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Abstract
Many tasks generated by mobile user devices are computation-intensive and latency-sensitive, such as autonomous driving
and video analysis. However, due to limited energy and computing capacity, a user device may not be able to complete its
task within a given time, leading to a poor user experience. Mobile edge computing (MEC) can address this challenge by
offloading tasks to edge servers with stronger computing capacity and more resources for execution, which can save energy of
user devices and reduce the task computation time. Different offloading strategies will impact the number of tasks completed,
latency, energy overhead and so on. This paper investigates the problem of maximizing the number of completed tasks while
minimizing the average completion time, energy overhead and cost in MEC under both time and energy constraints. To solve
the problem, we develop the mayfly genetic algorithm (MGA), which jointly optimizes task offloading locations and ratios,
central processor unit (CPU) frequencies of user devices and computing capacities allocated to user devices by edge servers.
Simulation experiments indicate thatMGA outperforms state-of-the-art algorithms in terms of the number of completed tasks.
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1 Introduction

With the prevalence of mobile devices in recent years, a
considerable number of new applications have emerged,
like autonomous driving, video analysis, online games and
augmented reality (Wang et al. 2020b; Chen et al. 2020;
Weng et al. 2021). These applications generally have higher
requirements for computing resources (e.g., CPUs,memory),
energy consumption, and latency (Luan et al. 2015; Abbas
et al. 2018; Aazam et al. 2018; Saeik et al. 2021). Although
CPUs are becoming more and more powerful, the physi-
cal size of user devices still limits their computing capacity
and available energy, so that they are unable to meet the
requirements of some new applications (Aazam et al. 2018).
Cloud computing allows user devices to offload their comput-
ing tasks to central cloud servers with abundant computing
resources and powerful computing capability for execution,
thus resolving the issue of insufficient computing resources
and energy of user devices. However, cloud servers and user
devices are usually far apart, such as tens of kilometers,
resulting in long propagation latency (Kubade et al. 2018;
Mao et al. 2017), which is not suitable for latency-sensitive
applications.
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To figure out the long propagation latency in cloud com-
puting, a new computing conception called mobile edge
computing has emerged. MEC extends computing and stor-
age to the edge of the network by placing storage and
computing resources close to user devices. This allows for
faster processing and lower latency compared to cloud com-
puting. AnMEC system is usually composed of edge servers,
base stations, user devices, wireless and wired communica-
tion links. Edge servers have larger computing capacity than
resource-constrained user devices. Offloading tasks from use
devices to edge servers for execution not only alleviates
the computing pressure on user devices, but also guaran-
tees the constraints such as latency and energy overhead for
computation-intensive and latency-sensitive applications.

Low-energy consumption, low latency, and low cost (e.g.,
money) in a computing system are the eternal pursuit in both
industry and academia, making them hot topics all the time.
Among these three goals, low latency is conflicted with the
other two goals. In addition, anMEC systemmay havemulti-
ple heterogeneous servers and each edge server may contain
multiple heterogeneous CPUs, which will allow a task to
have multiple offloading strategies. Different task offload-
ing strategies will produce different overheads (e.g., latency,
energy consumption). Thus, it is challenging to design effi-
cient task offloading algorithms to optimize latency with
energy consumption or cost simultaneously in MEC.

Extensive multiuser computation offloading strategies on
energy and time constraints have been studied inMEC. Zhou
and Jadoon explored how to minimize task completion time
within a given deadline (Zhou and Jadoon 2021). Zhou et al.
investigated how to minimize the completion time of tasks
and the energy overhead of user device in a rechargeable
MEC system with time and energy constraints (Zhou et al.
2021). Authors in Qi et al. (2022); Jahandar et al. (2022);
Guo et al. (2022) designed efficient strategies to reduce time,
energy consumption and cost to complete a task under time
and energy constraints. However, focusing solely on reduc-
ing the time, energy and cost of task execution without
considering the number of completed tasks in a computing
system may result in numerous incomplete tasks as the time,
energy and cost of executing tasks are being reduced, thereby
seriously affecting user experience quality. Therefore, maxi-
mizing the number of completed tasks in a computing system
is an essential aspect that cannot be overlooked. A few of
work discussed how to maximize the number of completed
tasks inMEC.Han et al. (2022) proposed the energy-efficient
service placement algorithm tominimize the total power con-
sumption and maximize the number of accepted services in
MEC without energy constraint. To the best of our knowl-
edge, no previous research has aimed at maximizing the
number of completed tasks while minimizing the average
completion time, energy overhead and cost under time and
energy constraints in MEC.

In this paper, we study the problem of maximizing the
number of completed tasks while minimizing the average
energy overhead, completion time and cost with time and
energy constraints in MEC. To work out the problem, we
design an efficient and novel algorithm called the mayfly
genetic algorithm, which combines the global search capa-
bility of the genetic algorithmwith the fast convergence speed
and high accuracy of the mayfly algorithm. Simulated exper-
imental results indicate that our proposed algorithm works
well in maximizing the number of completed tasks in given
constraints.

In this paper, our contributions are as follows.

• Weconsider a computation offloading problemwithmul-
tiple users and multiple edge severs for mobile edge
computing, where user devices have strict energy con-
straints and tasks have deadlines. If the energy required
to complete a task exceeds user device’s energy limit,
or if the task processing time goes beyond the specified
deadline during task execution, the task is considered
incomplete.

• We formulate the problem of maximizing the number
of tasks completed while minimizing the average time,
energy and cost of completed tasks inMECwith time and
energy constraints by jointly optimizingCPUfrequencies
of user devices, offloading locations of tasks, offloading
ratios of tasks and computing capacities allocated to user
tasks by edge servers.

• We propose a novel and efficient algorithm to solve the
above problem.

• Compared with the genetic algorithm and the mayfly
algorithm, our proposed algorithm is more efficient
because it significantly improves the number of tasks
completed. Additionally, our proposed algorithm on the
whole outperforms state-of-the-art algorithms.

The residual organization of this article is as follows: Sec-
tion2 outlines related researches. Section3 establishes all
models and the problem addressed in this paper. Section4
introduces our proposed algorithm. Section5 evaluates the
performance of the proposed algorithm through extensive
simulation experiments. Section6 concludes the paper.

2 Related researches

The computation offloading problem in edge computing has
been extensively studied in recent years.

Chen et al. presented a distributed approach by using game
theory to solve the computing offloading problem of mul-
tiple users in mobile-edge cloud computing, and the goal
is to reach a Nash equilibrium in terms of maximizing the
number of users whose tasks are offloaded to the cloud for
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execution while minimizing the system-wide computation
overhead (Chen et al. 2016). Luo et al. studied the com-
putation offloading problem of minimizing the weighted
sum of the whole latency and energy consumed by devices
in MEC, and presented a new algorithm by applying the
reformulation–linearization technique and the branch-and-
bound method (Luo et al. 2019). Liu et al. addressed the
computing offloading optimization problem with stochastic
tasks in MEC from two timescales, and proposed an opti-
mal search algorithm to deal with the problem, aiming to
minimize the average delay of each task under power con-
straint (Liu et al. 2016). Ali et al. developed an efficient
algorithm by using deep learning to tackle the computing
offloading problem inMECwith the objective of minimizing
the weighted sum of energy consumption and service delay
(Ali et al. 2021). All above work did not take time constraint
into account.

However, it is not reasonable to disregard task deadline for
latency-sensitive applications. Therefore, some researches
take time constraint into account to study computation
offloading problems inMEC. Yi et al. presented an algorithm
to solve the problem of multi-user transmission scheduling
and computation offloading for delay-sensitive applications
in MEC, aiming to maximize the network social welfare
and reach a game equilibrium among users under time con-
straint (Yi et al. 2019). Labidi et al. studied the problem of
computation offloading in small cell base stations through
jointly optimizing offloading decisions and radio resources
to minimize average consumed energy by multiple users
with average tolerable delays (Labidi et al. 2015). Guo et
al. presented a computation offloading method by using
genetic algorithm and particle swarm optimization algorithm
to minimize total energy consumption of all user equipments
under time constraint in MEC by optimizing computation
assignment, channel assignment, offloading decision, and
transmission power (Guo et al. 2018). Qiao et al. presented
a heuristic algorithm to work out the task offloading and
migration problem in MEC, aiming to minimize the aver-
age delay of all tasks with time constraint (Qiao et al. 2022).
You et al. designed efficient algorithms to solve the multi-
user computing offloading and resource allocation problem
in an MEC system, aiming to minimize the weighted sum
of energy consumed by mobiles within a specified deadline
(You et al. 2016). Zhang et al. stated the computing offload-
ing problem in a multi-small cell and muti-user environment
integrated with MEC, and presented an artificial fish swarm
algorithm to minimize the network offloading energy con-
sumption under time constraint (Zhang et al. 2017). Ding
et al. investigated the computing offloading problem in both
horizontal and hierarchical end-edge-cloud computing archi-
tectures, and proposed two efficient game-based algorithms
to solve the problem, where every user end separately mini-
mizes the weight sum of its task completion time and energy

consumption under time constraint (Ding et al. 2022). All
above work did not take energy constraint into account.

Since the battery capacity of user device is limited, energy
constraint needs to be considered when researchers study the
computation offloading problem for user devices in MEC.
Zhou and Jadoon presented a partial offloading strategy to
minimize the computation time of tasks with the constraint
of energy in MEC, considering bandwidth resource alloca-
tion and the ratio of task offloading (Zhou and Jadoon 2021).
Mao et al. designed a low-complexity, dynamic, Lyapunov
optimization-based, and online algorithm to minimize the
weighted sum of the task delay and the cost of task dropping
in an MEC system for energy harvesting devices, via jointly
optimizing the CPU-cycle frequencies of mobile devices,
the offloading decision, and the transmit power of compu-
tation offloading under energy constraint (Mao et al. 2016).
Zhou et al. investigated the computation offloading prob-
lem in a multi-input multi-output MEC environment with
energy harvesting, proposed a dynamic computation offload-
ing method, and aimed to minimize the average weighted
sum of energy consumption and latency via jointly optimiz-
ing CPU-cycle frequency, transmission covariance matrix,
and offloading ratio under time and energy constraints (Zhou
et al. 2021). Li first proposed a two-stage technique to tackle
two optimal computation offloading problems, where one is
to minimize energy consumed under the constraint of time,
and the other is tominimize execution time under energy con-
straint (Li 2021a); and then he took a greedy-based algorithm
to attain a computation offloading strategy by considering
multiple aspects such as the communication channels and
the task characteristics. Li presented a deep reinforcement
learning-based computing offloading algorithm to minimize
the weight sum of energy consumption and delay in MEC
for Internet of Vehicles, considering time and energy con-
straints (Li 2021b). All above work took energy constraint
into account.

Among the aforementioned studies related to computation
offloading in MEC, no one considered how to improve the
number of completed tasks. If not to improve the number
of completed tasks, there will be a considerable tasks that
cannot be completed in given time, which will cause bad
quality of experience (QoE) of users.A fewofworkdiscussed
the number of completed tasks in MEC. Han et al. (2022)
proposed the energy-efficient service placement algorithm
to minimize the total power consumption and maximize the
number of accepted services in MEC under time constraint.
Tan et al. (2022) proposed a two-stage method based on ant
colony system and deep Q-learning to solve the multi-user
collaborative task offloading problem in MEC network, with
the objective of minimizing the total energy consumed by all
user devices in given deadlines through jointly optimizing
resource allocation, collaboration decision, and offloading
decision, and they also considered the task completion rate.
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Table 1 Comparisons of our work and other researches

Work Time constraint Energy constraint Objective

(Chen et al. 2016) No No Maximize the number of offloaded tasks and minimize the system-
wide computation overhead

(Luo et al. 2019) No No Minimize the weight sum of energy consumption and latency

(Liu et al. 2016) No No Minimize the average delay

(Ali et al. 2021) No No Minimize the weighted sum of energy consumption and latency

(Yi et al. 2019) Yes No Maximize the network social welfare

(Labidi et al. 2015) Yes No Minimize average energy consumption

(Guo et al. 2018) Yes No Minimize energy consumption

(Qiao et al. 2022) Yes No Minimize the average delay

(You et al. 2016) Yes No Minimize energy consumption

(Zhang et al. 2017) Yes No Minimize the network offloading energy consumption

(Ding et al. 2022) Yes No Minimizes the weight sum of its task completion time and energy
consumption

(Zhou and Jadoon 2021) No Yes Minimize latency

(Mao et al. 2016) No Yes Minimize the weighted sum of the task delay and the task dropping
cost

(Zhou et al. 2021) Yes Yes Minimize the average weighted sum of energy consumption and
latency

(Li 2021a) Yes No Minimize the energy consumption

(Li 2021a) No Yes Minimize latency

(Li 2021b) Yes Yes Minimize the weighted sum of energy consumption and latency

(Han et al. 2022) Yes No Minimize the total power consumption and maximize the number of
accepted services

(Tan et al. 2022) Yes No Minimize the total energy consumption

Ours Yes Yes Maximize the weighted sum of the number of completed tasks, aver-
age latency, cost and energy consumption

Different from above work, this paper investigates the
problem how to maximize the number of completed tasks
andminimize the average time, energy and cost of completed
tasks in anMEC system by optimizing the CPU frequency of
user devices, the offloading location, the offloading ratio and
the computing capacity allocated to users by edge servers
under time and energy constraints. The problem is a multi-
objective optimization problem, and we will change it into a
single-objective optimization problem later. Obviously, the
problem is complex. Moreover, reducing time conflicts with
reducing energy and cost, which make it challenging to
explore an efficient algorithm to produce suitable computa-
tionoffloadingdecisions and reasonable resource allocations.
Table 1 compares our work with other researches.

3 Models and problem definition

This section will introduce the models and problem focused
on in this paper.

3.1 Systemmodel

This paper considers an edge computing systemwith M base
stations, and each base station is equipped with an edge
server. Suppose that there are N user devices (also called
users) and they are randomly spread in the common coverage
of M base stations. Every user can choose any one of the M
base stations as the offloading target. The set of edge servers
and user devices are represented as MB = {1, 2, 3, . . . , M}
and U = {1, 2, 3, . . . , N }, respectively. Every user device
has one task to process. The task that user i needs to pro-
cess is defined as taski = (di , Tm

i ), where di is the amount
of data owned by the task of user i , and Tm

i is the deadline
to finish the task of user i . Suppose that tasks are divisible
and there is no dependency between the divided new tasks.
Therefore, we can divide the task of each user into two parts,
and compute it side by side on the local user device and an
edge server. For example, virus scanning applications and
image compression applications are divisible tasks (Wang
et al. 2016). Figure1 shows an example of an MEC system.
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Fig. 1 An example of an MEC system

3.2 Timemodel

The time required to process a user task is composed of two
parts: local computation time and remote computation time.
It is the maximum between the local computation time and
the remote computing time. The local computation time of
the task for user i is calculated by

T l
i = (1 − αi ) di ci

fi
, (1)

where αi is the offloading percentage of user device i’s task,
ci is the CPU clock cycles needed by user device i to compute
one bit of data, fi represents the computing capacity used by
user device i to process its task, f ci represents the maximum
computing capacity of the user device i , and fi ≤ f ci .

The remote computation time includes the data uplink
transmission time, the task computation time on edge server,
and the data downlink transmission time. The data downlink
transmission time is usually much smaller than the uplink
transmission and the task computation time on edge server
(Wang et al. 2019), so we do not consider the data downlink
transmission time in this paper. Also, we suppose that the
communication channels are independent of each other, that
is, there is no mutual interference between communication
channels. A user device can offload part or all of its task to
an edge server for execution.

Let Li be the task offloading location of user i . αi = 1 and
Li = j mean that the task of user i will be fully offloaded
to edge server j for execution, j ∈ MB . 0 < αi < 1 and
Li = j mean that the task of user i will be partially offloaded
to edge server j for execution, j ∈ MB . αi = 0 and Li = j
mean that the task of user i will be executed locally on itself.
The transmission time for transferring the task of user device

i from itself to the edge server j is computed by

T tr
i, j = diαi

Ri, j
, (2)

where Ri, j is the data rate of wireless transmission between
edge server j and user device i , and is calculated as shown
in Eq. (3):

Ri, j = W log2

(
1 + ptri hi, j

σ 2

)
, (3)

whereW is a constant, representing the uplink channel band-
width.We suppose that the bandwidth is the same for all users
devices. ptri is the power of transmitting a unit of data from
user device i to an edge server. σ 2 is the variance of Gaus-
sian noise. hi, j is the channel gain between user device i and
edge server j . hi, j = d−l , where d is the distance from edge
server j to user device i , and l is the factor of path loss.

The computation time of the task offloaded by user device
i to execute on edge server j is

T c
i, j = diαiC j

fi, j
, (4)

where C j is the clock cycles needed by edge server j to
compute one bit data and fi, j is the computing capability
allocated to user i by edge server j . Fm

j is the maximum
computing capability of edge server j , and fi, j ≤ Fm

j . The
total time for task offloading includes transmission time and
remote computing time. When the local computing has been
completed but the offloading computing has not been com-
pleted, the user device needs to wait the result returned by
edge server. The waiting time of user device i is

Tw
i =

{
0, T tr

i, j + T c
i, j − T l

i ≤ 0;
T tr
i, j + T c

i, j − T l
i , T tr

i, j + T c
i, j − T l

i > 0.
(5)

The total time for processing task i is then calculated by

Ti = max
(
T l
i , T

tr
i + T c

i, j

)
. (6)

3.3 Energy consumptionmodel

Both edge server and user device consume energy when they
perform and transmit tasks. Edge server is located nearby the
base station and usually has a stable energy source. There-
fore, we only consider the energy overhead of user device. It
mainly includes local computing energy, transmission energy
and waiting energy. The energy overhead consumed by local
computing for user device i is

El
i = φ (1 − αi ) di ci f

2
i , (7)
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whereφ is the capacitance of effective switching, determined
by the chip architecture (Wang et al. 2016). Transmission
energy overhead of user device i is shown in Eq. (8):

Etr
i = T tr

i ptri . (8)

The energy consumption of waiting result cannot be ignored
for energy-poor user device. The waiting energy overhead of
user device i is

Ew
i = Tw

i pw
i , (9)

where pw
i is waiting power of user device i .

The total energy overhead for user device i processing its
task is shown in Eq. (10):

Ei = Etr
i + Ew

i + El
i . (10)

3.4 Cost model

Offloading the task to edge server for executionwill consume
the monetary cost of users. The cost is mainly composed of
the data transmission cost of the task for user device and the
computing cost of the task on edge server. As Ref. (Wang
et al. 2020a), the transmission cost of user i is calculated by

Ctx
i = diαi ctx , (11)

where ctx is the cost of transmitting one bit of data.
AsRef. (Wang et al. 2020a), the computing cost to execute

the task of user i on edge server j is

Cc
i = fi, j cc, (12)

where cc is the fee charged for a unit of computing resource
and it is determined by the occupied CPU frequency of edge
server j . Then, the total cost of offloading the task of user i
to edge server j for execution is

Ci = Ctr
i + Cc

i . (13)

3.5 Number model

Any task that does not satisfy time or energy constraints is
regarded as uncompleted task. The expression of whether the
task of a user device i can be completed or not is shown in
Eq. (14):

Truei =
{
0, Ei > Em

i or Ti > Tm
i ;

1, Ei ≤ Em
i and Ti ≤ Tm

i ; (14)

where Em
i is the maximum available energy of user device

i . Truei = 0 means that the task of user device i cannot
be completed due to exceeding the energy limit or the time
limit; Truei = 1 means that the task can be completed in
given energy and time constraints. Therefore, the number of
completed tasks in a given MEC system is computed by

num =
N∑
i=1

Truei . (15)

We do not consider the time, energy and cost of tasks
that are unable to be completed after offloading decisions
and resource allocation are made. Tasks that are not to be
completed will be discarded before offloading. They will be
recalled in next time when an offloading decision is gener-
ated or the user device is fully charged, which will not be
considered here. We only consider the time, energy, and cost
consumed by tasks that can be completed.

The average completion time of tasks that can be com-
pleted is calculated by

T =
∑N

i=1 (Ti T ruei )

num
. (16)

The average cost of tasks that can be completed is calcu-
lated by

C =
∑N

i=1 (CiTruei )

num
. (17)

The average energy overhead of tasks that can be com-
pleted is calculated by

E =
∑N

i=1 (Ei Truei )

num
. (18)

3.6 Problem description

The studied problem is as follows: Given above addressed
MEC system with M edge servers and N user devices,
the goal is to maximize the number of completed tasks
and minimize the average energy overhead, time, and cost
of completed tasks under time and energy constraints,
considering the offloading location, offloading rate, local
computation frequency, and remote allocation of resources.
Obviously, this is a multi-objective optimization problem. To
facilitate the solution, we convert the problem into a single-
objective optimization problem. Let L = {L1, L2, ..., LN },
α = {α1, α2, ..., αN }, and f = { f1, f2, ..., fN }, f I J =
{ f11, f12, ..., f1M , ..., fN1, fN2, ..., fNM }, and thenewsingle-
objective problem can be mathematically expressed as fol-
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lows:

P : max
L,α, f , f I J

{num − (ωT + γC + ζ E)}, (19)

C1 :
∑

1≤ j≤M

(Li = j) ≤ 1,∀i ∈ U ,

C2 : αi ∈ [0, 1],∀i ∈ U ,

C3 : 0 ≤ fi ≤ f ci ,∀i ∈ U ,

C4 : 0 ≤ fi, j ≤ Fm
j ,∀i ∈ U ,

C5 :
∑
i∈U

fi, j T ruei ≤ Fm
j ,∀ j ∈ MB,

ω, α, ξ , f ci , and Fm
j are the weighting factors of time,

energy overhead, cost, the maximum frequency of user
device i , and the maximum frequency of edge server j ,
respectively. Constraint C1 indicates that the task of user
device i canbe executed locally on itself or partially offloaded
to at most one edge server for execution. C2 indicates the
range of offloading ratio for the task of user device i . Con-
straints C3 indicates that the computing capacity of user
device i cannot exceed the maximum computing capacity of
device i . Constraints C4 indicates that the computing capac-
ity allocated to the task of user device i cannot exceed the
maximum computing capacity of edge server j . C5 shows
that the computing capacity assigned by edge server j can-
not exceed its maximum computing capacity, and here only
achievable tasks need to be considered.

It is observed that P is a mix integer nonlinear program-
ming problem of high dimension. Researchers have proved
that offloading problem inMEC is anNP-hard problem.With
the number of user devices increasing, P will become more
and more complex. Thence, an efficient algorithm is neces-
sary.

4 The proposed technique

In this paper, we design a novel technique, themayfly genetic
algorithm (MGA), which combines the advantages of the
mayflymethod and the genetic method to cope with our stud-
ied problem.

Themayflymethodwas first proposed byZervoudakis and
Tsafarakis in 2020 (Zervoudakis and Tsafarakis 2020). It is a
new simulation optimization algorithm inspired by the flight
behavior andmating process ofmayflies, combining themain
advantages of evolutionary algorithms and population intel-
ligence. The mayfly method has the characteristics of fast
speed and high accuracy of convergence. However, it is easy
to fall into the local optimum solution, and especially in high-
dimensional problems, the global search ability is poor. Since
the problem to be solved in this paper is a high-dimensional

Fig. 2 A mayfly

optimization problem, the mayfly algorithm cannot solve
this problem very well. The genetic algorithm is a global
search optimization algorithm that mimics the natural evo-
lutionary process based on the reproduction and survival of
the fittest (Goldberg 2010). Although the genetic algorithm
has strong global search ability, its local search ability is
poor and its convergence speed is slow. Clearly, neither the
mayfly method nor the genetic method can solve our prob-
lem well. However, we can combine the advantages of the
two methods-fast speed and high accuracy of convergence
of the mayfly method plus the strong global search ability of
the genetic method to explore an efficient method to tackle
our studied problem. We will introduce our method in detail
below.

4.1 Constructions of themayfly individual and
fitness function

In our algorithm, there are two kinds of mayflies: male pop-
ulation and female population. Every mayfly is randomly
generated as a candidate solution at first, and represented by
a 4×N -dimensional vector x = (x1, ..., x4N ), indicating the
position of a mayfly.

Figure 2 shows an example of a mayfly. The mayfly con-
sists of four components: the offloading locations of all user
tasks, the offloading ratios of all user tasks, the CPU fre-
quencies of users to execute their tasks, and the computing
capacity allocated by an edge server to execute a task that is
offloaded to the edge server.

We use the fitness function f to assess the quality of a
mayfly’s position, and it is computed by Eq. (20),

f = {num − (ωT + γC + ξE)}−penalty, (20)

where penalty represents the penalty and is calculated
according to Eq. (21),

penalty = p0(N − num)

+p1

⎛
⎝∑

i∈U
max

⎛
⎝0,

∑
1≤ j≤M

(Li = j) − 1

⎞
⎠

⎞
⎠

+p2

(∑
i∈U

max (0, αi − 1)

)

+p3

(∑
i∈U

max
(
0, fi − f ci

))
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+p4

⎛
⎝ ∑

j∈MB

max

(
0,

∑
i∈U

fi, j Truei −Fj

)⎞
⎠

+p5

(∑
i∈U

max
(
0, fi, j − Fj

))
, (21)

where p0 is the penalty factor for uncompleted tasks, and
p1-p5 are the penalty factors that do not satisfy constraints
C1-C5.

Also, each mayfly has a velocity v = (v1, ..., v4N ).
According to the velocity, a mayfly can change its position.
In the following, we will introduce how male and female
mayflies change their positions.

Essentially, the process of computing a solution is the pro-
cess of particles updating their positions and velocities.

4.2 Movement of male mayflies

Male mayflies prefer to gather in swarms and will change
their positions based on both their own and their neighbors’
experiences. Denote xt+1

i and xti separately to be the posi-
tions of male mayfly i at steps t + 1 and t , and then the
position of male mayfly i is updated by

xt+1
i = xti + νt+1

i , (22)

where the vector νt+1
i is the velocity of male mayfly i at step

t + 1. Denote xt+1
i j and νt+1

i j to be the components of xt+1
i

and νt+1
i on dimension j , respectively. Then, we have

νt+1
i j =η × νti j + μ1e

−δε2p

(
pbi j − xti j

)

+ μ2e
−δε2g

(
gb j − xti j

)
.

(23)

η is the gravity coefficient, making a balance between the
exploitation and exploration, and calculated by

η = exp(2(1 − t/κ)) − exp(−2(1 − t/κ))

exp(2(1 − t/κ)) + exp(−2(1 − t/κ))
, (24)

where κ and t are themaximumand the current iteration num-
ber, respectively. μ1 and μ2 are positive attraction constants
that measure the cognitive and social aspect contributions,
respectively. δ is the visibility coefficient, and controls the
visibility range of mayflies. pbi is a vector, representing the
best position reached by male mayfly i , and pbi j is its j th

component. We have

pbi =
{
xt+1
i , if f

(
xt+1
i

)
> f

(
pbi

) ;
pbi , otherwise.

(25)

The larger the fitness function value corresponding to a
mayfly position, the better the position. gb j denotes the

component on dimension j of the vector gb which is the
best position reached by both male and female mayflies.
εp denotes the cartesian distance between vectors xti and
pbi . εg is the cartesian distance between vectors xti and gb.
The cartesian distance between two n-dimensional vectors
x = (x1, x2, ..., xn) and χ = (χ1, χ2, ..., χn) is calculated
as Eq. (26)

‖x − χ‖ =
√√√√ n∑

i=1

(xi − χi )
2. (26)

Tomake our algorithmwork better, the best male mayflies
who have the largest fitness function value should continue
their characteristic up-and-down matrimonial dance. Their
velocities are computed by

νt+1
i j = η × νti j + d × r , (27)

where d is the matrimonial dance factor, and r is a random
constant belonging to the closed interval [−1, 1].

The detail of how male mayflies move (that is, change
their positions) is shown in Algorithm 1.

Algorithm 1Movement of male mayfies
Require: δ, η, pb, gb, N P , μ1, μ2, d, xi (i = 1, 2, ..., N P), νi (i =

1, 2, ..., N P).
Ensure: xi (i = 1, 2, ..., N P)

1: for i = 1 to N P do
2: Calculate εp , εg by (26)
3: if f (xi ) < f (gb) then
4: Update νi by (23)
5: else
6: Update νi by (27)
7: end if
8: Update xi , pbi by (22), (25)
9: Update global optimal location gb
10: end for

4.3 Movement of femalemayflies

In order to breed, female mayflies should fly toward male
mayflies. Their positions are adjusted by

yt+1
i = yti + νt+1

i , (28)

where yt+1
i and yti are the positions of female mayfly i at

steps t + 1 and t , respectively. νt+1
i denotes the velocity of

female mayfly i at step t + 1.
To improve the global search performance, wemake some

changes to the traditional attraction method. The changes are
as follows: The best female mayfly (having the largest fitness
function value among femalemayflies) is attracted by the best
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male mayfly (having the largest fitness function value among
male mayflies), the second best female mayfly (having the
second largest fitness function value among female mayflies)
is attracted by the secondbestmalemayfly (having the second
largest fitness function value among male mayflies), and so
on. If the fitness function value of the best female mayfly
is smaller than that of the best male mayfly, the best female
mayfly will not move toward the current position of the best
male mayfly, but move toward the historical optimal position
of the best male mayfly. At the same time, the best female
mayfly has a certain probability to move toward the global
optimal position of mayflies. If the fitness function tion value
of the second best female mayfly is smaller than that of the
second best male mayfly, the second best female mayfly will
not move toward the current position of the second best male
mayfly, but move toward the historical optimal position of
the second best male mayfly. At the same time, the second
best female mayfly has a certain probability to move to the
global optimal position of mayflies, and so on. The velocities
of female mayflies are calculated by

νt+1
i j =

⎧⎨
⎩

η × νti j + μ2e
−δε2p

(
pbi j − yti j

)
, if p < c1;

η × νti j + μ2e
−δε2g

(
gb j − yti j

)
, otherwise.

(29)

νt+1
i j and νti j are the velocities of femalemayfly i in dimension
j at steps t + 1 and t , respectively. yti j denotes the position
of female mayfly i on dimension j at step t . p is a random
value and p ∈ [0, 1]. c1 is a constant and c1 ∈ [0, 1].

Algorithm 2 Movement of female mayflies
Require: δ, N P , η, μ1, μ2, f l, yi (i = 1, 2, ..., N P), xi (i =

1, 2, ..., N P), νi (i = 1, 2, ..., N P).
Ensure: yi (i = 1, 2, ..., N P)

1: for i = 1 to N P do
2: Calculate εp , εg according to (26)
3: if f (yi ) < f (xi ) then
4: Update νi by (29)
5: else
6: Update νi by (30)
7: end if
8: Update yi by (28)
9: if min{ f (pb1), f (pb2), . . . f (pbN P )} ≤ f (yi ) < f (gb) then
10: Update yi by (31)
11: else if f (yi ) < min{ f (pb1), f (pb2), . . . f (pbN P )} then
12: Update yi by (32)
13: else
14: Update gb by (33)
15: end if
16: end for

If the fitness function value of the best female mayfly is
larger than or equal to that of the best male mayfly, the best
femalemayflywill not move toward to the current position of

Algorithm 3 The operations to generate offsprings
Require: pc, pm , yi (i = 1, 2, ..., N P).
Ensure: yi (i = 1, 2, ..., N P)

1: Select the population using the tournament method
2: for i = 1:N P:2 do
3: p = random(0, 1)
4: if p < pc then
5: Randomly select cross-segments
6: Cross the corresponding segments of yi and yi+1
7: end if
8: end for
9: for i = 1:N P do
10: p=random(0,1)
11: if p < pm then
12: Randomly select a location for mutation
13: end if
14: end for

Fig. 3 The crossover of female mayflies

Fig. 4 The mutation of female mayflies

the best male mayfly, but move toward a randomly generated
position. It is true for the second best female mayfly, the
third best female mayfly, and so on. The velocities of female
mayflies will be updated by

νt+1
i j = η × νti j + f l × r , (30)
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Table 2 Experimental
parameters

Parameters Value range

The maximum frequency of user device i : f ci 1.0−1.5Ghz

CPU cycles required by user devices to calculate 1 bit data: ci 200−400

User device transmission power: ptri 0.25−1.0W

User device waiting power: pw
i 0.05−0.2W

Available energy for user devices: Em
i 3−30 joules

The maximum computing capacity of edge servers: Fm
j 75−100Ghz

CPU cycles required for edge server to process 1 bit data: C j 50−100

Energy consumption factor: φ 1e−26

Algorithm parameters: δ, μ1, μ2, d, pm , pc, f l, c1, c2 0.1/1.2/1.0/0.05/0.6/0.05/0.1/0.9/0.4

where f l is a random wandering coefficient, and r is a ran-
dom constant belonging to the closed interval [−1, 1].

If the fitness function value of a female mayfly is greater
than or equal tomin{ f (pb1), f (pb2), ..., f (pbN P )} and less
than f (gb) after the female mayfly moves to a new position,
the position of the female mayfly will be updated by

yt+1
i =

{
gb, if p < c2;
pbr , otherwise .

(31)

pbr is the historical optimal position ofmalemayfly r , where
r is an integer and randomly generated from the interval
[1, N P]. c2 is a constant and c2 ∈ [0, 1]. After the position
is updated, the velocity of the female mayfly is initialized to
be 0.

If the fitness function value of a female mayfly is less than
or equal to min{ f (pb1), f (pb2), ..., f (pbN P )}, we update
the position of the female mayfly by

yt+1
i = gb. (32)

After the position is updated, the velocity of the female
mayfly is initialized to be 0.

If the position of female mayfly i is better than the global
historical optimal position, the global optimal historical posi-
tion is replacedwith the current position of the femalemayfly
i . That is,

gb = yt+1
i . (33)

The movement of female mayflies is detailedly described
in Algorithm 2.

Inspired by the genetic algorithm, we use the selection,
crossover and mutation operations to generate offsprings.
Algorithm 3 shows the details of the three operations to pro-
duce the offsprings of female mayflies. First, the algorithm
uses the tournament method to create the female mayfly
population. The tournament method first chooses a certain
number of female mayflies from the female mayfly popula-
tion each time (put-back sampling), and then select the best

Fig. 5 Comparison of the number of completed tasks when the number
of users changes for algorithms MGA and MGA_no_num

one which has the largest fitness function value to enter the
offspring population; repeat this operation until the offspring
population size reaches the original population size.Then, the
algorithm randomly takes two parents from offspring popu-
lation to cross over at the probability of pc to generate two
new offsprings. The crossover operation is shown in Fig. 3.
Crossover operation requires fragment correspondence to
ensure that the variables of new offsprings remain in the fea-
sible region after crossover. Finally, the algorithm mutates
the newly generated offsprings. For each female mayfly, the
location for mutation is randomly selected at the probabil-
ity of pm . Also, the variables of the offsprings by mutation
cannot exceed the feasible region. The mutation operation is
shown in Fig. 4.

Algorithm 4 introduces the complete flow of MGA. First,
the populations of males and females, the velocities of may-
fies, current iteration t , pb and gb are initialized. Then, a
while loop is used to find the solution. First, it updates the
gravity weight factor η; second, it updates the male popu-
lation by Algorithm 1 and sort the mayflies in the female
population and the mayflies in the male populations accord-
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Fig. 6 (a) and (b) show that the number of completed tasks and the
average completion time of the task of each user under different num-
ber of users only when the number of users changes and the average
completion time is considered

ing to their fitness function values, respectively; third, it
updates the female population by calling Algorithms 2 and 3;
fourth, it increases t by one; fifth, repeats these operations
until the iteration number reaches the maximum threshold;
finally, it computes the number of completed tasks, the aver-
age time, cost, and energy consumption of completed tasks.
Note that during each iteration, the positions and velocities
cannot exceed their limited ranges.

4.4 Time complexity analysis

In this section, we shows how to compute the time com-
plexity of our proposed MGA algorithm. When initializing
the population, the time complexity depends on the num-
ber of user devices and the number of male mayflies in the
population. The time complexity of initializing the mayfly

Fig. 7 (a) and (b) show that the number of completed tasks and the
average energy consumption of the task of each user under different
number of users only when average energy consumption is considered

Algorithm 4MGA
Require: The size of the population N P , number of iterations κ , prob-

ability of crossover pc, probability of variation pm , the visibility
coefficient δ, the gravity coefficient η, the positive attraction con-
stants μ1, μ2, random wandering coefficient f l, the dance factor
d.

Ensure: gb, Num, T ,C and E
1: Initialize male and female populations xi (i = 1, 2, ..., N P), yi (i =

1, 2, ..., N P), the velocities of male and female populations, gb and
t = 0.

2: while t < κ do
3: Update η by (24)
4: Perform Algorithm 1
5: Separately sort male mayflies and female mayflies in descending

order according to the fitness function value
6: Perform Algorithm 2
7: Perform Algorithm 3
8: t = t + 1
9: end while
10: Compute Num, T ,C and E by Eqs. (15)-(18).
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Fig. 8 (a) and (b) show that the number of completed tasks and the average cost of the task of each user under different number of users only when
average cost is considered

population is O(N P × N × 4). The time complexity of cal-
culating the fitness function value is O(N ). The selection
operation has the time complexity of O(N P × Ns), where
Ns is the number of mayfies for one round of tournament.
The time complexity of crossover and mutation operations
are O(N P×Nc), where Nc is the segment length of crossing.
Hence, the time complexity of Algorithm 1 and Algorithm 2
are O(N P × N × 4), respectively; the time complexity of
Algorithm 3 is O(N P × Ns) + O(N P × Nc) + O(N P) ≈
O(N P × Ns). Consequently, the time complexity of MGA
algorithm is O(N P×N×4)+O(κ×N P×N×4)+O(κ×
N P × N × 4) + O(κ × N P × Ns) ≈ O(κ × N P × N ),
where κ is the overall iteration number.

5 Simulation experiments

Wewill test the performance of the proposedMGAalgorithm
in this section.

5.1 Experimental parameter setting

After investing many related references to our problem and
algorithm, such as (Guo et al. 2018; Chen et al. 2016; You
et al. 2016; Zhou et al. 2021; Zervoudakis and Tsafarakis
2020; Goldberg 2010; Li 2021a; Ding et al. 2022), we set the
values of our experimental parameters as follows. Assume
that the targeted MEC system includes five base stations,
users are randomly spread within 500ms from the base sta-
tions, the bandwidth of the wireless channel is 2Mhz, and
the ambient noise σ 2 = −70dbm. The values of parameters
related to user devices, severs and the MGA algorithm are

shown inTable 2.Weuse four schemes as baselines: theMGA
algorithmnot considering the number of userswhose task can
be completed, denoted as MGA_no_num, the genetic algo-
rithm (GA), the mayfly algorithm (MA), and the only local
computing denoted by LOCAL. To guarantee the accuracy
of experiments, we repeated all the experiments 100 times to
take the average results.

5.2 Simulation results and analysis

Figure 5 shows the number of completed tasks by MGA
and MGA_no_num. The MGA_no_num scheme that does
not take into account the number of users who can com-
plete their tasks only considers the average energy overhead,
completion time, and cost of users. Since each user has one
task to be processed, the number of users whose tasks have
been finished is equal to the number of completed tasks. It is
observed that MGA has a larger number of completed tasks
thanMGA_no_num. The reason is that MGAmakes an opti-
mization to the number of completed tasks under given time
and energy constraints but MGA_no_num does not do.

Figure 6 shows that the number of completed tasks and the
average completion time of the task of each user device with
number of users changing only when the average completion
time is considered in the objective, that is, ω = 1, γ = 0,
and ζ = 0, by algorithms MGA, GA, MA, and LOCAL. It is
observed that MGA can achieve larger number of completed
tasks and lower average completion time than other three
baselines.

Figure 7 shows the number of completed tasks and the
average energy overhead of the task of each user device with
number of users changingonlywhen the average energyover-
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Table 3 Comparisons of the number of completed tasks under different parameter values

Parameter values 15 user devices 25 user devices 50 user devices 75 user devices 100 user devices

ω = 0.6, γ = 0.3, ζ = 0.1 14.31 22.17 42.85 61.49 76.17

ω = 0.6, γ = 0.1, ζ = 0.3 14.34 22.44 42.87 62.07 76.71

ω = 0.6, γ = 0.2, ζ = 0.2 14.26 22.41 42.23 61.00 76.60

ω = 0.3, γ = 0.6, ζ = 0.1 14.20 22.09 42.69 60.97 76.29

ω = 0.1, γ = 0.6, ζ = 0.3 14.23 22.37 42.46 61.86 76.51

ω = 0.2, γ = 0.6, ζ = 0.2 14.09 22.43 42.51 61.20 76.63

ω = 0.1, γ = 0.3, ζ = 0.6 14.17 22.46 42.17 60.63 76.54

ω = 0.2, γ = 0.2, ζ = 0.6 14.14 22.40 42.60 61.69 75.54

ω = 0.3, γ = 0.1, ζ = 0.6 14.33 22.41 42.83 61.23 76.20

ω = 0.3, γ = 0.3, ζ = 0.3 14.17 22.29 42.77 61.71 76.17

Fig. 9 (a), (b), (c) and (d) show that the number of completed tasks, the average completion time, the average energy consumption and the average
cost of the task of each user under different number of users when average time, average energy consumption and average cost are considered
together
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Fig. 10 (a), (b), (c) and (d) show that the number of completed tasks, the average completion time, the average energy consumption and the average
cost of the task of each user under different number of users at fixed and dynamic frequencies

head is considered in the objective, that is, ω = 0, γ = 0,
and ζ = 1, by algorithms MGA, GA, MA, and LOCAL. It is
observed that MGA can achieve larger number of completed
tasks and lower average energy overhead of completed tasks
than other three baselines.

Figure 8 shows the number of completed tasks and the
average cost of the task of each user device with number of
users changing only when the average cost is considered in
the objective, that is,ω = 0, γ = 1, and ζ = 0, by algorithms
MGA, GA, MA, and LOCAL. It is observed that MGA can
achieve larger number of completed tasks and lower aver-
age cost of completed tasks than other baselines. Since cost
happens only in data transmission and remote computing on
edge servers, we do not consider the cost of local computing,
and Fig. 8b does not show the average cost achieved by the
LOCAL baseline.

When we comprehensively consider the three parts of
time, energy consumption and cost, how to choose the appro-
priate weight factor for each part is an important problem.
Therefore,we conduct experiments to compare the number of
completed tasks under different values of each weight factor.
The experimental results are seen in Table 3. It is observed
that when ω = 0.6, γ = 0.1, and ζ = 0.3, the number of
completed tasks is the largest. Thus, when simultaneously
optimizing the average time, cost and energy consumption,
we set their weight factor values to be ω = 0.6, γ = 0.1, and
ζ = 0.3, respectively.

Figure 9 shows that when simultaneously optimizing the
average time, cost, and energy consumption, MGA is still
superior to other three baselines GA, MA, and LOCAL in
the number of completed tasks, as well as the average energy
consumption of completed tasks. Since cost happens only in
data transmission and remote computing on edge servers, we
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do not consider the cost of local computing, and Fig. 9b does
not show the average cost achieved by the LOCAL baseline.
Although MGA is slightly higher in average cost than other
baselineswhen the number of user device is small, it achieves
lower average cost than other baselines with the increasing
of the number of user devices. Due to the larger number of
completed tasks, lower average energy overhead and lower
average cost, MGA is slightly higher than GA andMA in the
average time when the number of user devices increases. On
the whole, our proposed MGA outperforms the three base-
lines.

Figure 10 compares the average time and energy con-
sumption of tasks completed between the dynamic local
calculation frequency denoted by MGA and the fixed local
calculation frequency denoted byMGA_Fixed_f. If the local
calculation frequency is fixed, all tasks are performed at the
maximum CPU frequency of user devices. It is observed
that MGA is better than MGA_Fixed_f in the number of
completed tasks, the average cost and the average energy
overhead; the average time of completed tasks obtained by
MGA is larger than that of MGA_Fixed_f. On the whole,
MGA outperforms MGA_Fixed_f.

6 Conclusion

This paper studies the task offloading problem with time and
energy constraints in an MEC system. The goal is to maxi-
mize the number of completed tasks as well as minimize the
average time, cost and energy overhead of achievable tasks,
by jointly optimizing task offloading locations, offloading
ratios, the CPU frequencies of user devices and computing
resources allotted to the task of user devices by edge servers.
Wepropose a newalgorithm to solve the problem. Simulation
results indicate the effectiveness of our proposed scheme. In
the future work, wewill consider that a user device hasmulti-
ple tasks to execute, and the interdependence between tasks.
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