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 a b s t r a c t

Pre-trained speech models leverage large-scale self-supervised learning to create general speech representations, 
with fine-tuning on specific tasks like Speech Emotion Recognition (SER) significantly enhancing performance. 
However, fine-tuning on different datasets necessitates storing full copies of model weights, leading to substantial 
storage demands and deployment challenges, particularly on resource-constrained devices. Centralized training 
also poses substantial privacy risks due to direct access to raw data. To address these challenges, we propose a 
cloud-edge-terminal collaborative paradigm for Federal Learning Parameter-Efficient Fine-Tuning (FedLPEFT), 
which harnesses the synergy of cloud and edge computing to drive the development of collaborative SER ap-
plications. Specifically, the distributed paradigm of Federated Learning (FL) offers a privacy-preserving schema 
for collaborative training, and fine-tuning based on pre-trained speech models can improve SER performance. 
Parameter-Efficient Fine-Tuning (PEFT) embeds trainable layers in the feed-forward layers of pre-trained speech 
models. By freezing backbone parameters and sharing only a small set of trainable parameters, PEFT reduces 
communication overhead and enables lightweight interactions. Additionally, our experiments on attribute infer-
ence attacks across various pre-trained models show that gender prediction is at chance levels, indicating that 
the FedLPEFT approach significantly mitigates sensitive information leakage, ensuring robust privacy protection.

1.  Introduction

Speech emotion recognition (SER) identifies a speaker’s emotional 
state by analyzing the acoustic features of audio signals, enhancing 
human-computer interaction and supporting emotional needs. Accurate 
emotion detection also provides valuable insights for emotionally re-
sponsive smart products. Despite the significant challenges posed by 
the complex processing logic of speech signals and performance bot-
tlenecks, SER continues to attract research interest. It is widely used in 
fields such as autonomous driving, voice assistants, smart homes, con-
versational systems, health monitoring, and intelligent education (Dixit 
& Satapathy, 2024; Kim & Hong, 2024; López-Gil & Garay-Vitoria, 
2024). Recent advancements in deep learning, particularly Transformer-
based methods (Chen et al., 2023a; Khan, Gueaieb, El Saddik, & Kwon, 
2024), have shown notable performance in SER. However, these meth-
ods rely on self-attention mechanisms to process long sequences, en-
abling the model to attend to all input elements and capture long-range 
dependencies, thereby substantially increasing computational complex-
ity. The advent of large conversational models like ChatGPT has inten-
sified research into pre-trained models. Pre-trained speech models offer 
a novel approach for SER, generating general speech representations 
through self-supervised or weakly supervised learning on large-scale 
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data, and transferring this knowledge to downstream tasks for promis-
ing results (Gao, Zhou, Liu, Zhao, & Wen, 2023). However, fine-tuning 
on different datasets for various tasks requires saving full copies of the 
pre-trained speech model’s weight parameters, making deployment on 
resource-constrained devices infeasible. Additionally, fine-tuning pre-
trained models under centralized conditions relies on user data, posing 
challenges to data security and model privacy on terminal devices.

The distributed privacy-preserving paradigm of federated learning 
(FL) (Zhang et al., 2021) enables multiple parties to collaborate on 
model training while keeping data local and private through parameter-
sharing mechanisms. This facilitates the development of a FL-based pre-
trained model fine-tuning approach. However, practical implementation 
is challenged by the vast number of parameters in pre-trained models 
(often in the trillions) as well as frequent parameter exchanges, lim-
ited computational and bandwidth resources, and long communication 
links. Considering the growing demand for such collaborative services, 
we propose to build a cloud-edge-terminal collaboration architecture 
that integrates cloud and edge computing strategies to leverage their re-
spective strengths. Cloud computing resolves limitations in device com-
putation, communication, and storage, while edge computing alleviates 
issues with bandwidth and communication latency by deploying edge 
servers closer to users. As shown in Fig. 1, given that the computing 
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Fig. 1. The cloud-edge-terminal collaboration framework based on federated learning.

and storage capabilities of edge servers are much higher than those of 
terminal devices, we suggest placing FL logic between edge and cloud 
servers in this setup: edge servers manage data collection, storage, and 
local model training, cloud servers handle parameters aggregation and 
large-scale computations, and terminal devices focus on encrypted data 
transmission to edge servers.

Despite the advantages of the cloud-edge-terminal architecture for 
FL, the massive parameter sizes of pre-trained models limit its broader 
adoption. Recent studies (Zhu, Liu, & Han, 2019) reveal that FL frame-
works are vulnerable to attribute inference attacks, where attackers 
can deduce sensitive information (e.g., gender) from local parame-
ter updates. Existing privacy-enhancing techniques for FL, such as se-
cure multi-party computation (Agrawal, Shahin Shamsabadi, Kusner, & 
Gascón, 2019), homomorphic encryption (Gong et al., 2024), and dif-
ferential privacy (Feng, Peri, & Narayanan, 2022), are computationally 
intensive. Adding noise to large pre-trained models is often inefficient, 
and differential privacy may fail to provide adequate protection when 
attackers have access to frequent model updates. To address these is-
sues, we propose a Federal Learning Parameter-Efficient Fine-Tuning 
(FedLPEFT) approach. This method involves freezing most backbone 
model parameters and updating only a small number of trainable layers 
during federated training. This approach significantly reduces parame-
ter volume and communication overhead, making federated fine-tuning 
practical while enhancing system performance and privacy protection. 
We evaluate the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) 
techniques, such as adapter tuning, embedding prompt tuning, and low-
rank adaptation (LoRA), along with downstream fine-tuning across var-
ious pre-trained speech models, and conduct simulations of attribute 
inference attacks to validate the approach’s robustness and security. In 
summary, our work leverages pre-trained models’ extensive knowledge 
for FL, with PEFT supporting low communication and robust privacy 
protection. The main contributions are as follows.

• A privacy-enhanced federal parameter-efficient fine-tuning for 
speech signal processing task is proposed, integrating the benefits 
of cloud and edge computing to extend its applicability to cloud-
edge-terminal scenarios, thus optimizing computational efficiency 
for speech emotion recognition.

• We evaluate adapter tuning, embedding prompt tuning, and LoRA 
on five pre-trained speech models, comparing them with down-
stream fine-tuning. Results confirm that LoRA exhibits stable and 
superior performance across all pre-trained systems. This fine-tuning 
method, which involves freezing the backbone parameters of pre-
trained models, effectively reduces communication overhead while 
maintaining performance in federated interactions.

• We perpetuate an attribute inference attacks framework for feder-
ated learning pre-trained speech model fine-tuning scenarios and 
validate its effectiveness in enhancing privacy. The involvement of 
a limited number of trainable parameters in collaborative sharing 
reduces attribute inference capabilities to a chance level.
The remainder of this article is organized as follows. In Section 2, 

we review related work. Section 3 provides a detailed discussion of 
FedLPEFT methods based on various pre-trained speech models, and 
outlines the attack process. Section 4 analyzes the framework’s per-
formance, attack resilience, and parameter sensitivity, and compares it 
with centralized fine-tuning and related approaches. Finally, we sum-
marize in Section 5.

2.  Related work

Advancements in artificial intelligence (AI) and human-computer in-
teraction have driven significant interest in SER research. Recently, deep 
learning-based approaches (Latif et al., 2021), particularly those utiliz-
ing transformers (Vaswani et al., 2017) and their variants, have shown 
exceptional performance. These models’ advanced attention mecha-
nisms allow for the effective capture of critical semantic information 
in long sequence datasets by simultaneously addressing both global and 
local features, thereby improving system performance and generaliza-
tion.  Wang et al. (2021) developed an end-to-end SER architecture by 
stacking multiple transformer layers to enhance global feature aggrega-
tion, achieving a 20% performance improvement.  Chen, Lin, Wang, 
Zheng, and Liu (2023b) introduced a spatio-temporal representation 
learning approach with a multi-head attention mechanism, combining 
fine-grained frame-level and coarse-grained utterance-level emotional 
features to boost SER performance. Naderi and Nasersharif (2023) uti-
lized Wav2Vec2.0 transformer blocks and prosodic features, effectively 
extending SER to cross-corpus tasks using fused attention and trans-
fer learning techniques. Additionally, due to the natural graph struc-
ture of conversations, many speech-based conversational emotion recog-
nition studies leveraging Graph Convolutional Networks (GCN) have 
yielded significant outcomes. Chandola, Altarawneh, Jenkin, and Pa-
pagelis (2024) proposed a two-stage method to predict speaker emo-
tions by first extracting utterance-level features and then using these to 
form dialogue graphs for GCN training. Yuan et al. (2023) introduced 
a relational dual-layer aggregation GCN, aimed at reducing redundancy 
and preserving node information during aggregation.

Research on large-scale pre-trained speech models is increasingly 
dominant, driven by the models’ ability to acquire general knowledge 
through self-supervised and weakly-supervised learning on extensive 
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datasets. Zhang et al. (2024) comprehensively analyzed the significant 
contributions of large language models (LLMs) to SER tasks, advocating 
for broader discussions on enhancing speech emotion recognition with 
more advanced and generalized models. However, fine-tuning large pre-
trained models requires storing entire weight parameter copies, which 
imposes substantial storage constraints, limiting practical deployment. 
To address this, PEFT methods have been introduced, inserting train-
able layers into pre-trained models and optimizing only a small sub-
set of parameters. Studies like (Ding et al., 2023; Li et al., 2023) have 
thoroughly evaluated the benchmarks of PEFT on pre-trained models. 
Lashkarashvili, Wu, Sun, and Woodland (2024) systematically inves-
tigated the effectiveness of various PEFT methods for both discrete 
emotion classification and dimensional emotion attribute prediction. 
Li and Hou (2023) combined self-supervised learning features with 
adapter fine-tuning for SER, demonstrating that adapter fine-tuning sig-
nificantly enhances the transferability of self-supervised learning fea-
tures across different tasks, offering new insights into the advancement 
of speech processing. Despite these advancements, the critical issues of 
data security and model privacy in pre-trained speech models remain 
underexplored-key challenges for the sustainable development of AI.

Centralized training exposes significant data security risks due to di-
rect access to user data, while fine-tuning pre-trained models is vulner-
able to parameter leakage. The advent of FL offers a potential solution 
by integrating privacy-preserving frameworks with pre-trained mod-
els. However, recent studies (Feng, Hashemi, Hebbar, Annavaram, & 
Narayanan, 2021; Zhao, Chen, Xiao, & Zhang, 2023a) have highlighted 
the privacy vulnerabilities of deep models within FL frameworks, raising 
concerns about their effectiveness in safeguarding privacy. Traditional 
encryption methods, such as homomorphic encryption, secure multi-
party computation, and differential privacy, are impractical for large-
scale pre-trained models due to the additional computational burden 
they impose. Some adversarial training techniques, like those proposed 
by Ren, Baird, Han, Zhang, and Schuller (2020), use methods such as 
Fast Gradient Sign Method (FGSM) to generate adversarial data for train-
ing defenses.  Jaiswal and Provost (2020) employ adversarial learning 
to capture private, overlooked information in multi-model representa-
tions. However, these methods may fail as attackers can still access the 
perturbed data. Chen, Zhao, Zhang, and Li (2024) proposed a federated 

lightweight distillation approach with parameterized hierarchical shar-
ing to enhance privacy in federated pre-trained models, but its extensive 
preprocessing requirements may limit its applicability.

Several works combining parameter-efficient fine-tuning with feder-
ated learning  (Malaviya, Shukla, & Lodha, 2023; Sun, Li, Li, & Ding, 
2024; Zhang et al., 2023; Zhao, Du, Li, Li, & Liu, 2023b) have been ex-
plored in NLP, primarily using text datasets. However, our focus on au-
dio inputs (e.g., raw waveforms, spectrograms) and speech models intro-
duces distinct challenges due to domain differences. Moreover, speech 
data contains rich paralinguistic cues, making sensitive attribute leakage 
(e.g., gender, age) a critical threat for attribute inference attacks. There-
fore, the FedLPEFT approach for pre-trained speech models remains un-
derexplored and needs thorough evaluation regarding SER performance, 
parameter privacy, and communication overhead.

3.  Proposed approach

To tackle federated privacy leakage in cloud-edge-terminal scenar-
ios, we propose a PEFT paradigm designed for cloud-edge-end archi-
tectures to enhance federated privacy. Our goals are: (1) to develop a 
federated learning-based PEFT framework for extending speech emo-
tion recognition scenarios requirements; (2) to demonstrate the feasi-
bility of combining federated learning with pre-trained speech models 
through PEFT, showing promising performance and providing guidance 
for federated large speech model development; (3) to validate robust 
privacy protection by simulating attribute inference attacks across mul-
tiple datasets, considering the particularity of speech data containing 
rich paralinguistic information. Fig. 2 illustrates the federated privacy 
protection system framework, comprising two main components. The 
upper part details the core logic of federated privacy enhancement, di-
vided into private training and shadow training. Private training handles 
SER tasks, while shadow training simulates privacy training with differ-
ent public datasets for attribute inference (e.g., gender prediction). Our 
local models utilize pre-trained speech models with various PEFT meth-
ods, such as adapter tuning, embedding prompt, LoRA, and downstream 
fine-tuning. The lower part provides details on attribute inference at-
tacks. Further specifics are discussed in the following sections.

Fig. 2. Federal Learning Parameter-Efficient Fine-Tuning (FedLPEFT) framework based on pre-trained speech models enhances privacy protection.
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3.1.  PEFT privacy-enhanced paradigms in FL

Pre-trained speech models have enhanced SER performance due to 
large-scale data training. However, in FL settings, they present chal-
lenges such as increased communication burdens from a large number 
of model parameters and potential privacy leaks. To address these issues 
and explore the feasibility of integrating large pre-trained speech mod-
els with FL for SER tasks, the FedLPEFT privacy-enhanced algorithm has 
been proposed. Algorithm 1 details the process, highlighting key steps 
in the FL collaborative training,

Algorithm 1 FedLPEFT for Privacy Preservation.
 Input: Pre-trained model 𝑀 , fine-tuning method 𝐹 , pre-trained model 

trainable parameters 𝜃𝑘, downstream model trainable parameters 
𝜃𝑘′, local model 𝑤𝑘, local model updates 𝜃, global model 𝑤𝑔 , global 
model updates 𝑤, learning rate 𝜂, local epoch 𝛼, num epochs 𝛽, train-
ing round 𝑡, learning step 𝜏;

 Output: SER global test accuracy (ACC), Unweighted Average Recall 
(UAR), best model; 

1: Initialize global model 𝑤g and broadcast it and related parameters 
to the selected 𝑘 active client, 𝑤𝑡,0

𝑘 ← 𝑤𝑔 ; 
2: repeat
3: for selected 𝑘 clients in parallel do
4: for fold = 1, 2, …, 5 do
5: for 𝑡 = 1, 2, …, 𝛽 do
6: Train local models and minimize loss, trainable layers 

involved,
𝑤𝑡∗

𝑘 = argmin
𝑤𝑡

𝐿(𝑤𝑡
𝑘); 

7: Update the local model,
𝑤𝑡,𝜏+1

𝑘 ← 𝑤𝑡,𝜏 − 𝜂𝑤𝑡∗ ,𝜏
𝑘 ; 

8: Upload local model parameters 𝜃 to the server,
𝜃 = 𝜃𝑘 + 𝜃𝑘′; 

9: Server aggregate and average parameters, and minimize 
global loss, in 𝑡th round training, 𝐾 out of 𝑁 clients par-
ticipated, sample size 𝑛𝑘 at the 𝑘 client,
𝑤𝑡+1 =

𝐾
∑

𝑘=1

𝑛𝑘
𝑁 𝜃𝑡𝑘, 𝐿(𝑤𝑡

𝑔) =
1
𝑁

𝑁
∑

𝑘=1
𝐿(𝑤𝑡);

10: end for
11: Save the best model and results;
12: end for
13: Calculate the average of the 5-fold experiments;
14: end for
15: until training stop or converge

a) Global model synchronization. Initialize the global model. The 
FL server randomly selects 𝑘 active clients and broadcasts the latest 
global model 𝑤𝑔 and parameters to them.

b) Local training and updates. Each client trains on its local dataset 
and updates its local model. With PEFT (adapter tuning/embedding 
prompt tuning/LoRA) and downstream model fine-tuning, most back-
bone parameters are frozen, and only trainable parameters (requires 
grad=True) are updated.

c) Model aggregation. Aggregate and average the local parameters 
from clients. The averaged global model parameters are then sent back 
to the clients. The updated local model combines the server’s global 
model (trainable layers) with the client’s local model (frozen layers), 
repeating until convergence.

We detail several PEFT methods, including adapter tuning, embed-
ding prompt, and LoRA, as shown in Fig. 3. All fine-tuning methods 
are based on the FL pre-trained speech model. Before discussing these 
methods, we briefly summarize the pre-trained speech models used in 
this work.

3.1.1.  Pre-trained speech model
Wav2vec 2.0 (Baevski, Zhou, Mohamed, & Auli, 2020) is a 

transformer-based self-supervised model that extracts contextual rep-
resentations from raw audio. Its core components include a feature en-
coder, transformer module, and quantization module, trained with a 
masked learning objective to predict quantized speech representations.

WavLM (Chen et al., 2022), built on the Hubert framework, uses a 
denoising masked speech modeling approach. It enhances model under-
standing by masking parts of speech data and predicting the masked 
portions. Pre-trained on 94,000 hours of english speech, it excels in var-
ious speech-based tasks.

Whisper (Radford et al., 2023) is a transformer-based model trained 
with weak supervision. Designed for versatility, it handles speech input 
across different languages, dialects, and noise environments. The series 
includes versions like Whisper Tiny, Base, Small, and Large, each vary-
ing in parameters, computational needs, and accuracy.

3.1.2.  Adapter tuning
Referring to Fig. 3(a), the fine-tuning technique adapts large-scale 

pre-trained models by inserting lightweight adapter modules between 
certain layers, allowing the model to adapt to new tasks while keeping 
most of the original parameters frozen. As described in Houlsby et al. 
(2019), the adapter adds trainable layers to each transformer layer, typ-
ically including a down-projection layer, an up-projection layer, and 
a nonlinear activation function. The down-projection reduces the di-
mensionality of the transformer’s output, projecting high-dimensional

Fig. 3. Model structures and internal details from various PEFT methods.
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features ℎ (dimension 𝑑) into a lower-dimensional space 𝑚 (𝑚 ≪ 𝑑). The 
reduced features are then activated using a nonlinear function 𝜎 (e.g., 
ReLU) and projected back to the original dimensions. The adapter’s out-
put is then added to the original input features, producing the adjusted 
output. A skip-connection ensures the model can revert to an identity 
function if necessary. The adapter’s computation is given by: 

ℎ = ℎ + 𝜎(ℎ𝑊down)𝑊up. (1)

With the majority of parameters frozen and only a minimal set within 
the adapter being trained, this approach optimizes the FL framework by 
reducing computational resource demands and parameter storage re-
quirements.

3.1.3.  Embedding prompt tuning
Fig. 3(b) illustrates that a trainable embedding prompt is inserted 

into the input embedding space preceding each encoder in the pre-
trained model. Embedding prompt fine-tuning, initially developed as a 
text prompting technique (Jia et al., 2022), updates these prompts dur-
ing training to direct the model in generating task-specific outputs more 
effectively. The prompt output from the preceding layer is discarded and 
replaced with a new set of prompts before being fed into the subsequent 
layer. For downstream tasks, only the embedding prompt and classifi-
cation layer parameters are optimized, while the core parameters of the 
pre-trained model backbone remain fixed. Given the original input 𝐻𝑖 of 
the encoder’s 𝑖th layer and the embedding prompt 𝐸𝑖, the concatenated 
input for the encoder during embedding prompt fine-tuning is: 

𝐻𝑖
′ = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑐𝑜𝑛𝑐𝑎𝑡(𝐻𝑖, 𝐸𝑖)). (2)

Indeed, this represents a lightweight and efficient fine-tuning ap-
proach, allowing large-scale pre-trained models to adapt effectively to 
diverse downstream tasks.

3.1.4.  LoRA
A technique for efficient fine-tuning of large-scale language mod-

els involves introducing low-rank decomposition methods to reduce 
the number of parameter updates during fine-tuning, thereby lowering 
computational and storage costs while maintaining strong model per-
formance (Hu et al., 2022). In an FL setting, LoRA is naturally suit-
able and advantageous; by decomposing the original parameter ma-
trix into the product of two low-rank matrices, it can mitigate privacy 
concerns to some extent. Specifically, we keep the pre-trained layers 
fixed and apply trainable low-rank matrices to the feed-forward layers. 
Given a dense neural network layer with a weight matrix 𝑊0 ∈ ℝ𝑑×𝑘, 
updating it with Δ𝑊 ∈ ℝ𝑑×𝑘 results in an updated layer parameter-
ized by 𝑊 = 𝑊0 + Δ𝑊 . To improve computational efficiency, LoRA de-
composes Δ𝑊  into two smaller matrices, 𝐵 ∈ ℝ𝑑×𝑟 and 𝐴 ∈ ℝ𝑟×𝑘, so 
Δ𝑊 = 𝐵𝐴, where 𝑟 ≪ min{𝑑, 𝑘}. During fine-tuning, the original weight 
matrix 𝑊0 remains unchanged, and only 𝐴 and 𝐵 are updated. For an 
input feature ℎ, the linear transformation adjusted by LoRA can be rep-
resented as: 

ℎ′ = 𝑊0ℎ + Δ𝑊 ℎ = 𝑊0ℎ + (𝐵𝐴)ℎ. (3)

3.1.5.  Downstream fine-tuning
Beyond the PEFT methods described, we establish a baseline fine-

tuning method, downstream model fine-tuning, where the backbone 
network remains frozen and only the downstream model is fine-tuned. 
The downstream model architecture will be detailed in the experimen-
tal setup section. All fine-tuning methods use the same downstream 
classification structure. PEFT methods apply adapter tuning, embedding 
prompt tuning, and LoRA to each pre-trained architecture to assess SER 
performance across different pre-trained models and fine-tuning tech-
niques.

3.2.  Attack design

In a FL setting, where the primary task is SER, we utilize a private la-
beled dataset 𝐷𝑝 from multiple clients, each containing an audio dataset 
𝑋𝑎, emotion labels 𝑌𝑎, and gender labels 𝑍𝑎. The attacker, without ac-
cess to 𝐷𝑝, can use a public dataset 𝐷𝜌, similar in format and distribution 
but non-overlapping. This work examines white-box attacks, where the 
attacker has full knowledge of the model architecture and hyperparam-
eters, including learning rate, batch size, and epoch. The attack scenario 
is defined within the FedAvg frameworks (Collins, Hassani, Mokhtari, & 
Shakkottai, 2022), where the attacker (curious server) attempts to infer 
the gender attribute 𝑍𝑘 of the 𝑘th client by exploiting the shared model 
parameters 𝜃𝑘 and global model parameters 𝑤. Further details are as 
follows:

Private training. In the SER training process, private training is con-
ducted using the FedAvg algorithm with PEFT, as illustrated in Fig. 2. 
Private data remains on the clients and is inaccessible to the server. 
However, shared training updates (gradients or parameters) are po-
tentially vulnerable to indirect access by attackers. In our FedLPEFT 
method, clients share a subset of parameters: trainable PEFT parameters 
𝜃𝑘 and downstream model parameters 𝜃𝑘′. In each 𝑡th training round, 𝐾
clients with 𝑛𝑘 samples collaboratively train, submitting their param-
eters to the server, which aggregates and averages them, the average 
parameters 𝑤 are as follows: 
⎧

⎪

⎨

⎪

⎩

𝑤𝑡+1 =
𝐾
∑

𝑘

𝑛𝑘
𝑁 𝜃𝑡𝑘,

𝜃𝑡𝑘 = 𝜃𝑘 + 𝜃𝑘′.
(4)

Shadow training. Originally proposed in membership inference at-
tacks (Nasr, Shokri, & Houmansadr, 2019), shadow training is adapted 
for attribute inference attacks in a similar framework. Like private train-
ing, its goal is to predict emotion categories. The model updates gener-
ated are stored to provide data for training the attack model. Specifi-
cally, the attacker trains a shadow model 𝑀1,𝑀2,… ,𝑀𝑘 using a public 
dataset 𝐷𝜌, with each shadow training dataset matching the format and 
distribution of the private dataset but not overlapping. For example, us-
ing IEMOCAP as the private dataset, MSP-IMPROV and CREMA-D are 
used for shadow model training, and vice versa. In this white-box attack 
scenario, the shadow model shares the same architecture and hyperpa-
rameters as the private model, including batch size, learning rate, and 
global epoch.

Attribute inference attacks. We construct the attack training 
dataset 𝐷𝛼 from shared model updates generated during shadow train-
ing. The shared model 𝑔𝑡𝑘 for the 𝑘th client is defined, with the client’s 
gender label set 𝑍𝑘 used as labels for 𝑔𝑡𝑘. We then train the attack model 
𝑀𝛼 using 𝐷𝛼 for gender inference. The attacker can access only the 
global model parameters 𝑤 and the updated parameters 𝜃𝑡𝑘 from the 𝑘th 
client, not the original gradients. We use a pseudo-gradient 𝑔′𝑡𝑘 derived 
from Geng et al. (2021) as input to the attack model, assuming 𝑇  local 
updates and a learning rate of 𝜂, 

𝑔′𝑡𝑘 = 1
𝑇 𝜂

(𝑤 − 𝜃𝑡𝑘). (5)

Thus, we train the attack model with parameters 𝜗 to minimize the 
following cross-entropy loss function: 
min
𝜗

𝐿(𝑀𝛼(𝑔′𝑡𝑘; 𝜗), 𝑍𝑘). (6)

Moreover, the attack model, as outlined in Feng et al. (2021), inte-
grates a CNN feature extractor and a classifier. Weight updates ∇𝑤𝑖 and 
bias updates ∇𝑏𝑖 for the 𝑖th layer are generated during shadow training 
and input into a three-layer CNN to compute hidden representations 
(see Fig. 2). These CNN features are flattened and concatenated with 
the biases, then passed to an MLP for gender prediction. Given that the 
first-layer updates typically contain more sensitive information and are 
more susceptible to leakage, we evaluate the attack model’s performance 
using ∇𝑤1 and ∇𝑏1.
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Table 1 
Emotion label statistics across three different emotion datasets.
    Datasets  Neutral  Happy  Sad  Angry  Total 
  IEMOCAP  1708  1636  1084  1103  5531 
  CREMA-D  1972  1219  588  1019  4798 
  MSP-IMPROV  3477  2644  855  792  7798 

4.  Experiment

4.1.  Datasets

In this work, we develop FedLPEFT and attack methods for SER using 
three widely utilized public datasets. Given the imbalanced data distri-
bution, we adopt the four emotion labels frequently employed in the 
literature, as recommended in Khan et al. (2024), Chen et al. (2023a), 
Li, Liu, Yang, Sun, and Wang (2021): neutral, happy, sad, and angry. 
Table 1 presents the label distribution across these datasets.

The IEMOCAP corpus (Busso et al., 2008), collected by the Univer-
sity of Southern California, comprises multimodal recordings, includ-
ing motion, audio, and video, specifically designed to capture explicit 
emotional expressions. The dataset consists of 5531 utterances from 10 
actors (5 male and 5 female).

The CREMA-D corpus (Cao et al., 2014) contains audiovisual mul-
timodal recordings from 91 actors (48 male and 43 female) expressing 
emotions. It includes 4798 utterances categorized into four emotions: 
neutral, happy, sad, and angry.

The MSP-IMPROV corpus (Busso et al., 2016) is designed to inves-
tigate natural emotions captured in improvisational scenes. It includes 
audio and visual data recorded under improvisational, natural, target, 
and read conditions, with 12 participants (6 male and 6 female). To 
comprehensively assess PEFT performance across various scenarios, we 
utilized data from all recording conditions, comprising a total of 7798 
utterances.

4.2.  Data preprocessing

For each dataset, 20% of speakers are reserved as the test set, with an 
8:2 split. Due to the limited number of speakers in IEMOCAP (10 speak-
ers) and MSP-IMPROV (12 speakers), these datasets are divided into 10 
subsets by speakers to align with CREMA-D, which has 91 speakers. For 
the new speaker subsets, 80% is used for training and 20% for valida-
tion. We employ 5-fold cross-validation and report average results. In 
FL training, we use data from 20% of the speakers, with 8 clients re-
ceiving balanced data from 1 to 3 non-overlapping speakers each. Data 
partitioning for centralized PEFT methods follows (Feng & Narayanan, 
2023).

4.3.  Experimental settings

Model setup and evaluation. This work designs a model for speech 
emotion recognition, consisting of a pre-trained model and a down-
stream model. Fig. 2 shows the pre-trained models: Wav2vec 2.0 Base, 
WavLM Base+, Whisper Small, Whisper Base, and Whisper Tiny. The 
core modules include CNN encoders (frozen during training) and trans-
former encoders (with only adapter/embedding prompt/LoRA param-
eters trainable), processing raw audio input. The downstream model 
follows the architecture in Mireshghallah et al. (2020), which combines 
CNN encoder outputs using weighted averaging, applies three 1D con-
volutional layers (256 filters, kernel size 1, ReLU activation), averages 
the convolutional outputs, and feeds them into two fully connected lay-
ers for SER prediction. The experiments compare adapter, embedding 
prompt, and LoRA PEFT methods with downstream fine-tuning, which 
keeps the backbone encoder frozen and only fine-tunes the trainable 
parts. We set the low-rank dimension to 8, the embedding prompt size 
to 5, and the adapter size to 128, with 5 shadow models. For FedAvg, 

Fig. 4. Performance of downstream fine-tuning with various pre-trained models 
in centralized setups (UAR%).

the learning rate is 0.0005, local epochs 1, and total epochs 30. During 
attack model training, the optimizer’s learning rate is 0.0001, and client-
specific trainable parameters, including embedding prompts, low-rank 
matrices, and downstream model parameters, are updated each round. 
For details on the centralized PEFT method settings, please refer to ref-
erence Feng and Narayanan (2023). All experiments use 5-fold cross-
validation, with evaluation metrics being global test accuracy (ACC) and 
Unweighted Average Recall (UAR). The experiments are conducted on 
a Linux server with 4 GeForce RTX 3090 GPUs and 64GB RAM.

4.4.  SER performance

4.4.1.  Centralized fine-tuning
(1) This section evaluates SER performance with different fine-tuning 

methods in a centralized environment. First, we give the specific perfor-
mance of downstream model fine-tuning (UAR) as a baseline method. 
Fig. 4 shows that Whisper Small and WavLM Base+ deliver the best 
results across all datasets. Specifically, WavLM Base+ excels on the 
CREMA-D dataset, while Whisper Small outperforms other models on 
the MSP-IMPROV dataset. In contrast, Wav2vec 2.0 Base performs less 
competitively, even lagging behind the lighter models Whisper Base and 
Whisper Tiny. These results are consistent with those reported in Feng 
and Narayanan (2023).

(2) We compare three PEFT methods with downstream fine-tuning. 
Table 2 presents ACC/UAR metrics across three datasets, with average 
PEFT performance provided for clarity. The Average row shows that 
with Whisper models, adapter, embedding prompt, and LoRA perform 
worse than downstream fine-tuning. Conversely, PEFT methods enhance 
performance for Wav2vec 2.0 Base and WavLM Base+, with LoRA per-
forming best. Among all models, WavLM Base+ consistently achieves 
the highest results, particularly with LoRA, which averages ACC: 71.5% 
and UAR: 71.7%. For individual datasets, Wav2vec 2.0 Base and WavLM 
Base+ show stable performance across fine-tuning methods. In contrast, 
Whisper models exhibit significant variability, with Adapter fine-tuning 
underperforming on Whisper Small and Whisper Base, and embedding 
prompt yielding the lowest results on Whisper Tiny, we speculate that 
the positional embeddings in Whisper contribute to this instability. Nev-
ertheless, LoRA on Whisper models performs closest to downstream fine-
tuning.

4.4.2.  Federated fine-tuning
(1) In FL settings, parameter fine-tuning methods involve complex 

computations and interactions. We use frozen pre-trained model en-
coders and fine-tune downstream models to present baseline results. 
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Table 2 
Performance comparison of various fine-tuning methods across pre-trained models in a centralized setting (ACC%/UAR%).
    Dataset  Fine-Tune  Pre-trained Model
  Whisper Tiny  Whisper Base  Whisper Small  Wav2vec 2.0  WavLM Base+
  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR 
  IEMOCAP  Downstream  65.6  67.2  66.7  68.0  65.6  67.7  64.4  66.6  65.7  67.8 
  Adapter  62.8  63.9  57.9  58.1  56.5  59.4  59.6  63.8  66.9  69.1 
  Prompt  55.2  57.5  57.5  59.9  59.0  59.5  64.7  66.8  68.4  70.2 
  LoRA  63.7  65.8  65.4  67.3  63.1  65.8  63.6  66.3  69.5  70.5 
  CREMA-D  Downstream  72.0  73.2  74.1  75.8  73.1  76.3  69.9  72.2  77.1  77.4 
  Adapter  70.0  71.4  69.6  70.8  62.5  64.8  69.3  71.5  76.8  77.6 
  Prompt  62.0  65.0  69.0  71.5  70.4  72.8  73.0  73.5  77.2  78.9 
  LoRA  71.9  72.1  74.7  77.0  76.2  78.4  73.4  74.8  78.9  79.3 
  MSP-IMPROV  Downstream  57.8  60.2  62.8  62.7  63.4  64.2  57.9  61.4  63.3  62.9 
  Adapter  52.2  55.0  51.7  55.8  51.9  51.0  57.5  60.2  62.7  62.5 
  Prompt  53.2  53.1  56.9  58.6  57.2  60.0  57.8  61.3  64.8  65.0 
  LoRA  58.5  61.1  61.7  62.3  61.8  61.6  58.8  61.4  66.0  65.4 
  Average  Downstream  65.1  66.9  67.9  68.8  67.4  69.4  64.1  66.7  68.7  69.4 
  Adapter  61.7  63.4  59.7  61.6  57.0  58.4  62.1  65.2  68.8  69.7 
  Prompt  56.8  58.5  61.1  63.3  62.2  64.1  65.2  67.2  70.1  71.4 
  LoRA  64.7  66.3  67.3  68.9  67.0  68.6  65.3  67.5  71.5  71.7 

Fig. 5. Performance of downstream fine-tuning with various pre-trained models 
in FL settings (UAR%).

Fig. 5 shows that WavLM Base+ and Wav2vec 2.0 Base achieve the 
best performance across datasets. WavLM Base+ excels on IEMO-
CAP and MSP-IMPROV, while Wav2vec 2.0 Base leads on CREMA-
D, with WavLM Base+ generally outperforming others. Wav2vec 2.0 
Base’s performance in federated learning contrasts with centralized find-
ings. Whisper models underperform overall, with Whisper Tiny surpris-
ingly outperforming Whisper Small on two datasets. These results in-
dicate that model size and data distribution impact federated learning
performance.

(2) We further evaluate PEFT methods across datasets, as shown in 
Fig. 6. WavLM Base+ and Wav2vec 2.0 Base demonstrate superior per-
formance across all four FL fine-tuning methods. Compared to down-
stream model fine-tuning, adapter, embedding prompt, and LoRA de-
liver better results, enhancing the performance of these pre-trained mod-
els. This suggests that WavLM Base+ and Wav2vec 2.0 Base are well-
adapted to federated learning environments, leveraging their extensive 
pre-training on large datasets to perform effectively on specific tasks. 
LoRA consistently outperforms other methods across pre-trained mod-
els, establishing it as the preferred approach in federated learning due 
to its reduced communication overhead. In contrast, adapter and em-
bedding prompt methods exhibit suboptimal performance with Whisper 
models, falling significantly short of downstream fine-tuning and LoRA. 
This discrepancy is likely attributed to factors such as Whisper’s po-

sitional embeddings, the FedAvg aggregation method, and insufficient 
learning of speech emotion features in the federated learning setting.

4.4.3.  Centralized vs. FL distributed fine-tuning
To clearly compare FL and centralized settings across various pre-

trained models and fine-tuning methods, Table 3 provides detailed in-
sights. FL shows a slight performance drop compared to centralized 
methods, consistent with expectations due to FedAvg parameter aver-
aging. In FL, Wav2vec2.0 Base and WavLM Base+ perform closer to 
centralized results, while most Whisper-based fine-tuning methods (ex-
cept LoRA) underperform. LoRA stands out in the FL setup, especially 
when applied to the WavLM Base+ model, achieving the best results on 
the IEMOCAP (ACC: 69.2% / UAR: 70.4%), CREMA-D (ACC: 78.2% / 
UAR: 75.0%), and MSP-IMPROV (ACC: 65.1% / UAR: 61.6%) datasets, 
with only about a 4.0% UAR difference from centralized fine-tuning in 
the worst case. Our conclusions are: (1) In FL distributed computing, 
smaller pre-trained models fail to fully learn and generalize pre-training 
knowledge during fine-tuning, leading to performance degradation. Ad-
ditionally, under the same conditions, small-scale pre-trained models re-
quire more task-specific data to achieve optimal performance. However, 
this is hindered by the dispersed and non-iid data in FL, with limited 
quantities. (2) Notably, among all fine-tuning methods, LoRA maintains 
significant performance even in distributed training. This is due to its 
low-rank decomposition technique, which restricts the weight matrix 
updates to a low-rank subspace, where the updates are closely related 
to the specific directions of the original weights (Hu et al., 2022).

4.5.  Attack performance

4.5.1.  For different pre-trained models and fine-tuning methods
As highlighted in previous work (Mireshghallah et al., 2020; Narra, 

Lin, Wang, Balasubramanian, & Annavaram, 2021), most information 
leakage occurs in the early layers of machine learning models, a find-
ing corroborated by our study (Zhao et al., 2023a). In the federated 
fine-tuning framework, attack performance is assessed using first-layer 
weight updates and biases from backpropagation. Table 4 compares at-
tack performance across different fine-tuning methods and pre-trained 
models, using various datasets, with ACC and UAR metrics. FL inher-
ently risks privacy leakage (Feng et al., 2021). However, fine-tuning 
pre-trained models in FL allows for practical implementation with large-
scale models by updating only a subset of parameters. This reduces 
transmission load and limits sensitive information exposure. The table 
shows that gender inference results cluster around 50.0%, with ACC 
values not exceeding 55.6%, indicating a chance prediction level. No-
tably, Whisper-based models show higher inference susceptibility under 
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Fig. 6. Performance of downstream fine-tuning with various pre-trained models 
in FL settings (UAR%).

downstream tuning, whereas Wav2vec 2.0 Base and WavLM Base+ do 
not exhibit this trend.

4.5.2.  Comparison with other works
In comparison, while federated learning fine-tuning slightly under-

performs centralized methods in SER, FedLPEFT offers clear privacy ad-
vantages by providing a collaborative training mechanism without re-
quiring data sharing or direct access. This builds a strong privacy safe-

guard. The inclusion of large-scale pre-trained models further enhances 
FL performance. To illustrate FedLPEFT’s advantages, we compared it 
with existing federated learning approaches under similar conditions. 
Fig. 7 presents a comprehensive evaluation of SER performance and at-
tribute inference attacks (gender prediction). Feng et al. (2021) imple-
mented a CNN-based federated framework, which showed suboptimal 
SER performance and attribute inference rates above 80.0%, exposing 
significant privacy vulnerabilities. Zhao et al. (2023a) improved pri-
vacy strategies to reduce attribute inference to around 52.0%, achieving 
modest performance gains overall, but with limited improvement and 
a downward trend on the CREMA-D dataset. In contrast, our FedLPEFT 
approach, particularly using WavLM Base+ and LoRA, shows signifi-
cant improvements in SER performance: approximately 5.0% better on 
the IEMOCAP dataset, around 14.0% and 16.0% better on two other 
datasets, demonstrating its effectiveness and robustness. Additionally, 
we achieve strong privacy protection, with gender prediction UAR not 
exceeding 52.5%, ensuring that attackers cannot infer client gender in-
formation and providing robust security.

4.6.  Trainable parameters

In federated training, factors such as data scale and network band-
width influence system efficiency, but the size of the pre-trained model 
and parameter transmission volume are key concerns. Larger models 
entail more parameters and longer computation times. Utilizing vari-
ous fine-tuning techniques allows freezing most backbone parameters 
and updating only a few, thereby reducing communication overhead. 
To build an effective FedLPEFT, it is crucial to balance the choice of 
pre-trained models and fine-tuning methods. For reference, Table 5 de-
tails the total local trainable parameters for different pre-trained models 
and fine-tuning methods in federated training. Note that for adapter tun-
ing, embedding prompt, and LoRA methods, the trainable parameters of 
the downstream model are included, as both need to be shared during 
training. Additionally, Table 6 compares the total number of trainable 
parameters across related works, highlighting FedLPEFT with WavLM 
Base+ and LoRA.

4.7.  Parameter sensitivity analysis

In Section 4.1, we systematically compared PEFT methods under cen-
tralized and federated settings, using downstream tuning as a baseline. 
This led to several key conclusions. We followed Feng and Narayanan 
(2023) for some parameter settings: low-rank dimension of 8, embed-
ding prompt size of 5, and adapter size of 128. We will investigate if 
these parameters are sensitive and if variations affect results, using the 
IEMOCAP dataset.

4.7.1.  Impact of adapter bottleneck size
This section investigates how adjusting the adapter bottleneck size 

affects SER performance (UAR). Specifically, we conducted experiments 
varying the adapter bottleneck size 𝑎 ∈ {32, 64} while keeping other pa-
rameters constant. As shown in Fig. 8, reducing the adapter size im-
proves overall performance for all pre-trained models, with a 2.0% 
variance observed. However, the overall trend remains consistent, with 
WavLM Base+ consistently achieving the best results. When the adapter 
size is 64, Wav2vec 2.0 Base and WavLM Base+ models perform notably 
well. In contrast, Whisper series models generally show lower perfor-
mance; for example, Whisper Base performs slightly better than Whisper 
Small and Whisper Tiny when the adapter size is 32, but only reaches a 
UAR of 57.4%, far behind WavLM Base+ (UAR: 69.1%). Overall, the 
adapter size has minimal impact on SER, indicating robustness to hy-
perparameter variations.

4.7.2.  Impact of embedding prompt size
In Section 4.4.2, we observed that embedding prompt and adapter 

fine-tuning methods performed poorly with Whisper models, signifi-
cantly below downstream fine-tuning. We tested smaller prompt sizes 
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Table 3 
Performance comparison (UAR%/ACC%) of various fine-tuning strategies with different pre-trained models in centralized vs. FL settings.
   
Framework Dataset Fine-Tune

 Pre-trained Model
  Whisper Tiny  Whisper Base  Whisper Small  Wav2vec 2.0  WavLM +
  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR 
 

Centralized

IEMOCAP

 Downstream  65.6  67.2  66.7  68.0  65.6  67.7  64.4  66.6  65.7  67.8 
  Adapter  62.8  63.9  57.9  58.1  56.5  59.4  59.6  63.8  66.9  69.1 
  Prompt  55.2  57.5  57.5  59.9  59.0  59.5  64.7  66.8  68.4  70.2 
  LoRA  63.7  65.8  65.4  67.3  63.1  65.8  63.6  66.3  69.5  70.5 
 

CREMA-D

 Downstream  72.0  73.2  74.1  75.8  73.1  76.3  69.9  72.2  77.1  77.4 
  Adapter  70.0  71.4  69.6  70.8  62.5  64.8  69.3  71.5  76.8  77.6 
  Prompt  62.0  65.0  69.0  71.5  70.4  72.8  73.0  73.5  77.2  78.9 
  LoRA  71.9  72.1  74.7  77.0  76.2  78.4  73.4  74.8  78.9  79.3 
 

MSP-IMPROV

 Downstream  57.8  60.2  62.8  62.7  63.4  64.2  57.9  61.4  63.3  62.9 
  Adapter  52.2  55.0  51.7  55.8  51.9  51.0  57.5  60.2  62.7  62.5 
  Prompt  53.2  53.1  56.9  58.6  57.2  60.0  57.8  61.3  64.8  65.0 
  LoRA  58.5  61.1  61.7  62.3  61.8  61.6  58.8  61.4  66.0  65.4 
 

FL

IEMOCAP

 Downstream  58.9  60.0  61.7  62.1  56.2  58.8  61.8  63.5  65.5  67.6 
  Adapter  53.8  54.2  54.4  55.6  49.8  53.3  61.4  63.8  66.0  68.8 
  Prompt  49.7  51.7  55.2  56.2  53.2  54.5  63.6  65.0  67.6  69.8 
  LoRA  63.2  64.3  64.9  65.7  63.9  64.5  63.7  65.3  69.2  70.4 
 

CREMA-D

 Downstream  66.7  64.5  67.8  64.1  65.0  61.5  69.5  68.4  69.4  67.4 
  Adapter  62.0  58.0  67.8  60.2  59.1  56.6  71.3  69.1  76.4  74.2 
  Prompt  61.3  59.2  64.0  59.4  61.7  59.6  71.0  68.6  75.5  71.4 
  LoRA  71.7  70.6  75.8  71.6  76.8  73.4  72.1  70.1  78.2  75.0 
 

MSP-IMPROV

 Downstream  53.0  50.7  55.3  54.5  59.7  56.5  57.8  56.7  62.8  59.9 
  Adapter  55.1  51.7  53.9  50.5  51.8  49.4  60.5  58.6  60.3  56.8 
  Prompt  52.0  49.0  56.6  52.4  51.3  50.1  57.0  54.9  63.7  60.3 
  LoRA  58.0  54.2  61.5  58.5  61.5  59.9  56.6  56.1  65.1  61.6 

Table 4 
Attribute inference attacks analysis (ACC%/UAR%) for different fine-tuning techniques across pre-trained models in FL settings, The ACC and UAR score of the 
gender prediction task is reported..
   𝐷𝑝 𝐷𝜌  Fine-Tune  Pre-trained Model
  Whisper Tiny  Whisper Base  Whisper Small  Wav2vec 2.0  WavLM Base+
  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR  ACC  UAR 
  IEMOCAP  Downstream  52.2  51.0  52.1  50.9  52.5  51.3  50.8  50.7  50.5  49.9 
  MSP-IMPROV  Adapter  47.3  49.6  47.0  49.9  47.3  50.0  52.8  50.9  46.2  46.3 
  CREMA-D  Prompt  50.5  50.0  50.4  49.9  50.8  50.2  49.5  48.5  47.0  47.1 
  LoRA  46.6  46.5  46.8  46.4  46.4  46.0  51.4  49.4  51.0  50.7 
  CREMA-D  Downstream  54.4  52.2  54.4  52.2  54.9  52.5  55.6  50.4  52.7  50.0 
  IEMOCAP  Adapter  51.7  51.8  51.6  51.8  52.0  52.2  52.5  51.9  51.0  50.3 
  MSP-IMPROV  Prompt  51.9  51.2  52.0  51.2  52.2  51.5  53.0  50.1  55.1  52.7 
  LoRA  52.2  51.2  52.1  51.1  52.5  51.5  53.2  51.0  54.1  52.5 
  MSP-IMPROV  Downstream  54.4  53.9  54.5  53.7  55.0  54.2  51.3  51.2  51.8  51.7 
  IEMOCAP  Adapter  52.7  52.3  53.0  52.2  53.2  52.7  51.8  52.3  52.6  53.6 
  CREMA-D  Prompt  50.6  50.8  51.2  51.4  51.1  51.2  52.3  53.0  52.3  53.3 
  LoRA  54.0  53.9  54.0  53.7  54.5  54.4  52.1  52.3  51.2  51.3 

Fig. 7. Comparison of LoRA-based federal parameter-efficient fine-tuning with WavLM Base+ pre-trained models in SER performance and gender inference under 
FL settings.
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Table 5 
Trainable parameters under various fine-tuning methods.
    Pre-trained Model  Downstream  Adapter  Prompt  LoRA  
  Whisper Tiny  0.30M  0.69M  0.30M  0.42M 
  Whisper Base  0.33M  1.12M  0.35M  0.58M 
  Whisper Small  0.40M  2.77M  0.44M  1.13M 
  Wave2vec2.0 Base  0.40M  2.77M  0.44M  1.13M 
  WavLM Base+  0.40M  2.77M  0.44M  1.13M 

Table 6 
Demonstration of trainable parameters for related works.
    Comparative Works  Trainable Parameters 
  Feng et al.(CNN)  0.29M  
  Zhao et al.(CNN+BiGRU)  1.42M  
  FedLPEFT(Pretrained WavLM Base+LoRA)  1.13M  

Fig. 8. SER performance with different pre-trained models and adapter bottle-
neck sizes.

(𝑝 ∈ {1, 3, 5}) and found that reducing prompt size improved SER perfor-
mance for Whisper models, with minimal impact on Wav2vec 2.0 Base 
and WavLM Base+ models (Figs. 9). This aligns with conclusions from 
centralized research (Feng & Narayanan, 2023) and highlights the chal-
lenges and careful consideration needed when using embedding prompts 
in pre-trained model fine-tuning.

4.7.3.  Impact of low-rank order
Sections 4.4 and 4.5 underscore LoRA’s superior performance among 

fine-tuning methods, demonstrating its robustness across various pre-
trained models, with optimal results achieved on the WavLM Base+ 
model at rank 8. To assess the impact of low-rank order on SER per-
formance, we conducted experiments with varying low-rank orders 
𝑟 ∈ {8, 16, 32}. Results indicate that performance significantly deterio-
rates for Whisper models when the low-rank order is set to 16 or 32, 
while Wav2vec 2.0 Base and WavLM Base+ exhibit relative stability 
(Figs. 10). This suggests that low-rank order is a critical parameter in 
Whisper model fine-tuning. An increased rank does not necessarily en-
hance performance; higher rank elevates model complexity and parame-
ter count, potentially complicating optimization. Although a higher rank 
improves the model’s capacity to capture patterns and features, it may 
also lead to overfitting, impacting generalization. Thus, we recommend 
careful tuning of low-rank adaptive fine-tuning methods for different 
pre-trained models and datasets to achieve optimal performance.

Fig. 9. SER performance across different pre-trained models with varying em-
bedding prompt sizes.

Fig. 10. SER performance across different pre-trained models with varying 
LoRA sizes.

5.  Conclusion

This work develops a PEFT approach within a federated learning 
framework, which ensures parameter privacy for participants during 
collaborative training while effectively reducing communication over-
head. Specifically, FedLPEFT integrates trainable modules (adapter, em-
bedding prompt, and LoRA) into the feed-forward layers of pre-trained 
speech models, keeping the backbone network parameters frozen. Fine-
tuning these trainable layers improves SER performance, with minimal 
parameter sharing significantly enhancing privacy and reducing sys-
tem communication costs. Experimental results demonstrate the sub-
stantial performance gains with the WavLM Base+ pre-trained model 
and the stability brought by LoRA’s low-rank decomposition across var-
ious scenarios, while effectively mitigating attribute inference attacks. 
Furthermore, we propose leveraging cloud and edge computing advan-
tages to extend FedLPEFT to integrate smart application scenarios span-
ning cloud-edge-terminal environments. Future plans include develop-
ing more lightweight and secure fine-tuning solutions for larger pre-
trained speech models and exploring multimodal knowledge from addi-
tional dimensions.
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