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Publicly available datasets are vital to researchers because they permit the testing of new algorithms under
a variety of conditions and ensure the verifiability and reproducibility of scientific experiments. In cloud
computing research, there is a particular dependence on obtaining load traces and network traces from real
cloud computing clusters, which are used for designing energy efficiency prediction, workload analysis, and
anomaly detection solutions. To address the current lack of a comprehensive overview and thorough analy-
sis of cloud computing datasets and to gain insight into their current status and future trends, in this article,
we provide a comprehensive survey of existing publicly cloud computing datasets. First, we utilize a system-
atic mapping approach to analyze 968 scientific papers from 6 scientific databases, resulting in the retrieval
of 42 datasets related to cloud computing. Second, we categorize these datasets based on 11 characteristics
to assist researchers in quickly finding datasets suitable for their specific needs. Third, we provide detailed
descriptions of each dataset to assist researchers in gaining a clearer understanding of their characteristics.
Fourth, we select 12 mainstream datasets and conduct a comprehensive analysis and comparison of their
characteristics. Finally, we discuss the weaknesses of existing datasets, identify challenges, provide recom-
mendations for long-term dataset maintenance and updates, and outline directions for the future creation of
new cloud computing datasets. Related resources are available at https://github.com/ACAT-SCUT/Awesome-
CloudComputing-Datasets.
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1 Introduction

Cloud computing is a technology that provides computing and communication services such as
computational resources, storage, applications, and networking through the internet (i.e., the
cloud). [56, 62]. Its aim is to achieve flexible resource utilization to meet users’ dynamic computing
resource demands. Through cloud computing, customers can obtain highly available services,
while service providers can leverage the elasticity of infrastructure to reduce management costs.
Pay-as-you-go pricing is also one of the significant advantages driving the rapid development
of cloud computing [38, 128]. Because of these advantages, major cloud service providers like
Amazon, Tencent, and Alibaba have built large-scale cloud clusters to offer resource services, and
an increasing number of organizations are transferring their internal operations and applications
to the cloud [29, 128].

Although the enticing advantages of cloud computing, unpredictable circumstances may lead
to performance degradation or even cluster downtime [128]. For instance, mismatches between
workloads and resources may result in resource wastage, decreased performance, and energy in-
efficiency, while network attacks could potentially cause entire cluster downtime. Therefore, to
enhance resource utilization, it is imperative to accurately predict workloads [30]. By effectively es-
timating future workloads, service providers can better plan and allocate resources, pre-allocating
or withdrawing resources as needed. However, due to the inherent complexities of cloud work-
loads, efficiently and accurately predicting them is not a trivial task [128]. Currently, mainstream
methods utilize machine learning or deep learning techniques to learn relevant knowledge from
historical data [131].

However, these methods need massive data support for training. In many cases, without suffi-
cient empirical data, it is impossible to determine the quality of an approach. For machine learning-
based approaches, training and validation must be conducted on sufficiently large, and represen-
tative datasets [37, 122].

In cloud computing, there are typically three methods for obtaining relevant datasets. First,
the data collection is performed in real cloud computing clusters, where researchers collect
corresponding workload traces by running various applications in the clusters. This is a difficult
task as it requires significant financial investment (for hardware procurement) and time (for
continuous data capture). Second, researchers can simulate the operation of cloud computing
clusters on specific platforms to generate datasets. Compared to the former method, this approach
requires fewer resources. However, its challenge lies in achieving realistic behaviors of different
components [37]. Finally, empirical data can be accessed by logging the actual usage of cloud
computing workloads by real users [37]. However, the collection of such datasets poses various
challenges, such as privacy issues and information security concerns.

When researchers are unable to gather their own datasets, they can utilize publicly available
datasets. However, finding datasets suitable for specific experiments can be a difficult job. This
article aims to assist cloud computing researchers by providing a comprehensive survey of publicly
available datasets and categorizing them based on a variety of characteristics. To achieve this, we
analyze 968 papers retrieved from six comprehensive scientific databases, namely, ACM Digital
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Library, IEEE Xplore Digital Library, SpringerLink, Wiley Online Library, Elsevier ScienceDirect,
and Google Scholar. Among these, 165 papers use publicly available datasets, with 86 papers (52%)
published after 2020. This analysis results in the identification of 42 publicly available datasets, 34
(81%) of which are used within the 86 papers published after 2020.

In addition, this article systematically reviews the existing challenges and future directions
of datasets in the field of cloud computing, which are primarily reflected in the following
core dimensions: First, there is a significant gap in the availability and diversity of datasets,
particularly in the context of network security, where publicly available datasets are scarce and
lack comprehensive coverage of attack types, while the energy efficiency domain suffers from a
lack of timely and well-structured benchmark data. Second, the scale and complexity of datasets
are insufficient, as existing datasets often suffer from limited node sizes and simplistic monitoring
metrics, making it difficult to accurately represent the heterogeneous characteristics of real-world
cloud clusters. Third, the timeliness of data urgently needs improvement. Furthermore, current
mainstream research paradigms focus on cutting-edge areas such as cold start optimization in
serverless architectures, multi-tenant dynamic scheduling mechanisms, energy efficiency opti-
mization models for green data centers, and multi-cloud collaborative governance frameworks,
highlighting the need for specialized datasets tailored to these research areas. Finally, to ensure
the sustainable development of the data ecosystem, this study summarizes relevant measures,
specifically recommending the establishment of a dynamic data update mechanism through
automated collection, open-source collaboration, and privacy compliance frameworks, thereby
providing a sustainable experimental foundation for innovation in the field of cloud computing.
Moreover, we have imposed limitations on the scope of this article, as described below.

1.1 Scope

This article aims to collect datasets that can be used to develop and verify various cloud computing
schemes. These datasets cover not only host cluster architectures but also virtual machine cluster
architectures and datasets based on web traces. Additionally, we concentrate on six application
scenarios: workload analysis, energy efficiency, resource allocation, task scheduling, anomaly de-
tection, and security.

As this article focuses on these application scenarios, data collection includes not only datasets
containing various workloads but also network traffic data. The former primarily includes features
like timestamp, CPU, GPU, memory, and Bandwidth usage. The latter mainly includes information
such as IP addresses, HTTP request responses, URLs, whether the requests are malicious, and
response status codes.

Finally, we have not found a way to directly access some of the mentioned datasets. Never-
theless, these datasets are still included for two reasons. First, they can be obtained by directly
contacting the authors or through purchase. Second, we believe these datasets contain relevant
data or demonstrate interesting measurement methods, which researchers can replicate to study
similar use cases.

1.2 Contribution

The main contributions of this article are summarized as follows.

— We survey and summarize the publicly available datasets in cloud computing, which is the
first systematic survey of datasets in this field.

— We utilize a systematic mapping approach to analyze 968 scientific papers from 6 compre-
hensive scientific databases in the field of computer science, resulting in the retrieval of 42
publicly available datasets related to cloud computing.
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Fig. 1. Methodology for datasets gathering.

— We categorize these datasets based on several characteristics to assist researchers in quickly
finding datasets suitable for their specific needs.

— We provide detailed descriptions of each dataset to assist researchers in gaining a clearer
understanding of their characteristics, including descriptions, structure, fields, purposes, and
so on.

— We conduct a comprehensive analysis and comparison of the characteristics of 12 main-
stream datasets.

— We discuss the weaknesses of existing datasets, identify challenges, and outline directions
for the future creation of new cloud computing datasets.

1.3 Organization

The rest of this article is organized as follows. In Section 2, we explain the methods we follow
for investigating and selecting relevant datasets. Section 3 provides a detailed description of the
characteristics we define for classifying datasets, while Section 4 presents the results of the classifi-
cation itself. Subsequently, Section 5 provides a more detailed overview of these datasets. Section 6
presents a comprehensive analysis and comparison of 12 mainstream datasets. Section 7 discusses
the current challenges and the future directions in generating datasets for cloud computing. Finally,
Section 8 summarizes the content of this article.

2 Methodology

2.1 Process of Datasets Gathering

This section describes the dataset collection methodology for this article. As shown in Figure 1, the
method includes four main steps: study search, study selection, snowballing process, and merge
papers.

(1) Study search: Leveraging studies [99] and [37], we identified the most comprehensive sci-
entific databases in the field of computer science: ACM Digital Library (ACM), IEEE Xplore Digital
Library (IEEE), SpringerLink, Wiley Online Library (Wiley), Elsevier ScienceDirect (Elsevier), and
Google Scholar. It is worth noting that Google Scholar only indexes literature that is not included
in the other five major databases. To explore the above databases, we have established the below
retrieval rules: (“Document Title”: “cloud computing” AND “Document Title”: “dataset” AND
“Full Text Only”: “dataset”) OR (“Document Title”: “MapReduce” AND “Document Title”: “work-
load” AND “Full Text Only”: “dataset”) OR (“Document Title”: “Virtual machine management”
AND “Full Text Only”: “dataset”) OR (“Document Title”: “Distribute” AND “Document Title”:
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Table 1. Number of Papers Per Database

Database Total % Filter %Filtered
IEEE 445 45.97% 81 49.09%

Elsevier 224 23.14% 26 15.76%
ACM 181 18.70% 29 17.56%
Wiley 70 7.23% 8 4.86%

Google Scholar 32 3.31% 13 7.88%
SpringerLink 16 1.65% 8 4.85%

Total 968 100% 165 100%
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related to the datasets.

“Hardware resource” AND “Full Text Only”: “dataset”) OR (“Document Title”: “cluster” AND
“Document Title”: “workload” AND “Full Text Only”: “dataset”) OR (“Document Title”: “cluster”
AND “Document Title”: “trace” AND “Full Text Only”: “dataset”) OR (“Document Title”: “cloud”
AND “Document Title”: “resource usage” AND “Full Text Only”: “dataset”) OR (“Document Title”:
“analysis” AND “Document Title”: “cloud” AND “Full Text Only”: “dataset”) OR (“Document
Title’: “cloud” AND “Document Title”: “workload” AND “Full Text Only”: “dataset”) OR (“Docu-
ment Title”: “decentralized hosting” AND “Document Title”: “workload” AND “Full Text Only”:
“dataset”).

(2) Study selection: We first define the following inclusion and exclusion criteria aimed
at gathering preliminary research. Then, we employ the inclusion and exclusion standards de-
fined in Step 2 to filter out articles from the papers retrieved in Step 1 that meet the inclusion
criteria.

— Inclusion criteria: (i) This research is relevant to the field of cloud computing. (ii) this
study should utilize publicly available datasets relevant to cloud computing; (iii) this study
should be written in English.

— Exclusion criteria: (i) Short studies (less than three pages); (ii) studies do not have full
text available; (iii) studies structured as tutorials, editorials, and others; (iv) studies without
utilizing publicly available datasets relevant to cloud computing.

(3) Snowballing process: We apply the “snowballing” process [126] to ensure that we do miss
relevant studies. This technique is an iterative process that reviews the references of each selected
study.

(4) Merge papers: In the end, we combine the studies gathered in Step 2 with those selected in
Step 3.

2.2 Results

As illustrated in Table 1, after completing the first step, we retrieve a total of 968 papers (i.e., IEEE,
Elsevier, ACM, Wiley, Springerlink, and Google Scholar are represented by 445, 224, 181, 70, 16, and
32, respectively). Subsequently, following the second step’s screening, we identify a total of 165
papers that utilized publicly available datasets, with IEEE having the highest count of 81 papers,
constituting 49.09% of the total papers.

To more clearly illustrate the usage trends of various datasets in cloud computing, we categorize
the datasets into three types: Web Trace, VM Cluster Trace, and Host Cluster Trace based on the
Data Content Characteristics in Section 3.1. Specifically, Figure 2 illustrates the annual publication
count of these 165 papers from 2009 to 2023. It is evident that the number of papers utilizing three
types of public datasets has shown a rising trend over time, highlighting the significance of public
datasets in scholarly research. Notably, the research in cloud computing peaked in 2018, particu-
larly with regard to studies based on host cluster trace. This is the reason for the significant ad-
vancements in large-scale models, notably the release of Generative Pre-trained Transformer
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(GPT) by OpenAI in 2018 [103]. The training of large models requires substantial computational
resources, thus leading to an increased demand for and attention to cloud computing clusters. The
subsequent content will revolve around the analysis and exploration of the 165 papers identified
in this context.

Further, Figure 3 demonstrates that the usage of host cluster trace datasets is notably prominent,
constituting 61.90% of the total publication count. Hence, we observe a growing inclination among
scholars in recent years within the cloud computing research domain to favor the utilization of
real datasets, with host cluster trace datasets being particularly favored.

In addition, in Supplemental Material A, we provide the corresponding literature for each dataset
along with the frequency of their usage. The subsequent content will revolve around the analysis
and exploration of the 42 public datasets identified in this context.

3 Datasets Characteristic

This section introduces characteristics that are defined and used for categorizing survey datasets
across various dimensions. Subsequent sections will assess these characteristics for each dataset
to underline their advantages and drawbacks and determine their possible applications. Figure 4
illuminates these characteristics in the form of a feature map aligned with Feature-Oriented

Domain Analysis (FODA) [37, 57].

3.1 Data Content

The data content refers to the nature of data contained within the datasets. In this article, we
classify the dataset into two categories based on the type of data in the dataset: Web Trace and
Cluster Trace.

Web Trace: The web trace dataset typically comprises information from websites, network
services, or applications. Its primary records encompass user access patterns, network traffic,
user interaction data, and other network activities. For instance, this includes user requests,
response times, page visit counts, user IP addresses, HTTP requests, and other web-related
information.

Cluster Trace: The cluster trace dataset typically involves the operation and management of
clusters, servers, or distributed systems in cloud computing. It mainly includes data on inter-server
communication, resource utilization, task scheduling, and container or virtual machine manage-
ment, among others. For instance, it covers information related to CPU usage, GPU usage, memory
usage, I/O, task scheduling, and other cluster-related data. Further, due to the clustered architec-
ture in cloud computing commonly divided into cloud host cluster architecture and cloud virtual
machine cluster architecture, in this article, we classify these datasets into host cluster trace and
virtual machine cluster trace based on the cluster’s architecture.

3.2 Year

Due to the rapid advancements in cloud computing, datasets recorded ten years ago may contain
tracking records that are no longer relevant today. Simultaneously, significant changes have oc-
curred in resource utilization, workloads, and other aspects due to the rapid progress in hardware
and software technologies. Therefore, the age of a dataset is an important indicator for assessing
its representativeness concerning real-world cloud computing tracking.

3.3 Available

The availability indicates whether the dataset is accessible to other researchers. In this article, we
categorize it into three types: publicly available for free (✔), unavailable (✘), requiring payment
($), and needing to contact author to get (?).

ACM Comput. Surv., Vol. 57, No. 8, Article 198. Publication date: March 2025.
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Fig. 4. Dataset characteristics as feature diagram.

3.4 Application Scenario

This feature indicates the scenarios in which researchers can apply the dataset. Through an ex-
tensive literature review, we classify cloud computing dataset applications into six classes: work-
load analysis, energy efficiency, resource allocation, task scheduling, anomaly detection, and
security.

Workload Analysis: Workload analysis refers to the assessment and study of performance char-
acteristics of tasks and applications running on the cloud platform. This analysis encompasses the
execution patterns, resource demands, resource utilization, and the impact of different task types
on system performance. By analyzing workloads, researchers can optimize resource allocation,
enhance system efficiency, and predict future resource requirements.

Energy Efficiency: Research on energy efficiency in cloud computing environments aims to re-
duce energy consumption, enhance energy utilization, and decrease the environmental impact of
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clusters. Through monitoring and optimizing the energy usage of servers, clusters, and other de-
vices, as well as improving energy utilization patterns, it is possible to lower energy consumption
and reduce operational costs. This holds significant importance for sustainability and environmen-
tal friendliness.

Resource Allocation: Resource allocation involves dynamically assigning resources (e.g., CPU,
GPU, network, etc.) in the cloud to satisfy the diverse demands of users. This encompasses the
design and optimization of resource allocation algorithms to ensure efficient resource utilization
and high-performance task execution.

Task Scheduling: Task scheduling refers to effectively managing and organizing the sequence
and allocation of tasks within a cloud environment. Through appropriate task scheduling strate-
gies, system efficiency and performance can be enhanced, reducing task execution time, preventing
resource wastage, and balancing system loads.

Anomaly Detection: Anomaly detection focuses on identifying and addressing anomalies
within a cloud environment, such as hardware failures, security vulnerabilities, or malicious ac-
tivities. By monitoring abnormal behavior within the system, potential issues can be promptly
identified and resolved, ensuring the stability and security of the system.

Security: Security research aims to protect cloud computing systems from unauthorized access,
data breaches, or other security threats. This includes the use of encryption techniques, identity
authentication, access control, and the formulation of security policies to ensure the security and
integrity of data and operations within the cloud environment, thereby preventing potential secu-
rity vulnerabilities and attacks.

3.5 Scale

The scale of the dataset can be more precisely described by the size of the dataset, the number
of machines (e.g., VMs, nodes, etc.) in the cloud computing cluster, and the duration of data
collection.

3.6 Collection Methodology

This characteristic showcases the methods researchers use to gather datasets. Various meth-
ods can be employed to represent real-world cloud computing tracking with different levels of
accuracy:

Real-world: In the real-world collection, it is the most accurate but also the most challenging
method. This approach involves directly collecting measurement results from existing real cloud
computing clusters. Therefore, the prerequisite is having access to an actual cloud computing
cluster.

Simulation: Researchers use cloud computing simulators and collect trace records from simu-
lations. The advantage of this method is that it is easier to set up and replicate, and it also costs less.
However, the traced records from simulations cannot accurately depict real-world trace records.

Hybrid: To leverage the strengths of different methods, researchers can also establish a hybrid
testing platform that combines real and simulated components.

Notably, in this article, all 42 datasets are utilized in a real-world manner, meaning that all datasets

are directly collected by measuring results from existing real cloud computing clusters.

3.7 Resource Type

This characteristic represents the types of resources included in the dataset. Through an extensive
literature review, we classify cloud computing resource types into five categories, including CPU,

GPU, memory, disk, and network. These metrics guide readers in identifying datasets that meet
their specific requirements.

ACM Comput. Surv., Vol. 57, No. 8, Article 198. Publication date: March 2025.
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3.8 Quality Analysis

Quality analysis encompasses key metrics such as accuracy, completeness, consistency, and timeli-

ness, which are essential for evaluating dataset reliability. Accuracy ensures the precision of the
data, while completeness examines the extent to which the dataset covers all necessary aspects.
Consistency checks for internal coherence, and timeliness evaluates the relevance of the data in
relation to current conditions. These factors are critical for assessing the dataset’s suitability for
various analytical applications in cloud computing research.

3.9 Usage Frequency

This characteristic reflects the frequency with which the dataset is used in research and practical
applications. By analyzing usage frequency, we can assess the relevance and popularity of the
dataset within the academic and industry communities. In this study, we measure usage frequency
based on the number of papers related to the dataset and the citation counts of those papers.

3.10 Power Consumption

This characteristic refers to whether the dataset includes information related to power consump-
tion. Due to the significant energy consumption of clusters, energy efficiency is a crucial aspect
of cloud computing. Therefore, in this study, we treat power consumption as a distinct metric to
clearly inform users about which datasets are relevant for energy efficiency analysis.

3.11 Virtualization

This characteristic refers to the type of virtualization technology included in the dataset. Due to
the widespread use of virtualization technologies in cloud computing, different virtualization ar-
chitectures exhibit significant differences in resource management and performance optimization.
Therefore, in this study, we treat virtualization technology as a distinct metric and classify it into
three subcategories: Bare-Metal, Micro-Services, and Container. This classification helps readers
conduct more targeted analysis and comparisons.

4 Datasets Overview

Before delving into detailed descriptions of each dataset, we have provided a comprehensive sum-
mary overview of them in table format, based on the dataset characteristics outlined in Section 3.
This idea is that readers seeking datasets with specific characteristics can initially refer to the
following content to identify datasets aligned with their interests. Subsequently, they can delve
into the detailed descriptions of cloud computing-related datasets in Section 5. This design aims
to provide readers with targeted information to meet their research needs.

Tables 2–4 provide a comprehensive listing of all publicly available datasets related to cloud
computing that have been collected in this article. The organizational structure of the tables follows
the features described in Section 3. Furthermore, these three tables categorize the data into three
types based on data content: Table 2 presents datasets with a computer cluster architecture focused
on hosts, while Table 3 showcases datasets with a computer cluster architecture centered around
VM. Table 4 displays datasets related to web trace content.

In addition, we also present the relationship between the datasets and specific application scenar-
ios in the Supplementary Materials B to help researchers more quickly identify datasets of interest.

5 Details of Datasets

In this section, we will provide detailed introductions to each type of dataset. We classify them
based on the data content into three types: datasets with host cluster trace, datasets with VM

cluster trace, and datasets with web trace.
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Table 2. Classification for Datasets with Host Cluster Trace
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SURFsara SURFsara 2019 Host ✔ ✔ ✔ ✔ ✘ ✔ 41.3 GB 5 ∼8mo ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 5 y/0 2/1 ✔ ✔

Google Cluster

Data
Google

2009

2011

2019

Host ✔ ✔ ✔ ✔ ✘ ✘

29.8 MB

186 GB

2.4 TB

U

12,583

96,000

7h

29d

1mo

✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ 5 y/2 5,685/71 ✘ ✔

SPEC Cloud Iaa s SPEC 2018 Host ✔ ✔ ✔ ✔ ✘ ✘ ? ? ∼1y ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 6 y/6 106/1 ✘ ✔

Alibaba Cluster

Trace
Alibaba

2017

2018
Host ✔ ✔ ✔ ✔ ✘ ✘

232 MB

98 GB

1,300

4,000

12h

8d
✔ ✘ ✔ ✔ ✘ ✔ m ✔ 6 y/1 986/13 ✘ ✔

Dionatrafk
Dionatr a F.

Kirchoff
2018 Host ✔ ✘ ✘ ✘ ✘ ✘ 321 KB U 1mo ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ 6 y/0 38/1 ✘ ✔

ATLAS Cluster Traces
Carnegie Mellon

University

2011

2018

2016

2016

Host

Host

Host

Host

✘

✘

✘

✘

✘

✘

✘

✘

✔

✔

✔

✔

✔

✔

✔

✔

✘

✘

✘

✘

✘

✘

✘

✘

16.7 MB

1.189 MB

?

?

1,600

9,408

872

441

5y

3mo

9mo

9mo

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✔

✔

✔

✔

✔

m

?

?

✔

✔

✔

✔

6 y/3 16/1 ✘

✔

✔

?

?

Philly Microsoft 2017 Host ✔ ✔ ✔ ✔ ✘ ✘ 6.6 GB 552 3mo ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 7 y/0 422/2 ✘ ✔

SPEC CPU SPEC
2006

2017
Host ✔ ✔ ✔ ✔ ✘ ✘ ? ? ∼1y ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 7 y/7 6/1 ✘ ✔

Autoscale Analyser H.S. Bhathiya 2015 Host ✘ ✔ ✘ ✘ ✘ ✘ 1.086 MB 2 47h ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ 9 y/0 23/1 ✘ ✔

Intel Netbatch logs Ohad Shai 2012 Host ✔ ✔ ✔ ✔ ✘ ✘ 2.53 GB U 1mo ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ 12 y/0 57/1 ✘ ✔

OpenCloud Hadoop

Workload

Carnegie Mellon

University
2010 Host ✔ ✘ ✔ ✔ ✘ ✘ U 64 20mo ✘ ✘ ✘ ✘ ✘ ? ? ? 13 y/0 90/2 ✘ ?

Yahoo Webscope

Dataset
Yahoo 2010 Host ✔ ✔ ✔ ✔ ✘ ✘ 33 KB U U ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 14 y/0 26/2 ✘ ✔

SWIM Workload Facebook
2009

2010

Host

Host

✔

✔

✘

✘

✘

✘

✔

✔

✘

✘

✘

✘

0.42 MB

2.14 MB

600

3,000

1d

1d

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✔

✔

✔

✔

✔

✔
14 y/1 1317/3 ✘

✔

✔

SPEC power_ssj2008 SPEC 2008 Host ✘ ✘ ✘ ✘ ✘ ✔ ? ? ∼1y ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ 16 y/16 40/1 ✔ ✔

GWA-T-4 AuverGrid
Delft University

of Technology
2006 Host ✔ ✔ ✔ ✔ ✘ ✘ 13 MB 5 U ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ 18 y/0 4/1 ✘ ✔

GWA-T-1 DAS2
Delft University

of Technology
2005 Host ✔ ✔ ✔ ✔ ✘ ✘ 35 MB 5 U ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ 19 y/0 4/1 ✘ ✔

GWA-T-10 SHARCNet
Delft University

of Technology
2005 Host ✔ ✔ ✔ ✔ ✘ ✘ 33 MB 10 U ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ 19 y/0 4/1 ✘ ✔

GWA-T-3 NorduGrid
Delft University

of Technology
2003 Host ✔ ✔ ✔ ✔ ✘ ✘ 20 MB 75 U ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ 21 y/0 4/1 ✘ ✔

Parallel Workloads

Archive
DG Feitelson

1996-

2018
Host ✔ ✔ ✔ ✔ ✘ ✘ U U U ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔

28 y–6 y

/40
578/4 ✘ ✔

U: Unspecified; $: Paid service; ?: Need to contact author to get.
Application Scenario W: Workload Analysis; R: Resource Allocation; T: Task Scheduling; A: Anomaly Detection; E:
Energy Efficiency; S: Security.
Duration y: years; mo: months; w: weeks; d: days; h: hours.
Resource Type C: CPU; G: GPU; M: Memory; D: Disk; N: Network.
Quality Analysis Acc: Accuracy; Com: Completeness (m: missing values); Con: Consistency; Tim: Timeliness.
Data Content Host: Host cluster trace; VM: virtual machine cluster trace; Web: Web trace.

5.1 Datasets with Host Cluster Trace

In this section, a detailed description of each dataset categorized under the host cluster trace type
is provided, including information such as time, purpose, and fields.

Google Power Data (2024) [53]: The Google Power Data dataset provides power utilization
information for 57 power domains in Google data centers. It primarily records PDU, total power
utilization averaged over 5-min intervals, and the power utilization attributed to production work-
loads. Notably, the energy data in this dataset corresponds to the trace data in the Google Cluster
Data V3 [52], making it possible to combine these two datasets for more comprehensive analysis.
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Table 3. Classification for Datasets with VM Cluster Trace

Dataset
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yApplication Scenario Scale Resource Type Quality Analysis

W R T A S E Size Machines Duration C G M D N Acc Com Con Tim

Alibaba

MicroServices

Traces

Alibaba
2021

2022
VM ✔ ✔ ✔ ✔ ✘ ✘

61.1 GB

2 TB

∼10,000

∼40,000

12 h

13 d
✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ 2 y/1 211/2 ✘ MS ✔

CERIT-SC

Workloads

Czech CERIT

Scientific Cloud
2022 VM ✔ ✔ ✔ ✔ ✘ ✘ 11 MB U 1 y ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 2 y/5 15/1 ✘ Docker ✔

OpenNebula

Virtual Machine

Profiling Dataset

Prasad Purnaye 2021 VM ✔ ✔ ✔ ✔ ✔ ✘ 2.6 MB 6 63 h ✔ ✘ ✘ ✔ ✘ ✔ ✔ ✔ 3 y/0 23/1 ✘ BM (KVM) ✔

Fruktus Piotr Nawrocki 2020 VM ✔ ✔ ✘ ✔ ✘ ✘ 176 KB U 11 mo ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ 4 y/0 7/1 ✘ U ✔

Chameleon Cloud

traces

Science Cloud

Blog
2019 VM ✔ ✔ ✔ ✔ ✘ ✘ 72.9 MB U ∼5 y ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ 5 y/3 0/1 ✘ BM (KVM) ✔

Azure Public

Dataset
Microsoft

2017

2019
VM ✔ ✔ ✔ ✔ ✘ ✘

117 GB

235 GB

∼2 mi

∼2.6 mi

30 d

30 d
✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ 5 y/1 792/7 ✘ BM (Hyper-V) ✔

Scout Hsu Chin-Jung 2018 VM ✔ ✔ ✔ ✔ ✘ ✘ 587 MB U 1 d ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 6 y/0 23/1 ✘ BM (Xen) ✔

IBM Docker

Registry traces
IBM 2018 VM ✔ ✘ ✘ ✘ ✘ ✘ 1.5 GB U 75 d ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ 6 y/0 148/2 ✘ Docker ✔

Business Critical

Workloads
Bitbrain 2015 VM ✔ ✔ ✔ ✔ ✘ ✘ 284 MB 1,250 1 mo ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 9 y/0 877/13 ✘ BM (KVM) ✔

Planetlab VM

traces
Beloglazov Anton 2011 VM ✔ ✔ ✔ ✔ ✘ ✘ 5.2 MB U 10 d ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ 13 y/0 607/7 ✘ BM (Xen) ✔

U: Unspecified; $: Paid service; ?: Need to contact author to get.
Application Scenario W: Workload Analysis; R: Resource Allocation; T: Task Scheduling; A: Anomaly Detection; E:
Energy Efficiency; S: Security.
Methodology r: Real-world; s: Simulation; h: Hybrid.
Duration y: years; mo: months; w: weeks; d: days; h: hours.
Resource Type C: CPU; G: GPU; M: Memory; D: Disk; N: Network.
Quality Analysis Acc: Accuracy; Com: Completeness (m: missing values); Con: Consistency; Tim: Timeliness.
Virtualization BM: Bare-Metal; MS: Micro-Services.
Data Content Host: Host cluster trace; VM: virtual machine cluster trace; Web: Web trace.

Table 4. Classification for Datasets with Web Trace

Dataset
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ISCX
Canadian Institute

for Cybersecurity
2016 Web ✘ ✘ ✘ ✘ ✔ ✘ ∼26.3 MB U 1y ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ 8 y/5 18/1 ✘ ✔

Amazon

Resource Cost
Queen’s University 2012 Web ✔ ✘ ✘ ✘ ✘ ✘ 87.1 KB U 4d ✘ ✘ ✘ ✔ ✔ ✔ m ✔ 12 y/1 17/1 ✘ ✔

Cloud Intrusion

Detection Dataset
Pisa University 2012 Web ✘ ✘ ✘ ✘ ✔ ✘ ∼70 MB 45 7w ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ 12 y/0 85/1 ✘ ✔

Wikipedia Web Traces

from WikiBench
Wikipedia 2007 Web ✔ ✘ ✘ ✘ ✘ ✘ ∼5 TB U 9y ✘ ✘ ✘ ✘ ✔ ? ? ? 17 y/0 551/9 ✘ ✘

KDD Cup 1999’s

Dataset

MIT Lincoln

Labs
1998 Web ✘ ✘ ✘ ✘ ✔ ✘ 1.31 MB U U ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ 26 y/0 315/3 ✘ ✔

NASA HTTP

Traces

Kennedy

Space Center
1995 Web ✔ ✘ ✘ ✘ ✘ ✘ 20.7 MB U 1mo ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ 29 y/0 73/8 ✘ ✔

U: Unspecified; $: Paid service; ?: Need to contact author to get.
Application Scenario W: Workload Analysis; R: Resource Allocation; T: Task Scheduling; A: Anomaly Detection; E:
Energy Efficiency; S: Security.
Methodology r: Real-world; s: Simulation; h: Hybrid.
Duration y: years; mo: months; w: weeks; d: days; h: hours.
Resource Type C: CPU; G: GPU; M: Memory; D: Disk; N: Network.
Quality Analysis Acc: Accuracy; Com: Completeness (m: missing values); Con: Consistency; Tim: Timeliness.
Machines mi: million.
Data Content Host: Host cluster trace; VM: virtual machine cluster trace; Web: Web trace.
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Based on this dataset, Sakalkar et al. [106] conduct research on the energy efficiency of cloud
platforms, proposing a new medium-voltage power layer and workload scheduling techniques.

Azure LLM Inference Dataset (2023, 2024) [16]: The Azure LLM Inference Dataset, released
by Microsoft in 2024, provides tracking examples for multiple LLM inference services on the Azure
cluster. The dataset includes two scenarios: code generation and conversation. Two versions of the
dataset record traces from November 11, 2023, and from May 10 to May 19, 2024. Each log primarily
documents the number of context tokens and the number of generated tokens for inference tasks.
Based on this dataset, Shah et al. [98] analyze the latency, throughput, memory, and power con-
sumption characteristics at different stages of LLM inference, focusing on model deployment and
scheduling techniques. Stojkovic et al. [115], by analyzing features such as the number of instances,
model parallelism, and GPU frequency in the LLM inference system, focus on the development of
an energy management framework for LLM inference environments.

Acme (2023) [54]: Acme, released by the Shanghai Artificial Intelligence Laboratory in 2023,
provides traces of training large language models on the Acme cluster. This dataset encompasses
job submissions between March 2023 and August 2023, covering two independent GPU clusters.
The dataset size is 80 GB, documenting a total of 880,740 jobs, including 470,497 GPU jobs. Detailed
records include each job’s submission, start, and end times, the number of GPUs and CPUs utilized,
and the total GPU resources consumed per job. Based on this dataset, Hu et al. [59] conducted an
in-depth feature study of the workload traces, focusing on analyzing the differences between LLMs
and previous deep learning (DL) workloads for specific tasks. Their research explores resource
utilization patterns and identifies the impact of various job failures.

Alibaba GPU Traces (2020, 2023) [7]: This dataset includes log information for hybrid train-
ing and inference jobs executing popular machine learning methods. The traces are gathering
from a substantial production cluster within Alibaba Platform for Artificial Intelligence (PAI),
which consists of more than 6,500 GPUs across approximately 1,800 machines, covering the period
of July and August 2020. This trace provides detailed records of each machine’s configuration (e.g.,
gpu_type, cpu_capacity), operational information (e.g., machine_load, machine_cpu_iowait), and
task execution details (e.g., plan_gpu, gpu_type, cpu_usage, gpu_usage). Based on this dataset,
Weng et al. [124] conduct a characterization study of workload traces and highlight the challenges
faced in cluster scheduling. These challenges include low GPU utilization, long queuing delays,
difficult-to-schedule tasks requiring high-end GPUs with stringent scheduling requirements, load
imbalance across heterogeneous machines, and potential CPU bottlenecks. Weng et al. [125]
investigate the issue of GPU fragmentation and propose corresponding scheduling solutions.

Helios (2020) [108]: Helios, released by SenseTime in 2020, is a trace dataset from SenseTime’s
private data center designed for developing and producing deep learning models. The data center
comprises 8 independent GPU clusters with a total of over 12,000 GPUs. The dataset, sized at
343 MB, includes traces from 4 independent GPU clusters, encompassing 3,362,981 total jobs, of
which 1,580,464 are GPU jobs. It provides a comprehensive analysis of deep learning workloads
in Helios from April 2020 to September 2020. The trace details each job’s GPU count, CPU count,
and duration, although specific resource utilization rates are not included. Based on this dataset,
Hu et al. [58] conducted an in-depth analysis, focusing on service scheduling and cluster energy
efficiency. Additionally, Hu et al. [59] compared this dataset comprehensively with other existing
GPU datasets.

Marconi100 (2020) [22]: The Marconi100 dataset is provided by the Italian National Super-
computing Center (CINECA) for studying and analyzing large-scale scientific computing and data
processing workloads. This dataset covers the entire system, including internal information on
more than 980 compute nodes such as weather forecasts, system status alerts, power units, core load,
frequency, job-related information, memory read/wems, system status alerts, workload manager
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Table 5. Datasets and Fields for the Stadia Cloud Gaming Dataset

Datasets Name Fields Characteristics

Dataset 1 Time trends F1, F2, F3 TO, TP, SL; RE: 1080p; VC: VP9; DU: 30 s; DT & UT; RTP, DTLS, STUN

Dataset 2 Traffic features F1, F2, F3 TO, TP, SL; RE: 1080p, VC: VP9, DU: 600 s; DT & UT, RTP, DTLS, STUN

Dataset 3 Game status F1, F2, F3 TO, SL; RE: 1080p, VC: VP9, DU: 540 s, DT & UT

Dataset 4 Codecs F1, F2, F3 TO, SL; RE: 1080p, VC: VP9 & H.264, DU: 600 s, DT

Dataset 5 Resolutions F1, F2, F3 TO, SL; RE: 720p, 1080p, 4K, VC: VP9, DU: 600 s, DT

Dataset 6 Varying bandwidths F1, F2, F3 TO, SL; RE: 720p, 1080p, VC: VP9, DU: 60 s, DT

Dataset 7 Abrupt bandwidth fluctuations F4, F5, F6, F7 TO, SL; RE: 720p, 1080p, VC: VP9, DU: 500 s, DT

Dataset 8 delay F7, F8 TO, SL; RE: 720p, 1080p, VC: VP9, DU: 60-600 s, DT

Dataset 9 delayed changes F5, F6, F9, F10 TO: 1080p, VC: VP9, DU: 180 s, DT & UT

RE: resolution, VC: video codec, DU: duration, DT: downlink traffic, UT: uplink traffic.
Three games: Rise of the Tomb Raider: 20th anniversary edition (TO), Thumper (TP) and Spitlings (SL).

statistics, job-related information, and temperature. The dataset contains measurement data for
hundreds of metrics from each compute node, as well as hundreds of other metrics collected
from monitoring sensors on all system components. The recorded timeframe spans from April
1, 2020, to September 1, 2022, with varying collection frequencies for different metrics, but most
are collected every 20s. Based on this dataset, Molan et al. [86] conduct research on anomaly
detection in HPC systems, while Lin et al. [78] study the optimization of cooling control in data
centers to reduce energy consumption.

Stadia Cloud Gaming Dataset (2020) [21]: This Dataset is a traffic tracking of Stadia, Google’s
cloud gaming solution, which is publicly available by work [21] in 2020. The Stadia Cloud Gaming
Dataset comprises a total of nine datasets. Each dataset may contain multiple traffic traces, with
each traffic trace being a text file containing the following two or more variable fields:

— F1: Epoch-formatted packet arrival timestamp.
— F2: Second-based relative timing of packet arrivals.
— F3: UDP data length in bytes.
— F4: Height of video frame in pixels.
— F5: FPS (frames per second) of video.
— F6: Seconds per round trip.
— F7: Rate of packet loss in seconds.
— F8: Jitter Buffer delay, measured per second.
— F9: Uplink RTCP data rate in bits/second.
— F10: Downlink RTP data rate in bits/second.

Table 5 specifies which fields are used in each dataset, along with information such as the game,
measurement duration, video codec used, resolution, and so on for each dataset. Based on this
dataset, Carrascosa et al. [21] first analyze the traffic characteristics of Stadia, then examine how
different Stadia games and configurations affect the generated traffic patterns. Finally, they study
the network performance in the presence of Stadia traffic.

SURFsara (2019) [116]: The SURFsara dataset, provided by the SURFsara Computing and Data
Research Center in the Netherlands, is utilized for researching and analyzing large-scale scientific
computing and data processing workloads. This dataset encompasses authentic workloads from
various domains such as bioinformatics, physics, meteorology, and more. Specifically, the data
spans from December 29, 2019, to August 7, 2020, with a sampling frequency of every 15 s, covering
over 300 servers. Each node’s maximum sample size per metric is 1,258,646, resulting in a total
measurement count of 66,541,895,243. The dataset’s total size is 41.3 GB. This dataset includes
100+ metrics, such as
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— NVIDIA NVML: Each GPU data includes metrics such as power, chip temperature, fan speed,
and memory usage.

— IPMI: The data for each server includes metrics such as power consumption and internal
temperature.

— OS-level: Low-level operating system metrics from procfs, sockstat, or netstat data include
the status of each server, including CPU load, disk, memory, network utilization, context
switches, and interrupts.

Based on this dataset, Versluis et al. [121] conduct a comprehensive analysis of data center oper-
ations, providing statistical characteristics related to nodes, energy consumption, and workloads.

Google Cluster Data (2009, 2011, 2019): Google Cluster Data is a comprehensive trace log re-
leased by Google Data Centers regarding its production clusters. There are three versions available:
Version 1 (2009), Version 2 (2011), and Version 3 (2019).

Version 1 (2009) [50]: This version documents detailed trace records of production workloads
executed on Google clusters over a 7-h period. These workloads consist of a series of tasks, where
each task is part of a job, and a job contains multiple tasks. Each row in the dataset represents
the execution details of an individual task within a 5-min interval, primarily recording fields such
as average CPU usage and average memory usage. The trace includes 75 5-min reporting intervals,
totaling 3,535,029 observations, 9,218 unique jobs, and 176,580 unique tasks. Garraghan et al. [49]
conducted a large-scale analysis of server resource utilization using this dataset and characterized
the features of production cloud data centers. Patel et al. [97] propose a cloud workload analysis
method based on the Gaussian Mixture Model using this dataset.

Version 2 (2011) [51]: The second version released in November 2011 constitutes a solid working
foundation, documenting the trace logs of Google Cloud. It encompasses the activities of 12,583
heterogeneous servers over a 29-day period, including approximately 672,024 jobs and over 25 mil-
lion tasks. Compared to the first version, this version provides more comprehensive information,
such as task resource requirements (CPU, memory, and disk), priority levels, and the maximum and

average resource consumption of tasks. Agrawal et al. [3] propose an adaptive anomaly detection
mechanism based on this dataset to detect and monitor anomalies in cloud computing clusters.
Cheng et al. [32] use this dataset as a training set to develop a cloud cluster resource prediction al-
gorithm. Zhang et al. [133] propose a dynamic workload management approach in heterogeneous
cloud environments.

Version 3 (2019) [52]: The third version logs the overall resource usage for each task on eight
various clusters spread across the world. This tracking starts on Wednesday, May 1, 2019, and
captures the resource utilization for various tasks over 1 month. The trace mainly contains 5-min
averaged normalized CPU and memory usage. The version is composed of approximately 2.4 TiB
of compressed dataset. Compared to Version 2, this version captures more detailed information,
such as cpu_usage_distribution, tail_cpu_usage_distribution, sample_rate, and page_cache_memory.
Based on this dataset, Rossi et al. [105] conduct workload distribution prediction, Park et al. [96]
explore resource reuse and real-time migration to enhance data center resource utilization, and
Christofidi et al. [34] investigate cloud resource usage prediction.

SPEC Cloud Iaas (2018) [114]: SPEC Cloud IaaS, released in 2018 by Standard Performance

Evaluation Corporation (SPEC), is a set of benchmarks designed to evaluate the performance
of cloud infrastructure services. This benchmark aims to simulate real-world cloud computing
environments and provides a series of test workloads to measure cloud computing performance.
These tests cover various types of cloud computing workloads, including virtual machine deploy-
ment, storage performance, network performance, and so on. Notably, there is a $2,000 fee to use
the SPEC Cloud IaaS 2018 benchmark. Based on this dataset, Papadopoulos et al. [1] analyze and
establish standards for cloud performance measurement.
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Alibaba Cluster Trace (2017, 2018): Alibaba C luster Trace is a comprehensive trace log pub-
lished by Alibaba Group about its production clusters. There are two versions available: Version 1
(2017) and Version 2 (2018).

Version 1 (2017) [5]: The dataset begins in September 2017 and captures the cluster activities of
a production environment over 12-h intervals. It encompasses data from around 1300 machines,
which are utilized for running both online services and batch processing tasks. The version is
composed of approximately 232 MB of compressed dataset, including six main components. Specif-
ically, two files are utilized to detail the resource usage of the compute nodes. Two files are used to
describe the resource utilization for batch jobs and two others are used to describe the resource us-
age for online services. Based on this dataset, Chen et al. [26] and Liu et al. [81] analyze workloads
in production clouds to enhance resource management efficiency and quality of service. Addition-
ally, Mahesh et al. [55] analyze the dataset and propose a prediction method for resource usage in
production clouds.

It is worth noting that the dataset exhibits the following issues: first, some task_id and job_id are

missing in the batch_instance.csv file; second, certain instance_id values in the container_usage.csv

file do not appear in the container_event.csv file; furthermore, there is missing usage information in

the batch_instance.csv file.

Version 2 (2018) [6]: Similar to the first release, the trace provides detailed information about
batch jobs, service jobs, and servers. In particular, the dataset begins in September 2018 and encom-
passes cluster information over an 8-day period, and involves approximately 4,000 machines that
operate both online services and batch jobs. The version is composed of approximately 98 GB of
compressed dataset, including six main components. Compared to Version 1, this version includes
additional machine configuration details (e.g., cpu_num and mem_size), incorporates network-
related metrics in machine usage (e.g., net_in and net_out), and records more detailed information
at the instance level (e.g., cpu_max, cpu_avg, mem_max, and mem_avg). Based on this dataset, Ev-
erman et al. [40] conduct a comprehensive analysis of Alibaba cluster traces, identifying issues of
over-subscription (leading to resource waste and low utilization) and under-subscription (result-
ing in performance degradation). They also develop a simulator to evaluate potential solutions to
these problems. Zhu et al. [136] propose a production cloud benchmarking method through the
analysis of this dataset.

Dionatrafk (2018) [2]: This dataset is a real-time workload trace conducted by the study [2]
on a genuine experimental platform, publicly released in 2018, spanning over a month. The plat-
form utilizes machines that are equipped with an Intel Core i7-6500U processor, which operates
at a clock speed of 2.50 GHz and has 16 GB of memory. Meanwhile, the authors employ Python
2.7 and use an interactive environment, Google Colaboratory, to implement and execute all tech-
niques. The dataset consists of 13 CSV files, each storing the workload conditions generated by
the platform at different time intervals. Based on this dataset, Kirchoff et al. [70] conduct research
on cloud workload prediction.

ATLAS Cluster Traces (2011, 2016, 2018) [15]: The trace repository, established by Carnegie
Mellon University and Los Alamos National Laboratory (LANL), is designed to gather real
workload traces from diverse platforms. Currently, it contains four sets of job scheduling logs that
have been made available. These logs originate from LANL’s general-purpose Mustang cluster,
the advanced LANL Trinity supercomputer, and two data centers operated by Two Sigma. The
configurations of these logs are detailed as follows:

— LANL Mustang cluster: Mustang is composed of 1,600 equal compute nodes with 102 TB
of RAM and 38,400 AMD Opteron 6176 2.3 GHz cores.

— LANL Trinity supercomputer: Trinity is composed of 9,408 equal compute nodes with 1.2
PB of memory and 301,056 Intel Xeon E5-2698v3 2.3 GHz cores.
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— Sigma's datacenters: The two data centers have a total of 1,313 equal compute nodes with
328 TB of memory and 31,512 CPU cores.

Additionally, the author only provides detailed information on public datasets LANL Mus-

tang cluster and LANL Trinity supercomputer, each comprising a CSV file. Based on this dataset,
Amvrosiadis et al. [11] analyze heterogeneous workloads in cloud computing clusters. It is worth
noting that the datasets related to the Sigma data center are available upon request via email by
contacting the authors.

Notably, a small amount of start_time and dispatch_time data is missing in the dataset. Users can

remove these entries before use, as this does not have a significant impact on the overall usability of

the dataset.

Philly (2017) [104]: Philly, released by Microsoft Research in 2017, is a dataset capturing deep

neural network (DNN) training workloads on Microsoft’s internal Philly cluster. The dataset
spans from August 7, 2017, to December 22, 2017, totaling 6.6 GB in size and documenting 117,325
jobs. It provides detailed records of each job’s submission time, completion time, the number of
GPUs used, and specific GPU IDs. However, it does not include information on resource utilization
rates. Based on this dataset, Jeon et al. [65] conducted a comprehensive analysis focusing on factors
affecting cluster utilization for DNN training workloads in multi-tenant clusters. Their research
addressed three key aspects: (1) the impact of group scheduling and locality constraints on queuing
delays, (2) the influence of locality on GPU utilization, and (3) failures occurring during training.
Additionally, Hu et al. [59] performed a detailed comparison of this dataset with other existing
GPU workload datasets.

SPEC CPU (2006, 2017) [113]: SPEC CPU benchmark is a suite of CPU benchmarking tools
released by SPEC (Standard Performance Evaluation Corporation), which aim to measure the com-
puting capability of computer systems. It is primarily used to evaluate and benchmark the perfor-
mance of computationally intensive tasks, putting stress on aspects such as processors, memory
subsystems, and compilers to obtain realistic workloads. Currently, there are two main versions of
the SPEC CPU benchmark: SPEC CPU2006 and SPEC CPU2017, where SPEC CPU2006 has been
discontinued. Notably, there is a $1,000 fee to use the SPEC CPU2017 benchmark. Based on this
dataset, Iglesias et al. [60] conduct a comprehensive analysis of the relationship between the cost
of running computational assets and their resource capacity (i.e., CPU and RAM).

Autoscale Analyser (2015): [19] This dataset comprises real-time workload traces obtained in
2015 from two servers, spanning over 47 h. The original dataset consists of four log files, recording
the CPU and memory utilization of the two computing nodes. The detailed fields for each file are
as follows:

— server-cpu-usage.log: This file provides detailed records of the server’s CPU usage, pri-
marily encompassing eight fields: time, CPU, %user, %nice, %system, %iowait, %steal, and
%idle.

— server-mem-usage.log: This file provides detailed records of the server’s memory us-
age, primarily encompassing eight fields: kbbuffers, %commit time, kbcommit, kbmemused,
%memused, kbcached, and kbmemfree.

Based on this dataset, Shariffdeen et al. [110] conduct research on cloud workload prediction
methods and automated cloud resource scaling techniques.

Intel Netbatch logs (2012) [109]: This dataset includes one month of accounting records
(e.g., CPU and memory utilization) from the Intel Netbatch grid, as disclosed by Ohad Shai of
Intel in November 2012. These data originate from four clusters, with three situated on the U.S.
West Coast and one in Israel. The trace is composed of approximately 2.53 GB of compressed
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dataset, including four main CSV files labeled as Intel-NetbatchA-2012-0, Intel-NetbatchB-2012-0,
Intel-NetbatchC-2012-0, and Intel-NetbatchD-2012-0.

These four CSV files contain records with identical fields, as listed below:end time, machine ID,
iteration number, group, submit time, user, command, start time, exit status, suspend time (seconds),
memory (GB total for all threads), wall time (seconds), user CPU time (seconds total for all threads),
iteration submit time (local timestamp), system CPU time (seconds total for all threads), max RSS (4

KB pages), job ID, max VM (4 KB pages), and cores. Based on this dataset, Jeddi et al. [64] conduct
research on workload prediction for network function virtualization.

OpenCloud Hadoop Workload (2010) [95]: This trace records real-time logs of the Open-
Cloud Hadoop cluster administered at the Parallel Data Lab. The trace spans from May 2010 to
December 2011, totaling 20 months. The logs comprise 51,975 successfully completed jobs, 4,614
failed jobs, and 1,762 aborted jobs, with a total of 78 users submitting jobs during this period. The
cluster consists of 64 nodes, each equipped with a 2.8 GHz dual quad-core CPU (8 cores), 16 GB
RAM, 10 Gbps Ethernet NIC, and 4 Seagate 7200 rpm SATA hard disk drives. Throughout the en-
tire data collection period, the cluster runs Hadoop version 0.20.1. It is important to note that the
authors do not provide the original data but offer anonymized data fields along with the relevant
hardware and software configurations. Therefore, researchers can obtain the data as needed or
contact the authors via email to access the relevant data. Based on this dataset, El-Sayed et al. [39]
analyze the behavioral patterns of unsuccessful jobs across different clusters and develop an anom-
aly detection algorithm for large-scale computing platforms. Additionally, Kaur et al. [67] conduct
research on job scheduling methods in cloud computing clusters.

Yahoo Webscope Dataset (2010) [130]: The Yahoo Webscope project offers datasets in six do-
mains for researchers’ use, including advertising and market datasets, competition datasets, com-
puter system datasets, chart and social datasets, language datasets, and rating and classification
datasets. In the computer system dataset, there exists one called the Database Platform System
Tracing dataset, which includes a number of trace data on the resource utilization of the compute
nodes during the execution of the PNUTS/Sherpa database. These data measure metrics such as
network traffic, CPU usage, memory usage, disk usage, and so on. It is worth noting that access to
this dataset requires authors to apply for it through the official website [130].

Based on this dataset, Mian et al. [84] conduct research on task scheduling and resource alloca-
tion, while Agrawal et al. [3] investigate detection techniques for cloud anomalous activities.

SWIM Workload (2009, 2010) [41]: This is a dataset collected by Facebook about MapReduce
cluster workloads for Hadoop. The workloads span one day, encompassing 24 historical trace sam-
ples, with each sample representing 1 h of data. There are two versions: Version 1 (2009), and
Version 2 (2010).

Version 1 (2009) [41]: The first version comes from a historical trace of Hadoop on Face-
book’s 600-machine cluster. The original trace spanned a six-month period from May 2009
through October 2009 and included about 1 million jobs. The trace consists of a dataset of
approximately 0.42 MB, including three main tsv files labeled FB-2009_samples_24_times_1hr_0_

first50jobs, FB-2009_samples_24_times_1hr_0, and FB-2009_samples_24_times_1hr_1, where FB-2009

_samples_24_times_1hr_0_first50jobs is the test dataset. The corresponding workload for each job
is stored in each file and the fields for each job are as follows: inter_job_submit_gap_seconds,
shuffle_bytes, submit_time_seconds, new_unique_job_id, map_input_bytes, and reduce_output_
bytes.

Version 2 (2010) [41]: The second version is derived from a historical Hadoop trace on the
same Facebook cluster, now expanded to 3,000 machines. This original trace covers a period of
1.5 months, from October 2010 to November 2010, and includes approximately 1 million jobs.
The trace consists of a dataset of approximately 0.42 MB, including two main tsv files labeled
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FB-2010_samples_24_times_1hr_withInputPaths_0 and FB-2010_samples_24_times_1hr_0. The
fields for job are the same as in version one.

Based on this dataset, Chen et al. [28] study the workload of MapReduce tasks and develop a
corresponding scheduling framework based on the characteristics of these workloads. Ling et al.
[80] investigate the issue of resource utilization imbalance in the cloud, while Chen et al. [27]
propose new features for MapReduce workloads

SPEC power_ssj2008 (2008) [112]: SPEC power_ssj2008, released in 2008 by SPEC, is the first
industry-standard benchmark designed to evaluate the energy efficiency and performance charac-
teristics of server systems, including single-server and multi-node configurations. The goal of the
benchmark is to evaluate the scalability of the CPU, cache, memory hierarchy, and Shared Memory
Processor, while measuring the performance of specific elements of the Just-in-Time compiler, Java
Virtual Machine, threading, garbage collection, and operating system implementation. The score
is calculated by dividing the total performance obtained at each target workload level (ssj_ops)
by the total average power consumption at each target workload level (including active and idle),
enabling comparison of power consumption and performance across different servers. Based on
this dataset, Lin et al. [79] analyze the power consumption of cloud server components (i.e., CPU,
memory, and storage) and develop power consumption models.

GWA-T-4 AuverGrid (2006) [93]: AuverGrid team in 2006, meticulously documents the work-
load of a cluster. This cluster comprises 475 CPUs and has completed 404,176 jobs during the
recording period, catering to 405 users. The dataset provides detailed records of the resources
utilized by each job, including CPU, memory, and network, as well as the resources required by
each job. The dataset contains 29 fields, primarily including SubmitTime, WaitTime, RunTime, Av-

erageCPUTimeUsed, Used Memory, ReqMemory, UsedNetwork, UsedResources, ReqNetwork, among
others. Based on this dataset, Ali et al. [4] propose an unsupervised feature selection method for
cloud workload tracing, while Cetinski et al. [25] conduct research on workload prediction tech-
niques.

GWA-T-1 DAS2 (2005) [91]: The dataset records the workload of the DAS-2 system in February
2005, capturing metrics such as CPU utilization, memory consumption, and network activity. Dur-
ing the recording period, the system consisted of 400 CPUs and completed 1,124,772 jobs, serving
333 users. The dataset contains 29 fields, primarily including SubmitTime, WaitTime, RunTime, Av-

erageCPUTimeUsed, Used Memory, ReqMemory, UsedNetwork, UsedResources, ReqNetwork, among
others. Based on this dataset, Ali et al. [4] propose an unsupervised feature selection method for
cloud workload tracing.

GWA-T-10 SHARCNet (2005) [92]: The dataset released by John Morton and Clayton Chrusch
in 2005, meticulously documents the workload of a cluster. This cluster comprises 6,828 CPUs and
has completed 1,195,242 jobs during the recording period, catering to 412 users. The dataset pro-
vides detailed records of the resources utilized by each job, including CPU, memory, and network,
as well as the resources required by each job. The dataset contains 29 fields, primarily including
SubmitTime, WaitTime, RunTime, AverageCPUTimeUsed, Used Memory, ReqMemory, UsedNetwork,
UsedResources, ReqNetwork, and so on. Based on this dataset, Ali et al. [4] propose an unsupervised
feature selection method for cloud workload tracing.

Parallel Workloads Archive (2005) [42]: This repository, initiated in 2005, collects real
parallel workload logs from production systems spanning from 1993 to 2016. It encompasses 40
sources, including NASA iPSC (1993), LANL CM5 (1994), SDSC Par95 (1994), KIT FH2 (2016),
and so on. Detailed information for each dataset can be found on the website [42]. Based on
this dataset, Baldan et al. [17] conduct research on cloud workload prediction and Bossche et al.
[120] propose a deadline-aware hybrid cloud workload scheduling strategy. Additionally, they
investigate selection strategies for outsourcing cloud service providers.
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GWA-T-3 NorduGrid (2003) [90]: The dataset released by the NorduGrid team in 2003, metic-
ulously documents the workload of a cluster. This cluster comprises 2,000 CPUs and has com-
pleted 781,370 jobs during the recording period, catering to 387 users. The dataset provides de-
tailed records of the resources utilized by each job, including CPU, memory, and network, as well
as the resources required by each job. The dataset contains 29 fields, primarily including Submit-

Time, WaitTime, RunTime, AverageCPUTimeUsed, Used Memory, ReqMemory, UsedNetwork, Use-

dResources, ReqNetwork, among others. Based on this dataset, Ali et al. [4] propose an unsupervised
feature selection method for cloud workload tracing.

5.2 Datasets with VM Cluster Trace

In this section, a detailed description of each dataset is categorized under the VM cluster trace
type, including information such as time, purpose, and fields.

Alibaba MicroServices Traces (2021, 2022): Alibaba MicroServices Traces is a comprehensive
trace log published by Alibaba Group about its production clusters. There are two versions: Version
1, and Version 2.

Version 1 (2021) [8]: The first version of the trace includes detailed runtime metrics for around
20,000 microservices (MS). The data is collected over a 12-h period in 2021 from Alibaba’s pro-
duction cluster of more than 10,000 bare metal (BM) nodes. This trace records response time

(RT) information, BM node runtime information, Microservice call rate (MCR), MS runtime
information, and MS Call Graphs information. The trace is composed of approximately 61.1 GB of
compressed dataset, including four main components labeled as node, MSCallGraph, MSResource,
and MSRTQps. Specifically,

— node: Bare metal node runtime info.
— MSCallGraph: The information on MCR and RT details the MCR and RT for calls made

through various communication paradigms among over 1,300 microservices, encompassing
more than 90,000 containers within the same production cluster.

— MSResource: The MS runtime information captures CPU and memory utilization data for
over 90,000 containers associated with more than 1,300 microservices within the same pro-
duction cluster.

— MSRTQps: The MS Call Graphs information involves sampling the call graph at a 0.5% rate due
to the extensive scale of the data. This results in approximately over 20 million call graphs
across more than 20,000 microservices within more than ten clusters.

Version 2 (2022) [9]: This second version provides a longer duration (13 days) for this updated
trace compared to the previous trace version (v2021) and includes additional information such
as the service ID in the call graph. In addition, the number of BMs and MSs has increased to
40,000+ and 28,000+ from the previous 1,300+ and 1,300+, respectively. The trace is composed of
approximately 61.1 GB of compressed dataset, including four main components labeled as node,
MSCallGraph, MSResource, and MSRTMCR. Specifically,

— node: BM Node runtime information.
— MSCallGraph: The MS Call Graphs information comprises over twenty million call graphs

involving more than 17,000 microservices distributed across more than ten clusters.
— MSResource: The MS runtime information tracks the CPU and memory utilization of over

470,000 containers for more than 28,000 microservices within the same production cluster.
— MSRTMCR: The information on the MCR and RT captures the MCR and RT metrics for calls

conducted through various communication paradigms among more than 28,000 microser-
vices, using over 470,000 containers within the same production cluster.
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Based on this dataset, Luo et al. [99] conduct an in-depth analysis of microservice call graphs
to quantify their differences from traditional DAGs used in data-parallel jobs. Khodabandeh et al.
[68] analyze the dependencies and collaborative relationships among microservices, identifying
similarities between service graphs.

CERIT-SC Workloads (2022) [71]: This dataset, published by Dalibor Klusacek in 2016, aims
to track the real workload of the CERIT-SC system. The CERIT-SC system represents the largest
portion of the Czech national grid and cloud infrastructure, MetaCentrum, featuring a total of 5,224
CPU cores. Among these, 3,912 CPU cores (constituting 75% of the total) are completely virtualized
utilizing the OpenNebula framework, making them available for a range of applications, while the
remaining 1,312 CPU cores are non-virtualized and dedicated to “bare-metal” grid computing. The
dataset primarily presents job-related metrics, including job submission time, wait time, runtime, al-

located CPU count, average CPU utilization time, and memory usage. Additionally, Dalibor Klusacek
has also released other versions of the dataset on the website [71]. Based on this dataset, Klusáček
et al. [72] conduct research on workload scheduling problems.

OpenNebula Virtual Machine Profiling Dataset (2021) [100]: This dataset, published by
Prasad Purnaye on IEEEDataPort in 2021, records the operational information of virtual machines,
including both normal and attack data. The dataset is collected by performing a series of probing
programs supplied by OpenNebula, gathering monitoring information from 6 virtual machines
over a period of 63 h, with simulations of attacks of varying durations conducted on a subset of the
virtual machines. Based on known attack scenarios, the data has been labeled as normal or attack
data. This dataset can be utilized for analyzing virtual machine behavior based on the monitoring
capabilities of OpenNebula and is widely used for intrusion detection purposes. It is noteworthy
that access to this dataset requires a subscription fee of $40. Based on this dataset, Saxena et al.
[107] develop a virtual machine threat prediction model, aiming to safeguard computational data
and minimize adversarial disruptions through proactive estimation of virtual machine threats.

Fruktus (2020) [87]: This dataset, released by Nawrocki in 2020, pertains to the CPU usage
of virtual machines within a cluster. The cluster comprises more than 1700 VMs from the Nokia
Solutions Krakow cluster and more than 100 VMs from the Polcom cluster. The dataset consists
of 100 CSV files with a total size of 176 KB. Each file contains two fields: timestamp and CPU

usage (average). Based on this dataset, Nawrocki et al. [88] conduct research on anomaly detection
techniques in the context of long-term cloud resource usage planning.

Chameleon Cloud traces (2019) [35]: This dataset is based on the OpenStack
Nova/Blazar/Ironic services and has been released by Science Clouds in 2017. Since then,
ten cloud traces spanning from 2017 to 2020 have been made available. The dataset includes
information on the CPU allocation, memory, and detailed workload. It is suitable for purposes
such as workload prediction. Detailed descriptions of the data table structure can be found at
https://scienceclouds.org/cloud-traces/cloud-trace-format/. Based on this dataset, Kang et al. [66]
investigate the “resource silo” issue in cloud computing, where resources are restricted to specific
models, thereby reducing utilization potential and flexibility while increasing costs.

Azure Public Dataset (2017, 2019) [85]: This dataset, released by Microsoft, aims to record the
workload status of VMs on the Microsoft Azure platform, covering key aspects such as CPU and
memory usage. The dataset is divided into two versions, released in 2017 and 2019, respectively,
corresponding to the workload status of Azure virtual machines for those two years. The first
version of the dataset has a size of 117 GB and includes the following fields: Max CPU utilization

during the 5 min, VM category, Encrypted subscription id, Timestamp in seconds, VM virtual core

count, Count VMs created, VM memory (GBs), Avg CPU utilization during the 5 min, P95 of Max CPU

utilization, Deployment size, Timestamp VM created, Timestamp in seconds, Timestamp VM deleted,
Max CPU utilization, Avg CPU utilization, Min CPU utilization during the 5 min, Encrypted VM id,
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and Encrypted deployment id. In comparison to the first version, the 2019 release has expanded
to 235 GB. Based on this dataset, Jayakumar et al. [117], Cortez et al. [36], and Sathiya et al. [102]
conduct research on cloud workload prediction. Zhang et al. [132] analyze Microsoft Azure’s VM
workloads in terms of memory, lifecycle, average utilization, and cost, and develop a pricing model.

Scout (2018) [33]: This dataset, released by Hsu Chin-Jung in 2018, contains extensive perfor-
mance data of Hadoop and Spark applications running on AWS EC2. The dataset has a size of
587 MB and is stored in CSV format. It covers both single-node and multi-node scenarios. The
single-node section comprises 18 types of virtual machine configurations, while the multi-node
section encompasses 69 configurations, consisting of 9 virtual machine types with varying num-
bers of instances. Within each configuration, execution time and underlying performance metrics
are collected using the sar tool, by combining input sizes and running programs. The primary fields
include CPU idle time ratio, pages read from disk per second, kernel-mode CPU utilization, and user-

mode CPU utilization, totaling 73 features. Based on this dataset, Bilal et al. [20] conduct research
on black-box optimization techniques for implementing automated cloud configuration.

IBM Docker Registry traces (2018) [13]: This dataset, released by Ali Anwar et al. in 2018,
involves tracing of Docker registries. It captures all GET, PUT, HEAD, PATCH, and POST requests.
The tracing period spans from June 20, 2017, to February 9, 2017, covering 75 days and totaling
over 38 million requests. The dataset is compressed to a size of 1.5 GB. It comprises 10 fields: host,
id, http.request.uri, timestamp, http.response.writing, http.request.method, http.request.useragent,
http.request.remoteaddr, http.response.status, and http.request.duration. Based on this dataset, Zhao
et al. [135] conduct research on registry technologies in Docker, focusing on deduplication tech-
niques. Similarly, Anwar et al. [14] analyze production workloads within the dataset, emphasizing
improvements to Docker registry design.

Business Critical Workloads (2015) [94]: This dataset, released by Bitbrains in 2015, aims
to document the workload conditions of 1750 VMs in Bitbrains’ distributed cloud clusters in 2013.
The dataset is divided into two parts. The first part, called fastStorage, includes the workload
conditions of 1,250 virtual machines during August 2013. This section consists of 1,250 CSV files
with a total size of 128 MB. The dataset contains the following fields: Timestamp, Memory usage,
CPU cores, Disk write throughput, Disk read throughput, CPU capacity provisioned (CPU requested),
CPU usage (MHz), Network received throughput, CPU usage (%), Network transmitted throughput,
Memory provisioned, and Memory provisioned. The second part, named Rnd, includes the workload
conditions of 500 virtual machines during July, August, and September 2013. This portion of the
dataset has a size of 156 MB and comprises 150 CSV files, with fields identical to those in the first
part. Based on this dataset, Leka et al. [76], Matoussi et al. [83], and Bhagtya et al. [18] conduct
research on cloud virtual machine workload prediction, while Shen et al. [111] perform an in-depth
analysis of cloud virtual machine workload characteristics.

Planetlab VM traces (2011) [12]: This dataset, published by Beloglazov Anton in 2011, aims
to record the CPU utilization of virtual machines on the Planetlab platform. The dataset covers a
period from March to April 2011, during which random ten-day intervals are selected, and CPU

utilization is measured every 5 min for over 11,000 virtual machines. Based on this dataset, Qiu
et al. [101] and Zhang et al. [134] conduct research on cloud virtual machine workload prediction,
while Yadav et al. [129] focus on predicting the minimum utilization of virtual machines.

5.3 Datasets with Web Trace

In this section, a detailed description of each dataset is categorized under the web trace type, in-
cluding information such as time, purpose, and fields.

ISCX (2016) [45]: The Information Security Center of Excellence is a network traffic dataset
released by the Canadian Institute for Cybersecurity in 2016, covering the period from 2009 to

ACM Comput. Surv., Vol. 57, No. 8, Article 198. Publication date: March 2025.



198:22 G. Liu et al.

2016. It is utilized for researching and developing technologies related to network security. The
ISCX dataset comprises multiple distinct network traffic datasets, including ISCXVPN2016, ISCX-
Tor2016, ISCX-URL2016, ISCX-Bot-2014, and ISCX IDS 2012.

— ISCXVPN2016 [48]: This dataset covers both regular sessions and VPN sessions, encompass-
ing 14 traffic classifications, including VOIP, VPN-VOIP, P2P, VPN-P2P, and others. Addi-
tionally, the dataset generates seven various categories of traffic: Browsing, Email, Chatting,
Streaming, File Transfer, VoIP, and TraP2P.

— ISCXTor2016 [47]: This dataset encompasses real-world traffic data, divided into non-Tor
and Tor traffic categories. The non-Tor traffic utilizes benign traffic from the VPN project
described in Reference [48] as its source; meanwhile, the Tor traffic includes seven dis-
tinct types of traffic: Email, VoIP, Chat, P2P, Video-Streaming, Browsing, FTP, and Audio-
Streaming.

— ISCX-URL2016 [46]: This dataset contains a collection of real-world URLs, which are clas-
sified based on their potential attack types into five categories: Benign URLs, Spam URLs,
Phishing URLs, Malware URLs, and Defacement URLs.

— ISCX-Bot-2014 [44]: This dataset is designed to evaluate botnet detection methods and is
split into training and testing datasets. The training set encompasses seven types of botnets,
while the testing dataset contains sixteen types. The size of the training set reaches 5.3 GB, of
which 43.92% is marked as malicious, with the remainder representing normal network traf-
fic. The size of the testing set is 8.5 GB, with 44.97% of the data flow identified as malicious.

— ISCX IDS 2012 [43]: This dataset is dedicated to the evaluation of network intrusion detec-

tion and exhibits the following characteristics: it reflects real-world network environments
and traffic patterns, the dataset is annotated, it encompasses comprehensive interaction
capture, achieves data capture completeness, and includes diverse intrusion scenarios.

Based on this dataset, Alqahtani et al. [10] conduct research on intrusion detection, aiming to
enhance security by analyzing network traffic data.

Amazon Resource Cost (2012) [118]: The dataset, released by Rizwan Mian and others from
Queen’s University in 2012, aims to investigate the workload characteristics of VMs on the Amazon
Web Services cloud computing platform. Importantly, it provides various configurations of virtual
machines along with their corresponding costs ($). This dataset encompasses three types of virtual
machine specifications: small, large, and xlarge. Furthermore, the dataset includes ten fields for
describing and analyzing the performance and cost aspects of virtual machines, such as I/O, I/O($),
data in (GB), data in ($), data out 1 TB ($), and data out 10 TB ($). Based on this dataset, Mian et al.
[84] explore an experimental-driven performance model for executing data-intensive workloads
in Infrastructure-as-a-Service (IaaS) public clouds and conduct cloud workload prediction.

It is worth noting that there are small amounts of missing data for certain metrics in the dataset,

such as provisioned (GB-Ho), provisioned ($), I/O, data in (GB), and data out 1 TB (GB). Users can

remove these missing values before use, as this does not significantly affect the overall usability of the

dataset.

Cloud Intrusion Detection Dataset (2012) [89]: The dataset, released by the MIT Lincoln
Laboratory DARPA intrusion detection evaluation team in 2012, supports research in cloud in-
trusion detection. It not only facilitates the identification of masquerade attacks but also enables
the detection of over one hundred different categories of attacks, including User to Root (U2R),
Data Attacks (including Data Modification and Tampering), Remote to Local (R2L), Unusual User

Behaviors, surveillance and probing, and Denial of Service (DoS).
The dataset is divided into two main parts: (1) Contains Unix Solaris auditing data and its as-

sociated TCP dump data; (2) Including Windows NT auditing data and its associated TCP dump
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data. These data aim to provide an empirical basis for training and testing Intrusion Detection

Systems (IDS).
Based on this dataset, Kholidy et al. [69] conduct research on cloud intrusion detection and

release the dataset as part of this work.
Wikipedia Web Traces from WikiBench (2007) [61]: This dataset, released by Wikipedia,

covers the HTTP request information of the Wikipedia website from 2007 to 2016, spanning
9 years. The dataset is massive, estimated to be around 5 TB in size. It includes the following
fields:

— domain_code: Request domain name in shortened form.
— page_title: For page-level files, it contains the title of the part following “/wiki/” in the

request URL, which has not been normalized (for example, Main_Page, Berlin).
— count_views: The count of views this page has received during the specified hour.
— total_response_size: The total size of responses generated by requests for this page

within the given hour.

Based on this dataset, Wu et al. [127] conduct research on cloud workload prediction. Urdaneta
et al. [119] classify client requests and analyze aspects such as the number of read and save opera-
tions, significant load variations, and requests for non-existent pages, while discussing approaches
to handling Wikipedia workloads. Ling et al. [80] investigate the issue of virtual machine resource
allocation, and Lei et al. [75] explore sharing techniques among MapReduce jobs.

It’s worth noting that this dataset is discontinued on August 1, 2016, and users need to contact
the responsible person to obtain it.

KDD Cup 1999’s Dataset (1998) [74]: The dataset serves as a classic dataset for network
intrusion detection. It is initially simulated by the MIT Lincoln Labs between 1998 and 1999
to mimic the environment of a United States Air Force Local Area Network (LAN). Launch
several attacks are launched against this LAN, and corresponding network traffic records are
collected. The dataset aims to provide researchers with a realistic environment of network traffic
to estimate the quality of intrusion detection systems. It includes a vast amount of network
connection data recorded during real-time monitoring of simulated network traffic. These data
cover diverse categories of network activities, including natural user behaviors and varying types
of network attacks such as R2L, DoS, U2R, and Probing. Each record contains various features
regarding the connection, for instance, the source IP address, destination IP address, used protocol,
connection duration, transmitted data volume, and so on. Detailed descriptions of the data table
structure can be found at https://kdd.ics.uci.edu/databases/kddcup99/kddcup.names. Based on
this dataset, Zuhair et al. [137] and Chen et al. [31] investigate intrusion detection techniques for
cloud platforms to protect cloud servers.

NASA HTTP Traces (1995) [23]: This dataset is released by the Kennedy Space Center in
1995. It records all HTTP requests received by the NASA Kennedy Space Center WWW server
located in Florida for a period of two months in 1995. Each request is logged in a log file with the
following fields:

— Host initiating the request: If the hostname cannot be determined, then the IP address
is provided.

— Timestamp: The format is “DAY MON DD HH:MM:SS YYYY,” with a time zone of −0400.
— HTTP request: For example, “GET /logs/USA-1995.log HTTP/1.0.”
— HTTP response status code: The server returns the response status code, such as 404,

500, etc.
— Number of bytes in the response: The server provides the size of the response content

in bytes.
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Table 6. Comparison of Four General Resource Characteristics Datasets

Google Cluster Data [52] Alibaba Cluster Trace [6] Azure Public Dataset [85] Alibaba MicroServices Traces [9]

Datacenter Google cluster Alibaba production cluster Microsoft Azure Alibaba cloud

Year 2011/2019 2017/2018 2017/2019 2021/2022

Duration 7 h/29 days/1 month 12 h/8days 30 days 12 h/13 days

#VM — — 2M/2.6M (VMs) 470,000+(containers)

#Microservices — — — 28,000+

Resource Type CPU, Memory, Disk CPU, Memory, Disk CPU, Memory CPU, Memory

Data content Host Host VM (Bare-metal) VM (Micro-Services)

Based on this dataset, Kirchoff et al. [70] and Kumar et al. [73] conduct research on cloud work-
load prediction. Li et al. [77] investigate load-balancing-based resource management in edge and
cloud environments.

6 Analysis and Comparison of Mainstream Datasets

In this section, we select 12 currently mainstream datasets from 42 datasets. “Mainstream” datasets
refer to high-quality datasets that are widely used in the field of cloud computing, are updated in a
timely manner and cover current research hotspots. Specifically, the selection of these datasets is
based on three key categories: usage frequency, timeliness, and year. Usage frequency is measured
by the frequency with which these datasets are cited and used in cloud computing literature. Time-
liness focuses on the update cycle of the datasets, while year considers whether the datasets were
created in recent years, ensuring that they reflect the latest technological trends.

To better analyze and compare these datasets, we classify them into three categories based on
the resource information recorded in the datasets: (1) datasets containing general resource logs,
such as CPU, memory, and disk usage; (2) datasets recording GPU-related log information; and
(3) datasets covering energy-related log information. Specifically, the first category of datasets is
mainly suitable for studying the load, resource consumption, and performance optimization of
small-scale tasks processed by CPUs. These datasets provide detailed records of general comput-
ing resource usage. The second category of datasets is suitable for more complex research on
GPU-based computing tasks, helping to study GPU resource utilization, performance bottlenecks,
and parallel computing efficiency. The third category of datasets is suitable for energy efficiency
research, as they help researchers gain insights into the energy efficiency of different computing
tasks, explore ways to optimize system energy usage and improve the efficiency of green com-
puting. Additionally, considering large language models (LLMs) as the mainstream direction of
current research, we introduce a fourth category of datasets, which includes logs related to LLM
inference. Subsequently, we compare and analyze each category of datasets and present the results
in the form of charts to help readers better select the datasets they need.

6.1 General Resource Characteristics Datasets

As shown in Table 6, we select four currently mainstream general resource characteristics datasets:
Google Cluster Data, Alibaba Cluster Trace, Azure Public Dataset, and Alibaba MicroServices
Traces. Table 6 provides a comparative analysis of the specifications and tracking information
of these four datasets. Among them, Google Cluster Data and Alibaba Cluster Trace belong to the
cloud host cluster architecture, while Azure Public Dataset and Alibaba MicroServices Traces are
part of the cloud virtual machine cluster architecture. Additionally, all four datasets record track-
ing information related to CPU and memory, with Google Cluster Data and Alibaba Cluster Trace
further including logs associated with disk usage.

Resource Utilization of Jobs. As shown in Figure 5, we use the Cumulative Distribution

Function (CDF) as a metric to analyze the distribution of CPU utilization and memory utilization
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Fig. 5. Overview of different dataset character-

istics. (a) CDF vs. CPU utilization. (b) CDF vs.

Memory utilization, where Azure public dataset

is not available.

Fig. 6. CDF vs. node re-

source utilization of Alibaba

MicroServices Traces.
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across various datasets. In this case, due to the large scale of the data (e.g., the total size of the
Google Cluster Data is 2.4 TB), we select 100,000 traces from each dataset for analysis. The
analysis shows that the CPU utilization in the Google Cluster Data is relatively low (i.e., 90% of
the jobs have CPU utilization below 20%), and the memory utilization is also below 20%. This
phenomenon indicates that the Google Cluster Data primarily consists of small-scale jobs. In
contrast, the overall resource utilization in the Alibaba MicroServices Traces is higher (i.e., 60% of
the jobs have CPU utilization above 20%, and 80% of the jobs have memory utilization exceeding
60%). This suggests that the jobs in the Alibaba MicroServices Traces are mainly large-scale jobs.
The resource utilization in the Alibaba Cluster Trace and Azure Public Dataset appears relatively
balanced.

Resource Utilization of nodes in Alibaba Microservices Traces. As shown in Figure 6, we further
analyze the distribution of CPU and memory utilization for each node in the Alibaba Microservices
Traces dataset. Similarly, we observe that the resource utilization at the node level is also high (i.e.,
80% of the nodes have both CPU and memory utilization exceeding 60%). If users are seeking
datasets with large-scale jobs and high resource utilization, then the Alibaba Microservices Traces
dataset is a suitable choice.

VM memory configuration in Azure Public Dataset. As shown in Figure 7, we present the memory
distribution of virtual machines in versions 1 and 2 of the Azure Public Dataset. The analysis
indicates that this dataset contains a diverse range of virtual machine memory configurations, with
the majority of virtual machines having memory sizes between 4 and 32 GB. Therefore, readers
can select traces with specific memory configurations.

6.2 GPU-enhanced Resource Characteristics Datasets

As shown in Table 7, we select four mainstream datasets that include GPU-related log information:
Alibaba GPU Traces, Acme (), Helios, and Philly. Among them, Acme primarily records workloads
related to the development of LLMs, while Alibaba GPU Traces, Helios, and Philly cover general
DL workloads from various domains. For example, Helios consists of four clusters dedicated to
training tasks in computer vision and reinforcement learning, whereas Alibaba GPU Traces in-
cludes multiple server configurations used for training and serving tasks. Specifically, Acme uses
A100 GPUs, Helios includes 1080Ti and V100 GPUs, Alibaba GPU Traces includes T4, P100, and
V100 GPUs, and Philly only provides GPU memory size, without specifying the GPU model. Ad-
ditionally, the average number of GPUs requested in Alibaba GPU Traces may be less than 1 (i.e.,
the average number of GPUs is 0.7). For the Acme, we use the traces from the Seren and Kalos

clusters as examples. Specifically, Seren includes 368K CPU tasks and 664K GPU tasks, while the
Kalos task trace contains 42K CPU tasks and 20K GPU tasks.
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Table 7. Comparison of Four GPU-enhanced Resource Characteristics Datasets

Alibaba GPU Traces [7] Acme [54] Philly [104] Helios [108]

Datacenter Alibaba PAI Acme Microsoft Philly SenseTime Helios
Year 2020 2023 2017 2020

Duration 2 months 6 months 3 months 6 months
#Jobs 1.26M 1.09M 113K 3.36M

Avg. #GPUs 0.7 6.3 1.9 3.7
GPU Model T4/P100/V100 A100 12 GB/24 GB 1080Ti/V100
Total #GPUs 6,742 4,704 2,490 6,416

Job Type DL Models LLMs DL Models DL Models

Fig. 8. Distribution of CPU jobs

and GPU jobs.

Fig. 9. Final status of the jobs: (a) number of jobs and (b) GPU

resources usage, where Alibaba GPU Traces is not available.

Job distribution and its final state. As shown in Figure 8, we analyze the distribution of CPU tasks
and GPU jobs across four datasets. The results show that Philly and Alibaba GPU Traces contain
only GPU-related workloads, while Helios and Acme (i.e., Seren and Kalos) include both CPU and
GPU jobs. Kalos primarily consists of GPU jobs, whereas Seren primarily consists of CPU jobs.
Figure 9 summarizes the distribution of three key final states across the four datasets. The result
shows that in the Acme, which primarily involves LLMs jobs, approximately 40% of the jobs end
in failure, consuming 10% of the GPU resources. In contrast, the Philly and Helios datasets, which
focus on traditional DL jobs, exhibit a relatively lower proportion of failed tasks. Additionally, we
observe that a significant amount of GPU resources is wasted on debugging and failed tasks. For
example, in the Seren and Kalos, the GPU resources consumed by debugging jobs account for 66.4%
and 60.7%, respectively.

Job duration. Figures 10(a) and 10(b) show the duration distributions of GPU and CPU jobs,
respectively. Intuitively, LLM-related tasks typically require longer runtimes. However, we
observe that the workloads in the Acme (represented by the blue and orange lines) exhibit shorter
GPU job durations. This may be due to the fact that a large number of tasks in Acme have a final
status of failure. Additionally, we find that the workloads in the Helios exhibit shorter CPU job
durations.

Workload distribution. Figures 11(a) and 11(b) show the proportions of tasks with different num-
bers of GPUs and CPUs, respectively. The analysis indicates that approximately 95% of the tasks
in the Alibaba GPU Traces use only one GPU, and the number of CPUs required is the highest
among all datasets. This means that the jobs in Alibaba GPU Traces are highly dependent on CPU
resources. In contrast, in the Acme and Helios, the number of GPUs required for jobs is relatively
higher, indicating a greater demand for GPU resources in these datasets.
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Fig. 10. CDF of job duration.
Fig. 11. GPU and CPU demands vs. CDF of jobs.

Fig. 12. CDF of input and output token count.

Fig. 13. Relationship between input and output size.

6.3 LLMs Inference Datasets

In this section, given that LLMs are one of the most popular research directions in recent years,
we analyze the Azure LLM Inference Dataset [16], a cloud dataset currently collected for LLM
inference. This dataset primarily contains traces of two types of jobs: Coding and Conversion
jobs.

As shown in Figure 12, we plot the CDF of input token counts and output token counts. The anal-
ysis reveals that coding jobs typically require more input tokens but generate fewer output tokens.
In contrast, conversion jobs generally require fewer input tokens but produce more output tokens.
Further, Figure 13 shows the relationship between input size and output size for the two types of
tasks. The analysis reveals that the output size of coding tasks is primarily concentrated around
100, with little variation as the input size increases. In contrast, the output size of conversion tasks
ranges from 10 to 1,000, exhibiting a wider distribution.

6.4 Power-aware Resource Characteristics Datasets

In this section, we focus on analyzing three major datasets related to energy data: SURFsara, Mar-
coni100, and Google Power Data. As shown in Table 8, both the SURFsara and Marconi100 datasets
record relatively complete log information, including CPU, GPU, memory, disk, and power data.
Additionally, the Marconi100 records comprehensive ambient data such as temperature, humid-
ity, wind speed, visibility, clouds, and pressure. In contrast, the Google Power Data only records
power-related log information, with other resource logs (such as CPU, memory, and disk) requiring
integration with the Google Cluster Data [52].

Power utilization analysis. As shown in Figure 14, we plot the CDF of total power and GPU power
for SURFsara and Marconi100. The analysis reveals that both the overall power consumption and
GPU power of SURFsara are lower compared to Marconi100 (e.g., the GPU power of SURFsara
is less than 250 W, while that of Marconi100 is concentrated between 500 W and 1,000 W). This
likely indicates that Marconi100’s workloads are more GPU-dependent and consist of larger jobs,
whereas SURFsara primarily supports CPU-dependent smaller jobs.
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Table 8. Comparison of Three Power-aware Resource Characteristics Datasets

SURFsara [116] Marconi100 [22] Google Power Data [53]

Datacenter SURFsara Marconi Google cloud
Year 2019 2020 2024

Duration 8 months 9 months 1 month
Resource Type CPU, GPU, Memory,

Disk, Network, Power
CPU, GPU, Memory, Disk, Power Power

Ambient Factor Temperature Temperature, Humidity, Wind
Speed, Visibility, Clouds, Pressure

—

cooling systems — Air-cooling, Water-cooling —

Fig. 14. CDF of total power and GPU power for SURFsara and Mar-

coni100.

Fig. 15. CDF of power utilization for

Google Power Data.

Fig. 16. CDF of load for SURFsara and Marconi100.

Moreover, as shown in Figure 15, we analyze the CDF of two metrics provided by Google Power
Data: measured power and production power. Measured power represents the actual power uti-
lization, while production power is estimated through interpolation based on CPU utilization and
idle/busy machine power. The analysis reveals that the estimated production power utilization is
significantly lower than the measured power utilization.

Workload analysis. As shown in Figure 16, we analyze the CDF of the load for SURFsara and
Marconi100 using time windows of 1 min, 5 min, and 15 min. The analysis reveals that the load
for SURFsara is higher, reaching up to around 5,000, while the load for Marconi100 is mostly
concentrated around 100.

Temperature analysis. As shown in Figure 17, we first analyze the CDF of GPU temperature
for SURFsara and Marconi100. The analysis reveals that the GPU temperature of SURFsara is
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Fig. 17. CDF of GPU temperature

for SURFsara and Marconi100.

Fig. 18. CDF of temperature of

free cooling fluid and supply air for

Marconi100.

Fig. 19. CDF of ambient factor for

SURFsara and Marconi100.

significantly higher than that of Marconi100 (e.g., the GPU temperature of SURFsara reaches
up to 80◦C, while the GPU temperature of Marconi100 peaks at 60◦C). We hypothesize that
this difference may be due to Marconi100’s use of both air cooling and water cooling systems.
Subsequently, in Figure 18, we present the CDF of temperature for the free cooling fluid and
supply air in Marconi100. The results show that free cooling fluid has a higher overall temperature
than supply air, which further validates the effectiveness of the water cooling system.

Ambient analysis. As shown in Figure 19, we plot the CDF of ambient factors, including am-
bient temperature and ambient humidity. The analysis reveals that the ambient temperature of
Marconi100 is significantly lower than that of SURFsara (i.e., the average ambient temperature of
Marconi100 is 15◦C, while the average ambient temperature of SURFsara is approximately 28◦C).
Combined with Figure 17, this further indicates that ambient factors have a direct impact on re-
ducing cluster temperature.

7 Challenges and Future Directions

In this section, we emphasize the challenges associated with the datasets we cover and present di-
rections for further research. Specifically, we identify the shortage of datasets containing complete
attack types, the scarcity of energy-related datasets, the poor timeliness of datasets, and the small
scale of the provided datasets.

7.1 Security and Attach Traffic
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In Figure 20(a), the quantities
of publicly available data in
six application scenarios are
depicted. It is observed that
there are only four datasets
for the security scenario
(S). Despite the theoretical
significance of the security
scenario, only four datasets
are currently applicable to
it. This may indicate that
the security scenario has
not received widespread
attention in practical appli-
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cations or has not garnered sufficient focus from industry or academia. In summary, for this
scenario, there is only a minimal amount of publicly available data for researchers to study new
algorithms.

Additionally, there are limitations in some of the datasets that may reduce their utility for se-
curity researchers. On the one hand, the datasets may lack timeliness, as they are created years
ago and may not accurately represent current conditions due to the rapid evolution of computer
hardware and software. For instance, the KDD Cup 1999’s Dataset [74] is created in 1998, and the
attack methods at that time may no longer be relevant today. On the other hand, most datasets con-
tain a limited range of attack traffic. For example, the Cloud Intrusion Detection Dataset [89] only
includes U2R, surveillance and probing, Data Attacks (including Data Modification and Tampering),
R2L, DoS, and Unusual User Behaviors, but it does not cover R2L, SQL Injection, and Man-in-the-

Middle attacks. To our knowledge, there are currently no publicly available datasets that include
all popular types of network attacks.

Therefore, we expect future researchers in this domain to consider generating and publishing
publicly available datasets that include all popular types of network attacks. The public release
of such datasets would be extremely beneficial for research in network security for cloud
computing.

In some cases, researchers may be unwilling to publicly release the data they have collected.
This may be due to considerations of privacy and confidentiality, or it may be restricted by fund-
ing sources (such as industry collaborations). To partially address this issue, works [24] proposes
a method that allows for both sharing datasets and protecting personal information [37]. Their
approach suggests using small portions of the data, known as “annotation units,” which represent
subsets of real-world traffic traces [37, 123]. These units are easier to anonymise and then share
with academia and industry.

7.2 Energy Efficiency and Green Computing

Recently, the importance of green computing in cloud computing has been increasingly empha-
sized [63]. With growing global concern for sustainable development, there is a rising demand
from both businesses and individuals for environmentally friendly solutions. Cloud computing,
as a powerful information technology tool, provides users with flexible, scalable, and efficient
computing resources [82]. However, its energy consumption issue has also attracted widespread
attention. To mitigate the environmental impact of cloud computing, green computing has become
a significant solution [63]. Green computing focuses on reducing energy use and carbon emissions
through enhancing the energy efficiency of data centers, utilizing renewable energy sources
and energy-conserving technologies, and decreasing waste of hardware resources. Therefore,
energy-related datasets have become extremely important, as they can assist researchers and
practitioners in understanding and analyzing energy usage in data centers, thus enabling the
development of effective green computing strategies and solutions.

Unfortunately, our survey results indicate that only a small number of datasets are related to
energy efficiency. As shown in Figure 20(a), we found that there are only five datasets applicable
to the energy efficiency scenario (E). This may suggest that energy efficiency has not received
widespread attention in practical applications, or has not garnered enough focus from industry or
academia. In summary, for this scenario, only a very limited amount of public data is available for
researchers to understand and conduct replicable experiments.

Therefore, we hope that scholars engaged in research in this field in the future will consider gen-
erating and releasing comprehensive and up-to-date energy-efficiency public datasets. The public
release of such datasets is crucial for studying the energy-efficiency and green computing of cloud
computing.
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7.3 Scale and Complexity

As shown in Tables 2–4, the majority of datasets are collected from a relatively small number
of computing nodes. For example, GWA-T-1 DAS2 [91], Autoscale Analyse [19], and OpenCloud
Hadoop Workload [95] have only 5, 2, and 64 computing nodes, respectively. However, the scale
of computing clusters used in real-world applications is typically very large. Therefore, we advo-
cate for the academic community to collect and release more datasets from such large-scale cloud
computing clusters.

Another unresolved concern is the complexity of current datasets. Some datasets contain only
specific metrics; for example, Autoscale Analyser [19] only records CPU and memory usage, while
SPEC CPU [113] only records CPU usage. However, in cloud computing clusters, it is often neces-
sary to monitor multiple metrics simultaneously, such as CPU, I/O, memory, GPU, network, and so
on. Thus, we advocate that future datasets must reflect this complexity.

7.4 Obsolete

Due to the rapid development in cloud computing, datasets recorded a decade ago may contain
tracking records that are no longer relevant today. Simultaneously, significant changes occur in re-
source utilization, workloads, and other aspects due to the rapid progress in software and hardware
technologies. Therefore, the year of the dataset is a key indicator in assessing its representativeness
in real-world tracking.

As shown in Figure 20(b), the creation times of all datasets (including all published versions) are
displayed. We found that close to half of the datasets are created 10 years ago, and some datasets
have been in existence for over 20 years (such as NASA HTTP Traces (1995)). Researching these
datasets has lost practical significance for current computer clusters. Therefore, we urge the aca-
demic community to collect and publicly release more datasets collected in recent years, and to
use the latest datasets for experimental support.

Furthermore, as shown in Figure 20(b), we found that the majority of datasets related to Web
Trace are published 10 years ago. Hence, We expect that future researchers working in this field
will generation and publication of public datasets related to web trace. The public release of such
datasets is crucially beneficial for studying network security in cloud computing.

Additionally, the Supplemental Materials provide an in-depth exploration of mainstream tech-

nologies and future research directions, alongside a comprehensive discussion on long-term

dataset maintenance and updates. See Supplemental Materials C and D for details.

8 Conclusion

Datasets play a vital role in numerous research fields. Having a sufficient number of high-quality
datasets is essential for generating new scientific knowledge and ensuring the accuracy and de-
pendability of experimental findings. Specifically, public datasets enable the benchmarking of so-
lutions created by various groups and support the sharing of results that can be replicated and
verified by others.

In this article, we conduct a comprehensive survey of available datasets suitable for cloud com-
puting research. Through the analysis of 968 scientific papers, we collect and classify a total of
42 datasets. The majority of these datasets are applicable to three application scenarios: workload
analysis, resource allocation, and task scheduling, while fewer datasets are suitable for energy
efficiency, anomaly detection, and security scenarios. We classify the datasets based on 11 ob-
served characteristics, such as data collection dates, duration, and number of machines, to assist
researchers in finding datasets tailored to their specific needs. Third, We provide detailed descrip-
tions of each dataset to assist researchers in gaining a clearer understanding of their characteris-
tics, including descriptions, structure, fields, purposes, and so on. Fourth, we select 12 mainstream
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datasets and conduct a comprehensive analysis and comparison of their characteristics. Finally, we
discuss the existing issues with the datasets and highlight future directions for creating datasets
in cloud computing.

Our conclusion is that publicly available datasets covering energy efficiency and Web Trace
are still scarce or even lacking. Moreover, most datasets contain few performance metrics, and
there is currently a lack of large-scale datasets containing comprehensive metrics. Additionally, a
significant number of current datasets lack attack traffic. While datasets containing only benign
traffic are still valuable for security research, incorporating attack traffic to enhance them needs
extra effort and careful planning. Therefore, we encourage future authors to publicly release more
comprehensive datasets and to integrate a variety of attack scenarios into their experiments.
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