network burden and
latency caused by image pulling, and only targeting the data
transmission and resource requirements of the container itself.

B. Batch Task Scheduling for Edge Servers

In the MEC scenario, tasks are required to have a small
latency, resulting in tasks often only being scheduled with online
processing, as the tasks cannot tolerate a period of latency to
accumulate a batch of tasks for simultaneous scheduling. How-
ever, this tolerance may decrease in scenarios where computing
resources or bandwidth are very limited, as scheduling multiple
tasks collaboratively can bring better scheduling performance,
making online processing secondary. Miao et al. pointed out
that most existing schedulers are queue-based, meaning that
tasks are scheduled sequentially and lack tightly coupled joint
processing, and thus, time-saving batch scheduling methods
are needed [17]. Due to the collaborative processing of mul-
tiple tasks, scheduling problems can be modeled as a min-cost
max-flow problem, which can achieve more efficient scheduling
results at a relatively low deployment cost. A similar viewpoint
is illustrated in [19]. The authors specify that collaborative
scheduling of multiple containers is superior to independent
scheduling of containers, which has been overlooked in existing
work. Therefore, they used multiple collaborating containers
and proposed methods for container allocation and image layer
sequence sorting, significantly reducing the startup delay of
containers. Xu et al. proposed an adaptive mechanism for dy-
namic collaborative computing capability and task scheduling
(ADCS) in edge environments to reduce deadline loss rate and
task completion time [27]. ADCS processes the tasks gener-
ated by mobile devices and finds better scheduling strategies
than sequential scheduling by adjusting the execution order
between tasks, an effect that online scheduling cannot achieve.

Teng et al. proposed a multi-server multi-task allocation and
scheduling (MMAS) problem for MEC scenarios, scheduling
a batch of tasks offloaded from the edge layer, and proposed
the Game based Distributed Task Allocation and Scheduling
(GDTAS) scheme and the Centralized Greedy Task Allocation
and Scheduling (CGTAS) scheme to maximize system prof-
its [18]. These works fully demonstrate the importance of batch
task scheduling in MEC scenarios. Through the collaborative
scheduling of multiple tasks, the scheduling performance of
tasks can be significantly improved.

C. Container Reuse and Image Layer Reuse

To reduce the latency of deploying containers on edge devices,
some works reuse containers to reduce their startup latency,
including image pulling. Chen et al. proposed an optimized
request distribution algorithm and context-aware probabilistic
container caching strategy, which can significantly reduce the
cost of container deployment by preventing frequent creation
and destruction of containers [28]. Pan et al. presented a similar
idea, investigating the problem of retention-aware container
caching in serverless edge computing and reducing the overall
cost of the system [29]. Some works are based on reinforcement
learning to design container caching and reuse algorithms [30],
[31], and some use heuristic algorithms [10], [32]. These works
inspired the idea of reuse and showed the optimizations that
come with reuse. However, they focused more on the startup
latency of the container itself rather than just the image pull
time. When bandwidth resources are more scarce, considering
how to reduce the image pull time will lead to more significant
optimization.

To alleviate the shortage of bandwidth resources as much as
possible, the image is divided into layers to improve the reuse
rate since two similar images will not be considered as the same
image but have many identical reusable image layers. Yin et al.
proposed a two-stage optimization storage strategy to reduce
the download time of images [12]. The value of the image layer
is first defined, and then the pre-placed image layers are de-
termined through the knapsack algorithm. Subsequently, during
the container scheduling process, the image layers are contin-
uously updated based on their usage frequency. A layer-wise
container pre-arming and keep-alive technique, RainbowCake,
was proposed by [33]. Through structured container layering
and shared-aware modeling, RainbowCake has robustness and
tolerance for call bursts, thereby reducing container startup la-
tency. In [34], the service request scheduling and container reuse
problem with layer sharing and container caching are studied to
reduce latency in vehicular services and ensure responsiveness.
Zhao et al. also studied the loading strategy of the image layer in
storage constraints to reduce the total computation completion
time of tasks [35]. Much work has shown that reusing the
image layer can bring significant optimization, especially in
edge environments with limited storage capacity and bandwidth.

III. PROBLEM FORMULATION

To clearly state the impact of image pull latency on container
scheduling, we model container scheduling in edge scenarios
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Fig. 1. Illustration of the container scheduling process in the MEC scenarios. Process (1): End devices send task requests and communicate with edge devices
during container execution. Process (2): The scheduler collects task information from edge devices and sends scheduling strategies. Process (3): Edge devices pull
image layers from the cloud. In edge devices, 1© container queue information is sent to the image layer manager, 2© the manager caches layers or pulls image
layers, and 3© the local image repository acquires all necessary image layers, 4© enabling container execution using edge device computational power.

TABLE I
KEY NOTATIONS DEFINITION

and formally describe the scheduling model using mathematical
symbols.

The overall container scheduling process is shown in Fig. 1,
and the key notations are defined as shown in Table I. First, the
scheduler collects requests for tasks from the end devices, which
are packaged as containers. We assume that the scheduler re-
ceivesN tasks at a certain time slot, so there areN containers that
need to be scheduled for the execution of these tasks, denoted as
C = {c1, c2, . . ., cN}. The execution of these tasks depends on
computational resources such as CPU, memory, etc. We assume
that a total ofR types of computational resources are considered,
whereQr

i denotes the number of requests from the ith container
for the rth computational resource, where r = 1, 2, . . ., R and
i = 1, 2, . . ., N . We assume that these containers involve W
different image layers, represented as L = {L1, L2, . . ., LW }.
The binary variable li,k = 1 indicates that for the ith container,
its image contains the kth image layer, while li,k = 0 indicates

that it does not. The size of theseW image layers is represented
as {s1, s2, . . ., sW }, so the ith container has an image size of∑W

k=1 li,ksk. The scheduler calculates the scheduling strategy
and deploys containers to M edge devices in the edge cluster,
denoted as E = {e1, e2, . . ., eM}. Ar

j represents the rth type
of computational resource quantity for the jth edge device.
Thus, for container ci executing on ej , the resource constraint
is represented as:

Qr
i ≤ Ar

j , r = 1, 2, . . ., R (1)

Specifically, the disk size used for storing the image layers
is separately noted as {d1, d2, . . ., dM}, as the disks of edge
devices cannot be used entirely for storing the image layer. The
binary variable Υj,k = 1 indicates that the jth edge device has
already stored the kth image layer, whileΥj,k = 0 indicates that
it has not been pulled locally. The bandwidth of edge devices
is denoted as {γ1, γ2, . . ., γM}. The local image repository
capacity of edge devices is limited. Therefore, the following
restrictions are met:

W∑

k=1

Υj,k × sk ≤ dj , j = 1, 2, . . .,M (2)

We define the scheduling strategy H = {H1,H2, . . .,HM},
where Hj denotes the containers of the tasks allocated
to the jth edge device, thus Hj = {hj1, hj2, . . ., hj|Hj |},

where hji ∈ C, j = 1, 2, . . .,M, i = 1, 2, . . ., |Hj |,Hj ∩Hk =

∅,
∑M

j=1 |Hj | = N . The scheduling strategy contains not only
the mapping of tasks to edge devices but also the startup se-
quence of multiple containers on the same edge device since
the startup sequence will greatly affect the reuse efficiency of
images. Then, the edge device receives the scheduling strat-
egy sent by the scheduler and will start executing these tasks
sequentially. In jth edge device, an image layer manager is
deployed to implement the update strategy for the image layer.
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The completion time of container hji is defined as t�
hj
i

, which

includes a waiting time tw
hj
i

for the container, a downloading

time t↓
hj
i

for the image, and a time tr
hj
i

for the task to run, i.e.,

t�
hj
i

= tw
hj
i

+ t↓
hj
i

+ tr
hj
i

(3)

where tw
hj
i

is the waiting delay caused by the queuing of the

containers on the edge device according to the sequence on Hj ,
which depends on the resource limitation of the edge device, and
the container stops waiting only if the image is available or the
edge device does not pull other images. When the image pull is
complete, it will continue to wait if the computational resources
are insufficient. t↓

hj
i

is calculated by the following equation:

t↓
hj
i

=

∑W
k=1 lhj

i ,k
sk(1−Υj,k)

γj
(4)

It is worth noting that the image layer manager updates the
image layer of the edge device. When the capacity of the
image repository is insufficient, some of Υj,k is varied since
the capacity of the image repository is limited. The image layers
not being used will be deleted [12], [15]. tr

hj
i

is determined by the

contents of the task and contains the time of computation on the
edge servers, data transfer with the end devices, and so on. Other
delays, such as the transmission delay of the scheduling strategy
from the scheduler to the edge device, are to be omitted since
they are much smaller than the above three delays. We define
the average total completion timeACT of a set of containers as
the average of the completion times of all N containers:

ACT =
N∑

i=1

t�i /N =
M∑

j=1

|Hj |∑

i=1

t�
hj
i

/N (5)

Since each edge device handles a set of containers individually,
we define the average makespan AMS of the containers to be
the average of the makespan of M devices:

AMS =
M∑

j=1

max
hj
i∈Hj

t�
hj
i

/M (6)

Our goal is to optimizeACT andAMS by improving the reuse
efficiency of images, formalized as:

min α×ACT + (1− α)×AMS

s.t. Eqs. (1), (2). (7)

where α is a weighting factor to weigh ACT and AMS. ACT
represents the average execution efficiency of each task, while
AMS represents the execution efficiency of the overall task
queue. In general, ACT and AMS are positively correlated, as
lower ACT tends to result in lower AMS. These two metrics
are the main basis for evaluating our scheduling strategy, and
we weigh them to achieve a joint optimization.

IV. DESIGN OF ILR-SA

In this section, we detail the proposed ILR-SA. ILR-SA
focuses on optimizing the image pull time before the container

Fig. 2. Schematic diagram of the ILR-SA. Containers are first deployed to the
edge devices, then the execution sequence is arranged, and finally, the image
layer reuse is realized using the update strategy.

runs. By analyzing the hierarchical structure of images and ar-
ranging the execution sequence of containers appropriately, the
image layer reuse efficiency for multiple containers executing
on the same device can be improved, thereby reducing container
completion time. As shown in Fig. 2, we divide the proposed
scheduling strategy into three phases. In the first phase, the
containers are properly deployed to a specific edge device. In the
second phase, the execution sequence of the containers deployed
to the same device is arranged, as containers with more identical
image layers are more suitable for adjacent execution. In the
third phase, we run these containers on devices based on the
calculated execution sequence and design an update strategy for
the image layer to improve the image layer reuse efficiency,
thereby reducing the completion time of the containers.

A. Deploying Containers to Nodes

To minimize the completion time, containers tend to be de-
ployed to the devices with the most remaining resources. At the
same time, the image layer repository also determines the time a
container spends on pulling images. Based on these two points,
we design a scheduling algorithm for containers to achieve
the optimization objective of (7). In this phase, the mapping
of containers to edge devices is determined, which means that
the elements of each Hj are determined, but not the sequence
of these elements. The completion time of the containers on
the edge device can be computed in advance because both the
resource consumption of the container and the resources of the
edge device are known. Therefore, we define the function f(·)
that calculates the average completion time ÂCT and makespan
ÂMS of an edge device when a set of containers is deployed on
it. During the deployment process, the containers are deployed
to the edge cluster E one by one in the sequence of C. The
random eviction strategy is adopted to update image layers
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Algorithm 1: Scheduling Algorithm for Deploying
Containers to Edge Devices.

when the capacity of the repository is insufficient. The designed
scheduling algorithm is shown in Algorithm 1.

In Algorithm 1, each container is sequentially deployed to
edge devices, and the average completion time and makespan of
the edge device are calculated when the container is deployed
to the edge device. Based on this, the optimal edge device is se-
lected. For Algorithm 1, we have the following two notes: 1) The
scheduling algorithm for containers is coarse-grained, and the
process of calculating scheduling strategies is seen as simulated
scheduling, which means that containers do not actually run on
edge clusters but only calculate the total completion time and
makespan. When deploying ci to the edge cluster, the deploy-
ment of ci+1, . . ., cN is unknown, so the execution sequence
of the container will not be adjusted, and the eviction of the
image layer is also random. However, since containers always
choose the minimum average completion time and makespan,
they will select edge devices with more abundant resources and
higher image reuse rates. This decision helps with the subsequent
sequence arrangement and image layer updates. 2) The design
of scheduling is necessary. To improve the reuse efficiency of
the image layer, similar containers will be deployed to the same
edge device as much as possible. However, due to the resource
limitations of edge devices, this deployment may not be effective
because the idle resources of other edge devices also need to
be considered. Additionally, deploying multiple containers on
edge devices first simplifies the problem. The subsequent design
focuses on efficiently executing a set of containers on only an
edge device.

B. Container Execution Sequence Arrangement

In this phase, the execution sequence of containers deployed
to the same edge device is arranged. For ∀ej ∈ E, Hj =

{hj1, hj2, . . ., hj|Hj |} will be processed using the same algorithm.
It is computationally infeasible to find the optimal sequence by
traversing all of |Hj |! different sequences. Therefore, we pro-
pose the container execution sequence arrangement algorithm

based on the image layer reuse, which reduces the image pulling
time and achieves the goal of (7).

Specifically, denoting ψci,cq as the amount of layer data
duplicated by containers ci and cq , thus

ψci,cq =

W∑

k=1

li,k × lq,k × sk (8)

If ci and cq are adjacently executed, the duplicated data will
be reused because when ci is executed, ej owns all the image
layers of ci. Therefore, the image layers that can be reused by
cq will not be evicted when the image layers are updated. For
the container queue Hj , we define the sequence value V to be
calculated by the following equation:

V =

|Hj |−1∑

i=1

ψhj
i ,h

j
i+1

(9)

where V denotes the minimum amount of image layer reuse
data for that container queue. An optimal container execution
sequence arrangement will have a maximum V as it will be able
to increase the amount of reused data. To compute the container
queue with maximum V , we model the execution sequence of
containers as the optimal Hamiltonian of a graph. Specifically,
we define a complete undirected graphGwith N = |Hj | nodes,
each node represents a container, and the edge of the ith node
and the qth node is ψhj

i ,h
j
q
, which means that if hji and hjq are

executed adjacent to each other, the amount of data that can be
reused is ψhj

i ,h
j
q
. Therefore, solving for a queue of containers

with maximum V is to find a Hamiltonian path P with the
maximum sum of edge weights in G. Since the Hamiltonian
path requires that the path passes through all the nodes only
once, the sequence in which this path passes through the nodes
is the sequence in which the containers are executed.

This problem is similar to the Traveling Salesman Problem
(TSP), which is an NP-hard problem. Dynamic programming
can solve for the optimal Hamiltonian path according to the
following equation:

D[S][ht] = max
ho∈S\{ht}

(D [S \ {ht}] [ho] + ψho,ht
) (10)

where ht ∈ S, and D[S][ht] represents the maximum V of the
path, which passes through node setS and terminates at node ht.
The state space of S comprises 2N distinct states, thus the time
complexity of solving the Hamiltonian path with the maximum
V is O(N 2 × 2N ). Although the Hamiltonian path solved by
this method is optimal, the computation time cannot be tolerated
with an increasing number of nodes. Therefore, we propose a
fast algorithm for finding a suboptimal solution to search for
the Hamiltonian path. Then, we will explain that our design
is based on the tree structure of the image layer and has good
performance.

The container execution sequence arrangement algorithm we
designed is based on (10). N determines the speed of finding
the optimal Hamiltonian path. When N is small, the algorithm
can calculate the optimal Hamiltonian path within an acceptable
time. Therefore, as shown in Fig. 3, our method utilizes the idea
of decomposition to divide the N nodes into multiple groups,
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Fig. 3. Schematic diagram of the decomposition algorithm we proposed. Each
node represents a container, and the path represents the execution sequence of
these containers. From (a) to (b), nodes are first grouped. From (b) to (c), the
optimal Hamiltonian path for each group is determined. From (c) to (d), these
paths are connected via the optimal Hamiltonian path.

each with No nodes, resulting in a total of 	 N
No


 groups. Each
group can use (10) to calculate the optimal Hamiltonian path,
then each path is viewed as a point again, with its starting and
ending points connected to other paths. Therefore, (10) can be
used again to solve the connection of these 	 N

No

 paths. The time

complexity of this method is O(N ×No × 2No + N 2

N 2
o
× 2

N
No ).

Intuitively, to minimize time complexity, No need to take
√N ,

since the exponential term can become a bottleneck in time
complexity, and making N

No
= No is optimal. Therefore, the

time complexity is optimized to O(N 3
2 × 2

√N ). Although the
algorithm is still not non-polynomial in complexity, it can handle
more containers compared to (10). Moreover, the effectiveness
of this algorithm will be explained in the following content, and
the extended algorithm will be introduced to cope with larger
container queues. The algorithm for arranging the container
sequence proposed is shown in Algorithm 2.

Algorithm 2 processes the containers Hj deployed on the
edge device ej and outputs the sorted execution sequence of
these containers. Containers are first grouped, selecting the
first container from the ungrouped ones. Then, the container is
grouped with the 	√N
 − 1 containers having the largest edge
weights among the ungrouped containers. The effectiveness of
this grouping method will also be demonstrated in subsequent
content. Then, the containers in the same group find the optimal
Hamiltonian path. The two endpoints of this path are determined
as the starting and ending points, respectively. After grouping all
containers of Hj , g paths are obtained, and these g paths form a
complete directed graph by treating them as nodes. In the end,
these g nodes obtained the optimal Hamiltonian path, thereby
connecting the g paths and obtaining the final path P ∗. For our
proposed algorithm, there are the following issues that need to be
explained: 1) Is there a significant discrepancy between the path
calculated by the proposed method and the optimal solution? 2)
What is the basis for grouping?

Algorithm 2: Algorithm for Container Execution Sequence
Arrangement.

First, we explain why the proposed decomposition algorithm
works well. In the complete undirected graph G, there are a
total of N nodes, which are divided into g clusters, denoted as
G = {G1, G2, . . ., Gg}, and Gi represents the node set of the
ith cluster, denoted as {pi1, pi2, . . ., pi|Gi|}, where

∑g
i=1 |Gi| =

N . We assume that the images of containers represented by
nodes in the same cluster are similar, while the images between
clusters are not as similar as within clusters. This assumption is
formalized as

ψpi
a,p

i
b
≥ ψpi

a,p
j
c

(11)

where i, j = 1, 2, . . ., g, and a, b = 1, 2, . . ., |Gi| and c =
1, 2, . . ., |Gj |. We prove that if graph G can be decomposed
into these subgraphs satisfying (11) and the optimal solution
is unique, then the Hamiltonian path P ∗ calculated using the
proposed algorithm is consistent with the optimal Hamiltonian
path P calculated using (10). For the convenience of subsequent
proof, the following two lemmas are proposed and proven.

Lemma 1: For any three nodes pi, pj , pk, the weights
ψpi,pj

, ψpj ,pk
, ψpi,pk

of the three edges they connect must sat-
isfy that at least two edge weights are equal, and the remain-
ing edge weight must be greater than these two equal edge
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weights. Assuming ψpi,pj
= max(ψpi,pj

, ψpj ,pk
, ψpi,pk

), then
ψpi,pj

≥ ψpj ,pk
= ψpi,pk

.
Proof: First, we note that the sets of image layers for con-

tainers pi, pj , and pk are Ai, Aj , and Ak. The tree structure of
the image layers determines that image layers near the root can
be reused, while leaves are generally not reusable. Considering
the intersections of image layer sets Ai ∩Aj , Aj ∩Ak, and
Ai ∩Ak, they have an inclusion relationship between each pair
and represent ψpi,pj

, ψpj ,pk
, ψpi,pk

. For example, Aj ∩Ak ⊆
Ai ∩Aj , since both Aj ∩Ak and Ai ∩Aj are part of Aj and
they are the first few image layers ofAj near the root. Similarly,
either Ai ∩Ak ⊆ Ai ∩Aj or Ai ∩Ak ⊇ Ai ∩Aj . If the latter
holds, then Ai ∩Ak ⊇ Aj ∩Ak. We assume that Ai ∩Aj is
the largest among the three intersections, which implies that
Aj ∩Ak ⊆ Ai ∩Aj and Ai ∩Ak ⊆ Ai ∩Aj . Next, we prove
that Aj ∩Ak = Ai ∩Ak.

ForAj ∩Ak ⊆ Ai ∩Aj , assuming the image layerϑ ∈ Aj ∩
Ak, then ϑ ∈ Ai ∩Aj . Therefore, ϑ ∈ Ai and ϑ ∈ Aj and
ϑ ∈ Ak, that is, ϑ ∈ Ai ∩Aj ∩Ak ⊆ Ai ∩Ak. Therefore, for
any image layer ϑ ∈ Aj ∩Ak, ϑ ∈ Ai ∩Ak is satisfied, hence
Aj ∩Ak ⊆ Ai ∩Ak. Similarly, for Ai ∩Ak ⊆ Ai ∩Aj , it can
be inferred that Ai ∩Ak ⊆ Aj ∩Ak. Therefore, Aj ∩Ak =
Ai ∩Ak. Thus, we have proven Lemma 1. �

Lemma 2: The edge weights from any node in ith cluster
to a node pjc in another cluster are the same, that is, ψpi

a,p
j
c
=

ψpi
b,p

j
c
, i, j = 1, 2, . . ., g and i �= j and a, b = 1, 2, . . ., |Gi| and

c = 1, 2, . . ., |Gj |.
Proof: According to the assumption of (11), ψpi

a,p
i
b
≥

ψpi
a,p

j
c
. According to Lemma 1, ψpi

a,p
j
c
= ψpi

b,p
j
c
. Lemma 2 is

proved by the arbitrariness of a and b. �
Theorem 1: Subject to the fulfillment of (11), P ∗ is optimal.
Proof: We divide all edges of the path P into g sets based

on the clusters in which the starting points of the N − 1 edges
are located, and edges that are in the same set have their starting
points in the same cluster. Consider the ith set, i.e., all edges
in that set whose starting points belong to the ith cluster, and 2
cases need to be discussed:

1) The ith set does not contain the last edge of P . In this case,
the ith set has a total of |Gi| edges, and at least one edge has
an endpoint that does not belong to the ith cluster. According
to (11), the edges whose endpoints do not belong to the ith
cluster are not greater than those within the cluster. Therefore,
we keep one edge whose endpoint does not belong to the ith
cluster, which will be elaborated on below regarding how this
edge is selected. Then, all other edges are amplified to the edges
within the cluster, as shown in Fig. 4 from Fig. 4(a) to (b). The
sum of the weights of the original edges does not exceed the
sum of the weights of the amplified edges, and they can form
a Hamiltonian path. Furthermore, this path is not superior to
the Hamiltonian path Pi calculated using (10), and we perform
the corresponding amplification as shown in Fig. 4(b) to (c).
According to Lemma 2, the starting point of the reserved edge
can be selected from any point in the ith cluster, so the endpoint
of Pi is used as the starting point of the reserved edge as shown
in Fig. 4(c) to (d). Finally, we amplify all edges of the ith set to
path Pi and add a non-cluster edge.

Fig. 4. Example of amplifying the edges of the ith set to the optimal Hamilto-
nian path of the ith cluster. (a) The initial case, where the red edges denote they
belong to the ith set. (b) Amplify the edges to the cluster, where the green edge
denotes it is kept. (c) Solving the optimal Hamiltonian path and amplifying the
edges. (d) Adjust the kept edge.

Fig. 5. Example of degree transfer. Nodes with degrees more than 2 are able
to transfer degrees to neighboring nodes with larger edge weights. (a) The initial
case. (b)ψa,c is amplified toψb,c withψa,b ≥ ψa,c, thus transferring the degree
of node a.

2) The ith set contains the last edge of P . This case leads to
the ith set having |Gi| − 1 edges, but the number of nodes is
|Gi|, and thus the edge set amplifies to path Pi in the same way
as 1), with no other non-cluster edge.

By 1) and 2), we amplify the path P into g subpaths
P1, P2, . . ., Pg , and g − 1 non-cluster edges, since only one set
satisfies the case of 2). The path P is connected, and the graph
in which each set before amplification is considered as a node is
still connected, so there exists a selection strategy for the edges
reserved by each set that enables the graph G∗ in which each
set after amplification is considered as a node to be connected
as well. Next, we show that the sum of the weights of g − 1
edges on the graph G∗ does not exceed the sum of the edge
weights of the paths computed using (10). The graph G∗ is an
undirected connected acyclic graph, and there exist some nodes
whose degree exceeds 2 and whose degree can be transferred to
the neighboring nodes, as shown in Fig. 5. Node a neighbors two
points b and c with edge weights ψa,b, ψa,c. From Lemma 1, if
ψb,c is the largest edge, then one ofψa,b andψa,c can be amplified
into ψb,c. If either ψa,b or ψa,c is the largest edge, assuming that
ψa,b ≥ ψa,c, then ψa,c = ψb,c, and thus ψa,c is transformed into
ψb,c. As a result, the degree of node a can be transferred to
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the neighboring nodes with greater edge weights. Through this
transformation, the g − 1 edges are eventually able to form a
Hamiltonian path that will not outperform the path computed
in (10).

So far, we have amplified the path P step by step to become
P ∗, showing that P ∗ is not inferior to P , but the path P is the
optimal path, and hence P ∗ is optimal. �

The above proof shows that as long as graph G satisfies (11),
the optimal container execution sequence can be found by the
proposed method in the time complexity of O(N 3

2 × 2
√N ).

However, this assumption cannot always be satisfied. To satisfy
this assumption as much as possible, we make the ungrouped
node pia select the first few edges with the largest weight when
grouping, thus forming ith cluster. Therefore, the edge weight
ψpi

a,p
j
c

formed by pia and the ungrouped node pjc is certainly less
than the weights of these selected edges ψpi

a,p
i
b
. According to

Lemma 1,ψpi
b,p

j
c
= ψpi

a,p
j
c
≤ ψpi

a,p
i
b
, indicating that non-cluster

edges must be smaller than the selected edge, and again by
Lemma 1 all edges in a cluster are not smaller than the minimum
of the selected edge. Therefore, we greedily group the nodes,
thus making them satisfy the assumption as much as possible and
making the results computed by the proposed algorithm close
to optimal. Up to this point, we have elucidated the rationale for
the proposed container sequence arrangement algorithm.

In the proposed decomposition algorithm, it is obvious that
the decomposition can proceed further when the number of
nodes in the graph G is particularly high. This means that
when the nodes of graph G are grouped, each cluster Gi can be
decomposed using the same method when solving the optimal
Hamiltonian path using (10). Suppose the number of nodes in
each cluster is No for the first division and the cluster is divided
into smaller clusters with Nu nodes. Then the time complex-
ity is O(N ×Nu × 2Nu + No×N

N 2
u

× 2
No
Nu + N 2

N 2
o
× 2

N
No ). When

Nu = N 1
3 and No = N 2

3 , the exponent is minimized, and the
time complexity is O(N 4

3 × 2
3
√N ).

C. Image Layer Update Strategy

After determining the container queue and sequence, we
focus on further improving the image layer reuse rate by
caching the image layer while the containers are running. We
denote the sequentially arranged container queue as H∗

j =

{hj1, hj2, . . ., hj|H∗
j |}, which also represents the container indices.

Thus, lhj
i ,k

indicates whether the container hji consists of the

kth layer of images. When the container hji starts executing,
all the image layers of hji need to be pulled. If the capacity
of the image layer repository is insufficient, some unused and
low-value image layers will be evicted.

Intuitively, the limited image layer repository space stores
the image layers with the highest potential for future reuse as
much as possible. Therefore, the retention of the most valuable
image layers is transformed into the Knapsack problem. When
the containerhji is about to run, we divide the image layers stored
in the image layer repository into three types: 1) those that can
be reused by container hji , 2) those that are being used by other

Algorithm 3: Image Layer Update Strategy.

containers but cannot be reused by hji , and 3) the remaining
image layers. The set of image layers for the first two types is
defined as L�. Insufficient space in the image layer repository
means that hji in ej does not have enough remaining disk to pull
in the image layers needed except for those that can be reused.
Therefore, the third type of image layer needs to be appropriately
evicted. In other words, the most valuable of the third type of
image layer will be retained, and the space B̂ that can be used
to retain these image layers will be calculated by the following
equation:

B̂ = dj −
∑

Lk∈L�
sk −

∑

Lk/∈L�
lhj

i ,k
× sk (12)

which means that except for L� and layers of hji , the remaining
space will determine how many free image layers are reserved.
Since the container queue to be run by ej is known, the value of
the image layer is defined as vLk , and

vLk =

|Hj |∑

w=i+1

lhj
w,k × sk (13)

Thus, the update strategy of the image layer is transformed into
the Knapsack problem. The optimal solution can be quickly
obtained in polynomial time by the approximation algorithm,
representing the best image layers that can be preserved in the
finite disk space. The image layer update strategy is shown in
Algorithm 3. It demonstrates the control of the image layer by
the image layer manager, with no data to be returned.

D. Complexity Analysis of ILR-SA

In the first phase of ILR-SA, each container is deployed
to the most suitable edge device. For an edge device ej , the
computational time complexity of f(·) is up to O(|Hj |), i.e.,
the size of all containers deployed on ej . The time com-
plexity of each container is O(

∑M
j=1 |Hj |)=O(N), thus the

time complexity of Algorithm 1 is O(N2). In the second
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TABLE II
DETAILED INFORMATION FOR EDGE DEVICES

TABLE III
DETAILED INFORMATION FOR TASKS

phase, the containers deployed on ej perform sequential ar-

rangement with time complexity O(|Hj | 32 × 2
√

|Hj |). Since
∑M

j=1 |Hj | 32 × 2
√

|Hj | < N
3
2 × 2

√
N , the time complexity of

Algorithm 2 is O(N
3
2 × 2

√
N ). The third phase executes one

Knapsack per container, which has an upper time complex-
ity of O(Wdj), so the time complexity of Algorithm 3 is
O(

∑M
j=1 HjWdj). The total time complexity of ILR-SA is

O(N2 +N
3
2 × 2

√
N +

∑M
j=1 HjWdj).

The space complexity of ILR-SA also consists of three parts.
Algorithm 1 requires a data structure of size N to store H.

Algorithm 2 requires a space of
√|Hj | × 2

√
|Hj | to store the

two-dimensional array D[][]. Since
∑M

j=1

√|Hj | × 2
√

|Hj | <√
N × 2

√
N , the space complexity is O(

√
N × 2

√
N ). Algo-

rithm 3 stores data of size Wdj for Knapsack and hence the
space required is

∑M
j=1Wdj . The total space complexity of

ILR-SA is O(N +
√
N × 2

√
N +

∑M
j=1Wdj).

V. EXPERIMENTS

We validate the effectiveness of ILR-SA through simulation
experiments. The simulation experiment environment and the
proposed ILR-SA are implemented using Python 3.10, and the
simulation environment is run on a server equipped with 2 Intel
(R) Xeon (R) Gold 5218 2.30 GHz CPUs. In the simulation ex-
periments, we set up 8 edge devices whose resource information
is shown in Table II. Some devices have heterogeneous chips,
such as GPUs and NPUs. We normalize the utilization of these
chips to 1 unit, which means that the chip usage of the task
will be represented using a number less than 1 instead of the
number of cores. We build 30 images for tasks with different
focuses on server requirements and we divide them into 5 types.
The details of the tasks are shown in Table III. Some tasks
contain deep learning-related operations, such as inference of
models, so GPUs and NPUs are used. Meanwhile, deep learning
frameworks result in relatively large images. These images have
a total of 50 different image layers. 82% of the image layers
are 600 MB - 2000 MB in size, with a few over 7 GB and a

few closer to 1 MB. The bandwidth and image layer repository
capacity of these devices are set as experimental variables. α is
set to 0.5.

The experiments are conducted from several perspectives.
First, the comprehensive performance of ILR-SA is verified by
comparing it with the baseline scheduling algorithm. Then, since
the three steps of ILR-SA are decoupled, we perform ablation
experiments to evaluate the image layer update strategy and the
container execution sequence arrangement algorithm. Finally,
we evaluate the execution speed of ILR-SA to verify its feasibil-
ity. There are 9 baseline algorithms in the experiments, of which
the first 4 are scheduling algorithms and the rest are caching
algorithms: 1) Multi-Constraint Layer Locality (MCLL) [14]:
MCLL improves on the Kubernetes scheduling algorithm. Con-
tainers will be scheduled to the device with the most image
layer reusables in the repository. To ensure balanced utilization
of multiple devices, MCLL uses fair multi-constraints. However,
MCLL does not cache the image layers and the layers will be
deleted after the container has finished. 2) ADCS [27]: ADCS
is an adaptive mechanism for dynamically collaborative com-
puting power and task scheduling. It collaboratively handles a
batch of tasks, and the execution sequence of the tasks is adapted
to enhance the scheduling effectiveness. In this experiment, the
image layer reuse mechanism of ADCS is set to be consistent
with that of MCLL. 3)RCCO [15]: RCCO solves the chained
containerized virtual network functions orchestration problem.
It models the problem as an integer linear program and uses
a limited backtracking mechanism, scaling link capacity, and
layer eviction to achieve efficient container orchestration. In
this experiment, we select edge devices for containers by back-
tracking mechanism (Γ = 1) and improve layer reuse rate by
layer eviction (ε = 0.9). 4) ILR-SA-1&3: The core of ILR-SA
lies in the sequence arrangement of the second phase, and this
baseline algorithm removes the processing of the second phase
while the other phases remain unchanged. 5) LFU: The LFU
algorithm counts the frequency of use of the image layer, and
when the device’s image layer repository is undercapacitated,
the least frequently used image layer is evicted. 6) LFU-M [11]:
LFU-M is based on LFU, and the value of the image layer is
defined as the product of frequency and size. 7) FaasCache [32]:
FaasCache is a container caching algorithm that considers the
container’s survival time, frequency of use, size, and resource
requirements to define the container’s value. In our experiment,
we consider cached objects as image layers. 8) Optimal Image
Storage Strategy (OISS) [12]: OISS has two phases. In the first
phase, the image layer is pre-placed on the device based on the
number of child nodes of the tree structure using the Knapsack
algorithm, and in the second phase, the image layer is updated
based on the frequency and size. 9) Entire: Entire is the same
as LFU, but the image can be reused only if the whole image is
identical.

A. ILR-SA Scheduling Performance Evaluation

To evaluate the scheduling performance of ILR-SA compre-
hensively, MCLL, ADCS, RCCO, and ILR-SA-1&3 will be
compared with it. Since the size of the image layer repository
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Fig. 6. Performance comparison between ILR-SA and baseline algorithms with different image layer repository capacities and bandwidths.

greatly affects the reuse rate of the image layer, we divide a
portion of the disk space from the device as an image layer
repository according to the ratio η. We set η = 0.7 and η = 0.8
to simulate the image layer repository in the case of tight and
sufficient capacity, respectively. In addition, the edge device’s
bandwidth determines the image layer’s download speed. The
tighter bandwidth leads to more critical image-pulling time. We
set the bandwidth to 5 MB/s and 10 MB/s, denoted asγ =5 MB/s
and γ = 10 MB/s, respectively. The experiments measure the
ACT , AMS, and image layer reuse rate of these algorithms,
defined as the percentage of reused image layer data out of the
total required by all containers. The queue size of containers to
be scheduled is 200, uniformly generated from 30 containers.

The experimental results are shown in Fig. 6. Clearly, ILR-SA
exhibits the most outstanding optimization effect, demonstrating
its ability to effectively reduce ACT and AMS through image
layer reuse. The experimental data reveal the following three
points: 1) ILR-SA has a greater optimization in bandwidth-
scarce scenarios. In γ = 5MB/s, η = 0.7, theAMS of ILR-SA is
optimized by 44.71%, 72.47% and 65.70% compared with that
of ADCS, RCCO and ILR-SA-1&3, while the improvements
become 36.75%, 71.61% and 62.64% in γ = 10 MB/s, η = 0.7.
This is because, in bandwidth-limited scenarios, image pulling
latency becomes a critical performance bottleneck. ILR-SA is
designed to address this by leveraging image layer reuse for effi-
cient container scheduling. 2) ILR-SA also has good scheduling
optimization in storage-constrained scenarios. In γ = 5MB/s,
η = 0.7, the ACT of ILR-SA is optimized by 56.54%, 75.92%
and 70.00% compared to ADCS, RCCO and ILR-SA-1&3,
while in γ = 5MB/s, η = 0.8, the improvements are 21.78%,
24.81% and 21.81%. It is worth noting that with more image
layer repository capacity (η = 0.8), theACT ,AMS of ILR-SA
is longer than η = 0.7, while the data reuse rate is smaller.

This shows that for IRL-SA, η = 0.7 is already sufficient for
the image layer reuse mechanism. At the same time, a larger
repository means less disk space for containers to run, resulting
in some containers being unable to execute in parallel on the
device due to lack of disk space. 3) MCLL performs poorly in
the experiment because it schedules containers online without
coordinating multiple containers. This highlights the importance
of multi-container coordination for better scheduling perfor-
mance since ILR-SA reduces up to 91.3% of ACT and 84.3%
ofAMS compared to MCLL in γ = 5MB/s, η = 0.7. Container
completion time includes not only image pull latency but also
resource wait time and execution time, which MCLL does not
consider. Consequently, even with η = 0.8, MCLL has a similar
data reuse rate to other algorithms but much longer ACT and
AMS. 4) The container execution sequence plays a significant
role, as ILR-SA and ADCS both outperform ILR-SA-1&3.

B. Image Layer Update Strategy Evaluation

In this section, we verify the effectiveness of the image layer
update strategy in ILR-SA. The scheduling algorithm uses the
first phase of ILR-SA, while the second phase is not executed.
Then, LFU, LFU-M, FaasCache, OISS, and Entire are com-
pared with the proposed image layer update strategy, denoted as
ILR-SA-1&3. We have set up two container queues of different
lengths, with 200 and 500 containers, respectively, and γ =
10 MB/s, η = 0.7. The experimental results are shown in Fig. 7.
Intuitively, ILR-SA-1&3, LFU, LFU-M, and FaasCache have
similar data reuse rates, with ILR-SA-1&3 being the highest,
while the method of reusing the entire image is inferior to
all layered methods. This indicates that image layering can
significantly reduce the pulling time of images and decrease the
completion time of containers. LFU, LFU-M, and FaasCache
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Fig. 7. Comparison of ILR-SA’s image layer update strategy and baseline algorithm with different container queues.

Fig. 8. Experimental results of ILR-SA’s container execution sequence arrangement algorithm and its extended algorithm with different container queues.

TABLE IV
EXECUTION SPEED OF ILR-SA AT VARIOUS PHASES

all determine the update of the image layer based on frequency,
while ILR-SA-1&3 uses an optimized algorithm to determine
the update based on the future frequency of the image layers.
Thus, it has better performance.

C. Container Execution Sequence Arrangement Performance
Evaluation and Algorithm Speed Evaluation

As the core method of ILR-SA, we conduct an ablation
experiment on the proposed container execution sequence
arrangement algorithm. We set γ = 10 MB/s, η = 0.7, and
use three different container queue lengths of 200, 500, and
1000. The experiment compares ILR-SA-1&3, which does not
perform the second phase of ILR-SA. In addition, the extended
container execution sequence arrangement algorithm mentioned
at the end of Section IV is evaluated and denoted as ILR-SA-ex.
The experimental results are shown in Fig. 8. It can be observed
that the container execution sequence arrangement algorithm
significantly improves the data reuse rate and reduces ACT
and AMS, indicating that adjusting the execution sequence of
containers is crucial for improving the efficiency of image reuse.
The performance of ILR-SA and ILR-SA-ex is similar. However,

ILR-SA-ex has lower time complexity. This occurs due to the
execution of many identical containers on the same device,
leading to increased cluster similarity. Therefore, even after
two rounds of grouping, the calculated solution is still close to
optimal.

To verify the time complexity of deploying ILR-SA, the
running time of ILR-SA is evaluated. We record the data reuse
rate of the image layer, and the running times of the three
phases denoted as T1, T2, and T3, respectively. These times
are recorded on the device on which the simulator is running.
The experimental results are shown in Table IV. It indicates
that the container execution sequence arrangement and the
image layer update strategy both have a fast execution speed,
which in most cases does not exceed 1 s. When the container
queue length is 1000, the execution time of the second phase of
ILR-SA is 17.41 s, while ILR-SA-ex is 0.87 s, and has similar
data reuse rates. Therefore, the extended ILR-SA can efficiently
address an excessive number of containers. The first phase
of ILR-SA has the most execution time, as each container’s
scheduling decision requires calculating the total completion
time and makespan to determine the most suitable edge device.
However, these execution times are particularly small relative
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to the container’s completion time, meaning that ILR-SA has a
fast enough execution speed to deploy on edge scenarios.

VI. CONCLUSION

This paper proposes ILR-SA, a container scheduling strategy
based on image layer reuse and sequence arrangement for the
MEC scenarios. By improving the reuse rate of the image layer,
the time for containers to pull images is significantly shortened,
which reduces the completion time of computational tasks. The
proposed container scheduling strategy first deploys containers
sequentially to appropriate edge devices. Then, the execution
sequence of containers on the same device is adjusted so that
containers with similar image layers are executed adjacent to
each other. Finally, the containers keep the most valuable image
layers in the limited repository through the image layer update
strategy at runtime, thus improving the image layer reuse rate.
The experiments show that ILR-SA is efficient and can effec-
tively reduce the completion time of containers, thus improving
the quality of service in the MEC scenarios.

However, the proposed strategy has some limitations. ILR-SA
focuses on reducing the image pulling time, which means that
for containers with short pulling time and long execution time,
ILR-SA may not work very well. In addition, the design of ILR-
SA makes it only capable of scheduling independent containers,
but not containers with complex dependencies and priorities. In
the future, we will further address these challenges.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing–A key technology towards 5G,” ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] L. Urblik, E. Kajati, P. Papcun, and I. Zolotová, “Containerization in edge
intelligence: A review,” Electronics, vol. 13, no. 7, 2024, Art. no. 1335.

[3] W. Kithulwatta, W. U. Wickramaarachchi, K. Jayasena, B. Kumara, and
R. Rathnayaka, “Adoption of docker containers as an infrastructure for
deploying software applications: A review,” in Proc. Adv. Smart Soft
Comput., 2021, pp. 247–259.

[4] J. N. Acharya and A. C. Suthar, “Docker container orchestration manage-
ment: A review,” in Proc. Int. Conf. Intell. Vis. Comput., Springer, 2021,
pp. 140–153.

[5] S. Telenyk, O. Sopov, E. Zharikov, and G. Nowakowski, “A comparison of
kubernetes and kubernetes-compatible platforms,” in Proc. 11th IEEE Int.
Conf. Intell. Data Acquisition Adv. Comput. Syst.: Technol. Appl., 2021,
pp. 313–317.

[6] A. Malviya and R. K. Dwivedi, “A comparative analysis of container
orchestration tools in cloud computing,” in Proc. 9th Int. Conf. Comput.
Sustain. Glob. Develop., 2022, pp. 698–703.

[7] A. Algude, N. Ranjan, and M. Panpaliya, “A detailed review on
blockchain-enabled deep learning on kubernetes for disease prediction,”
Grenze Int. J. Eng. Technol., vol. 10, pp. 1413–1420, 2024.

[8] J. Yan and K. Zhang, “An industrial internet platform for industrial robots
based on cloud-edge-end service collaboration,” in Proc. Int. Conf. Smart
Manuf. Ind. Logistics Eng., Springer, 2023, pp. 467–473.

[9] M. P. J. Kuranage, L. Nuaymi, A. Bouabdallah, T. Ferrandiz, and P.
Bertin, “Deep learning based resource forecasting for 5G core network
scaling in kubernetes environment,” in Proc. IEEE 8th Int. Conf. Netw.
Softwarization, 2022, pp. 139–144.

[10] X. Sun, D. Wang, W. Zhang, G. Lou, J. Wang, and R. Yadav, “Minimizing
service latency through image-based microservice caching and random-
ized request routing in mobile edge computing,” IEEE Internet Things J.,
vol. 11, no. 18, pp. 30054–30068, Sep. 2024.

[11] F. Mou, Z. Tang, J. Lou, J. Guo, W. Wang, and T. Wang, “Joint
task scheduling and container image caching in edge computing,”
2023, arXiv:2310.00560.

[12] L. Yin, J. Luo, and K. Li, “An optimal image storage strategy for container-
based edge computing in smart factory,” IEEE Internet Things J., vol. 10,
no. 8, pp. 7204–7214, Apr. 2023.

[13] J. Gu, Z. Liu, D. Zhang, C. Chen, and Y. Cheng, “A container scheduling
strategy based on node image layer cache,” in Proc. 35th Chin. Control
Decis. Conf., 2023, pp. 263–268.

[14] L. Funari, L. Petrucci, and A. Detti, “Storage-saving scheduling policies
for clusters running containers,” IEEE Trans. Cloud Comput., vol. 11,
no. 1, pp. 595–607, First Quarter 2023.

[15] M. Dolati, S. H. Rastegar, A. Khonsari, and M. Ghaderi, “Layer-aware
containerized service orchestration in edge networks,” IEEE Trans. Netw.
Service Manag., vol. 20, no. 2, pp. 1830–1846, Jun. 2023.

[16] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning scheduling
algorithms for containers in mobile edge computing,” IEEE Trans. Mobile
Comput., vol. 22, no. 6, pp. 3444–3459, Jun. 2023.

[17] Z. Miao, P. Yong, Z. Jiancheng, and Y. Quanjun, “Efficient flow-based
scheduling for geo-distributed simulation tasks in collaborative edge and
cloud environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12,
pp. 3442–3459, Dec. 2022.

[18] H. Teng, Z. Li, K. Cao, S. Long, S. Guo, and A. Liu, “Game theoretical
task offloading for profit maximization in mobile edge computing,” IEEE
Trans. Mobile Comput., vol. 22, no. 9, pp. 5313–5329, Sep. 2023.

[19] J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient container as-
signment and layer sequencing in edge computing,” IEEE Trans. Services
Comput., vol. 16, no. 2, pp. 1118–1131, Mar./Apr. 2023.

[20] S. Dauzère-Pérès, J. Ding, L. Shen, and K. Tamssaouet, “The flexible job
shop scheduling problem: A review,” Eur. J. Oper. Res., vol. 314, no. 2,
pp. 409–432, 2024.

[21] P. Perez-Gonzalez and J. M. Framinan, “A review and classification on
distributed permutation flowshop scheduling problems,” Eur. J. Oper. Res.,
vol. 312, no. 1, pp. 1–21, 2024.

[22] Z. Liu, Q. Lan, and K. Huang, “Resource allocation for multiuser edge
inference with batching and early exiting,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 4, pp. 1186–1200, Apr. 2023.

[23] W.-K. Lai, Y.-C. Wang, and S.-C. Wei, “Delay-aware container scheduling
in kubernetes,” IEEE Internet Things J., vol. 10, no. 13, pp. 11813–11824,
Jul. 2023.

[24] B. Tang, J. Luo, M. S. Obaidat, and P. Vijayakumar, “Container-based task
scheduling in cloud-edge collaborative environment using priority-aware
greedy strategy,” Cluster Comput., vol. 26, no. 6, pp. 3689–3705, 2023.

[25] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-aware
scheduling in container-based clouds,” IEEE Trans. Netw. Service Manag.,
vol. 20, no. 4, pp. 4461–4477, Dec. 2023.

[26] L. Wang et al., “An efficient load prediction-driven scheduling strategy
model in container cloud,” Int. J. Intell. Syst., vol. 2023, no. 1, 2023,
Art. no. 5959223.

[27] Y. Xu, L. Chen, Z. Lu, X. Du, J. Wu, and P. C. K. Hung, “An adap-
tive mechanism for dynamically collaborative computing power and task
scheduling in edge environment,” IEEE Internet Things J., vol. 10, no. 4,
pp. 3118–3129, Feb. 2023.

[28] C. Chen, M. Herrera, G. Zheng, L. Xia, Z. Ling, and J. Wang, “Cross-edge
orchestration of serverless functions with probabilistic caching,” IEEE
Trans. Services Comput., vol. 17, no. 5, pp. 2139–2150, Sep./Oct. 2024.

[29] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container caching
for serverless edge computing,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 1069–1078.

[30] A. C. Zhou, R. Huang, Z. Ke, Y. Li, Y. Wang, and R. Mao, “Tackling cold
start in serverless computing with multi-level container reuse,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2024, pp. 89–99.

[31] D. Jayaram, S. Jeelani, and G. Ishigaki, “Container caching optimization
based on explainable deep reinforcement learning,” in Proc. IEEE Glob.
Commun. Conf., 2023, pp. 7127–7132.

[32] A. Fuerst and P. Sharma, “FaasCache: Keeping serverless computing alive
with greedy-dual caching,” in Proc. 26th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2021, pp. 386–400.

[33] H. Yu et al., “RainbowCake: Mitigating cold-starts in serverless with
layer-wise container caching and sharing,” in Proc. 29th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2024, pp. 335–350.

[34] S. Hu, Z. Qu, B. Tang, B. Ye, G. Li, and W. Shi, “Joint service re-
quest scheduling and container retention in serverless edge computing
for vehicle-infrastructure collaboration,” IEEE Trans. Mobile Comput.,
vol. 23, no. 6, pp. 6508–6521, Jun. 2024.

[35] M. Zhao, X. Zhang, Z. He, Y. Chen, and Y. Zhang, “Dependency-aware
task scheduling and layer loading for mobile edge computing networks,”
IEEE Internet Things J., vol. 11, no. 21, pp. 34364–34381, Nov. 2024.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:47:55 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: CONTAINER SCHEDULING STRATEGY BASED ON IMAGE LAYER REUSE AND SEQUENTIAL ARRANGEMENT IN MEC 8713

Haijie Wu is currently working toward the MS de-
gree with the School of Computer Science and En-
gineering, South China University of Technology,
Guangzhou, China, supervised by Dr. Weiwei Lin.
His research interests mainly include cloud edge col-
laboration, edge computing, and AI algorithms.

Weiwei Lin (Senior Member, IEEE) received the
BS and MS degrees from Nanchang University, in
2001 and 2004, respectively, and the PhD degree
in computer application from the South China Uni-
versity of Technology, in 2007. Currently, he is a
professor with the School of Computer Science and
Engineering, South China University of Technology.
His research interests include distributed systems,
cloud computing, and AI application technologies.
He has published more than 200 papers in refereed
journals and conference proceedings. He has been

a reviewer for many international journals, including IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Services Computing,
IEEE Transactions on Cloud Computing, IEEE Transactions on Computers,
IEEE Transactions on Cybernetics, etc. He is a distinguished member of CCF.

Haotong Zhang received the bachelor’s and master’s
degrees from the South China University of Technol-
ogy, in 2016 and 2019, respectively. Currently, he
is working toward the PhD degree with the South
China University of Technology. His research in-
terests mainly include edge computing, edge cloud
collaboration, and Internet of Things.

Fang Shi received the MS degree from Guangzhou
University, in 2019, and the PhD degree from the
South China University of Technology, in 2023. She is
now an associate professor with the College of Math-
ematics and Informatics, South China Agricultural
University, Guangzhou, China. Her research interests
focus on federated learning, distributed systems, edge
intelligence and wireless cooperative communica-
tions.

Wangbo Shen received the BS degree from Chang-
sha University, Changsha, China, in 2012 and 2016,
respectively, and the MS degrees from Central South
University, Changsha, in 2016 and 2019 respectively.
Currently, he is working toward the PhD degree with
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China, supervised by Dr. Weiwei Lin. His research
interests mainly include Kernel learning, AutoML,
and edge computing.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China. His
current research interests include, fog computing and
mobile edge computing, energy-efficient computing
and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems,
Big Data computing, high performance computing,
computer architectures and systems, computer net-
working, ML, intelligent and soft computing. He is

currently an associate editor of the ACM Computing Surveys and the CCF
Transactions on High Performance Computing. He is an AAIA fellow. He is also
a member of Academia Europaea (Academician of the Academy of Europe).

Albert Y. Zomaya (Fellow, IEEE) received the PhD
degree in control engineering from Sheffield Univer-
sity, Sheffield, U.K., in 1990. He is currently the Peter
Nicol Russell chair professor of computer science
and the director of the Centre for Distributed and
High-Performance Computing, School of Computer
Science, University of Sydney, Sydney, NSW, Aus-
tralia. Prior to that, he was the chair professor of
High-Performance Computing & Networking from
2008 to 2021. He was an australian research council
professorial fellow from 2010 to 2014 and held the

CISCO Systems chair professor of Internetworking from 2002 to 2007. He also
served as the head of the School of Computer Science from 2006 to 2007.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:47:55 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


