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Discriminative Feature Learning-Based Federated
Lightweight Distillation Against Multiple Attacks

Haijiao Chen
Zixing Zhang

Abstract—Thanks to the advantages of cloud and edge
computing, federated learning (FL)-based speech emotion recog-
nition (SER) tasks can be well-scaled to cloud—edge-terminal
ecosystems. It aims to characterize emotions while protecting
data privacy. However, catastrophic forgetting caused by data
heterogeneity, potential system attacks, and possible privacy
leakage and communication overhead from parameter sharing
have constrained its breakthrough. Some schemes that attempt
to tackle the FL bottleneck do not consider these issues com-
prehensively. We propose a federated distillation-based multiple
defense approach (FedMud), which simultaneously considers how
to balance system performance, privacy security, and commu-
nication overhead. First, it employs a server-side lightweight
generator to learn global view knowledge and guides client-
side updates through distillation, further mitigating catastrophic
forgetting and improving system performance. In addition, we
design a multipath integrated defense paradigm to counter
potential system attacks, with a data perturbation technique
based on gradient modification, a dynamically weighted selection
method, and a privacy-enhanced strategy by capturing discrim-
inative features. Moreover, to minimize parameter leakage, the
parameter-decoupled hierarchical sharing mechanism is utilized,
which also significantly reduces the communication overhead.
The experimental results show that our approach is effective,
with gender predictions down to chance levels while maintaining
SER performance enhancements.

Index Terms—Anti-attribute inference attacks, cloud com-
puting, edge computing, federated learning (FL), knowledge
distillation (KD), knowledge selection, privacy protection.

I. INTRODUCTION

PEECH emotion recognition (SER), a critical component
of human—computer interaction applications, is responsi-
ble for recognizing the emotional states expressed by voices.
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Fig. 1. FL-based cloud—edge—terminal framework.

It is extensively utilized in smart homes [1], medical diag-
nostics [2], advanced driver assistance systems [3], voice
assistants, and others. The data explosion in multiple fields
facilitates the development of Artificial Intelligence of Things
(AIoT). Integrating multisource data, offering real-time anal-
ysis, and achieving assisted assistant decisions have emerged
as a new paradigm for AloT applications. As technology
evolves, cloud computing has gained popularity thanks to
its ability to effectively overcome the limitations of terminal
devices in terms of computation, communication, storage, etc.,
but it suffers from system performance degradation due to
the long-link connection and the limited bandwidth between
the terminal and the cloud, e.g., service delay and network
overload and even privacy leakage. Edge computing can make
up for the shortcomings of cloud computing but has to consider
the limited resources at the edge. Deepening the cloud—edge-
terminal (C—E-T) collaboration to promote higher levels of
AloT development.

As a distributed machine learning (ML) collaboration
paradigm, federated learning (FL) [4] was first proposed to
address challenges, such as data silos and data privacy. It
allows participants (i.e., data owners) to collaboratively train
shared models (gradients or parameters) without accessing
local data, leveraging its advantages in privacy preserva-
tion and reduced transmission overhead [5]. The AloT-based
C-E-T collaboration framework, depicted in Fig. 1, includes
terminal devices, edge server clusters, and cloud servers. To
capitalize on the confluence of cloud computing and edge
computing, we employ edge servers as data storage servers,
which are usually deployed in the last kilometer between the
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user and the data source, and have advantages in computing
power, storage volume, and network bandwidth compared
with the terminal devices. Matched by device type and the
nearest base station, it collects terminal device data in real
time through IoT encryption. In addition, the cloud server
is responsible for model aggregation and other large-scale
computations in collaborative training. The practical AloT
systems integrating real-time data collection and multiparty
collaborative training are constructed.

Data statistical heterogeneity [i.e., nonindependently iden-
tically distributed (non-iid)] induced by device variability
is one of the primary challenges of C-E-T-based FL
systems [6] and [7] demonstrated that non-iid greatly hurts FL
performance and impairs system convergence. Some enhanced
federated averaging (FedAvg)-based methods [8], [9] address
heterogeneity by minimizing variations between local training
parameters, but it remains inadequate when deep neural
network architectures are used [10], [11]. The statistical vari-
ability of SER tasks has received less attention. Furthermore,
the model in FL local updating is optimized for private
data, which is prone to overfitting the present knowledge and
forgetting what was learned from other clients during the
collaborative updating phase, which we refer to as catastrophic
forgetting [12]. Typically, the condition is resolved by fine-
tuning such as meticulously adjusting hyperparameters [13],
which takes time and does not fix the problem consistently.
Knowledge distillation (KD) [14], [15] has emerged as a
solution that utilizes the integrated knowledge of local models
to enrich the global model more efficiently than parameter
averaging and fine-tuning, however, utilizing additional proxy
data sets makes it limited.

The majority of present work on FL-based SER focuses
on system performance while ignoring potential system
attacks and privacy concerns. It has been demonstrated that
attackers can recover local training data from uploaded gra-
dients [16], [17], [18]. More specifically, gradient updates
can infer eigenvalues, and the virtual data recovered using
eigenvalues is infinitely close to the real data, allowing for data
recovery, which is a gradient inversion attack. FL is vulnerable
to attribute inference attacks, which is also a gradient-based
attack that a curious server analyzes the statistical charac-
teristics (e.g., gender, age, or identity) of the client’s data
using aggregated shared model parameters. Feng et al. [19]
simulated a white-box attack, in which the model architecture
and hyper-parameters are almost transparent to the attackers
and successfully inferred the gender attribute of the client.
Therefore, the shared gradient protection becomes particularly
important. When an attacker injects malicious content into
training data, the mislabeled data can readily degrade model
performance, and such data poisoning attacks are frequently
undetected. Many more attacks exist in real-world settings,
and a minor well-designed perturbation can lead a model
to forecast a class inaccurately. A strong defensive model
is required, and adversarial training has shown promise in
increasing model robustness [20], [21].

Meanwhile, the traditional approach to enhancing privacy
is cryptography, specifically differential privacy [22], which
prevents leakage by modifying client parameters before they
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are uploaded to the server, but the effectiveness of the pro-
tection is greatly reduced when an attacker observes multiple
model updates. Homomorphic encryption [23] and multiparty
secure computing [24] are further options. Due to bandwidth
and distributed logic restrictions, some encryption techniques
are less appropriate for FL frameworks. Most early defense
techniques concentrated on one specific attack or privacy
leakage. For the complexities of C-E-T collaboration, we
urgently want a security solution that fights multiple attacks
and prevents privacy leakages.

To overcome these challenges, in this article, we propose
a discriminative feature learning-based federated lightweight
generation method for countering multiple attacks and
preserving privacy in the C-E-T environment. On the one
hand, we learn client-side knowledge using a lightweight gen-
erator without using any proxy data, which avoids catastrophic
forgetting owing to model averaging. The extracted knowledge
is then utilized to guide local updates, resulting in improved
generalization performance on non-iid data distributions. On
the other hand, some protection mechanisms are proposed.
The local data perturbation (DP) achieves data enhancement
while defending against gradient inversion attacks and adver-
sarial attacks. With the addition of the privacy-enhanced
(PE) module, we aim to focus on emotion-related features
and filter irrelevant redundant features to prevent attribute
inference attacks. The client selection can avoid malicious
tampering of data or labels by actively removing unreliable
information, preventing data poisoning attacks, and helping
positive prediction. Furthermore, a parameter hierarchical
sharing mechanism is used to satisfy the system privacy and
communication constraints by sharing the prediction layer. Our
main contributions are summarized as follows.

1) A federated lightweight distillation scheme based on
discriminative feature learning is proposed, which
comprehensively considers system performance, pri-
vacy security, and communication overhead, and it
also provides excellent cross-domain scalability and
generalization.

2) It learns reliable knowledge with the global view, and
guides local updates through distillation, to achieve
improved model generalization performance under non-
iid distribution. Besides, theoretically analyzing the
integration performance of cross-domain global distribu-
tion. A robust multipath integration defense mechanism
is constructed to actively protect against gradient inver-
sion attacks, adversarial attacks, data poisoning attacks,
and attribute inference attacks. Furthermore, sharing
the local model prediction layer helps reduce privacy
leakage and decrease the communication overhead.

3) For the first practice in the SER task, we simulate the
attribute inference attacks and defense under the cloud—
edge—terminal settings, and the results demonstrate that
our scheme effectively defends against attacks while
maintaining superior SER performance.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III proposes a
federated multiple defense approach, and provides the related
theoretical analysis. Section IV describes the experimental
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results and evaluation. Conclusions and future works are drawn
in Section V. Finally, Section Appendix adds scalability and
generalizability analysis.

II. RELATED WORK

In recent years, FL. has gained popularity in more fields,
which can extend the underlying model data availability, and
enable computational sharing, and data localization during
collaboration can protect privacy. Data non-iid constrains
system performance in FL setting [25]. Furthermore, the
FL system is vulnerable to both inferencing and adversarial
attacks.

Several works have attempted to address the issue of non-
iid to improve system performance. FedProx [8] optimizes
based on FedAvg, which adds approximation terms to the local
model to restrict the local updates to be closer to the global
model. To account for local update drift, SCAFFOLD [9]
applies variance reduction strategies. With the successful
deployment of KD in FL tasks, new ways are developing.
With the help of unlabeled data sets, FedDF [14] presents
integrated distillation for model fusion, which trains the global
model using locally averaged logits. FedDistill [26] creates a
global KD by improving the user data logics gained via model
forward propagation to decrease global drift. FedAux [27]
finds a local model initialization that weights local model
logits using differential privacy deterministic scoring. All of
the preceding work is based on unlabeled proxy data sets,
and it is unclear how closely the proxy data sets are linked
to the training data sets to guarantee good KD. Furthermore,
the various data distributions of the proxy data sets may
influence the result of KD. Following this, data-free KD
emerged, in which information is taken from a pretrained
teacher model (pseudo-data) and migrated to another student
model without proxy data. DeepImpression [28] models the
output of the teacher model by fitting it to recover real data.
The work [29] extracted metadata from the activation layer
of the teacher model. Mao et al. [30] learned a conditional
generator that creates samples by maximizing the teacher’s
predicted probability on the target label. Inspired by the same,
FedGen [31] learns a generative model that integrates local
model knowledge over the latent space for lightweighting.

Unlike previous work, we deliver performance gains by
optimizing the knowledge structure to generate reliable knowl-
edge from global views by first extracting relevant and
reliable information from the clients, which further guides
local updates. In this regard, acquiring reliable knowledge is
contributed by our PE module and client selection module.
Client-side knowledge augmentation benefits from extracted
locally relevant knowledge, sampled globally reliable knowl-
edge, and enhanced knowledge from DPs.

Regarding the related research on privacy preservation, a
noisy representation for protecting prediction privacy [32]
was developed as a gradient-based perturbation maximization
technique that removes irrelevant features by introducing noise
into the input. Feng et al. [33] then presented theoretical user-
level differential privacy guarantees via privacy parameters.
Gradually, other schemes for homomorphic encryption [34]
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and multiparty secure computation [35] were proposed. These
above noise additions or encryption to ensure privacy have
significant limitations in FL.

Furthermore, adversarial attacks seem to have become a
research staple in recent years. Ren et al. [21] proposed an
adversarial approach with embedded constraints to limit the
similarity between the original samples and their opponent’s
samples when performing adversarial training. To effectively
improve model robustness, Chang et al. [36] presented a two-
stage technique of adversarial training and randomized testing.
These single defenses, however, are incapable of dealing
with complicated attacks, and generation-based adversarial
network-related measures demand a large computing overhead.
Currently, robust defense schemes against multiple attacks
have not been developed in the FL field.

III. FEDERAL MULTIPLE DEFENSE

Our goals are to:

1) build an AlIoT C-E-T collaboration framework based on
FL;

2) analyze multiple attacks caused by parameter sharing,
incorrect samples, and gradient updating, further propose
a set of targeted defense schemes, and deductively
interpret the feasibility and effectiveness of the schemes;

3) balance the system performance degradation caused by

data heterogeneity and the communication overhead
caused by frequent interaction of parameters in SER
tasks while ensuring system privacy.
Before introducing the approaches, various conceivable attack
situations will be listed briefly.

As shown in Fig. 2, the general framework of a lightweight
federated PE scheme under the SER task is given, which
mainly consists of two parts: 1) the FL privacy-protected mod-
ule with a C—E-T collaboration (the upper, i.e., SER/Shadow
module) and 2) the Attack module (the lower, we concentrate
on modeling gender attribute inference attack, all attacks also
include data poisoning and gradient inversion).

A. Data Sets

The commonly used public data sets IEMOCAP and MSP-
Improv were employed in the SER task. Due to the unbalanced
distribution, we utilize the four most frequent emotions (happy,
sad, angry, and neutral), and the four labels are included in
both data sets, as detailed below.

The IEMOCAP database [37] is a multimodal sensor
database collected by the University of California, ten actors
(five males and five females) spontaneously interacted orally
with selected emotional scripts, resulting in 10 039 utterances
over 12 h. Detailed motion, audio, and video of the interactions
were captured from the face, hand, and head-tagged sessions.
In addition, the improvised scenes aim at real emotional
interactions to stimulate specific types of emotions. Therefore,
the scripts are divided into script-conditioned scenes and
improvised-conditioned scenes according to whether the
scripts are from a script or not. We chose only the latter, which
samples 2943 emotion labels, including 2415 training sets and
528 test sets.
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Fig. 2. PE scheme (FedMud) against multiple attacks based on the FL framework.

The MSP-Improv database [38] collected naturalistic inter-
actional emotions from 12 (six male and six female) English
major participants who engaged in six conversations totaling
over 9 h. The corpus recorded audio and video data, including
4381 utterances in the improvisation condition, 2785 utter-
ances in the naturalistic condition, 652 utterances in the target
condition, and 620 utterances in the reading speech condition.
We used only the improvisation condition data, where 4580
emotion labels were sampled with 3583 training sets and 997
test sets.

B. Attack Design Philosophy

In an FL setting, the attacker tries to predict the gender label
from a client by the shared model updates of the main task
SER and other public data. D), is defined as a private data set,
including the feature set X, the accompanying sentiment label
Y, and the gender label z from multiple clients. Assume that
the attacker does not have access to the private data set, but
rather to a public data set Dy, with a distribution similar to D,,.
Following that, we will focus on attribute inference attacks
and briefly discuss other attacks.

1) Attribute Inference Attack: Similar to [19], we design
an attribute inference attack in three stages, privacy training,
shadow training, and inference attack.

The private training aims to train collaboratively to produce
shared model update g’ by the private data set D,. Model-
shared updates can indirectly expose privacy even if an
attacker does not have access to D).

Shadow training mimics membership inference attacks,
which was first proposed in [17]. Shadowing models M;

trained to mimic privacy training models M), aiming at rec-
ognizing emotions from speech features. An attacker typically
employs Dy, that is similar to the privacy training data sets
in both format and distribution and ensures that they do not
overlap. Attribute inference attacks are white-box attacks, so
the architecture and related parameters are the same regarding
shadow and privacy models.

Finally, we collect the shared model update g} and labeled
gender z; generated from the kth client’s shadow training as
the attack data set D,. D, is then used to train attack model
M, to infer the gender z. The attacker can access the global
model parameter 6" as well as the model parameter 6; of the
kth client’s update, but not the original gradient. Therefore,
we derive a pseudo-gradient g*} similar to that in [18] as an
attack input

1

(06}

where 7 is the learning rate, and the kth client iterates 7" times.
Our goal is to train attack models for parameterized ¢ to
minimize cross-entropy loss

min £(Mq (8" 9). 2)-

!

8k ey

2)

2) Data Poisoning Attack: The attackers hope to harm
the model or impair its performance by adding partially
modified or malicious data into the training data set. The
data poisoning may be divided into clean label poisoning and
dirty label poisoning. Label flipping, as a typical dirty label
poisoning attack, maliciously flips an original label [, € [ to
another wrong one, where the set of training labels [, then
Finvert : [y = Iy, and we define the attack process by Iy =

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 11,2024 at 14:11:53 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: DISCRIMINATIVE FEATURE LEARNING-BASED FEDERATED LIGHTWEIGHT DISTILLATION AGAINST MULTIPLE ATTACKS

Algorithm 1 FedMud for Cloud—Edge—Terminals
Input: % clients (FL clients) b,}é private data D;, task T; local
parameters {6; = [6f; 0, |} 4> P(y) initialized, local label
counter Cy; global parameters 67, generator parameters G,
gaussian noise & ~ N (0, I); learning rate «, B, local step
T, batch size B;
Output: Average global accuracy, server model;
1: Initialize server model, and broadcast 67, G, p(y) to each
active client;
2: Select the reliable clients with a dynamic threshold;

3. repeat

4:  for selected reliable A clients in parallel do
5 0, < 6P,

6 Generate pseudo-data Dype;
7: Extract the knowledge;

8 fort=1,..., T do

9 Sample from the generator;
10: Update label counter Cy;
11: Or < Ok — BVg, J(6k);

12: > Optimize Equation (21);
13: end for

14: Send 9,‘: , Cy to server;

15:  end for

16:  Update server-side 67 and p(y) based {Ci}ie4,
17 0P < & S ken s

18:  Generate feature distribution with lightweight,
19: > Optimize Equation (18);

200 G <« G —aVgJ(G);

21:  Distill knowledge and guide local updates,

22: > Optimize Equation (22);

23: until training stop or converge

Finvert(Iy). This attack does not require a priori knowledge,
which is a poisoning attack method based on the data itself.

3) Gradient Inversion Attack: Similar to the work [16], we
can recover utterance or emotion labels from the gradient.
Following FedSGD, a single batch gradient computation is
performed in each iteration. Each client samples the smallest
batch (x;, y;) € D; from the local private data set D;, whose
gradient is

_ OL(F(xi, wi), yi)

Vwgi = 3)

owy

the attack is as follows, the attacker creates virtual discourse
and virtual sentiment labels, which are randomly initialized
and then the model classifies to get the virtual gradient.
Optimizing the virtual gradient goes close to the original
gradient to make the virtual data close to the real data.

To defend against the multiple attacks mentioned above
while maintaining the system performance, we propose a
Federal Multiple Defense (FedMud) approach, the details of
which are given in Algorithm 1. The approach consists of
several important parts.

1) DP, to change the gradient by perturbed data, avoiding

gradient inversion attacks, while training together with
adversarial samples to make the model more robust.
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2) Client Selection, effectively eliminating unreliable
clients and preventing malicious data injection.

3) PE Model, which reduces information leakage by
emphasizing relevant features and filtering irrelevant
secondary features.

4) Federated KD under Security Mode, which utilizes a
server-side lightweight generator to generate consensus
knowledge to direct client-side modeling in a distilled
way, and additionally, layered parameter sharing to
ensure data privacy. The details are as follows.

C. Data Perturbation

To address the challenge of gradient inversion attack,
inspired by [39], we try to make efforts at the data source. The
fast gradient sign method (FGSM) becomes a crucial tool and
it [40] was first proposed to defend against adversarial sample
attacks. We discover that the neural network misclassifies
when the data has been significantly changed. According to
Goodfellow et al. [40], one speculation for generating an
adversarial attack is that the linear nature of deep neural
networks in high-latitude space can cause such an attack.
Normally, stochastic gradient descent (SGD) makes the loss
smaller to predict correctly. However, as the loss is added to
the input, the output loss grows and the network begins to
predict inaccurately.

Denote the raw data as x (here are the preprocessed speech
features), the label as y, the emotion classification model as
M, and the model parameters as 6. A perturbation 7 is applied
to the FGSM, ¢ regulates the perturbation amplitude, and M
is forward propagated for x to get the loss VL(x, y, 6). To
manage the unlimited number of paradigms of the loss (the
maximum value of each loss), the direction of the gradient is
obtained using the symbolic function sign(-), rather than the
gradient

n = esign(ViL(x, y, 0)) “4)

where ||7]||lcoc < €, the perturbation injected into the raw
samples to obtain the adversarial samples

Xadv = X + 7). (5)

The perturbation of FGSM is effective because the adversarial
samples go through the network as follows:

whxaay = wl x4+ 1) = wix +wln. (6)

Let the weight vector have n dimensions and the average
value of the weight vector elements be m. From ||n||. < &,
we obtain w/n < emn, which has an effect due to n. win
increases with the dimension of the weight vector, i.e., n 1
and w’n 4, thus proving that the perturbation is valid.
Following that, the gradient is perturbed to improve pri-
vacy. There are data points in D] that are comparable
to those in D; but with entirely different labels, D? =
{Ce, (/) 300 e)|(x,y) € D;}, where ¢ is the standard basis
vector with 1 at position j. Assume g(D;) and g(D}) have
comparable semantic but distinct categorization information.
Because categorical information mainly affects classification
performance, we remove the semantic information in g(D;)
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without significantly reducing model performance. Then, the
g(D;) component with the same (or essentially the same) direc-
tion of g(D}) contains semantic information, and the other
(orthogonal) components contain categorization information,
and the corrected gradient is computed
~ (D))" g(D;
8Dy = g(Dy) — (D} ), . = D0 eB).
g(D;) ¢(D;)

To combine the adversarial with the raw samples for
training, which realizes data enhancement and improves adver-
sarial robustness. Thanks to the large storage, high-speed
computation, and high bandwidth of the edge servers (FL data
owners), FGSM adversarial samples are prepared in advance
at the edge side, i.e., preprocessing generation and caching
mechanisms. The inclusion of adversarial samples eliminates
adversarial sample attacks to some extent.

(N

D. Clients Selection

Attackers maliciously inject toxic data in the FL client
or flip labels to mislead the FL server-side discriminating,
which can be readily overlooked or not easily discovered. A
selection technique is suggested that requires screening for
positive client knowledge. Unlike others that rely heavily on
supplementary information about clients, we refer to client test
accuracy values and select well-performing clients for error
reduction and fast convergence.

Formally, let denote K = {1, ..., k} clients, each has data
set D; = {D'"i" U DI consisting of training and test sets.
To select reliable (no data poisoning attack) clients, we should
evaluate all clients according to the formula Accuracy(%) =
(>_Di™¢/Di*Y) x 100 (i.e., the quotient between the total
number of samples tested correctly and the total number
of samples tested) to obtain ascending test accuracy set
ACC = f{accy,...,accy}. However, we must consider the
number of unreliable to be deleted, as well as thresholds for
distinguishing between correct and bad forecasts. Deletion
Number Setting: referring to [41], a higher proportion of
client participation in each round can save time for the global
model to achieve the expected performance. The upper limit
of deletion minima from ACC is Maxge] = 1 /10 % K. Dynamic
Threshold Setting: as the loop iterates, the global accuracy
glob improves, as does the poisoned sample’s latent ability. It
is challenging to locate latently poisoned samples when the
threshold remains constant. Here, the threshold is dynamically
adjusted every ten global iterations, when it is the average of
the accuracy of the previous ten global iterations.

E. Privacy-Enhanced Model

Curious servers can infer sensitive attributes since the
network forward propagation process contains them that are
finally collected. We investigate ways to filter these sensitive
or redundant features such that only SER task-relevant features
are retained, hence improving SER performance while keeping
privacy. To protect against attribute inference attacks, an FL
PE model is presented, with main components, including
bi-directional gated recurrent unit (Bi-GRU) and Multihead
Self-attention, as mentioned below.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 10, 15 MAY 2024

Bi-GRU: Considering that emotion expression is time-
dependent throughout the utterance, the Bi-GRU network [42]
captures this temporal dependency well. The “gate” struc-
ture (update gate and reset gate) allows information to be
selectively delivered in the hidden layer, remembering critical
information while preventing gradient vanishing or gradient
explosion. Unidirectional GRU is formulated in the following:

Zr = U(szt + Uzhtfl + bz)
rr =0 (Wpx; + Uphy—1 + by)

h; = tanh(Wyx; + Up(rs 0 hi—1))
hy=0—z)oh_1+zoh @®)

where x; is the input at time t, z, and r; denote the update
gate and reset gate at time t, ;" and A, denote the candidate
state and the hidden state at time t, the weight parameters W,
Wy, Wy, U, U,, and Uy, the bias parameters b, and b,, o is
the sigmoid nonlinear activation function, tanh is the nonlinear
mapping function, and o corresponds to the Hadamard product.

The Bi-GRU calculates the time series’ hidden states in
the forward and backward directions, respectively, and then
combines the results from each time step. This ensures that
the output at each time step contains both past and future
contextual information.

Multihead Self-Attention: Previous research [43] indicates
that not all parts of an utterance are emotionally relevant, with
the main features having a crucial role, and that secondary
irrelevant features also carry much sensitive information. We
utilize the self-attention mechanism to focus on the main
features (salient periods) in the utterance segments that are
relevant to the emotions, to see through the autocorrelation,
and to filter out the irrelevant parts thus preserving privacy.
First, the hidden representation H® = [hi, e, heT] is output
through the Bi-GRU encoding context, where hé € Rix%
denotes the forward-propagated and back-propagated hidden
state splice. Next, the multihead self-attention network extracts
salient features from the hidden output. Here, the input
sequence features [h;, R hZ] represents 7 equal-dimensional
vectors, and [hi] is the vector corresponding to the first
segment in the discourse. Using the learnable weight matrix
w, we progressively construct the query matrix g, key matrix
k, and value matrix v. The dot product of ¢ and k yields
the attention score, further calculating attention distribution
did; e RT V) using softmax, which is then normalized to
discover which vectors are most connected with [hé]. We can
then determine the emotion-related traits. The formula is as
follows:

q = Hw?
k = HwK
v =HW"
d; = Soft max(qgkiT/ﬁ) X Vi. )

The multihead refers to the linear transformation of a query
using distinct weight matrices to obtain multiple queries,
all of which essentially require different types of relevant
information, allowing the attention model to introduce more
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information into the context vector computation. To produce
the attention model’s output, the context vectors created
by each attention header are stitched together and linearly
processed using a weight matrix.

F. Federal Knowledge Distillation Under Security Mode

Consider the significance of FL client-side knowledge,
where parameter/data sharing causes privacy leakage and
communication overhead. Inspired by [31], we employ a
server-side generator to learn the global view knowledge.
On the one hand, given the goal label, a generator learned
from user predictions produces feature representations that
are consistent with the set of user predictions. The generator
is then distributed to the users, who sample and augment
the samples guide local training, and facilitate KD from
other users. On the other hand, feature extraction and model
prediction with client data on which shared model updates
follow the FL protocol.

Next, we discuss the general problem of knowledge transfer,
let denote the instance space as x C R*, the output space as
y C RY, T denotes a domain consisting of a data distribution
D over x and a truth labeling function 7, i.e., 7 : = { D, t},
7 : x — y. The model is parameterized by 6: = [0¢; 67], where
the feature extractor e : x — z is parameterized by 0¢, 7z C
R*(z < x) is the latent feature space, the predictive classifier
p : z— A7 is denoted by the parameterization 67, where AY
is simplex over y. Then, the risk of the model parameterized
6 over the domain 7 is defined as follows:

L7(6) = Evep[L(p(e(x: 6967, 7)].  (10)

1) Knowledge Extraction (Extract Discriminative Features
and Filter Secondary Features): Because Zhang et al. [44]
demonstrated that the importance of knowledge varies across
local models, we aim to extract discriminative features X¢rycial
while hiding other irrelevant features Xyprelaed. Bi-GRU
captures the contextual dependencies of the utterance after
convolutional neural networks (CNNs) to get the hidden
representation

Y

X Tx2d,
H, = BiGRU(CNN(x)) = [h o heT]

the multihead self-attention makes it possible for the end-
to-end structure to learn emotion-related salient features of
the utterance, indirectly filtering emotion-irrelevant redun-
dant information, which often contains sensitive attributes, as
shown below in the single-head attentional output representa-

tion
i : i1%% P ]
X . = Attention [he] = [hatm]

the predictor MLP makes classification predictions for the
spliced attention, where w is a linearly transformed weight
matrix

12)

y= MLP(concat(h;m, B BT ) % w). (13)
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To optimize the local parameters 6 by minimizing the
following loss, when the accuracy of the feature extraction
influences the classification

min Evn[L(ple(x; 69); 67), T(x))] (14
on the one hand, it affects global loss computation and
updating as well as local model personalization. On the other
hand, when server-side models or parameters are aggregated,
if the extracted knowledge is inaccurate and the server-side
generator obtains incorrect predictive labels, it directly affects
the generated knowledge distribution. Our knowledge model
can extract important features, filter sensitive information, and
prevent attribute inference attacks.

2) Flexible Sharing of Layered Parameters: Deep model
parameters are enormous and sharing the entire model in
FL imposes a communication burden, we consider sharing
some of the parameters. Parameter decoupling was proposed
in [31] and [45], and Zhu et al. [31] proved that not sharing the
feature extraction layer benefited local users significantly. We
share only the prediction layer parameters 67, keep the feature
extractor parameters 0,f localized, follow the FL protocol
(FedAvg), and aggregate the updates after ¢ iteration:

k

1
9P «— — E 0P
Nkzl keN U

5)

where A denotes the number of clients. This partial parameter
sharing is less likely to leak privacy. Client updates will be
given in the following section.

3) Avoid Being Misled by False Labels: In addition to
extracting higher-level features, prediction labels from indi-
vidual clients are required for knowledge generation of
the server-side global view. Some malicious attackers have
attempted data poisoning attacks by purposely flipping labels
to drive the model in the direction of established predictions.
It has been shown in [46] that deep neural networks prefer
to learn most classes. To circumvent pseudo-label misdirec-
tion and defend against such undetectable attacks, the client
selection method (Section III-B) robustly determines client
knowledge and ensures that the correct predictive labels are
transmitted to the server.

4) Lightweight  Feature  Distribution Generation:
Catastrophic forgetting in deep networks affects system
performance. To address the challenge, a lightweight
generative scheme that balances performance and privacy has
been proposed, which aims to extract global view knowledge
of user data distributions and distill them into local models
to guide their learning and mitigate knowledge forgetting.
We consider first learning a conditional distribution that is
consistent with the true data distribution

P* = argmax By Ex~p(xly) [logp(ylx)] (16)

Py—x
where p(y) and p(y|x) are the target labels’ ground-truth prior
and posterior distributions, respectively. We further empiri-
cally approximate p(y) and p(y|x) to make the parameter p
optimizable. First, the distribution of user training labels can
be roughly represented as the prior distribution p(y), which is
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obtained from the statistical distribution of the training labels
when the model is uploaded. The posterior distribution comes
from the integration knowledge of the user model and thus
can be approximated as follows:

K

- 1
logplyl») ~ = > logp(ylx: ).
k=1

a7)

When x is high dimensional, optimizing the above formulas
causes computational overload, which is why we do not
generate pseudo-data directly and cause privacy leakage by
integrating 6 directly. We investigate utilizing the conditional
generator G of the parameterization G to recover a more
compact distribution in the potential space z than the original
data space, while optimizing the following objective:

1 K
minJ(G) = Byp Eer iy [c (G(E pRTICLN yﬂ

k=1
(18)

where ¢(-) is the predictor’s logits output and o(-) is a
nonlinear activation function, optimizing the above equation
only requires access to the predictive layer parameters 9,’3 of
the user model. To satisfy the sample diversity, the Gaussian
noise is added to the generator to obtain z ~ Gg(y, ele ~
N, D). In summary, the loss Lgver Of the server-side
training generator consists of the teacher loss, the student loss,
and the diversity loss, i.e.,

Lserver = Lteacher + Lstudent + Ldiversity- (19)

Knowledge integration of global distributions is associ-
ated with cross-domain analysis, and we explore generalized
boundaries to develop theoretical relationships, which build on
existing techniques for domain adaptation [47], [48]. Denote
h : z — y a prediction hypothesis, a hypothesis class H <
{h : z — y}, and two domain distributions D’ and D", [48]
evaluates the distance between the two distributions on the
hypothesis space H—divergence

dy (D’, D”) =2 sup |Pr(A) — Pr(A)| (20)

AeAy T D
where Ay, is a measurable subset satisfying 2 € 7 under
domain distributions D’ and D”. Moreover, HAH = {h(z) ®
H(z),h, W € H} is defined as the symmetrically distinct
hypothesis spaces, where @ denotes the heterodyne operation.
Theorem 1 illustrates insights into the performance of inte-
gration on global distributions. See section Appendix A for
proofs of Theorem 1.

5) Knowledge Distillation: After broadcasting the learned
lightweight generator Gg to FL clients, each client model can
sample from Gg to obtain an augmented representation of the
feature space. Hence, the objective of the local model 6; is
optimized to increase the probability of ideal prediction for
the augmented samples

ey [L(p(e(xi; 69); 00), T(x))]

+ By Eeniam [£ (P 60): )]

) 1
II;]I(II J(Oy) = ﬁ_k Z .
(21)
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where the fprmer term in (23) denotes the empirical risk of
local data Dy.

Instead of the global model, knowledge is distilled to the
local model. To enhance the generalization performance by
matching distributions over the latent space z, transferring the
inductive bias and directly guiding the local learning. The prior
distribution of labels is denoted as p(y) and the generator-
derived conditional distribution is denoted as g(z|y) : y — z,
the local model 6; is optimized by minimizing conditional
KL-divergence from the generator and client distributions

max Eyp) Eegiiy [log p(ly: 60)]

= min Dir[gGIIp(ly; 6] (22)
k
then, the local model is updated as follows:
Ok < Ok — BV J (0k) (23)

where § is the local learning rate. To summarize, the client-
side loss consists of three components: 1) the local prediction
loss Ligcal; 2) the potential loss of generator-augmented sample
prediction Lgamples; and 3) the teacher loss Licacher (using
unduplicated labels), i.e.,

Lelient = Liocal + »Csamples + Lieacher- (24

To summarize, a generator is utilized to generate consensus
knowledge that guides client learning through KD. The effec-
tiveness and robustness of our approach to data heterogeneity
will be demonstrated in Section IV.

IV. EXPERIMENT EVALUATION AND RESULTS
A. Model and Configurations

In this work, three main models are involved, the PE
model, the attack model, and the generator model. For the
PE model (emotion recognition model), a 2-layer CNN is first
employed to extract high-level features from the EmoBase
utterance feature set provided by opensmile toolkit [49].
The BiGRU follows, which performs better in capturing the
context [50], and to avoid overfitting. Let us set the latent
dimension to 128 (128 x 2 for bidirectionality), and set the
dropout as 0.2. Then, a transformer encoder follows [43] based
on multihead self-attention for focusing on emotion-related
discriminative features and filtering irrelevant information,
where the multihead is set to 8. The final MLP layer serves as
the predictor 9,’; , and the preceding layers serve as the feature
extractor 6. The FL server and clients started with the same
model, and the individual clients got a localized heterogeneous
model structure with various model parameters along with the
training iterations.

For the attack model, which consists of a 3-layer CNN
feature extractor and classifier, the ith layer weight Aw; of
the gradient g from backpropagation is injected into the CNN
to compute the hidden representation h;. After flattening, it
is connected with the bias Ab; of the corresponding layer
and fed into the classifier for gender prediction. Finally, the
performance of the attack model is evaluated using the shared
model update generated in FL.
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Fig. 3. Data dividing with the Dirichlet(«) distribution on the IEMOCAP and MSP-Improv data sets, visualizing the non-iid distribution from each client,

with the x-axis denoting the client ID and the y-axis denoting the number of
angry, sad, happy, and neutral). The heterogeneity coefficient « is set to {0.05,

The generator model is also designed based on the MLP
network, which requires a noise vector and a one-hot labeling
vector as inputs, and we add diversity loss to train the model to
enrich the variety of generations. Other settings are as follows,
we set local epoch as 10, global iterations as 100, batch
size as 64, and generator nosie as 32. We have implemented
the proposed approach on a Linux server with an NVIDIA
GeForce RTX 2080Ti GPU and 64-GB RAM.

B. Data Preprocessing (Non-1ID)

To achieve speaker independence (IEMOCAP has 10 speak-
ers, MSP-Improv has 12 speakers), and to allow more data
to participate, we divided the training and test data sets
by 8:2, set up nine clients, and for the IEMOCAP data
set, one more speaker data (duplicates) needed to be added.
We modeled the data in two ways to investigate the influ-
ence of non-iid: 1) speaker independent and 2) nonspeaker
independent.

For non-speaker-independent division, following the tech-
nique [14] to model non-iid data distributions utilizing
Dirichlet(«), where a smaller « means more heterogeneous.
Figs. 3 and 4 visualize the training set partitioning (based on
emotion category and number of utterances) for various het-
erogeneity coefficients o {0.05, 0.1, 1.0, 10.0, oo}, which
correspond to the test data set partitioning in two ways.

1) Divide the test data set by Dirichlet(o) using
the same heterogeneity coefficients as «
{0.05, 0.1, 1.0, 10.0, oo}.

2) Divide without heterogeneous operations and each client
has the same collection of test data sets.

For speaker-independent division, as illustrated in Fig. 5, each
client has an independent speaker training data set, and the
test data set is modeled uniformly by heterogeneity coefficient
{oco}, resulting in the test data set close to the independently
identically distributed (iid).

training samples corresponding to the four emotion classification labels (i.e.,
0.1, 1.0, 10.0}, with smaller values indicating more heterogeneity.
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Fig. 4. Referring to the division in Fig. 3, the heterogeneity coefficient « is
set to {oo} to visualize the distribution of training samples across clients on
the IEMOCAP and MSP-Improv data sets, where the x-axis denotes the client
ID, and the y-axis denotes the number of training samples corresponding to
the four emotion classification labels.
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Client ID
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Fig. 5. Visualize the distribution of training samples for each client by
dividing in a speaker-independent manner, with the x-axis denoting the client
ID and the y-axis denoting the number of training samples, each client has
only one speaker-independent data, at which point the test data set from each
client is divided according to a heterogeneity coefficient of {o = oo}.

C. Baselines and Evaluation Metrics

Baselines: FedAvg [41] is a classical FL algorithm that
utilizes parameter averaging for aggregation. FedProx [§]
enhances FedAvg-based local objectives by providing regu-
larization of proximal terms for local training. FedDistill4- is
an enhanced data-free KD approach based on FedDistill [26],
which shares model parameters and labeled logic vectors for
fair comparisons. FedGen [31] develops a global generator
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Fig. 6. Performance w.r.t data heterogeneity according to the Dirichlet(«)
partition of Section IV-B1

by sharing local labels and distilling consensus knowledge to
guide local learning.

Evaluation Metrics: The common metrics global test accu-
racy (Test acc) is employed to measure system performance,
while gender prediction accuracy (Attack acc) and Unweighted
Average Recall (Attack uar) are used to evaluate defense
capabilities.

D. Impact of Data Heterogeneity

To demonstrate algorithmic robustness, we analyze the
performance of several algorithms under data heterogeneity
in three scenarios, and we find that FedMud outperforms the
other baselines by a considerable margin.

1) When both train and test data sets are divided by het-
erogeneity coefficients, all results are shown in Fig. 6.
FedMud-noDP shows the corresponding performance
when there is no DP. As a DP method, FGSM defends
against gradient reversal and adversarial attacks by mod-
ifying the gradient and generating adversarial samples,
but it always reduces performance.

For IEMOCAP, FedMud consistently maintains a
performance advantage, which confirms our motivation
to mitigate distributional differences across clients by
selectively aggregating local knowledge in a data-free
manner to guide local learning. When the data distri-
bution is highly heterogeneous (¢ € {0.05 — 1.0}),
FedMud is up to 82.7% (¢ = 0.05), achieving a
performance difference of around 12.0% (compared to
o = 1.0). With this distribution, the other baselines
show an increasing and then decreasing trend, while
FedMud continues to decrease. On the one hand, since
the test data set also adopts a heterogeneous division,
which may appear to be heavily skewed in terms of
emotion categories. When random predictions are made
across clients, it greatly increases the likelihood that
some clients will predict only a single emotion category,
while the skewed majority of emotions are more likely
to be hit correctly, resulting in a higher test accuracy.
On the other hand, during training, the perturbed data
brings sample enhancement while exacerbating the data
imbalance, and the neural network tends to learn the
majority class while ignoring the minority class [26].
FedMud maintains about a 9.0% advantage as the data
distribution approaches the iid (o > 1). The conclusion
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Fig. 7. Performance w.r.t data heterogeneity according to the Dirichlet(c)
partition of Section IV-B2

TABLE I
TEST ACCURACY COMPARISON FOR SPEAKER-INDEPENDENT DATA
DIVISION (SECTION IV-B) USING FOUR MODELS

Dataset FedAvg FedProx FedDistill+ FedGen FedMud
IEMOCAP 0.671 0.670 0.580 0.674 0.723
MSP-Improv ~ 0.585 0.585 0.570 0.589 0.635

is the same for MSP-Improv. However, due to the vari-
ous distributions, FedMud does not obtain as significant
a boost as IEMOCAP, but still outperforms the other
algorithms for different heterogeneous distributions.

2) FedMud gets the best performance on both data sets
while keeping the training data set heterogeneous and
the test data set the same. Fig. 7 reports the differences
across baselines. When highly heterogeneous (o €
{0.05 — 1.0}), FedGen performs stably thanks to its
knowledge refinement, attenuating distributional differ-
ences through distillation. FedMud further improves
performance through knowledge selection and discrim-
inative feature extraction, while also defending against
multiple attacks. These filtered and shared knowledge
are not accessible via baselines, such as FedAvg and
FedProx. FedDistill+, as an improvement over the data-
free KD baseline, is susceptible to heterogeneity, with
performance lower than FedAvg when ¢ < 1 and
slightly better or about the same when « > 1, indicating
that FedDistill4 shared logits and some model parame-
ters are insufficient to handle user heterogeneity.

3) When the training data set is speaker independent and
the test data set is uniformly divided by the heterogeneity
coefficient oo, as shown in Table I, FedMud main-
tains robust and good performance despite cross-domain
and feature heterogeneity. There is an improvement
of around 4.9% (IEMOCAP) and 4.6% (MSP-Improv)
compared to the suboptimal FedGen.

In conclusion, we find that FedMud has superior
performance and algorithmic robustness, even when the
devices and data are heterogeneous. It can weaken the hetero-
geneous distribution among each other, alleviate knowledge
forgetting, and achieve performance gain through selective
knowledge fusion and KD.

E. Ablation Experiments

We conducted ablation examinations, as shown in
Fig. 8, to evaluate the performance increase and privacy
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TABLE 11
PARAMETER SENSITIVITY ANALYSIS ON DIFFERENT INDICATORS (DROPOUT, LEARNING RATE, FGSM EPS, AND GENERATOR NOISE)
USING DATA SET D), FOR EMOTION RECOGNITION AND Dj, FOR ATTRIBUTE INFERENCE ATTACK. TEST ACCURACY AND
THE UNWEIGHTED AVERAGE RECALL (UAR) SCORES OF GENDER PREDICTION ARE REPORTED
IEMOCAP(Dy) — MSP-Improv(Dj,) MSP-Improv(D,) — IEMOCAP(Dy,)
Sensitivity Factor Test acc Attack acc Attack uar Test acc Attack acc Attack uar
0.2 0.723 0.503 0.503 0.635 0.531 0.496
Dropout 0.4 0.705 0.501 0.501 0.624 0.552 0.502
0.6 0.703 0.500 0.500 0.620 0.550 0.501
0.01 0.723 / / 0.635 / /
LR 0.001 0.732 / / 0.582 / /
0.0001 0.684 / / 0.580 / /
0.1 0.720 0.502 0.502 0.644 0.535 0.505
FGSM._eps 0.25 0.723 0.503 0.503 0.635 0.531 0.496
- 0.35 0.715 0.505 0.505 0.578 0.556 0.503
2 0.735 0.501 0.501 0.627 0.553 0.499
Noise 8 0.719 0.497 0.497 0.622 0.552 0.498
32 0.723 0.503 0.503 0.635 0.531 0.496
0s IEMOCAP 0s MSP-Improv IEMOCAP MSP-Improv
o tace e us O e | 097 % bl
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Fig. 8. Impact of different modules on system performance and gender
prediction attacks, where noPE_noDP indicates the absence of PE, DP, and SE
modules, noPE_DP indicates the absence of PE and SE modules, PE_noDP
indicates the absence of DP and SE modules, SE indicates the presence of
SE, PE, and DP modules, and no_SE indicates the absence of SE only.

protection brought about by the additional modules. Among
them are PE Module (including BiGRU and multihead
self-attention), Client Selection Module (SE), and DP
Module.

We observe that PE significantly improves the SER system
performance by 6.1% (IEMOCAP) and 4.6% (MSP-Improv),
while gender inference is weakening, with the attack acc trend-
ing toward IEMOCAP (0.553 — 0.503) and MSP-Improv
(0.555 — 0.531), with lower values indicating stronger
defense. This confirms the positive contribution of the PE
module in focusing on discriminatively important features and
filtering redundant information. DP modifies the gradient and
generates adversarial samples through perturbation intending
to prevent gradient reversal attacks and adversarial attacks. The
participation of perturbed data in training results in a slight
degradation of the performance. This degradation is a positive
move that can be accepted within a certain range of magnitude.
SE aims to help the system filter unreliable clients, avoid
erroneous knowledge aggregation, prevent data poisoning
attacks, and improve the overall performance through dynamic
selection, and this improvement will be more prominent in
real environments.

Algorithm Comparison Algorithm Comparison

Fig. 9. Comparison of related approaches on system performance and attacks.

FE. Performance and Attribute Inference Attack

According to previous work [51], the majority of
information leakage occurs in the early layers of ML models.
Fig. 9 compares gender inference attack (Attack UAR) and
performance test (Test ACC). In contrast to Feng et al. [19],
while Zhao et al. [51] showed insignificant improvement
in performance, it substantially improves in defense against
attribute inference attacks, down to 51.5% and 52.0%, respec-
tively. In fact, we have a distinct advantage with a direct 8.0%
and 12.0% breakthrough in performance on both data sets in
the same setting, and the defense falls below the chance level
(about 50.0%).

G. Sensitivity Analysis

Impact of Dropout: As a regularization technique, dropout
may affect attribute inference attacks by randomly disabling
activations between neurons [51]. Similar to [19], we evaluate
this hypothesis by setting dropout to {0.2, 0.4, 0.6} after the
BiGRU layer and the first sense layer of the MLP classifier.
As shown in Table II, the performance weakened as dropout
increased, indicating that more SER-related features failed, as
disabling more neuron activations normally makes the model
more fragile and vulnerable, while the attack uar for gender
inference remained almost unchanged, due to the dropout also
drops and hides gender-related features. However, when using
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TABLE III
IMPACT OF LEARNING EFFICIENCY FROM DIFFERENT LOCAL EPOCH

Dataset Local-epoch FedAvg FedDistill+ FedProx FedGen FedMud
5 0.666 0.584 0.665  0.667  0.731
IEMOCAP 10 0.671 0.580 0.670 0.674 0.723
20 0.672 0.573 0.671  0.673  0.693
5 0.587 0.573 0.587  0.605 0.615
MSP-Improv 10 0.585 0.570 0.585 0.589  0.635
20 0.584 0.558 0.585  0.603  0.622

IEMOCAP to mimic MSP-Improv, the attack acc improves,
more speaker emotionally relevant representations are made in
IEMOCAP, and gender is more inferred.

Impact of Learning Rate: We investigate the impact
of different learning rates on system performance, which
directly influences model convergence. Too large causes non-
convergence, while too small leads to slow convergence or
failure to learn. Table II shows that different learning rates
produce different results, with increasing values contributing to
a benefit effect. The optimal result is achieved by IEMOCAP
and MSP-Improv at learning rates of 0.001 and 0.01, respec-
tively.

Impact of FGSM Eps: As a DP technique, employing FGSM
reduces the system performance, and the perturbation coef-
ficient eps determines the perturbation magnitude. As shown
in Table II, we set eps to {0.1,0.25.0.35}. For IEMOCAP,
the optimal performance is achieved when eps to 0.25. For
MSP-Improv, the best performance is achieved when eps to
0.1, while the worst performance is achieved when eps to
0.35, and they differ by nearly 7.0%, thus, eps is parameter-
sensitive. The effect on gender inference is weak, especially
on the IEMOCAP. This suggests that client-side pseudo-data
generated by FGSM obfuscates attributes such as gender, and it
also relies on the privacy-preserving capabilities from FedMud
to make client-side attributes less susceptible to inference.

Impact of Generator Gaussian Noise: The generator noise
aims to make the generated samples diverse and enrich the
distilled knowledge to better guide the client’s learning. Too
little noise may not cover the diversity, while too much can
bring computational burden in addition to affecting the system
judgment. As shown in Table II, we compare the effect of
noise and conclude that for the IEMOCAP data set, less noise
accomplishes higher performance, whereas for MSP-Improv,
more noise better covers the sample diversity. One possible
reason for this is that the data set contains a different number
of speakers which affects the diversity requirements.

H. Learning Efficiency and Communication Overhead

In the FL settings, an effective system considers variables,
such as privacy security, learning efficiency, and model com-
munication overhead in addition to performance. Local models
are trained to reach convergence after fewer epochs, which
saves time and reduces the possibility of privacy leakage
due to frequent interactions, especially in large federated
training tasks involving multiple clients. Tables III and IV
summarizes the learning performance and communication of
several baselines across both data sets.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 10, 15 MAY 2024

TABLE IV
IMPACT OF COMMUNICATION OVERHEAD FROM DIFFERENT
GLOBAL ITERATION AND LOCAL ITERATION

Dataset  Global-local FedAvg FedDistill+ FedProx FedGen FedMud

50-10 0.669 0.578 0.670 0.678 0.716

IEMOCAP 100-10 0.671 0.580 0.670  0.674  0.723
150-10 0.672 0.578 0.672 0.673  0.708

50-10 0.587 0.568 0.586  0.604  0.628

MSP-Improv 100-10 0.585 0.570 0.585 0.589  0.635
150-10 0.587 0.567 0.588  0.604  0.629

TABLE V

COMPUTATIONAL COMPLEXITY (MACS), NUMBER OF PARAMETERS
(PARAMS), AND MEMORY USAGE GENERATED BY
DIFFERENT LOCAL MODELS

Local Models MACs Params Memory Usage
CNN 78.22 KMac 31.90 k 124.60 Kb
CNN + BiGRU 426.72 KMac 94.74 k 370.00 Kb

To begin, we compare the differences in learning efficiency,
the default global iterations are 100. Most algorithms achieve
the best results when the local epoch is 10, while FedMud
achieves better performance than others at the start (epoch
is 5). This indicates that when utilizing generative KD,
the client learns consensus knowledge from others in fewer
iterations. For MSP-Improv, the other baselines achieve good
performance at first, whereas FedMud begins to harvest better
performance when the local epoch is set to 10. Because the
training set is larger, fewer local iterations make the gener-
ator learn less about the client information, keep continuous
training, and more knowledge is acquired to guide the client
learning. In summary, both benefit when the epoch is set to
10. We expect knowledge learning to be accomplished using
fewer local epochs.

Next, we investigate the system’s communication overhead,
as reported in Table IV, which is constrained by the system
bandwidth and the size of the transmission parameter. The
less communication, the less data is transmitted to each
other, which speeds up the system and decreases the risk of
information leakage during data transmission. We consider
setting the local epoch to 10, and the performance of each
baseline remains pretty consistent as the global iterations
increase, with only approximately 1.0% to 2.0% fluctuation.
This suggests that any more communication frequency is
not beneficial for performance improvement and keeping the
communication frequency under control reduces the communi-
cation overhead. Moreover, the size of our model is only about
5.4M, which is at a low level and greatly reduces the com-
munication overhead. For a more comprehensive explanation,
we list the multiply-accumulate operations (MACs), number
of parameters (Params), and Memory Usage from different
local models. As shown in Table V, the simple local model
produces fewer parameters and transmissions, corresponding
to a slightly weaker performance. While maintaining superior
performance and defense effects (referring to the findings
of the ablation experiments), our model has no complex
computational and memory requirements.
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V. CONCLUSION AND FUTURE WORKS

In this article, we proposed a novel FL-based multiple
defense approach, FedMud, which achieves privacy protection
over multiple attack paths while maintaining superior system
performance. To address the performance degradation caused
by data non-iid in FL, we employed knowledge selection
and knowledge integration strategies to distill the lightweight
generated global distribution to the client to guide the local
update, and theoretically analyzed the integration performance
of cross-domain global distribution. For attribute inference
attacks, we extracted discriminative emotion features and
filtered other sensitive attribute information with the help of
the feature filtering capability of deep networks. The gradient-
based DP approach may successfully resist gradient reversal
attacks and adversarial sample attacks by generating pseudo-
data to participate in training by modifying the gradient. The
validity of the client’s information has a direct impact on
knowledge integration and dictates the system’s prediction
direction, and a dynamic weighted selection technique was
employed to remove untrustworthy knowledge and enable the
system to converge in a positive direction. Other solutions,
such as the parameter hierarchical sharing mechanism, help to
reduce system communication overhead and preserve privacy.

Experiments on the IEMOCAP and MSP-Improv data
sets (three non-iid data divisions) validate the approach’s
effectiveness, with performance improvements of at about
5.0% under the speaker-independent division, respectively,
whereas for attribute inference attacks, gender prediction is
reduced to approximately 50.0%, which corresponds to the
chance level, when compared to other baselines. Expansion
experiments on image data sets further demonstrate the excel-
lent scalability and generalization of our proposed scheme.
See section Appendix B for scalability and generalizability
analysis.

In the future, we want to take deeper advantage of the
convergence of cloud and edge computing, and federated
aggregation employs a heterogeneous synchronization method
to adapt to higher scale and real-time situations. Furthermore,
we will provide a forward-thinking solution on FL big models
based on the concept of large model migration learning.

APPENDIX
A. Proofs of Theorem 1

Generalization Bound: Consider an FL system with K users,
R : x — 7z denotes the feature extraction function, lets
denote the global distribution D for the global domain T,
the local distribution Dy for the kth local domain 7, and
the empirical distribution 5/(, and Ay denotes the hypotheses
learned on domain 7T, then the global set of user hypotheses
h=(1/K) Zszl hi. The empirical risk of a model trained on
the global empirical distribution is D = (1/K) Y_K_, Dy, while
the upper bound on the risk of a collection of K local models
over D is defined by the difference term of the distributions
between D and Dy, which has probability 1 — §

1 & 1 &L
57’(} ,;h"> < };ﬁﬁ(hu
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TABLE VI
NETWORK ARCHITECTURE FOR DIFFERENT LOCAL MODELS

Dataset  Local Model Hyperparameter Settings
CNN [1, 6] [6, 16] [Flatten]
MLP [784, 32] [32, 26]
EMNIST LeNet [1, 16, MaxPool2d] [16, 32, MaxPool2d]
MLP [800, 120] [120, 84] [84, 26]
| X
+— > (dsan(Dr. D) + 1)

K
k=1

4 2 4K
+\/—<dlogﬂ+log—>
m d 8

where dy a7 measures the difference between two distribu-
tions, m is the number of samples from each local distribution,
and Eﬁ (hy) signifies the empirical risk of 7. There exists
]Ez~l3k [B(z)] = Ey~p, [B(R(x))] given a probability event B.
Following Theorem 1, we conclude that: 1) heterogeneity
causes distributional differences and destroys the global model
and 2) the performance of generalization is enhanced by
using more empirical data. For a theoretical explanation of
Theorem 1, see section Appendix of literature [14].

(25)

B. Scalability and Generalizability Analysis

To further explore the scalability of our proposed scheme,
we conducted digital character classification experiments on
the image data set EMNIST as detailed below.

Data Sets and Data Preprocessing: We employ the
EMNIST [52] Letters category data, which consists of 124 800
training sets and 20800 test sets. Following FedGen [31],
the non-iid data distributions were modeled using Dirichlet(«)
based on the heterogeneity coefficients {0.05, 0.1, 1.0, 10.0}.

Experimental Configurations: We allocate 20 Clients,
of which 50.0% are activated, to simulate the situation
where real-world clients go offline abnormally. We perform
200 global iterations and 20 local updates with a batch size
of 32, a learning rate of 0.01, and a DP FGSM eps of 0.25.
For local models, two network architectures are designed for
comparison, CNN+-MLP-based and LeNet-based, respectively.
Their last MLP layer is considered a prediction layer, and all
the previous layers are considered feature extraction layers,
and the network parameters are shown in Table VI based on
the above models, we then extend the experiments with the
addition of a DP module, resulting in four comparison meth-
ods, namely, CNN, CNN+ (with DP), LeNet, and LeNet+
(with DP).

Performance Comparison: FedMud scales well to image
classification tasks and achieves robust performance. The
generic federated distillation-based framework allows for the
selection of local models adapted to the task, as shown
in Fig. 10, and the system performs well and significantly
outperforms this work [31] when the local models are CNN
and LeNet networks, and it is immune to user heterogeneity.
DP helps against gradient reversal attacks and adversarial
attacks, comparing the case without DP, the performance based
on CNN+ and LeNet+ is weakened, while still maintaining a
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Fig. 10. Performance w.r.t local models with different network architectures
under heterogeneous partitioning of MNIST data sets.

TABLE VII
COMPUTATIONAL COMPLEXITY (MACS), NUMBER OF PARAMETERS
(PARAMS), AND MEMORY USAGE GENERATED BY
DIFFERENT LOCAL MODELS

Local Model MACs Params Memory Usage
CNN 88.70 KMac 26.96 k 105.30 Kb
LeNet 3.12 MMac 213.90 k 835.50 Kb

comparable performance with the work [31]. The above results
match the SER task, which means that the system gets more
defense while losing a little acceptable accuracy. Experiments
demonstrate the cross-domain scalability and flexibility of our
scheme.

Computation Complexity and Space Occupation: In an FL
setting, the local model design not only affects the system
performance, but also relates to the computational and storage
costs. Table VII shows the MACs, Params, and Memory
Usage of different local models. Obviously, the more complex
the model, the higher the MACs and Params. In different
scenarios, complex models may bring little performance gain
but increase the system operation cost. While maintaining
sufficient privacy and acceptable performance, our scheme
enables the use of lightweight models and reduces the compu-
tation, storage, and transmission costs of the system through
lightweight distillation and hierarchical sharing mechanisms.
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