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ABSTRACT Multitarget tracking technology is the core topic in the field of intelligent driving. Multi-target
complex manoeuvring, measurement outliers and unknown environmental prior parameters strongly affect
the tracking accuracy of the target state. To address the accurate tracking of multitarget under the above
complex working conditions, we propose a new multitarget tracking algorithm, named the Multiconstrained
Generalized Probabilistic Data Association Filtering (MCGPDAF) algorithm. In this algorithm, we use
the target position and heading information to construct constraint parameters to calculate the association
probability between each effective measurement combination and the target track. This algorithm can
effectively suppress the measurement association anomalies and aprior information errors, as well as enable
the robust association of single-sensor multitarget measurements and accurate tracking of target states under
complex working conditions. On this basis, a multitarget tracking method based on composite perception
fusion is further constructed, and the correlation sequential track association algorithm and covariance cross
fusion algorithm are used to enable the track association and the estimation and fusion of target states among
multiple sensors, which further enhances the tracking accuracy of the multitarget state. The simulation and
real vehicle experiment results reveal that, compared to current advanced algorithms, the RMSE and MAPE
of the MCGPDAF algorithm for multitarget tracking are enhanced by an average of 23.97% and 24.35%,
respectively. Additionally, the MOTA and MOTP of the MCGPDAF algorithm improve by an average of
14.68% and 15.71%. Moreover, compared to single-sensor multitarget tracking, the RMSE and MAPE of
composite perception fusion results based on the MCGPDAF algorithm are further enhanced by 26.43% and
27.15% on average, which reflects the practicality of the tracking method showcased in this research.

INDEX TERMS Intelligent vehicle, multiconstraint, GPDA, composite perception, fusion, multitarget
tracking.

I. INTRODUCTION AND MOTIVATION
An intelligent vehicle is a comprehensive system that encom-
passes several aspects, including environment perception,
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path planning, decision-making and assisted driving. As a
prerequisite for ensuring correct decision-making and plan-
ning control of intelligent vehicles, environmental perception
directly determines the intelligence level and autonomous
driving ability of vehicles [1], [2]. However, intelligent
vehicles must typically face complex, dynamic and uncertain
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driving environments. Accurate perception and tracking of
vehicle target states and quantities has thus become a difficult
and critical task in terms of intelligent driving. Since the
multitarget tracking of intelligent vehicles involves a series of
uncertainty problems, such as random changes in the number
of targets, measurement outliers and noise interference,
missed sensor detection, and sudden changes in the target
motion state, the traditional single-sensormultitarget tracking
method cannot yield the tracking accuracy of multitargets in
the above complex scenes [3], [4]. Therefore, a multitarget
tracking method based on multisource information fusion is
highly important for accurately evaluating vehicle obstacle
dynamics.

Composite perception, that is, multisensor perception
fusion technology, can be categorized into three main
types based on the architecture: centralized, distributed
and hybrid [5]. The centralized fusion system has low
information loss and high data fusion accuracy. However, this
centralized processing method involving spatial registration,
data association, estimation fusion and other operations
has high requirements for communication efficiency and
processor performance, and real-time data processing is
difficult to guarantee [6]. The distributed fusion system can
first process the measurements of each sensor separately and
then achieve the combined reasoning and information fusion
of multisensor data in the fusion centre. Distributed fusion
has low channel capacity requirements, strong real-time
performance and fault tolerance, and expansion ease [7], [8].
The hybrid fusion system exploits the advantages of both
distributed and centralized systems, but its fusion structure
is the most complex of the systems, which increases the
burden of system communication and computing power [9].
Distributed fusion has gained extensive recognition and
application in the field of multitarget tracking because
of its low hardware performance requirements and strong
practicability.

At present, the multitarget obstacle tracking method for
intelligent vehicles relies mainly on distributed multisensor
parallel tracking and real-time fusion to achieve effective
target trajectory tracking and state monitoring. As the core
technology of modern sensor systems, multitarget tracking
algorithms and multisensor perception fusion technology
have been widely applied in terms of intelligent driving [10],
[11]. However, in actual multitarget obstacle perception
scenes, there are uncertainties in the target state and mea-
surement, which directly impact the tracking performance of
the multitarget tracking algorithm and the fusion accuracy of
multisensor information. Based on the analysis of the existing
studies, the current challenges faced by the distributed
multitarget tracking algorithm can be summarized as follows:
(1) Accurate state update and estimation of multitarget that
are close to adjacent targets and difficult to distinguish; (2)
Suppress the measurement outliers and process noise arising
from the unpredictable road environment; and (3) Accurate
generation, update and management of multitarget trajecto-
ries.

Current multitarget tracking algorithms can be categorized
divided into two primary groups: data association algorithms
and random finite sets. Data association algorithms combines
the state estimation and update for each target by calculating
the mutual association probability between each target
and different measurements at discrete times to estab-
lish a continuous multitarget trajectory. The representative
data association algorithms include the Joint Probabilistic
Data Association (JPDA) algorithm, Nearest Neighbour
(GNN) algorithm and multiple hypothesis tracking (MHT)
algorithm [12]. On the other hand, the multitarget tracking
algorithm based on random finite set is a Bayesian filter that
utilizes finite set statistics to estimate the state and quantity
of multiple targets, without considering data association.
Typical multitarget tracking algorithms based on random
finite sets include probability hypothesis density (PHD)
filters and multi-Bernoulli (MeMBer) filters [13]. However,
when handling dense dynamic clutter and unknown prior
parameters, the accuracy and performance of the above mul-
titarget tracking algorithm for state estimation and tracking
of adjacent targets are still not ideal. Therefore, constructing
a robust and efficient vehicle multitarget tracking method in
complex time-varying environments is still a topic of great
difficulty and research value.

To solve the challenge of multitarget tracking in intelligent
vehicles with measurement outliers and time-varying motion
states of targets in dense dynamic clutter environments,
a Multiconstrained Generalized Probabilistic Data Associ-
ation Filtering (MCGPDAF) algorithm is proposed. The
algorithm utilizes the position and heading data of dynamic
targets to construct constraint parameters to calculate the
association probabilities between effective measurement
combinations and the target trajectories, enabling the robust
association of single-sensor multitarget measurements and
accurate estimation and tracking of target states under
complex working conditions and environments. On this
basis, a multitarget obstacle tracking and monitoring method
based on composite perception fusion is further constructed.
The correlation sequential track association algorithm and
covariance cross fusion algorithm are used to conduct
track association and the estimation and fusion of target
states among multiple sensors, which further improves the
tracking accuracy of the multitarget state of the vehicle.
In general, the significant contributions of this research
are the following aspects: (1) A MCGPDAF algorithm is
proposed. (2) The MCGPDAF algorithm solves the problem
of single-sensor multitarget tracking under multitarget track
crossover or large manoeuvring. It can effectively suppress
the errors ofmeasurement associations andmotion estimation
models and can enhance the accuracy and robustness of
vehicle during multitarget tracking. (3) The multitarget
tracking of intelligent vehicles in diverse cluttered envi-
ronments during real driving scenarios is realized, and
excellent tracking performance is achieved. Moreover, the
tracking accuracy is further improved by multi-sensor
fusion.
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The main structure of this paper is as follows: This
section introduces the research motivation and contribution.
Section II discusses existing related research and their
shortcomings. Section III expounds on the multi-sensor data
preprocessing, spatial registration methods, and the basic
principles and formula derivation of MCGPDAF algorithm
and composite perception fusion method. Section IV mainly
covers the simulation and real vehicle experiment methods
and results for multitarget tracking in various environments,
analyzing the advantages of the proposed algorithm and
fusion architecture. Section V presents the conclusion,
providing a comprehensive summary of the primary contents
and significant results of this study.

II. RELATED WORK
The tracking and monitoring methods for multitarget obsta-
cles in intelligent vehicles must encompass two factors: a
single-sensor multitarget tracking algorithm and a multisen-
sor fusion criterion. Different combinations of multitarget
tracking algorithms and fusion criteria will have different
effects on the performance of distributed multisensor multi-
target tracking.

The single-sensor multitarget tracking algorithms can be
categorized into data association algorithms and random
finite sets. The GNN and MHT are classical multitarget data
association algorithms [14], [15]. However, GNN requires
the number of targets as a known prior parameter, and the
tracking performance of MHT is severely limited in complex
environments such those with as dense targets and low
signal-to-noise ratios. To solve these problems, the JPDA
algorithm was proposed for multitarget tracking under a
dense clutter condition [16]. However, the computational
complexity of JPDA is not ideal, which makes it difficult in
meeting real-time requirements. To overcome this limitation,
lightweight improved algorithms such as the Suboptimal
Joint Probabilistic Data Association (SJPDA), Near-optimal
Joint Probabilistic Data Association (NJPDA) and Maxi-
mum Likelihood Probabilistic Data Association (ML-PDA)
have also been proposed successively, but the accuracies
of these algorithms has been sacrificed to reduce their
complexity [17], [18], [19]. The generalized probabilistic
data association (GPDA) algorithm defines new feasibility
rules and a method for calculating the interdependent
association probability, which greatly reduces the compu-
tational complexity and has high computational efficiency
and scalability [20], [21]. In addition, The Joint Integrated
Probabilistic Data Association (JIPDA) algorithm generates
all possible combinations of track-measurement assignments
to form joint events, and subsequently computes the posterior
probability for each joint event. Based on these probabilities,
the data association coefficient for each track is calculated
to update the track estimate. The JIPDA algorithm addresses
track management when there is an unspecified quantity
of targets and a time-varying state, suppresses unnecessary
computational power consumption [22].

The application of random finite set theory has pro-
duced a new solution to the multitarget tracking problem.
Mahler et al. proposed a multisensor multitarget Bayesian
filter for multitarget state estimation based on finite set
statistics. This method cannot be applied in engineering
settings due to the complex integral operation of random
finite sets in Bayesian recursion. To solve this problem,
Yu [23] successively proposed the PHD and the cardinalized
probability hypothesis density (CPHD) filter, which have
relatively stable filtering accuracies and high engineering
application values. Garcia-Fernandez and Svensson [24]
proposed a trajectory probability hypothesis density (TPHD)
filter and trajectory cardinalized probability hypothesis
density (TCPHD) based on minimized KL divergence, which
can infer and update the survival trajectory by recursively
propagating Poisson multitrajectory density. In addition, Cao
and Zhao [25] proposed a multi-Bernoulli (MeMBer) filter,
which can use themulti-Bernoulli distribution to approximate
the multitarget posterior density and estimate the target
state and number at the current time. However, the above
algorithms cannot allocate the track to the target. To solve
this problem, Guo et al. [26] proposed a generalized labelled
multi-Bernoulli (GLMB) filter to output the target track
information. On this basis, Cheng et al. [27] further proposed
the Fast Labelled Multi-Bernoulli (FLMB) filter, which
achieves the state estimation performance of MeMBer filters
and improves the efficiency of target track label estimation.
Cai et al. [28], [29] developed a life estimation approach for
complex time-varying engineering systems using dynamic
Bayesian networks, yielding accurate prediction results and
meeting the expected technical performance.

The multisensor fusion criterion plays a crucial role
in achieving more accurate target state information by
effectively combining the track information from different
sensors.Several approaches have been proposed, including
convex combination fusion [30], covariance intersection
(CI) fusion [31], generalized covariance intersection (GCI)
fusion [32] and arithmetic average (AA) fusion [33], [34].
The convex combination fusion algorithm is considered
the optimal method for estimation fusion when the local
estimation errors of the sensor are not correlated. However,
due to the correlation among the local estimations of each
sensors during the fusion process, the CI fusion algorithm has
been proposed for solving the optimal weighted distributed
fusion estimation problem under the condition that the
cross-covariance is unknown. Furthermore, to satisfy the
fusion of any probability density, the GCI fusion algorithm
was proposed. The AA algorithm and the GCI algorithm are
both average consensus fusion methods. The GCI algorithm
can better suppress false alarms than other algorithms, and
the AA algorithm has stronger robustness. In general, the
multitarget tracking algorithms for data association classes
are suitable for convex combination fusion and CI fusion
criteria, and the multitarget tracking algorithms for random
finite set classes are suitable for AA fusion and GCI fusion
criteria.
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In summary, research on distributed multisensor mul-
titarget tracking has made some progress and has been
widely used. However, problems such as the precise track-
ing of adjacent or cross targets, measurement association
anomalies, motion estimation model errors, and target track
management have not been considered. To solve the above
problems, a dynamic multitarget obstacle tracking and
monitoring method for vehicle routing based on multiple
constraint composite perception association filtering is
proposed. This method addresses the problems of vehicle
multitarget tracking with target measurement outliers and
a time-varying motion state in a dense dynamic clutter
environment, improving the tracking performance and mon-
itoring accuracy of multitargets under complex working
conditions.

III. TRACKING AND MONITORING OF DYNAMIC
MULTITARGET OBSTACLES ON VEHICLE PATHS
Multitarget obstacle tracking is essentially estimating, fusing
and continuously monitoring the number and state of targets
by utilizing noisy measurement acquired from multiple
sensors. Considering the different sensing accuracies and
expression characteristics of different sensors, preprocessing
and spatial registration are first performed on multisensor
data. Furthermore, a MCGPDAF algorithm is proposed,
which uses the position and heading information of the
dynamic target to construct constraint parameters and
enables the robust association of single-sensor multitarget
measurements and accurate tracking of the state under
complex conditions such as target intersections. On this
basis, a multitarget obstacle tracking and monitoring method
based on composite perception fusion is further constructed,
combining the correlation sequential track association
algorithm and the covariance cross fusion algorithm to
achieve multisensor multitarget track association and state
estimation fusion. To provide a visual representation, the
application scenario diagram of the algorithm is indicated
in Fig. 1, while the overall architecture of the multitarget
obstacle tracking and monitoring method is indicated in
Fig. 2.

FIGURE 1. The application scenario diagram of the algorithm.

A. MULTISENSOR DATA PREPROCESSING
The ARS408-21SC3 77 GHz millimetre-wave (MMW) radar
(Continental AG), Mobileye EyeQ4 smart camera and R-
Fans32 lidar (Surestar, Inc.) are used as the perception
layers of the distributed fusion system. Considering the
different perception characteristics and data expression forms
of different sensors, it is necessary to preprocess the MMW
radar, lidar and camera data to minimize the influences of
dense clutter and invalid targets on the tracking and fusion
effects. The perception range and visual field of all the
sensors on intelligent vehicle are shown in Fig. 3. The target
information of each sensor after data preprocessing during
multitarget tracking in the same scene is shown in Fig. 4. This
provides more intuitive multitarget brief information for the
target tracking algorithm.

Based on the target characteristics obtained by MMW
radar, radar targets can be divided into three main categories:
(1) nondangerous targets: pedestrians and vehicles far away
from the vehicle or outside the motor vehicle lane; (2) false
alarm targets: false targets generated by radar measurement
noise; and (3) effective goals: real targets other than the above
targets. By constraining the horizontal and longitudinal detec-
tion ranges of the radar, the interference of nonhazardous
targets and some false alarm targets can be mitigated, thereby
reducing the calculation time and calculation amount of the
multitarget tracking. Considering the detection range needed
for safe driving of the vehicle, the longitudinal detection
distance and angle range of the radar long-range and short-
range are restricted to within 150 m, ±10◦ and 45 m, ±45◦,
respectively.

The original lidar signal consists of three-dimensional
laser point cloud data, which are characterized by an uneven
distribution of pixels and a disordered arrangement of point
clouds. Therefore, preprocessing the original point cloud data
is essential to attain the position and state of the targets after
clustering. Firstly, voxel grid filtering and radius filtering are
utilized to process the point cloud data, which can effectively
diminish the amount of point clouds and outliers while
preserving the shape attributes of the point clouds. Next,
the plane grid approach is applied to partition and eliminate
ground point cloud data. Thirdly, the approach of region
growing is employed to effectively partition the point cloud
of the target. Finally, the DBSCAN method is employed
for clustering the segmented point clouds of the targets.
This method can cluster point clouds of any shape and can
effectively address outliers.

The Mobileye EyeQ4 smart camera is used to obtain
and process image data. By accurately mapping the pixel
position to the actual position, we establish the geometric
model of the camera imaging and calculate both the internal
and external parameters of the camera, thus achieving the
geometric calibration of the camera. The calibrated camera
can directly output data such as the category, speed and
distance of the targets. Therefore, the camera data are directly
preprocessed by using the ID number to filter and eliminate
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FIGURE 2. The overall architecture of the multitarget obstacle tracking and monitoring method.

FIGURE 3. The perception range and visual field of all the sensors.

nonessential targets and their associated information outside
the motor vehicle lane.

B. SPATIAL REGISTRATION OF DISTRIBUTED
MULTISENSOR SYSTEMS
Each sensor on the intelligent vehicle is rigidly connected to
the body, and the relative attitude and displacement between
each sensor and the vehicle are fixed. Therefore, the data
points obtained by each sensor have a unique position
coordinate corresponding to the sensor in the environmen-
tal coordinate system. In this section, by extracting the
corresponding feature points between the image coordinate
system and each sensor, and the transformation and unified

FIGURE 4. Target information of each sensor after data preprocessing in
the same scene.

relationship between the camera coordinates, MMW radar
coordinates, lidar coordinates and image pixel coordinates
are constructed to enable the spatial registration of multiple
sensors.

Separate calibrations are conducted for different sensors
so that the normal vectors of the camera, Lidar and MMW
radar are parallel to the advancement direction of the vehicle.
The camera and image pixel coordinate system are defined as
Op−xpyp andOc−xcyczc, respectively. The zc axis coincides
with the camera optical axis, while the xc and yc axis are
parallel to the xp and yp axis, respectively. On this basis, the
projection coordinate systems of the MMW radar, lidar and
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camera are established as Orw − xrwyrwzrw,Olw − xlwylwzlw
and Ocw − xcwycwzcw, respectively. Orw,Olw and Ocw are the
projection points of each sensor centre above the ground.
The x-axis and y-axis of each coordinate system indicates
towards the right side and the forward direction of the vehicle
body, respectively, while the z-axis is vertical. The projection
coordinate systems of the three sensors are positioned parallel
to one another in space. The diagram illustrating the spatial
relative relationship is depicted in Fig. 5.

FIGURE 5. The relative relationships of the projection coordinate systems
of the three kinds of sensors in space.

According to the pinhole imaging model, the following
relationships exist between the Op − xpyp and Oc − xcyczc
coordinate system: 

xc
zc

=
xp − cx
fx

yc
zc

=
yp − cy
fy

(1)

where cx and cy are the optical axis offsets.
Through the rotation and translation of the coordinate

system, we can obtained the transformation relationship
between the Oc − xcyczc and Ocw − xcwycwzcw coordinate
system:xcyc

zc

 =

1 0 0
0 − sin θ − cos θ

0 cos θ sin θ

 xcwycw
zcw

 +

 0
H cos θ

H sin θ


(2)

During the tracking of vehicle target, the pavement is
generally considered to be a plane, so the z-axis height can be
ignored. According to Eq. (1) and Eq. (2), we can obtained
the transformation relationship between the Op − xpyp and
Ocw − xcwycwzcw coordinate system:

xp =
fxxcw + cx (ycw cos θ + H sin θ)

ycw cos θ + H sin θ

yp =
fy (H cos θ − ycw sin θ) + cy (ycw cos θ − sin θ)

ycw cos θ − sin θ

(3)

The mutual conversion between the Ocw − xcwycwzcw and
Orw− xrwyrwzrw coordinate system is achieved by converting
the coordinate system:{

xcw = xrw − Lx
ycw = yrw − Ly

(4)

According to Eqs. (1), (3) and (4), we can acquired
the computational relationship of converting any point
in the Orw − xrwyrwzrw to the Op − xpyp coordinate
system: 

xp = cx +
(xrw − Lx)fx

H sin θ + (yrw + Ly) cos θ

yp = cy +
[H cos θ − (yrw + Ly) sin θ ]fy
H sin θ + (yrw + Ly) cos θ

(5)

where fx and fy represent the focal lengths, which are internal
parameters of the camera. Lx and Ly are the distances from the
x-axis and y-axis in the Orw − xrwyrwzrw coordinate system
to the x-axis and y-axis in the Ocw − xcwycwzcw coordinate
system, respectively.

Finally, the transformation relationship between the Olw −

xlwylwzlw andOp−xpyp coordinate system is attained by using
multiple sets of corresponding points:xpyp

1

 = K
[
R T
0 1

] 
xlw
ylw
zlw
1

 (6)

The above coordinate transformation is used to solve (R |

T ), and the translation vector T and the rotation matrix
R can be calculated given at least four groups of corre-
sponding points. K is the internal parameter matrix of the
camera.

C. MULTITARGET TRACKING AND STATE ESTIMATION
1) GENERALIZED PROBABILITY DATA ASSOCIATION
The Generalized Probabilistic Data Association (GPDA)
algorithm defines new feasibility rules using generalized
joint events. When the count of targets is T and the count
of measurements is mk , the new feasibility rules are as
follows:

(1) Each measurement can come from one or more targets;
(2) Each target can have one or more measurements;
(3) The probability of one-to-one correspondence between

anymeasurement and the target is not less than the probability
of associated events in rules (1) and (2).

According to the definition rules, the set of generalized
joint events is segregated into two subsets. The generalized
events satisfying feasibility rule (1) take the target as the
basis, and the generalized events satisfying feasibility rule (2)
take the measurement as the basis.

Given the associated event θjt , the state variable of target
t is assumed to follow a normal distribution with mean
x̂t (k | k − 1) and variance Pt (k | k − 1). The probability
density function fjt between the target measurement and each
individual target is subsequently computed.
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The probability density function fjt is calculated as follows:

fjt = p
(
zjt | mk ,Z kt

)

=



P−1
g

∣∣∣2πS ft (k)∣∣∣− 1
2

exp
[
−
1
2

[
vfjt (k)

]T [
S ft (k)

]−1
vfjt (k)

]
j ̸= 0, t ̸= 0

(nV )−1 (
1 − PdPg

)
j = 0, t ̸= 0

λ j ̸= 0, t = 0
0 j = 0, t = 0

(7)

vfjt (k) = zjt (k) − Ẑt (k | k − 1) (8)

where S ft (k) denotes the residual covariance matrix of
target t, Ẑt (k | k − 1) denotes the one-step prediction of
the measurement of target t at time k, zjt (k) is the j-th
measurement of target t at time k.vfjt (k) and S ft (k) denote
the innovation and innovation covariance matrix of target t ,
respectively. Pd is the probability of target detection, Pg is the
probability of measurement within the correlation gate, and λ

represents the clutter density, which refers to the number of
false measurements per unit space.

The probability density function f0t (j = 0, t ̸= 0)
represents the scenario in which the target has not obtained
any valid measurements; fj0(j ̸= 0, t = 0) indicates
that a measurement does not pertain to any of the system
targets; f00(j = 0, t = 0) indicates that the zero target
is associated with the zero measurement, which is of no
practical significance.

The probability statistical matrix N is generated based on
the statistical distance between the measurement j and the
target t .

N =
[
fjt

]
(9)

2) MULTICONSTRAINED GENERALIZED PROBABILISTIC
DATA ASSOCIATION FILTERING ALGORITHM
During the process of multitarget tracking, the intricate
variations in the real environment and target motion can
result in an escalation of measurement outliers and process
noise. The presence of unknown environmental clutter prior
information and limited target motion models often prove
inadequate in effectively addressing this issue, thereby
significantly impacting the performance and accuracy of
multitarget tracking. The present study addresses this concern
by proposing a novel algorithm, namely the MCGPDAF
algorithm.

In accordance with the laws of motion governing vehicle
targets, changes in their motion states such as speed,
direction and acceleration are continuous processes. From the
perspective of sensors like radar or cameras, these continuous
changes are most intuitively and accurately reflected in the
variations of target position and heading angle. Therefore,
during multitarget tracking, there should be no sudden shifts
observed between adjacent moments in terms of target

position and heading angle values. This provides a theoretical
foundation for distinguishing effective measurements from
irrelevant ones under dense clutter conditions. Furthermore,
in the case of target crossing, obvious differences and
distinctions in positions and heading angles can be observed
among different targets, and both of which exhibit sustain-
able estimation characteristics. Consequently, incorporating
target position and heading angle as constraint parameters
can mitigate measurement-track association uncertainty and
effectively enhance multitarget tracking performance of
intelligent vehicles operating under complex environments.

The MCGPDAF algorithm leverages the position and
heading information of dynamic targets to establish con-
straint parameters for computing the innovation of position
and heading angles between the predicted points and
measurement points of multitarget trajectory. It assigns
higher correlation weights to measurements with smaller
innovations, thereby mitigating the adverse effects of process
noise and measurement outliers on the interconnection
between the targets and the measurements. This algorithm
achieves robust association and accurate tracking of multiple
target measurements in scenarios involving close proximity
or intersection of targets. Additionally, a fading factor is
incorporated in the filtering process to adaptively adjust
the time-varying gain matrix, thereby enabling real-time
computation of residuals for multitarget state estimation. This
ensures the residual sequence remains orthogonal and further
mitigates the impact of measurement anomalies and process
noise, ultimately enhancing the accuracy of multitarget
tracking and state estimation. Finally, by constructing a
target existence inspection rule to determine the generation
or termination of each target track, the maintenance and
management of multitarget tracks are realized, and the
efficiency of multitarget data association is further improved.
The process of the MCGPDAF is revealed in Algorithm 1.
Problem Description:
During vehicle multitarget tracking, the state equation and

measurement equation of target t are expressed as follows:

x t (k) = F t (k − 1)x t (k − 1) + vt (k − 1) t = 1, 2, . . .T

(10)

zj(k) = H (k)x t (k) + wt (k) t = 1, 2, . . .T ; j = 1, 2, . . .mk
(11)

where T represents the overall count of targets and mk is the
effective measurement generated by the sensor. x t (k) refers
to the state vector of target t at time k, zj(k) denotes the j-th
measurement vector of the sensor at time k . Furthermore,
H (k) and F t (k − 1) denote the measurement matrix and
the state transition matrix, respectively. The process noise
vt (k − 1) ∼ N

(
0,Qt (k − 1)

)
and the measurement noise

wt (k) ∼ N
(
0,Rt (k)

)
are independent zero-mean Gaussian

white noises.
The effective measurement set of the sensor at time K is:

Z (k) =
{
z1(k), z2(k), . . . , zmk (k)

}
(12)
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The set of effective measurement acquired by the sensor
from the initial time until time k is represented as Z k ,
where the effective measurement set belonging to target t is
represented by Z kt .

Z k = {Z (1),Z (2), . . . ,Z (k)} (13)

Assuming that each measurement incorporates informa-
tion regarding the position and heading of the target, then:

zj(k) =

{
zζj (k), z

γ
j (k)

}
(14)

The probability density function between measurement j
and target t can be expressed as:

p
(
zζj (k), z

γ
j (k) | Z k

)
= p

(
zζj (k) | Z k,ζ

)
· p

(
zγj (k) | Z k,γ

)
(15)

where Z k,ζ and Z k,γ respectively denote the cumulative sets
of target position and heading angle measurements up to time
k .

Step 1: Initialize the mean and variance of the target state
x̂ t (0 | 0) and Pt (0 | 0) and predict each target state and its
covariance.

x̂ t (k | k − 1) = F t (k − 1)x̂ t (k − 1 | k − 1) (16)

Pt (k | k − 1) = F t (k − 1)Pt (k − 1 | k − 1)

×
[
F t (k − 1)

]T
+ Qt (k − 1) (17)

Step 2: Determine the effective measurement of each
target.

When r tm(k)
2

≤ r2G, the measurements are considered
valid.

r tm(k)
2

=

[
Z kt − H (k)x̃ t (k | k − 1)

]
S t (k)−1

×

[
Z kt − H (k)x̃ t (k | k − 1)

]T
≤ r2G (18)

Step 3: Calculate the probability density function under
different constraints.

By calculating the variation of the position 1d tj (k)
between the predicted trajectory point of the target and each
measurement point at time k , we obtain the innovation vζjt (k)
regarding the position of the target.

1d tj (k) = vζjt (k) = zζjt (k) − Ẑt (k | k − 1) (19)

where zζjt (k) denotes the j-th position measurement of target
t at time k , while Ẑt (k | k − 1) represents the one-step
prediction of the measurement of target t at time k .
According to the definition of geometric spatial distance,

a smaller positional deviation between the predicted point of a
target trajectory and measurement point at the same moment
indicates a reduced geometric spatial distance. This implies
an increased probability that the measurement belongs to the
target trajectory.

Therefore, appropriate position weights are assigned to
each measurement point based on the magnitude of 1d tj (k),
and the probability density function ζjt between the positional
measurement and the corresponding target is computed.

ζjt = p
(
zζj (k) | mk ,Z kt

)
(20)

The variation of the heading angle 1δtj (k) between the
predicted point of the target trajectory and each measurement
point should be calculated simultaneously within the same
observation dimension of the sensor.

The heading angle δt (k) of the predicted point of the target
trajectory at time k is defined based on the direction of the
vector x̂ t (k−1)x̂ t (k | k−1), and the calculation for δt (k) can
be expressed as follows, (21), as shown at the bottom of the
next page.

The heading angle δ̃tj (k) of each measurement point at time
k is defined based on the direction of the vector x̂ t (k−1)zj(k),
and the calculation for δ̃tj (k) can be expressed as follows:

δ̃tj (k)

= π (1 − em)

+ em
arccos

(
x ′
j (k) − x̂ t

′

(k − 1)
)

√(
x ′
j (k) − x̂ t ′ (k − 1)

)2
+

(
y′j(k) − ŷt ′ (k − 1)

)2
(22)

where x̂ t (k−1) denotes the state estimation of target t at time
k − 1, x̂ t

′

(k − 1) and ŷt
′

(k − 1) are the components of x̂ t (k −

1), x̂ t (k | k−1) represents the state prediction value of target t
at time k, x̂ t

′

(k | k−1) and ŷt
′

(k | k−1) are the components of
x̂ t (k | k−1), zj(k) denotes the j-th measurement of the sensor
at time k; x ′

j (k) and y
′
j(k) are the components of zj(k), ec and

em determine the vector directions of vectors x̂ t (k − 1)x̂ t (k |

k − 1) and x̂ t (k − 1)zj(k), respectively.

ec =

(
ŷt

′

(k | k − 1) − ŷt
′

(k − 1)
)

∣∣ŷt ′ (k | k − 1) − ŷt ′ (k − 1)
∣∣ (23)

em =

(
yj(k) − ŷt

′

(k − 1)
)

∣∣yj(k) − ŷt ′ (k − 1)
∣∣ (24)

By calculating the variation of the heading angle 1δtj (k)
between the predicted trajectory point of the target and each
measurement point at time k , we obtain the innovation vγjt (k)
regarding the heading angle of the target.

1δtj (k) = vγjt (k) = δ̃tj (k) − δt (k) (25)

Based on the motion characteristics of vehicles, the
variation in the motion state of the target between adjacent
moments is continuous and devoid of abrupt changes.
Consequently, a smaller 1δtj (k) value signifies a higher
probability of correlation between the measurement and the
target trajectory. Appropriate directional weights are assigned
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to each measurement point based on the magnitude of
1δtj (k), and the probability density function γjt between the
measurement of the heading angle and the corresponding
target is computed.

γjt = p
(
zγj (k) | mk ,Z kt

)
(26)

Step 4: Calculate the interconnection probability.
According to Eq. (13), the constraints on target position

and heading are introduced into the data association event θjt .
Subsequently, the probability density function pjt (j ̸= 0, t ̸=

0) of the data association event θjt is computed, that is, the
statistical distance between measurement j(j ̸= 0) and target
t(t ̸= 0). The calculation can be formulated as follows:

pjt = ζjt · γjt = p
(
zζj (k) | mk ,Z kt

)
· p

(
zγj (k) | mk ,Z kt

)
= P−1

g

∣∣∣2πSζ
t (k)

∣∣∣− 1
2
exp

[
−
1
2

[
vζjt (k)

]T [
Sζ
t (k)

]−1
vζjt (k)

]
·
∣∣2πSγ

t (k)
∣∣− 1

2 exp
[
−
1
2

[
vγjt (k)

]T [
Sγ
t (k)

]−1 vγjt (k)
]
(27)

where vζjt (k) and vγjt (k) represent the innovations of the

target’s position and heading angle, Sζ
t (k) and S

γ
t (k) denote

the innovation covariance matrices of the target’s position
and heading angle, respectively, Pg represents the probability
of a measurement falling within the association gate. The
calculation of probability density functions p0t (j = 0, t ̸=

0), pj0(j ̸= 0, t = 0) and p00(j = 0, t = 0) can be referred to
as Eq. (7).

To eradicate the influences of varying gauges on the
weighting results, the pjt is normalized based on the target
and measurement, respectively, and the probability statistical
matrices Pjt and P′

jt are generated:

Pjt =
pjt∑T
t=0 pjt

(28)

P′
jt =

pjt∑mk
j=0 pjt

(29)

Finally, the interconnection probability βjt between mea-
surement j and target t is calculated by applying Bayes’
theorem.

β̃jt (k) =
1
c

[
Pjt

T∏
tr=0

mk∑
r=0

Pr,tr + P′
jt

mk∏
r=0

T∑
tr=0

P′
r,tr

]
(30)

where r and tr represent the corresponding measurement
labels and target labels, respectively, and c is the normaliza-
tion coefficient.

Step 5: Combination estimation and state updating.

Firstly, the fading factor η(k) is introduced into the
estimation process to obtain an appropriate time-varying
gain matrix, ensuring that the residual sequence remains
orthogonal throughout.

η(k) =

{
η0, η0 > 1
1, η0 ≤ 1

(31)

The calculation of η0 can be expressed as follows:

η0 =
tr

[
V0,k − Rk

]
tr

[
Pyk − Rk

] (32)

where Pyk denotes the error covariance of the measurement
vector, Rk denotes the error covariance of the measurement
noise, and the specific derivation of η0 can be found in
reference [35].

The iterative calculation expression for the residual
covariance matrix V0,k is as follows:

V0,k = E
[
vkvTk

]
=


vkvTk k = 1
µV0,k−1 + vkvTk

1 + ρ
k > 1

(33)

The combined estimation of all hypotheses is obtained:

x̂ tj (k | k) = x̃ t (k | k − 1) + K t (k)
[
zj(k)−H (k)x̃ t (k | k−1)

]
(34)

Ptj (k | k) = Pt (k | k − 1) − η(k) · K t (k)S t (k)−1 [
K t (k)

]T
(35)

Eventually, the updated target state and covariance matrix
are determined:

x̂ t (k | k) =

mk∑
j=0

β̃jt (k)x̂ tj (k | k) (36)

Pt (k | k) =

mk∑
j=0

β̃jt (k)
[
Ptj (k | k) + x̂ tj (k | k)

[
x̂ tj (k | k)

]T]
− x̂ t (k | k)

[
x̂ t (k | k)

]T (37)

Step 6: Inspect the target existence. When the target
disappears within the range of vehicle perception, the system
needs to determine and eliminate the trajectory of the target
to avoid occupying nonessential computing and storage
resources and affecting the data association efficiency of
other targets. The track termination threshold is indicated
as ξL , the count of consecutive missed detections of the
target t measurement-track association is ntL , and the initial
value is 0. When the track described by target t at a
certain time cannot obtain the associative measurement, ntL
is increased by 1, and the trajectory is maintained by using

δt (k) = π (1 − ec) + ec
arccos

(
x̂ t

′

(k | k − 1) − x̂ t
′

(k − 1)
)

√(
x̂ t ′ (k | k − 1) − x̂ t ′ (k − 1)

)2
+

(
ŷt ′ (k | k − 1) − ŷt ′ (k − 1)

)2 (21)
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the measurement prediction value at the current time. If the
number of consecutive missed detections is ntL > ξL , the
target is determined to disappear, and the target tracking is
terminated.

Algorithm 1Multiconstrainted Generalized Probability Data
Association Filtering Algorithm (MCGPDAF)
Iutput: {x̂ t (k − 1),Pt (k − 1)},Z (k)
1: Initialize x̂ t (0 | 0),Pt (0 | 0), r2G
2: for t = 1, 2, . . .T and j = 1, 2, . . .mk do
3: Prediction of the state: x̂ t (k | k−1) and Pt (k | k−1)
4: while r tm(k)

2
≤ r2G do

5: Calculate 1d tj (k) and ζjt according to Eq. (19) -
(20)

6: Calculate 1δtj (k) and γjt according to Eq. (21) -
(26)

7: Calculate pjt and normalize it according to Eq.
(27) - (29)

8: Calculate β̃jt (k)
9: end while

10: Calculate the fading factor η(k) according to Eq. (31)
- (33)

11: Combination estimation: x̂ tj (k | k) and Ptj (k | k)
12: Update x̂ t (k | k) and Pt (k | k)
13: Estimate the target existence and manage multiple

target tracks
14: end for
15: Return x̂ t (k | k),Pt (k | k)
Output: x̂ t (k | k),Pt (k | k)

D. MULTISENSOR CORRELATION SEQUENTIAL TRACK
ASSOCIATION
To achieve the optimal matching of the same target among
multiple sensors during vehicle multitarget obstacle track-
ing and monitoring, the correlation sequential association
algorithm is used to correlate the estimated tracks of
multisensor targets in this paper. The correlation sequential
algorithm accounts for the correlation between the historical
correlation data and the state estimation errors on the basis
of the traditional modified correlation method and can
achieve better multitrajectory association performance under
complex conditions such as dense clutter and target crossover.

Hypothesis The set of targets tracked by any two sensors c
and r is as follows:

Nc = {1, 2, 3, . . . ,Tc} ,Nr = {1, 2, 3, . . . ,Tr } (38)

The target state estimation difference between two sensors
at time k is indicated as follows:

Dkab = {dab(i)} i = 1, 2, 3, . . . , k; a ∈ Nc; b ∈ Nr (39)

where dab(l) = x̂ca(k) − x̂rb(k), x̂
c
a(k) denotes the state

estimation value of sensor c to target a, and x̂rb(k) denotes
the state estimation value of sensor r to target b.

Let H0 and H1 be the following assumptions: H0 indicates
that the state estimations x̂ca(k) and x̂

r
b(k) belong to the same

target; H1 indicates that the state estimations x̂ca(k) and x̂
r
b(k)

do not belong to the same target.
The likelihood function ratios of the joint probability

density of H0 and H1 are constructed as follows:

L(Dkab) =
f0(Dkab | H0)

f1(Dkab | H1)
(40)

The logarithmic likelihood function of the above equation
is:

lnL(Dkab) = −
1
2

k∑
i=1

[dab(k)]TBab(k)−1dab(k) + C (41)

where Bab(k) = Pca(k) + Prb(k) − Pcrab(k) − Prcba(k) and C is a
constant.

According to Eq. (41), the modified log-likelihood func-
tion is defined as:

ρkab =

k∑
i=1

[dab(i)]TBab(i)−1dab(i)

= ρab(k − 1) + [dab(k)]TBab(k)−1dab(k) (42)

where ρkab obeys the χ2 distribution with knx degrees of
freedom.

Finally, hypotheses H0 and H1 are tested. If

ρkab ≤ δ(k) (43)

then H0 holds; otherwise, H1 holds. The threshold δ(k) is
chosen according to the distribution of χ2, and δ satisfies:

p{ρkab > δ(k) | H0} = α (44)

where α is the significance level of the test, usually 0.05.

E. MULTISENSOR COVARIANCE CROSS FUSION
To achieve the optimal weighted distributed fusion estima-
tion under the condition of unknown crosscovariance, the
covariance intersection algorithm is employed to fuse the
target state estimation of the multisensor. The covariance
intersection algorithm uses local state estimation and its error
variance information for fusion and estimation, which avoids
complex correlation calculations, and the fusion result has
good conservatism and consistency.

The batch covariance Intersection algorithm is used to
obtain the multisensor fusion estimate x̂CI (t), and the upper
bounds of the actual error variance PCI , x̂CI (t) and PCI can
be expressed as follows:

x̂CI (t) = PCI [ω1P
−1
1 x̂1(t) + ω2P

−1
2 x̂2(t)

+ · · · + ωLP
−1
L x̂L(t)] (45)

PCI =

[
ω1P

−1
1 + ω2P

−1
2 + · · · + ωLP

−1
L

]−1
(46)

where the optimal parameters are ωi ∈ [0, 1], and ω1 + ω2 +

· · · + ωL = 1.
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The minimizing performance index minωi∈(0,1) tr (PCI ) is:

min
ωi∈(0,1)

tr (PCI )

= min
ωi∈(0,1)

tr
{[

ω1P
−1
1 + ω2P

−1
2 + · · · + ωLP

−1
L

]−1
}

(47)

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS
A. PARAMETER AND SCENARIO SETTING FOR
SIMULATION EXPERIMENT
To assess the superiority of the proposed MCGPDAF
algorithm for multitarget tracking, a simulation experiment
considering the tracking issue of single sensor multitarget
complex manoeuvring in dense dynamic clutter environment
is conducted. In this experiment, Prescan8.5,MATLAB2020a
and an IPC equipped with a Core i9-12900K are employed as
the experiment platform for joint simulation. The simulation
scenario encompasses complex manoeuvring conditions such
as target crossing, turning and velocity variation. The
constant velocity (CV) motion model is employed to estimate
the approximate target state to assess the multitarget tracking
performance of the algorithm in case of the errors of the
motion estimate model. The state vector of the system can be
expressed as xk = [xk , ẋk , yk , ẏk ]T , where xk and yk represent
the relative longitudinal and transverse distances, while ẋk
and ẏk represent the relative longitudinal and transverse
velocities. The state equation of the system under the CV
model is indicated as follows:

xk = FCV · xk−1 + ωCV (48)

where FCV represents the status transition matrix, ωCV
represents the process noise, and the parameter expressions
FCV and ωCV are provided in reference [36].

According to the mapping relation between the target state
space and the measurement space within the polar coordi-
nates system, the measurement equation can be indicated as
follows:

zk =

rkφk
τk

 + vk =



√
x2k + y2k

arctan
yk
xk

xk ẋk + yk ẏk√
x2k + y2k

 + vk (49)

where the measurement vector of the radar sensor includes
the centroid position (rk , ϕk) and the radian velocity τk of
the moving target and vk represents the system measurement
noise.

To fully validate the virtues of the proposed algorithm in
multitarget tracking, a simulation experiment is performed
considering multitarget tracking working conditions such as
target crossing, turningmanoeuvres and speed changes. In the
simulation experiment, two target vehicles and a tracking
vehicle are established, and the tracking vehicle is equipped
with a MMW radar sensor to track multiple targets. The
environment clutter density λ = 2 × 10−4. The sampling
period of the MMW radar is 0.01 s, while the total duration

of simulation observation is 45 s. The original state of the
target T1 is x0 = [100 m, 14.1 m/s, 58.5 m, 0 m/s]T . This
target is subjected to a uniformly accelerated motion at
0 ∼ 23 s and 33 ∼ 45 s and a uniformly decelerated
motion at 23 ∼ 33 s. The original state of the target T2
is x ′

0 = [140 m, 16.7 m/s, 51.5 m, 0 m/s]T . This target is
subjected to a uniformly accelerated motion at 0 ∼ 22 s
and 32 ∼ 45 s and a uniformly decelerated motion at
22 ∼ 32 s. The original state of the tracking vehicle T0 is
xI = [140 m, 13.8 m/s, 55 m, 0 m/s]T , and the vehicle is
subjected to a uniformly accelerated motion at 0 ∼ 24 s and
37 ∼ 45 s and a uniformly decelerated motion at 24 ∼ 37 s.
The simulation scenario and vehicle trajectory are indicated
in Fig. 6.

FIGURE 6. The simulation scenario and vehicle trajectory.

B. SIMULATION RESULTS ANALYSIS
In the above simulation scenarios, the JIPDAF [22] and
FLMB [27] algorithms are compared with the MCGPDAF
algorithm proposed in this research to verify the multitarget
tracking performance of the proposed algorithm. Taking
the root mean square error (RMSE) and mean absolute
percentage error (MAPE) as evaluation indicators of the
multitarget tracking accuracy of the algorithm.

RMSE =

√√√√ 1
N

N∑
i=1

(
x̂i − xi

)2 (50)

MAPE =
1
N

N∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣ × 100% (51)

where x̂i and xi represent the optimum estimated value and
the truth value of the relative speed or relative distance of
each target in the multitarget tracking process, respectively.
Moreover, N denotes the total sampling times of the sensor.
Using the above three algorithms to track multitargeted

vehicles, the relative velocity and relative distance between
the tracking vehicle T0 and the target T1 are obtained as
indicated in Fig. 7a and 7b, respectively. The relative velocity
and relative distance between the tracking vehicle T0 and
the target T2 are indicated in Fig. 8a and 8b, respectively.
The multitarget tracking accuracy results of the different
algorithms are revealed in Table 1 and Fig. 9. The multitarget
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tracking performances of the algorithms are compared and
analysed according to the above simulation results. When
the targets T1 and T2 perform cross motion and turn
manoeuvres, the target measurement and data association
are abnormal, resulting in an increased RMSE of the above
three algorithms for the relative velocity and relative distance
of the tracking target. When compared with the JIPDAF
and FLMB algorithms, the MCGPDAF algorithm has the
best tracking accuracy and error convergence performance
when the target intersects and wide-range manoeuvres.
This is because the multiparameter constraint mechanism
constructed by the MCGPDAF algorithm gives the algorithm
a higher robustness and data association accuracy, enabling
it to better restrain the affects of measurement association
anomalies and the errors of motion estimation model on the
estimation precision in the process of multitarget tracking.
Therefore, the MCGPDAF algorithm can achieve higher
multitarget tracking accuracy and greater error convergence
performance given target crossover and large manoeuvring.

Table 1 and Fig. 9 show that in multitarget tracking, the
MCGPDAF algorithm is superior to the other two algorithms
regarding the MAPE and RMSE of the relative velocity and
relative distance, respectively, and has the highest tracking
accuracy. The MCGPDAF algorithm is employed to track the
relative velocity and relative distance of the target T1, and the
resulting RMSE values are 0.0824 m/s and 0.1924 m, while
the MAPE values are 1.3962% and 1.6837%, respectively.
The MCGPDAF algorithm is also employed to track the
relative velocity and relative distance of the target T2, and the
resulting RMSE values are 0.0768 m/s and 0.1891 m, while
the MAPE values are 1.3125% and 1.6592%, respectively.
Compared with the results of the JIPDAF algorithm, when
the MCGPDAF algorithm tracks the target T1, the RMSEs
of the relative velocity and the relative distance improve by
28.72% and 30.32%, respectively, and the MAPEs enhance
by 29.72% and 31.61%, respectively. When tracking the
target T2, the RMSEs of the relative velocity and the relative
distance improve by 29.09% and 29.41%, respectively, and
the MAPEs enhance by 29.70% and 29.85%, respectively.
Compared with the results of the FLMB algorithm, when the
MCGPDAF algorithm tracks target T1, the RMSEs of the
relative velocity and relative distance improve by 17.27% and
19.23%, respectively, and the MAPEs enhance by 17.35%
and 19.34%, respectively. The results of tracking target T2
show that the RMSEs of the relative velocity and relative
distance improve by 19.33% and 18.42%, respectively, and
the MAPEs enhance by 19.27% and 17.92%, respectively.
In summary, the experiments and analysis show that the
MCGPDAF algorithm has excellent multitarget tracking
performance and accuracy and has great advantages over the
JIPDAF algorithm and the FLMB algorithm.

V. EXPERIMENT AND ANALYSIS OF REAL VEHICLE
To validate the multitarget tracking performance and appli-
cation effect of the proposed dynamic multitarget obstacle
tracking and monitoring method in real scenes, real vehicle

experiments are conducted. The construction of the exper-
imental platform is founded on the overall architecture of
the multitarget obstacle tracking and monitoring method in
Fig. 2. According to the experimental results, the multitarget
tracking performances before and after perception fusion are
compared and analysed, and conclusions are drawn.

A. INTEGRATION OF THE EXPERIMENTAL PLATFORM
The experimental platform for real-world vehicle experi-
mental comprises two primary components: the hardware
system and the software platform. The hardware system was
composed of an industrial computer (Model ARK3500L,
Core i9, Advantech, Inc., Suzhou, China), a MMW radar
(Model ARS408-21SC3, 77 GHz, Continental AG, Han-
nover, Germany), a laser radar (Model R-Fans 32, 640kHZ,
SureStar, Inc., Beijing, China), a smart camera (Model
Mobileye EyeQ4, INTC AG, CA, USA), a CANoe anal-
yser (Model VN1640A, Vector, Inc., Stuttgart, Germany),
a display monitor and a laptop. The industrial computer
communicates with each sensor through the CAN signal, and
the industrial computer can be used to deploy the system
operating environment and multitarget tracking algorithm.
The industrial computer uses the target state obtained by
multiple sensors to perform real-timemultitarget tracking and
multisensor information fusion and outputs the multitarget
tracking results to CANoe in the form of CAN signals.
CANoe is used to acquire, analyse and store the CAN
bus data during the experiment in real time, and the
experimental data are analysed by using the CANoe data
analysis platform deployed on a laptop computer. In addition,
both the experimental and all target vehicles are installed with
a inertial integrated navigation system (GNSS/INS) (Model
LCA-328T, RION, Inc., Shenzhen, China) for realtime
acquisition of the status of each target. TheGNSS/INS system
offers measurement accuracy at centimetre-level and can
provide true relative values to verify the multitarget tracking
accuracy before and after multisensor fusion.

The software platform uses the Ubuntu 20.04 operating
system. RoboWare Studio and ROS Melodic Morenia are
installed, and the relevanted feature packs and function
libraries are configured. ROS Topics is used to satisfy
the information interaction between sensor nodes and core
algorithms to achieve the spatial registration of distributed
multisensor systems and the effective deployment of multi-
sensor multitarget tracking algorithms. The construction and
integration of the experimental platform are displayed in
Fig. 10.
In the real vehicle experiment, a wire-controlled commer-

cial semitrailer tractor equipped with the above experimental
platform is employed as the experimental vehicle for tracking
multiple target vehicles. In addition, two passenger vehicles
equipped with a GNSS/INS in the centre of their roofs are
selected as the tracking targets. The camera is positioned
centrally at the bottom of the front windshield of the
experimental vehicle. TheMMWradar and lidar are deployed
at the central position surrounded by the front of the
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FIGURE 7. Tracking results of the relative velocity and relative distance between tracking vehicle T0 and target vehicle T1 (λ = 2 × 10−4).

FIGURE 8. Tracking results of the relative velocity and relative distance between tracking vehicle T0 and target vehicle T2 (λ = 2 × 10−4).

TABLE 1. Multitarget tracking accuracy of different algorithms.

experimental vehicle, with the MMW radar positioned 15cm
above the lidar in vertical direction. Each sensor and the
experimental vehicle are rigidly connected to mitigating any
potential impact of sensor jitter on the tracking accuracy
during the experiment.

B. PERFORMANCE COMPARISON EXPERIMENT OF
MULTITARGET TRACKING ALGORITHMS
To validate the efficacy and performance advantages of the
MCGPDAF algorithm proposed in this study across diverse
environments, we conducted real-world experiments on

single-sensor multitarget tracking. Based on the experimental
results, a comparative analysis of tracking performance was
conducted between our algorithm and JIPDAF and FLMB
algorithms. The experiment employed comprehensive road
condition encompassing typical sections and various complex
scenarios for multitarget tracking. The driving segments
comprised both highways and urban roads in sunny or
rainy weather conditions, covering complex scenes such as
trees, pedestrians, guardrails, intersections, and multitarget
high-speed and low-speed driving. The raw data of multitar-
get tracking under the above comprehensive road condition
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FIGURE 9. Comparison of the RMSE and MAPE results for multitarget tracking via different algorithms.

FIGURE 10. The construction and integration of the experimental
platform.

was collected using MMW radar and camera sensors
deployed on the experimental vehicle. The comprehensive
road condition selected for the experiment encompass a
range of intricate real-life scenarios and typical sections,
as illustrated in Fig.11. The specific parameters of the
millimeter-wave radar sensor are presented in Table 2.

TABLE 2. The parameters of the millimeter-wave radar sensor.

The experiment employs the mean accuracy (MOTA) and
the average precision (MOTP) of multitarget tracking, and

average time (AT) for data association as evaluation metrics
to assess the performance of various multitarget tracking
algorithms [37]. The MOTA is employed to quantify the
accuracy of multitarget data association, while MOTP is
utilized to measure the precision of target position estimation.
The calculation methods for MOTA and MOTP are outlined
below:

MOTA = 1 −
FN + FP+ IDSW

GT
(52)

MOTP = 1 −

∑
t,i dt,i∑
t Ct

(53)

where FP and FN represent the total number of false
detection and missed detection of the target during the
tracking process, respectively, IDSW denotes the cumulative
count of incorrect associations between the target and
measurements during tracking process, Ct represents the
count of accurate matches between the actual position and
predicted position of the target at time t, dt,i denotes the
Euclidean distance between the actual position and predicted
position of the target at time t .

The MCGPDAF, JIPDAF, and FLMB algorithms were
deployed on the industrial computer, utilizing the collected
raw radar signals served as the experimental data input
for the system. Conduct multitarget tracking experiments
on road vehicles utilizing the above three tracking algo-
rithms, and subsequently compare the results of multitarget
tracking obtained from MMW radar with corresponding
raw video tracking data. Finally, perform statistical analysis
to evaluate the multitarget association performance and
tracking effectiveness of each algorithm. In order to visually
demonstrate the multitarget tracking performance of various
algorithms in different environments, we conducted experi-
ments on four complex scenarios and typical road sections
as depicted in Fig. 11, and recorded the experimental results
separately. The experimental results of multitarget tracking
under different scenarios and road sections are presented in
Table 3.
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FIGURE 11. Experimental Scenarios and Road Segment Examples. (Figure a denotes urban roads under clear weather conditions with multitarget,
labeled as SR-A; Figure b illustrates urban roads under rainy weather conditions with multitarget, labeled as SR-B; Figure c denotes highways under
clear weather conditions with multitarget, labeled as SR-C; Figure d illustrates highways under rainy weather conditions with multitarget, labeled as
SR-D.)

TABLE 3. Multitarget tracking performance of each algorithm in various
scenarios and road segments.

According to the experimental results, it can be concluded
that the MCGPDAF algorithm exhibits higher multitar-
get tracking accuracy and offers significant performance
advantages across diverse complex environments and road
segments. Compared to the JIPDAF and FLMB algorithms,
the MOTA of MCGPDAF algorithm improves by 18.49%
and 10.87%, respectively, and the MOTP enhances by

20.32% and 11.09%, respectively. In terms of computational
efficiency, the average time consumption per association
of MCGPDAF algorithm is 0.047 s lower than that of
JIPDAF algorithm, albeit it is higher by 0.006 s compared to
the FLMB algorithm. The experimental results demonstrate
that the MCGPDAF algorithm effectively addressing the
complexities and variations of scenes, road sections, and
target movements in real-world environments. It has strong
robustness and universality during multitarget tracking pro-
cesses.

In addition, sensitivity analysis experiments of the MCG-
PDAF algorithm were conducted based on the aforemen-
tioned complex scenarios and typical road sections. The
experiment was conducted with the position and heading
constraint parameters 1d tj (k), 1δtj (k), and fading factor η(k)
as the variable parameters of the system. Five periods of
multitarget tracking were performed on SR-A class scenarios
and road sections depicted in Fig.11, with a tracking duration
of 180 seconds for each period. According to the results of
multitarget tracking over five periods, we have investigated
and analyzed the impact of improvement factors such as
constraint parameters 1d tj (k), 1δtj (k), and fading factor η(k)

VOLUME 12, 2024 115165



G. Han et al.: Dynamic Multitarget Obstacle Tracking and Monitoring Method

on algorithm performance. The visualization results of the
first tracking period of the sensitivity analysis experiment
are shown in Fig. 12, and the comprehensive results of the
sensitivity analysis experiments for five tracking periods are
presented in Table 4.

The experimental results demonstrate that the multi-
constraint parametermechanism of theMCGPDAF algorithm
significantly enhances the accuracy of multitarget data asso-
ciation and state estimation. Furthermore, the incorporation
of the fading factor has further enhanced themultitarget track-
ing performance of the MCGPADF algorithm, particularly
by enhancing the accuracy of multitarget state estimation.
Compared with the GPDAF algorithm, the introduction
of constraint parameters 1d tj (k) and 1δtj (k) improves the
MOTA and MOTP of the MCGPDAF algorithm by 17.19%
and 14.93%, respectively. Furthermore, the fading factor η(k)
is introduced to further increase the MOTA and MOTP by
0.93% and 3.36%. In general, the MCGPDAF algorithm
demonstrates a slight decrease in computational efficiency
compared to the baseline algorithm GPDAF, yet it exhibits
significant improvement in overall performance.

TABLE 4. Comprehensive results of the sensitivity analysis experiments.

Finally, the computational efficiency of various algorithms
in practical applications is compared and analyzed according
to the experimental results of themultitarget tracking and sen-
sitivity analysis conducted in complex scenarios and typical
road sections. The experimental results demonstrate that the
generalized joint event of MCGPDAF algorithm can effec-
tive establishment the corresponding relationship between
multiple measurements and multiple targets. Compared with
the JIPDAF algorithm, MCGPDAF has lower computational
complexity, which is particularly advantageous in scenarios
with numerous obstacles on urban roads. The MCGPDAF
algorithm achieves an average improvement in computational
efficiency of 39.01% compared to the JIPDAF algorithm.
In comparison with the FLMB algorithm and baseline
algorithm GPDAF, the MCGPDAF algorithm experiences an
average decrease in computational efficiency of 10.01% and
9.52%, respectively. Although the computational efficiency
of the MCGPDAF algorithm is slightly higher than FLMB
and GPDAF, the average time consumed for one association
of MCGPDAF algorithm (62.5 ms) remains smaller than
the output period of each sensor (70 − 100 ms). Therefore,
the execution efficiency of the MCGPDAF algorithm ade-
quately satisfies the real-time requirements of multitarget
tracking.

C. EXPERIMENTAL AND RESULT ANALYSIS OF
MULTITARGET TRACKING WITH MULTISENSOR FUSION
During the real vehicle experiment, the experimental vehicle
is utilized to track two target vehicles, T1 and T2. The
initial relative distances between the experimental vehicle
and the target vehicles T1 and T2 are 100 m and 80 m,
respectively. The three vehicles start at the same time. Targets
T1 and T2 accelerate to 50 km/h and maintain their speed.
After the experimental vehicle accelerates to 60 km/h, the
driver gradually slows down and maintains stable tracking
considering the distance between the experimental vehicle
and the two target vehicles. In Fig. 13, the trajectories of
the targets T1 and T2 are depicted in the inertial coordinate
system, with the driving starting point of the experimental
vehicle as the origin. Additionally, the real tracking process
and scene from the perspective of the experimental vehicle is
showcases in Fig. 14.

During the experiment, each sensor achieves multitarget
data association and state estimation based on theMCGPDAF
algorithm and then achieves multisensor multitarget state
estimation fusion and tracking through target matching
and covariance cross fusion. The single-sensor multitarget
tracking results based on the MCGPDAF algorithm and
multisensor multitarget tracking results based on multisensor
perception fusion are obtained synchronously via CANoe.
The real vehicle experimental results show the relative
distance and relative speed between the experimental vehicle
and each target vehicle in the multitarget tracking process
(Fig. 15 and Fig. 16) and the corresponding multitarget
tracking accuracy results (Table 5 and Fig. 17).

During the real vehicle experiment, multitarget crossing
and turning manoeuvres increase the number of measurement
outliers in the system, resulting in increased errors in
multitarget measurement association and state estimation.
The analysis of Fig. 15 and Fig. 16 shows that the multitarget
tracking effect of each sensor is ideal, which proves that the
MCGPDAF algorithm can effectively restrain the affects of
measurement anomalies and the errors of motion estimation
model on the precision of multitarget data associations during
real vehicle experiments. The effectiveness of the MCG-
PDAF algorithm is thus further substantiated. Furthermore,
compared with the multitarget tracking results of a single
sensor, the fusion result obtained by the dynamic multitarget
obstacle tracking and monitoring method proposed in this
research is closer to the relative true value and has higher
multitarget tracking accuracy and better convergence of
errors.

Multiple targets are tracked by each sensor via the
MCGPDAF algorithm during the real vehicle experiment.
Table 5 and Fig. 17 show that the tracking accuracy of lidar
is greater than that of MMW radar and camera under the
same multitarget tracking algorithm, which is related to the
working principle and characteristics of the sensor itself.
Multisensor estimation fusion yields superior accuracy in
multitarget tracking compared to single-sensor multitarget
tracking. The proposed fusion method is used to track the
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FIGURE 12. Visualization results of the sensitivity analysis experiments (T = 1).

TABLE 5. Multisensor multitarget tracking accuracy.

FIGURE 13. Motion trajectories of multiple targets.

relative velocities of targets T1 and T2, and the resulting
RMSE values are 0.0758 m/s and 0.0816 m/s, respectively;
similarly, the MAPE values are 1.1025% and 1.1867%,
respectively. The multisensor fusion method put forward in
this research is employed to track the relative velocities
of targets T1 and T2, and the resulting RMSE values are
0.1798 m/s and 0.1893 m/s, while the MAPE values are
1.3785% and 1.4695%, respectively. Compared with the
multitarget tracking results for each single sensor, the fusion
results obtained by the dynamic multitarget obstacle tracking
and monitoring method proposed in this paper have average

FIGURE 14. Tracking process and scenario of the real vehicle experiment.

increases of 26.94% and 25.92% in the RMSE values of
the relative speed and relative distance, respectively, and
average increases of 27.56% and 26.74% in the MAPE
values of the relative speed and relative distance, respectively.
In summary, the above experiments and analysis show that the
MCGPDAF algorithm can fully utilize its best performance
and advantages in the actual multitarget vehicle tracking
process. On this basis, the multitarget tracking method of
multisensor fusion put forward in this research can further
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FIGURE 15. Tracking results for the relative velocity and relative distance between the experimental vehicle and target Tl .

FIGURE 16. Tracking results for the relative velocity and relative distance between the experimental vehicle and target T2.

FIGURE 17. Comparison of multitarget tracking accuracy between multisensor fusion and nonfusion.

enhance the tracking performance and accuracy ofmultitarget
vehicle.

In general, the fusion of multiple sensors can further
improve the accuracy of multitarget tracking. However, this
method requires an increase in hardware costs and still

faces challenges and research opportunities in terms of time
synchronization among multiple sensors and improvement
of sensor perception performance. Therefore, considering
that the MCGPDAF algorithm has already demonstrated
superior tracking performance, the choice of fusion type and
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quantity of sensors can be based on the actual requirements
of engineering applications. In future research, the system
integration and application scheme with appropriate sensor
types and quantities can be further studied based on the
algorithm proposed in this paper. This will contribute to
balancing hardware costs, multitarget tracking accuracy, and
efficiency.

VI. CONCLUSION
Multitarget tracking is an important basis for correct
decision-making and precise control of intelligent vehicles.
To restrain the interferences of measurement association
anomalies and aprior information errors under complex
conditions, such as multitarget crossover and large-scale
manoeuvring, and to achieve accurate multitarget tracking,
a MCGPDAF algorithm is put forward in this research.
The MCGPDAF algorithm uses the position and heading
information of the dynamic target to construct constraint
parameters to calculate the association probability between
each effective measurement combination and the target track,
enabling the robust association of single-sensor multitarget
measurements and accurate tracking in complex environ-
ments and working conditions. On this basis, a multitarget
tracking and monitoring method based on composite percep-
tion fusion is also proposed. The track correlation between
multiple sensors and the estimation fusion of multiple
target states are obtained by using the correlation sequential
track correlation algorithm and the covariance cross fusion
algorithm, which further improve the tracking accuracy
of the multitarget vehicle. To validate the performance of
this multitarget tracking method, both simulation and real
vehicle experiments under various environments and roads
are conducted. The simulation results reveal that, compared
with those of the current advanced algorithms, the RMSE and
MAPE of the MCGPDAF algorithm for tracking multitarget
state are improved by 23.97% and 24.35% on average. The
real vehicle experimental results reveal that, compared with
the current advanced algorithms, the MOTA and MOTP of
MCGPDAF algorithm improves by 14.68% and 15.71% on
average. Moreover, compared with single-sensor multitarget
tracking, the RMSE and MAPE of multisensor perception
fusion results based on MCGPDAF algorithm are improved
by 26.43% and 27.15% on average. The simulation and
experimental results underscore that the superior tracking
accuracy and generality of the MCGPDAF algorithm, which
proves the practicality of the algorithm and architecture
displayed in this study.
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