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Abstract
Vehicle tracking is a core problem hindering multisensor fusion in intelligent driv-
ing. The interference caused by measurement outliers and motion estimation model
mismatch seriously affects the estimation accuracy of target states. In view of these
problems, an adaptive vehicle target tracking enhancement algorithm based on fuzzy
interacting multiple model robust cubature Kalman filtering (FLIMM-IARCKF) is
developed. In this algorithm, we constructed a derivative-free adaptive robust cuba-
ture Kalman filter (IARCKF) to suppress measurement outliers and errors in motion
estimation modeling. Furthermore, a combined fuzzy reasoning method is devel-
oped to work with the interacting multiple model algorithm, which further enhances
the target tracking performance by increasing the efficiency of model probability
updating and by adaptively regulating the process noise covariance matrix. Simu-
lated experiments verify the effectiveness of the IARCKF algorithm and reflect the
advantages of the FLIMM-IARCKF algorithm in estimation accuracy, robustness, and
model transformation efficiency when compared to the STCKF (Yun et al in Measure-
ment 191:110063, 2022), Huber-CKF (Tseng et al in J Navig 70(3):527–546, 2017),
MRCKF (Wu et al Acta Phys Sin 64(21):218401, 2015. https://doi.org/10.7498/aps.
64.218401) and IMM-CKF (Song et al in ISATrans 12(6):387–395, 2020) algorithms.
The results show that themean absolute percentage error (MAPE)ofFLIMM-IARCKF
in average position and velocity improved over the aforementioned approaches by
33.48%, and the average root-mean-square error (RMSE) improved by 32.64%. Real
vehicle experiments showed that the average MAPE of FLIMM-IARCKF when used
to determine position and velocity improved by 25.70%; the average RMSE improved
by 28.96% when compared to the aforementioned algorithms, with an average opera-
tional time of 56.13 ms. Experimental results further revealed that FLIMM-IARCKF
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shows superior performance in vehicle target tracking without influencing execution
efficiency.

Keywords IMM · CKF · Vehicle target · Combined fuzzy reasoning · Robust
adaptive tracking

1 Introduction andMotivation

Target tracking is a core problem hindering themultisensor fusion in intelligent vehicle
operations. Its difficulty lies in the optimal estimation of the target state in cases
of measurement outliers and motion estimation model mismatching. To realize the
state estimation of nonlinear systems, nonlinear filtering algorithms such as EKF
[14], UKF [23], and CKF [5] have been proposed and widely applied. The CKF
approaches the state posterior mean value and covariance of the nonlinear system
through the numerical integration of the third-order spherical radial cubature criterion.
The CKF exhibits higher estimation accuracy, higher computational efficiency, and
better numerical stability than the EKF and UKF [15, 16]. The challenge is that CKF
requires accurate posterior statistical information of known measured noise, so its
estimation accuracy is seriously degraded if a measurement outlier occurs or there is
significant measurement noise [19].

Given the changes in a target’s motion state or the possibility of disturbances from
different external environments, many measurement outliers and noise sources may
be generated during target tracking. To address this problem, Huber et al. proposed a
strictly derived and generalized maximum likelihood estimation method, which can
weaken the weight of measurements disturbed by outliers through the Huber weight
function, thus inhibiting the influence of measurement outliers on estimation accuracy
[10]. Zhu et al. adaptively selected the threshold of the Huber weight function through
projection statistics, aiming to further improve the robustness of Huber-UKF [31].
Chen et al. proposed a maximum experience depth function to estimate the robustness
of the covariance and scatter matrix under Huber’s contamination model [2]. Li et
al. applied the CKF algorithm based on Huber M-estimation for motor state tracking
and navigation system state estimation when significant measurement noise existed
[12, 13]. Zou et al. investigated the state estimation problem for linear discrete-time
systems with intermittent measurement outliers [32]. Shao et al. developed a varia-
tional Bayesian approach-based adaptive maximum correlation coefficient cubature
Kalman filter, which can suppress the disturbance caused by measurement outliers
to state estimation and measurement noise covariance estimation [18]. Compared to
robust estimation methods such as H∞ [3, 6], the above methods have advantages
in simultaneously handling the state and measurement outliers, but they are notably
disadvantaged in suppressing the errors generated by motion estimation models.

Yang et al. constructed a fading factor based on the difference between the estimated
robust solutions to the measurement model and the predicted state and proposed an
adaptive robust Kalman filter (ARKF) [9], which effectively inhibited the errors of the
motion estimationmodel and has been applied to suppress the interference ofmeasure-
ment outliers or the robust estimation of UKF [4, 28]. Unfortunately, the traditional
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fading factor needs to obtain a robust estimation solution of all the components of the
state, and a substantial change in the motion state of the vehicle target can still disrupt
such methods’ robust estimation ability. The interacting multiple model algorithm
(IMM) can realize the interaction between different motion models and solve the esti-
mation accuracy loss triggered by the motion state change of the vehicle target during
the tracking process [21, 26]. Therefore, the improved nonlinear state estimation filter
was embedded into the IMM as model-conditioned filtering to further improve the
estimation accuracy in some studies [8, 27]. However, the synchronous improvement
and optimization of the model-conditioned filtering and the IMM algorithm have not
been simultaneously considered in such studies.

To solve these problems in existing state estimationmethods, an adaptive vehicle tar-
get tracking enhancement algorithm based on fuzzy interacting multiple model robust
cubature Kalman filtering (FLIMM-IARCKF) is developed here. In this algorithm, a
fading factor based on innovative orthogonal sequences and convex robust functions
was determined to construct a derivative-free adaptive robust cubature Kalman filter,
which can simultaneously suppress the influences of the errors of both measurement
outliers and motion estimation models on estimation accuracy. Over this structure, a
combined fuzzy reasoning method is implemented to act on the interacting multiple
models algorithm, which further improves the tracking performance and estimation
accuracy of the algorithm by increasing the efficiency of model probability updating
and adaptively regulating the process noise covariance matrix. The resulting FLIMM-
IARCKF algorithm considers multiple error factors, such as measurement outliers
and motion model mismatching, as well as the corresponding improvement methods
during the nonlinear tracking process of vehicle targets. It thus realizes synchronous
improvements in the performance of model interaction and the accuracy of state esti-
mation.

2 Fuzzy InteractingMultiple Model Adaptive Robust Cubature
Kalman Filtering Algorithm

2.1 Improved Adaptive Robust Cubature Kalman Filtering

The CKF is a nonlinear filter that can accurately save first-order and second-order
matrix information with higher estimation accuracy and numerical stability than the
UKF. In the case of system state changes or measurement outliers, however, the
tracking estimation performance of the CKF is substantially reduced. To improve
the adaptive robust estimation performance of the nonlinear filter under system model
errors, the improved fading factor and convex robust function were combined to con-
struct a cost function of adaptive robust nonlinear filtering. Then, an improved adaptive
robust cubature Kalman filtering (IARCKF) was applied.

The state equation and measurement equation for the discrete time nonlinear state
space model considering additive noise are as follows:

xk = f (xk−1) + wk−1, zk = h(xk) + vk (1)
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where xk ∈ Rn is the state of the system at time k, yk ∈ Rm is the measurement,
and wk−1 ∼ N (0, Qk−1) and vk ∼ N (Rk) denote the process noise and measurement
noise of the dynamic system, respectively, which are mutually independent zero-mean
Gaussian white noise.

2.1.1 The Cost Function of Adaptive Robust Nonlinear Filtering

To suppress the influences of measurement outliers and the errors of the motion esti-
mation model on the estimation accuracy of the filtering algorithm, an adaptive robust
cost function for nonlinear filtering is constructed by combining the fading factor using
an innovative orthogonal sequence with the convex robust function.

Considered from the Bayesian maximum likelihood perspective, the state space
model described in Eq. (1) can be solved by the following cost function.

x̂k = argmin(‖xk − x̂ ′
k‖2(P ′

k )
−1 + ‖h(xk) − zk‖2(Rk)

−1) (2)

where x̂k denotes the state estimate after themeasurement update, x̂ ′
k = x̂k|k−1 denotes

the state estimate before themeasurement update, P ′
k = Pk|k−1 is the covariancematrix

of x̂ ′
k , and ‖x‖2A = xT Ax .
To suppress the influence of outliers and heavier tails, the quadratic cost functions of

Eq. (2) were reformulated using the fading factor δk and Huber convex robust function
[24], and the expression of the reformulated minimization problem was obtained as
follows:

x̂k = argmin

⎛
⎝∥∥xk − x̂ ′

k

∥∥2
(2δk P ′

k)
−1 +

m∑
j=1

ρ
(
τk, j
)
⎞
⎠ (3)

The above minimization problem expression can be further rewritten as:

x̂k = argmin

⎛
⎝ 1

2δk

n∑
i=1

e2k,i +
m∑
j=1

ρ
(
τk, j
)
⎞
⎠ (4)

where δk is the fading factor, ρ(ζ ) denotes the convex robust function, ek =(
P ′
k

)− 1
2
(
xk − x̂ ′

k

)
, τk = (Rk)

− 1
2 (h(xk) − zk), ek,i denotes the i th component of

ek , and τk, j denotes the j th component of τk .
The derivation of the minimization problem and its implicit equations can be found

in reference [1]. The solved cost function can be expressed as:

x̂k = argmin

(∥∥xk − x̂ ′
k

∥∥2
(Ṗ ′

k)
−1 + ‖h(xk) − zk‖2

(Ṙk)
−1

)
(5)

where ‖x‖2A = xT Ax ; Ṗ ′
k = δk P ′

k and Ṙk = (Rk)
T
2 �−1 (Rk)

1
2 denote the reformu-

lated predicted state covariance matrix and the measurement noise covariance matrix,
respectively.



Circuits, Systems, and Signal Processing

When αk = 1 and � are constant, the cost function of adaptive robust nonlinear
filtering is reduced to a conventional KF cost function. Therefore, the above cost
function can be effectively applied to nonlinear filtering. The final cost function of the
adaptive robust CKF can be expressed as:

x̂k = argmin

⎛
⎝∥∥xk − x̂ ′

k

∥∥2
(2δk(P ′

k−Qk))
−1 +

m∑
j=1

ρ
(
τk, j
)+ ‖wk‖2Q−1

k

⎞
⎠ (6)

2.1.2 The Improved Fading Factor

During the target tracking process, the error of the motion estimation model is the pri-
mary cause of measurement outliers. To radically reduce themeasurement outliers, the
fading factor δk was introduced through Eq. (3) to adaptively acquire an approximate
time-varying gain matrix so that the residual sequence could remain orthogonal. In
case of any error in the motion estimation model, δk > 1, and P ′

k gradually increased
with the expansion of δk , thereby mitigating the influence of x̂ ′

k on x̂k and improving
the filtering robustness. δk is calculated through the following method:

δk =
{

δ0, δ0 > 1

1, δ0 ≤ 1
(7)

A Kalman filter combined with a traditional fading factor must yield a robust esti-
mation solution for all the components of the state. To overcome this defect and further
improve the filtering adaptivity, the fading factor δk was established based on the inno-
vation sequence orthogonal principle expressed by Eq. (8) to correct the prediction
error covariance in real time:

E
[
vk+ jv

T
k

]
= 0 j = 1, 2, . . . ,m (8)

where vk = zk − ẑk|k−1 denotes the innovation sequence at time k, and E[·] denotes
the expected value.

The following lemma was introduced for the above system state space model and
was previously presented in the literature [30]:

Lemma 1 Let γk
�			 xk − x̂k ; if O[|γk |2] 
 O[|γk |], indicating that Kalman filtering

can accurately obtain the system state estimates, then ∀ j :

Vj,k = E
[
vk+ jv

T
k

]
= �

(
k + j, · · · , k, x̂ ′

k+ j , · · · , x̂ ′
k

) (
Pxk yk − KkV0,k

) = 0 (9)

where Pxk yk denotes the cross covariance between the state and measurement vectors,
Kk is the Kalman gain, and V0,k = E

[
vkv

T
k

]

�
(
k + j, · · · , k, x̂ ′

k+ j , · · · , x̂ ′
k

)
= Hk+ j

⎡
⎣
k+ j−1∏
n=k+1

	n (I − KnHn)

⎤
⎦	k (10)
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The sufficient condition of Eq. (9) is:

Pxk yk − KkV0,k = 0 (11)

The Kalman gain Kk can be denoted as Pxk yk P
−1
yk , where Pyk is the error covariance

matrix of measurement. Thus, we obtain:

Pxk yk

(
I − P−1

yk V0,k
)

= 0 (12)

The sufficient condition of Eq. (12) is given as:

Pyk − V0,k = 0 (13)

According to the Kalman filter principle, Eq. (13) can be derived as:

Hk P
′
k H

T
k + Rk − V0,k = 0 (14)

If the fading factor enables Eq. (14) to be valid, vk+ j and vk are approximately
orthogonal. Therefore, the calculation formula for the fading factor is given as:

δ0 = tr
[
V0,k − Rk

]

tr
[
Hk P ′

k H
T
k

] (15)

Equation (15) holds for linearized systems. Nevertheless, the linearization term
Hk P ′

k H
T
k can be approximately expressed using nonlinear methods such as CKF.

Thus, δ0 can be formulated as:

δ0 = tr
[
V0,k − λRk

]

tr
[
Pyk − λRk

] (16)

To improve the smoothing effect of state estimation, the softening factor [30] λ is
introduced into Eq. (16), λ ≥ 1.

The iterative calculation of the residual covariance matrix V0,k in Eq. (16) can be
expressed as follows:

V0,k = E
[
vkv

T
k

]
=
{

vkv
T
k k = 1

μV0,k−1+vkv
T
k

1+ρ
k > 1

(17)

where μ is a forgetting factor usually taken as 0.95.
The adaptive robust nonlinear cost function introduced with the improved fad-

ing factor is suitable for nonlinear Gaussian filtering, such as UKF and CKF, which
enhances the adaptivity and robustness of filtering while reducing the number of filter-
ing iterations. Furthermore, this cost function can effectively suppress the influences
of themeasurement outlier andmotion estimationmodel errors on the estimation accu-
racy, even if the robust estimation solution of all the components of the state cannot
be acquired.
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2.1.3 Derivation of the IARCKF Algorithm

Assuming that the optimal estimation x̂k−1 and state covariance matrix Pk−1 of time
k − 1 are already obtained at time k, then the state estimation process of the IARCKF
within one cycle is as follows:

Step 1: Time update
Calculation of cubature points:

Xi,k−1|k−1 = √Pk−1|k−1ξi + x̂k−1|k−1 i = 1, 2, . . . , 2n (18)

where

ξi = √
n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎥⎦ , · · · ,

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−1
0
...

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
−1
...

0

⎤
⎥⎥⎥⎦ , · · · ,

⎡
⎢⎢⎢⎣

0
0
...

−1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

i

(19)

According to the nonlinear system model, the nonlinear propagation of cubature
points can be determined as follows:

X∗
i,k|k−1 = 	k f

(
Xi,k−1|k−1

)
i = 1, 2, · · · , 2n (20)

Prediction of the state

x̂k|k−1 = 1

2n

2n∑
i=1

X∗
i,k|k−1 (21)

Step 2: Robust correction
Calculate the state cubature points following the time update:

Xi,k|k−1 = √Pk|k−1ξi + x̂k|k−1 i = 1, 2, · · · , 2n (22)

Evaluate the propagated cubature points:

Zi,k|k−1 = h
(
Xi,k|k−1

)
i = 1, 2, · · · , 2n (23)

Calculation of predicted measurement:

ẑk|k−1 = 1

2n

2n∑
i=1

Zi,k|k−1 (24)

Modified measurement covariance update:

τk = (Rk)
− 1

2
(
ẑk|k−1 − zk

)
(25)

� = diag
[
�k, j

(
εk, j
)]

j = 1, 2, . . . ,m (26)
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R̂k = (Rk)
T
2 �−1 (Rk)

1
2 (27)

Step 3: Fading factor update
The minimum variance estimate for the residuals of the state estimate is expressed

as:
MMSE[xk] = tr

(
E
[(
xk − x̂k

) (
xk − x̂k

)T ])
min

(28)

To adaptively acquire an appropriate time-varying gain matrix Kk , it is required
that the residual sequence ε output at different moments always remains orthogonal.
The principle of an innovative orthogonal sequence constructed based on Eq. (8) is
expressed as follows:

E
[
εk+ j , ε

T
k

]
= 0 j = 1, 2, . . . ,m (29)

In view of the state space model described by Eq. (1), let γk
�			 xk − x̂k ; if

O[|γk |2] 
 O[|γk |], then:

Vj,k = E
[
εk+ j , ε

T
k

]

= H
(
x̂−
k+ j

)
· F (x̂k+ j−1

) ·
[
I − Kk+ j H

(
x̂−
k+ j−1

)]
· F (x̂k+ j−2

)

· [I − Kk+ j H
(
x̂−
k

)] · F (x̂k
) · (Pzz,k − KkV0,k

) = 0

(30)

where H(·) and F(·) denote the Jacobian matrices of h(xk) and f (xk) with respect to
xk , respectively.

The sufficiency condition of Eq. (30) is:

Pzz,k − KkV0,k = 0 (31)

According to the derivation of Eqs. (11)–(15), the fading factor δk is updated:

δk =
{

δ0, δ0 > 1

1, δ0 ≤ 1
(32)

δ0 = tr
[
V0,k − Rk

]

tr
[

1
2n

∑2n
i=1

(
Zi,k − ẑk

) (
Zi,k − ẑk

)T ] (33)

V0,k = E
[
εkε

T
k

]
=
{

εkε
T
k k = 1

μV0,k−1+εkε
T
k

1+ρ
k > 1

(34)

where εk = zk − ẑk|k−1, and μ is the forgetting factor.
Step 4: Measurement update
We estimate the predicted error covariancematrix, the innovation covariancematrix

and the cross covariancematrix based on themodifiedmeasurement covariancematrix
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and the fading factor at time k.

Pk|k−1 = δk

[
1

2n

2n∑
i=1

(
X∗
i,k|k−1 − x̂k|k−1

) (
X∗
i,k|k−1 − x̂k|k−1

)T + Qk−1

]

(35)

Pzz,k|k−1 = δk

[
1

2n

2n∑
i=1

(
Zi,k|k−1 − ẑk|k−1

) (
Zi,k|k−1 − ẑk|k−1

)T
]

+ R̂k (36)

Pxz,k|k−1 = δk

[
1

2n

2n∑
i=1

(
Xi,k|k−1 − x̂k|k−1

) (
Zi,k|k−1 − ẑk|k−1

)T
]

(37)

Finally, we calculate the measurement update:

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (38)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (39)

Pk|k = Pk|k−1 − Kk Pzz,k|k−1K
T
k (40)

2.2 InteractingMultiple Model Adaptive Robust Cubature Kalman Filtering

During the vehicle tracking process, the motion state of the target vehicle is changed
according to its maneuvering needs. The filtering algorithm based on a single-motion
estimationmodel remains limited in terms of adaptivity and estimation accuracy under
the maneuvering state of the vehicle target. Substantial changes in the vehicle tar-
get’s motion state can still disrupt the IARCKF algorithm’s robust estimation ability.
According to differentmotion states, vehiclemotion estimationmodelsmainly include
constant velocity (CV ), constant acceleration (CA), and constant turn rate (CT )mod-
els [17]. The IMM algorithm can parallelly fuse multiple possible motion state models
of the vehicle target and realize the interaction betweenmotion models via theMarkov
chain. To improve the adaptivity and estimation accuracy of the IARCKF algorithm
in the event of a vehicle target’s wide-range maneuvering, an adaptive robust cubature
Kalman filtering algorithm based on interactingmultiplemodels (IMM-IARCKF)was
implemented. The recursive process of the IMM-IARCKF algorithm from time k − 1
to time k is as follows:

(1) Interactive computing input
The model conditions were initialized as follows. The matching probability of
model i at time k − 1 is known to be μi

k−1, and the target state estimation and
error covariance matrix are x̂ ik−1|k−1 and Pi

k−1|k−1, respectively. The transition
probability of model i to model j is πi j (i, j = 1, 2, 3, · · · , n) ∈ (0, 1), and∑n

i=1 πi j = 1. The target state estimation results at time k − 1 were weighted and

mixed to acquire the input quantities x̄ j
k−1|k−1 and P̄ j

k−1|k−1 of IARCKF filtering
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under different model matches.

μ
i | j
k−1 = πi jμ

i
k−1

μ
j
k|k−1

(41)

μ
j
k|k−1 =

n∑
i=1

πi jμ
i
k−1 (42)

x̄ j
k−1|k−1 =

n∑
i=1

x̂ ik−1|k−1μ
i | j
k−1 (43)

P̄ j
k−1|k−1 =

n∑
i=1

[
Pi
k−1|k−1 +

(
x̄ j
k−1|k−1 − x̂ ik−1|k−1

)

·
(
x̄ j
k−1|k−1 − x̂ ik−1|k−1

)T ]
μ
i | j
k−1 (44)

(2) Model condition filtering
The mixed estimation x̄ j

k−1|k−1 and covariance P̄ j
k−1|k−1 obtained through inter-

active computing were input into model-conditioned filtering of different model
matches. The state estimation x̂ j

k|k and error covariance estimation P j
k|k of the tar-

get at time k were updated, and the updating results were input into the estimation
fusion module.

(3) Model probability updating
Each model probability was updated to calculate the likelihood function L j

k and

realize a probability update μ
j
k of the model j as:

L j
k =

exp
[
− 1

2 (z̃
j
k )

T (P j
k )−1 z̃ jk

]

∣∣∣2π S j
k

∣∣∣
1
2

(45)

μ
j
k = L j

kμ
j
k|k−1∑n

j=1 L
j
kμ

j
k|k−1

(46)

The measurement residuals z̃ jk and residual covariance matrix S j
k are calculated as

follows:

z̃ jk = zk − ẑ jk|k−1 (47)

S j
k = P j

zz,k|k−1

(
P j
zz,k|k−1

)T
(48)

(4) Estimation fusion
Combining the filtering updating results of each model condition, the total state
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estimation x̂k|k and error covariance matrix Pk|k at time k were updated.

x̂k|k =
n∑
j=1

x̂ j
k|kμ

j
k (49)

Pk|k =
n∑
j=1

[
P j
k|k +

(
x̂k|k − x̂ j

k|k
) (

x̂k|k − x̂ j
k|k
)T

μ
j
k

]
(50)

2.3 Derivation of the FLIMM-IARCKF Algorithm

Considering the high frequency of sudden changes in the vehicle target’s motion state
under complex road conditions, the frequency of model probability transitions of
the IMM-IARCKF algorithm should be greatly increased under such conditions. To
further enhance the tracking performance of the IMM-IARCKF in the case of sudden
changes in the target motion state, a combined fuzzy reasoning method is designed
to act on the IMM in this section, thus further realizing the adaptive robust cubature
Kalman filtering algorithm based on the fuzzy interacting multiple model (FLIMM-
IARCKF). The FLIMM-IARCKF algorithm can adaptively calculate the reasonable
adjustment coefficient of the process noise covariance matrix while improving the
response efficiency and convergence rate ofmodel probability updating. The structural
diagram of the FLIMM-IARCKF algorithm is exhibited in Fig. 1.

The FLIMM-IARCKF algorithm constitutes a combined fuzzy reasoning system
(S1, S2) that acts on the IMM. S1 introduced the model probability update module to
optimize the response to probability updating, and S2 acted upon model conditioned
filtering, which calculates the process noise covariance adjustment coefficient in real
time and realizes the adaptive adjustment of the process noise covariance matrix.

Assuming that the motion target was converted between CV and CT models, the
corresponding variables input into the model probability update module were L1

k and
L2
k . The model probabilities were calculated using the conventional IMM algorithm as

μ1
k andμ2

k , respectively. The following expressions are obtained according to Eq. (46):

⎧⎪⎨
⎪⎩

μ1
k = L1

kμ
1
k|k−1

L1
kμ

1
k|k−1+L2

kμ
2
k|k−1+L3

kμ
3
k|k−1

μ2
k = L2

kμ
2
k|k−1

L1
kμ

1
k|k−1+L2

kμ
2
k|k−1+L3

kμ
3
k|k−1

(51)

whereμ1
k|k−1 = π11μ

1
k−1+π21μ

2
k−1+π31μ

3
k−1 andμ2

k|k−1 = π12μ
1
k−1+π22μ

2
k−1+

π32μ
3
k−1.

2.3.1 The Solving Method of Model Probability Update

The fuzzy reasoning system S1 optimized μ1
k and μ2

k to improve the response effi-
ciency of model probability updating and the filtering convergence speed. With the
optimization of μ1

k as an example, the input variables in system S1 were set as S1 and
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Fig. 1 The structural diagram of the FLIMM-IARCKF algorithm

F2, and the optimized model probability μ̂
j
k served as the output variable E , set:

⎧⎨
⎩
F1 = μ1

k−1
F2 = μ1

k − μ1
k−1

E = μ̂1
k

(52)

The fuzzy domain of input variable F1 is [0, 1], and the fuzzy subset is {FL (small),
FM (medium), and FH (large)}. The fuzzy domain of F2 is [−1, 1], and its fuzzy
subset is {FN (negative), FZ (zero), FP (positive)}. The fuzzy domain of output
variable E is [0, 1], and its fuzzy subset is {EL (small), EM (medium), and EH
(large)}. The membership function of each variable in the fuzzy domain is displayed
in Fig. 2.

Fuzzy logic rules were established according to the operation relations between
input and output variables. When the variable value F2 of the model probability was
negative, the current model probability E was smaller than the model probability F1
at the previous moment; when F2 = 0, the current model probability E was equal to
the model probability F1 at the previous moment; and when F2 > 0, the current model
probability E was greater than the model probability F1 at the previous moment. The
fuzzy logic rules of system S1 are listed in Table 1.
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Fig. 2 The membership function of each variable in S1

Table 1 The fuzzy logic rules of
S1

Rule numbers F1 F2 E

1 FN FL EL

2 FN FM EL

3 FN FH EM

4 FZ FL EL

5 FZ FM EM

6 FZ FH EH

7 FP FL EM

8 FP FM EH

9 FP FH EH

Finally, the fuzzy reasoning system S1 was processed using defuzzification by the
centroid method, and the fuzzy logic reasoning result was converted into a clear value
to update the model probabilities μ̂

j
k in real time.

Basedon this optimization ofmodel probability updating in system S1, the estimated
fusion calculation of the IMM algorithm in Eqs. (49)–(50) was also optimized and
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updated.

x̂k|k =
n∑
j=1

x̂ j
k|kμ̂

j
k (53)

Pk|k =
n∑
j=1

[
P j
k|k +

(
x̂k|k − x̂ j

k|k
) (

x̂k|k − x̂ j
k|k
)T

μ̂
j
k

]
(54)

2.3.2 The Adaptive Regulation Method of the Process Noise Covariance Matrix

The fuzzy reasoning system S2 aimed to acquire the adjustment coefficient fk of the
process noise covariance matrix and acted on model conditioned filtering IARCKF.
In S2, the input variables were set as T1 and T2, and the output variable was set as M :

⎧⎨
⎩
T1 = μ1

k
T2 = μ2

k
M = fk

(55)

where the fuzzy domain of input variables T1 and T2 is [0, 1], the fuzzy subset of
T1 is {TO1 (less), TLh1 (little), TM1 (medium), TH1 (large), TE1 (larger)} and that of
T2 is {TO2 (less), TL2 (little), TM2 (medium), TH2 (large), TE2 (larger)}. The output
variableM indicates the adjustment coefficient for the process noise covariancematrix
of two model-conditioned filters, with a fuzzy domain of [0, 5] and a fuzzy subset of
{MO (less),ML (little),MH (large),ME (larger)}. Themembership function of each
variable in the domain is displayed in Fig. 3.

Fuzzy logic rules were established according to the influence of the process noise
covariance Q on filtering estimation accuracy. When the probability result of one
model is large and the probability result of the other model is small, the motion
estimation model selected by the current model condition filter conforms to the actual
motion state of the target. In this case, the smaller the process noise covariance is, the
higher the tracking accuracy. Thus, the coefficient fk should be appropriately reduced.
Conversely, when the probabilities of each model are similar, all motion estimation
models are inconsistent with the actual motion state of the tracking target. In this
case, the higher the process noise covariance is, the higher the tracking accuracy,
so the coefficient fk should be appropriately increased. Finally, to prevent the model
probability updating frombeing influencedby errors in the case ofmotion state changes
of the vehicle target, the consistency of the process noise covariance coefficient fk
of different models should be maintained. These fuzzy logic rules of system S2 are
presented in Table 2.

The fuzzy reasoning system S2 was processed using defuzzification by the centroid
method, thus obtaining the adjustment coefficient fk for the process noise covari-
ance matrix in real time. Based on the fuzzy reasoning system S2, Eq. (35) is further
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Fig. 3 The membership function of each variable in S2

Table 2 The fuzzy logic rules of
S2

Rule numbers T1 T2 M

1 TO1 TH2 ML

2 TO1 TE2 MO

3 TL1 TH2 MH

4 TL1 TE2 ML

5 TM1 TL2 ME

6 TM1 TM2 ME

7 TM1 TH2 MH

8 TH1 TO2 ML

9 TH1 TL2 MH

10 TH1 TM2 ME

11 TE1 TO2 MO

12 TE1 TL2 ML

improved into the following form:

Pk|k−1 = δk

[
1

2n

2n∑
i=1

(
X∗
i,k|k−1 − x̂k|k−1

) (
X∗
i,k|k−1 − x̂k|k−1

)T + fk−1Qk−1

]

(56)
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3 Simulation Experiment and Results Analysis

3.1 Tracking Scenario and Parameter Setting

Toverify the advantages of the algorithmdesigned in this study compared to competing
approaches for target tracking performance, the tracking problem of a maneuvering
target in the 2D rectangular plane coordinate system with a radar as the origin was
considered in a simulation experiment. In this simulation, MATLAB 2020a and a
laptop with an Intel i7 − 11800H processor are used as the hardware and software
platforms. Meanwhile, the motion estimation models ofCV (constant velocity),CT L
(constant left turn rate), andCT R (constant right turn rate)were used for the interaction
calculation. The system state vectors can be expressed as xk = [xk, ẋk, yk, ẏk]T . The
system state equations under the CV and CT models are defined as follows:

xk = FCV · xk−1 + ωCV (57)

xk = FCT · xk−1 + ωCT (58)

where FCV denotes the state transition matrix of the CV model, FCT denotes the
state transition matrix of the CT L and CT R models, and ωCV and ωCT are the
process noise. The parameter expressions of FCV , FCT , ωCV , and ωCT can be found
in reference [11].

To measure the distance and angular velocity of the target, the measurement equa-
tion of the system can be defined as:

zk =
[
rk
ϕk

]
+ vk =

⎡
⎣
√

(xk − xo)2 + (yk − yo)2

arctan
(
yk−yo
xk−xo

)
⎤
⎦+ vk (59)

where (xk, yk) is the current position of the target. (xo, yo) is the position of the radar,
which is defined as the origin of the coordinate system, and vk is the measurement
noise.

Themeasurement noise covariancematrix of the system is Rk = diag
[(
502, 0.12

)]
,

where the error standard deviations of the measurement distance and angle of the
observation radar are 50m and 0.1◦, respectively. The initial probability of eachmodel
is μ0 = (1/3 1/3 1/3

)T , and the Markov probability transfer matrix is P .

P =
⎡
⎣
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦ (60)

To fully verify the advantages and characteristics of our algorithm in terms of
estimation accuracy and robustness, the moving target in a high-speed wide-range
maneuvering statewas tracked in the simulation,where the radar is in a fixed position to
track the target. The initial state of the target is x0 = [300 m 70 m/s 200 m 0 m/s

]T .
The sampling interval of the radar is T = 1 s, and the total observation time is 170s.
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Fig. 4 The true trajectory of the vehicle target and the point tracks of radar measurement

The motion process of the target is as follows: at 1 s–40s, 76 s–100s, and 136s–175s,
the target moves with uniform linear motion: at 41 s–75s, the target makes a uniform
left turn motion with an angular velocity of π/30 rad/s; and at 101s–135s, the target
makes a uniform right turn motion with an angular velocity of −π/30 rad/s. The
trajectory of the vehicle target and the point tracks of the radar measurement are
shown in Fig. 4.

3.2 Experimental Results and Analysis

The simulation experiment was performed through the Monte Carlo method. The tar-
get tracking performance of the proposed method was verified by comparing it with
the existing improved cubature Kalman filtering algorithms. The mean absolute per-
centage error (MAPE) and root-mean-square error (RMSE) were taken as the indices
to measure the estimation accuracy of the filtering algorithm.

MAPE = 1

N

N∑
k=1

(∣∣∣∣
x̂k − xk

xk

∣∣∣∣+
∣∣∣∣
ŷk − yk

yk

∣∣∣∣
)

× 100% (61)

RMSE =
√√√√ 1

N

N∑
k=1

((
x̂k − xk

)2 + (ŷk − yk
)2) (62)

where
(
x̂k, ŷk

)
and (xk, yk) denote the optimal estimation value and true value of the

target position or velocity, respectively, and N = 100 represents the number of Monte
Carlo simulations.
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(a) The RMSE of position

(b) The RMSE of velocity

Fig. 5 The RMSE of different algorithms in position and velocity

3.2.1 The Verification and Analysis of IARCKF Algorithm Performance

The STCKF [29], Huber-CKF [22], andMRCKF [25] algorithms were compared with
the proposed IARCKF and IMM-IARCKF algorithms under the above simulation
scenario, and the tracking performance of each algorithm was analyzed. The RMSE
of five algorithms in position and velocity are displayed in Fig. 5a, b, respectively,
and the corresponding tracking accuracy data are presented in Table 3 and Fig. 6, not
considering the initial abnormal errors in the simulation experiment.

According to the simulation results in Fig. 5a, b, the tracking performance of the
five algorithms was analyzed. In the first four noninteractive filtering algorithms, the
IARCKF algorithm achieved the highest estimation accuracy, the Huber-CKF algo-
rithm achieved an approximate estimation accuracy to the MRCKF, and the STCKF
obtained the lowest estimation accuracy. In the case of substantialmotion state changes
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of the target, the RMSE of the above four noninteractive filtering algorithms in posi-
tion and velocity increased and failed to quickly converge, which was attributed to
motion model mismatch and measurement outliers caused by the substantial change
in the motion state of the target. Compared with the other three noninteractive fil-
tering algorithms, the IARCKF obtained the optimal estimation accuracy and error
convergence effect after wide-range maneuvering of the target. This occurs because
the IARCKF algorithm proposed in this study, which is characterized by strong adap-
tive robustness, better suppresses the influences of measurement model and motion
model errors on estimation accuracy. However, due to the excessive characteristic
velocity and turning angle of the vehicle, the change in the motion state of the vehicle
target still exceeds the limit of the robust estimation ability of the IARCKF algo-
rithm. The IMM-IARCKF algorithm better solves the problem of motion estimation
model mismatching while retaining the adaptive robust characteristic of the IARCKF
algorithm. Hence, the IMM-IARCKF algorithm shows outstanding error convergence
performance in the case of substantial changes in the motion state of the target.

Table 3 and Fig. 6 show that IARCKF outperforms the other filtering algorithms in
terms of MAPE (2.28%, 2.83%) and RMSE (25.24m, 6.37m/s) of the position and
velocity in the first four noninteractive filtering algorithms. The STCKF exhibited the
worst performance, with MAPEs of the position and velocity of 3.12% and 4.21%,
respectively, and the RMSEs of the position and velocity were 30.16 m and 8.26
m/s, respectively. The IARCKF algorithm has the highest tracking accuracy among
the first four noninteractive filtering algorithms. Compared with the STCKF algo-
rithm, the MAPEs of the IARCKF for the position and velocity increased by 26.92%
and 32.78%, respectively, and the RMSEs for the position and velocity increased
by 22.88% and 16.31%, respectively. Compared with the Huber-CKF algorithm, the
MAPEs of the IARCKF for position and velocity were improved by 21.05% and
21.82%, respectively, and the RMSEs for position and velocity were improved by
12.09% and 14.95%, respectively. Finally, compared with the MRCKF algorithm, the
MAPEs of the IARCKF for position and velocity were 13.64% and 17.01% higher,
respectively, and the RMSEs for position and velocity were 7.18% and 10.53% higher,
respectively. Among all the algorithms involved in the comparison, IMM-IARCKF
achieved the best target tracking performance, achieving minimum values of both
MAPE and values for position and velocity tracking. Since the interactive multiple
model method taking the IARCKF as the model condition for filtering is adopted, the
estimation accuracy of the IMM-IARCKF algorithm is better than that of the noninter-
active filtering algorithms. Therefore, the IMM-IARCKF can better solve the problem
of motion estimation model mismatch when the limit of the adaptive robust estimation
ability of the IARCKF algorithm is exceeded.

3.2.2 Verification and Analysis of FLIMM-IARCKF Algorithm Performance

To further verify the advantages of theFLIMM-IARCKFalgorithm in termsof the error
convergence speed and filtering estimation accuracy in the case of sudden changes in
the motion state of the target, the target was tracked using the IMM-CKF [20], IMM-
IARCKF, and FLIMM-IARCKF algorithms under the same simulation scenario. The
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(a) Tracking accuracy of position

(b) Tracking accuracy of velocity

Fig. 6 Results of MAPE and RMSE from different algorithms

RMSEof the three algorithms in position and velocity is displayed in Fig. 7a, b, respec-
tively, without considering the initial abnormal errors in the simulation experiment.

Figure 7a, b shows that all three filtering algorithms can avoid the sustained increase
in the estimation error through the model interaction after the substantial change in
the motion state of the target. However, significant differences were still observed
in terms of filtering estimation accuracy and error convergence speed. In the case of
a substantial change in the motion state of the target, the tracking performance and
estimation error convergence effect of the IMM-IARCKF algorithm were better than
those of the IMM-CFK algorithm. This occurs because themodel-conditioned filtering
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(a) The RMSE of position

(b) The RMSE of velocity

Fig. 7 The RMSE of different algorithms in position and velocity

of IMM-IARCFK shows superior adaptive robustness characteristics, which can better
suppress the influence of the system model error on estimation accuracy. When the
vehicle target experiences a sudden change in its motion state, FLIMM-IARCKF can
adaptively regulate the process noise covariance coefficient according to the matching
degree of the current motion model while improving the probability update response
efficiency of the model. Therefore, FLIMM-IARCKF exhibited a smaller estimation
error and a faster error convergence speed than IMM-IARCKF, demonstrating that the
combined fuzzy reasoning method is efficient.

Table 4 and Fig. 6 reveal that FLIMM-IARCKF outperforms all the competitive fil-
tering algorithms in terms of MAPE (1.74%, 1.82%) and RMSE (20.13m, 3.36m/s)
of the position and velocity. The error changes and the estimation accuracy of FLIMM-
IARCKF are further optimized compared to those of IMM-IARCKF. Compared to the
traditional IMM-CKF algorithm, the RMSEs of FLIMM-IARCKF for position and
velocity were 17.19% and 29.26% higher than those of IMM-CKF, and the MAPEs
of FLIMM-IARCKF for position and velocity were 19.82% and 31.32% higher than
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Table 4 Tracking accuracy of different algorithms

Algorithm name Means of
MAPE

Means of
RMSE

Peak values of
RMSE

Position (%) Velocity (%) Position (m) Velocity (m/s) Position (m) Velocity (m/s)

IMM-CKF [20] 2.17 2.65 24.31 4.75 38.31 15.81

IMM-IARCKF 1.92 2.06 21.56 3.94 34.20 15.06

FLIMM-IARCKF 1.74 1.82 20.13 3.36 31.68 11.87

(a) The model probability of CV (b) The model probability of CTL

(c) The model probability of CTR

Fig. 8 Model probability of each algorithm under different models

those of IMM-CKF, respectively. The proposed IMM-IARCKF algorithm was com-
pared with the further improved FLIMM-IARCKF algorithm, which revealed that the
RMSEs of the FLIMM-IARCKF for position and velocity were 6.63% and 14.72%
higher than those of the IMM-IARCKF, and the MAPEs of the FLIMM-IARCKF for
position and velocity were 9.38% and 11.65% higher than those of the IMM-IARCKF,
respectively.

The model result probabilities of the three algorithms are displayed in Fig. 8. In the
case of sudden changes in the motion state of the target, the change rate of the model
probability of the FLIMM-IARCKF algorithm was the fastest with the maximum
variation range, thus reducing the transition time of model transformation and the
competition conflict of model probability. Therefore, the FLIMM-IARCKF algorithm
can effectively suppress the influences of the target’s motion state changes on the
tracking effect and estimation accuracy, improve the response efficiency to model
probability updating, and accelerate the rate of error convergence.
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4 Real Vehicle Experiment and Verification

To verify the performance advantages and application effect of the FLIMM-IARCKF
algorithm in vehicle target tracking under a real scenario, a real vehicle experimentwas
conducted. Therein, the experimental objects remain the IMM-CKF, IMM-IARCKF,
and FLIMM-IARCKF. Conclusions were drawn by comparing the tracking perfor-
mance and execution efficiency of the algorithms according to the experimental results.

4.1 Establishment of the Experimental Platform

The real vehicle experimental platform consists of a hardware system and a software
platform. The integration of the hardware system is established by themillimeter wave
radar (Model ARS408-21, 77Ghz, Continental AG, Hannover, Germany), industrial
personal computer (IPC, Model NISE3800E, Core i5, Xinhan Inc., Beijing, China),
display (Model U2417, HP Inc., CA, USA), CANoe analyzer (Model VN1640A,
Vector Inc., Stuttgart, Germany), and laptop (Model OMEN8, Core i7, HP Inc., CA,
USA). The IPC communicates with the millimeter wave radar via CAN signals, and
the software environment and filtering algorithm of the IPC are deployed through the
display. The IPC performs real-time filtering of the target tracking data acquired by the
millimeter wave radar and transmits the filtering result, in the form of CAN signals, to
CANoe in a real-time fashion. CANoe can acquire all CAN bus data in the experimen-
tal process and resolve and save data signals in a timely manner. The CANoe software
deployed on the laptop can more intuitively and accurately analyze experimental data.
Furthermore, both the experimental vehicle and target vehicle are equipped with a
combined inertial navigation system (GNSS/INS, Model SDI-604, ZEDA Inc., Bei-
jing, China) to acquire the position and velocity of the target vehicles. GNSS/INS
has centimeter-level measurement accuracy, which can provide a relatively reliable
reference value for verifying the estimation accuracy of each filtering algorithm.

The software platform was deployed in the IPC, and the filtering algorithm was
established and deployed in the Ubuntu 18.04 operating system via ROS. The ROS
KineticKamewas installed and configuredwith related libraries anddependencies, and
RoboWare Studio was used as the coding and debugging tool. Moreover, the filtering
effect is compared and visualized through the 3D visualization platform (Rviz) of
ROS. The construction of a real vehicle experimental platform and the integration of
hardware and software are displayed in Fig. 9.

In this experiment, a semitrailer tractor control by-wire carrying the above exper-
imental platform was selected as the experimental vehicle used to track the vehicle
target. Amillimeter wave radar was installed at the central position of the front bumper
of the experimental vehicle, with an installation height of 720mm from the ground. To
prevent the millimeter wave radar from joggling due to the poor rigidity of the fixation
position during the experimental period, the millimeter wave radar was fixed on the
rigid frame inside the external encirclement of the vehicle. The experimental vehicle
deployed with the experimental platform is displayed in Fig. 10a, b.
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Fig. 9 Construction of a real vehicle experimental platform and integration of hardware and software

(a) Deployment of the experimental plat-
form

(b) Experimental vehicle

Fig. 10 Deployment of the experimental platforms and sensors

4.2 Experimental Methods and Results Analysis

In the experimental process of the experimental vehicle, the average velocity of the
target vehicle was approximately 60 km/h, and the experimental vehicle tracked the
target vehicle running in front at an approximate running speed. The traveling track
of the vehicle target under the inertial coordinate system with the initial running point
as the origin is shown in Fig. 11.
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Fig. 11 The traveling track of the vehicle target

To ensure consistency between the experimental environment and conditions, the
three filtering algorithms are simultaneously executed under the abovementioned
experimental scenario and path to perform the tracking experiment on the vehicle
target. The topic communication mechanism of ROS realized the synchronous opera-
tion of three filtering algorithm procedures. Moreover, the millimeter wave radar data
were preprocessed by screening out the target information and setting the optimal
detection range to filter invalid targets in the opposite lane and those beyond the road.
The real vehicle experimental results showed the RMSE of the absolute position and
velocity of the vehicle in the inertial coordinate system (Fig. 12a, b) as well as the
corresponding tracking accuracy data (Table 5).

Analysis of Fig. 12a, b shows that in the real vehicle experiment, the motion state
of the target vehicle changed dramatically as it entered the curve, leading to increasing
system measurement outliers. Nevertheless, the IARCKF still showed a strong ability
to suppress measurement model errors when the vehicle target entered the curve.
Furthermore, theFLIMM-IARCKFalgorithmdisplayed a faster error convergence rate
and higher estimation accuracy than the IMM-IARCKF. The real vehicle experimental
effect further verified the performance characteristics and advantages of FLIMM-
IARCKF in vehicle target tracking.

The evaluation indicators in Table 5 further reflect the higher estimation accuracy
of the FLIMM-IARCKF algorithm. The results of the real vehicle experiment showed
that the RMSE values of FLIMM-IARCKF in absolute position and velocity were
45.16%and 39.08%higher than those of IMM-CKF, and theMAPEvalues of FLIMM-
IARCKF in absolute position and velocity were 36.13% and 32.24% higher than those
of IMM-CKF, respectively. Furthermore, the RMSE values of FLIMM-IARCKF in
absolute position and velocity were 17.07% and 14.52% higher than those of IMM-
IARCKF, and the MAPE improved by 13.79% and 20.63%, respectively.

The radar tracked the maneuvering target at a fixed position in the simulation
experiment, and errors might accumulate with the continuous motion of the target, so
that the RMSE in the simulation experiment was generally higher than that in the real
vehicle experiment. The simulation experiment sought to verify the effectiveness and
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(a) The RMSE of absolute position

(b) The RMSE of absolute velocity

Fig. 12 The RMSE of absolute position and velocity of the vehicle

accuracy advantages of the proposed algorithm, while its tracking performance under
an actual scenario was additionally verified through a real vehicle experiment.

4.3 Algorithm Efficiency Analysis

The complexity of the IMM-CKF, IMM-IARCKF, and FLIMM-IARCKF algorithms
was analyzed by floating point operations. The calculation method of complexity can
be found in reference [7], which defines the flops of various matrix operations. To
analyze the complexity of each algorithm more intuitively, the complexity curves of
the three algorithms were drawn according to the complexity calculation results when
the dimensions of the state andmeasurement vectors increased. The complexity curves
are shown in Fig. 13a, b, where n and m represent the dimensions of the state and
measurement vectors, respectively.
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(a) Complexity curve(m=8)

(b) Complexity curve(n=8)

Fig. 13 comparison of complexity among different algorithms
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It can be seen by analyzing Fig. 13a, b that the complexity of the FLIMM-IARCKF
algorithm is slightly higher than that of the IMM-CKF and IMM-IARCKF when
the dimensions of the state and measurement vectors are low. Since the dimensions
of the state and measurement vectors are not high under the actual vehicle tracking
conditions, the FLIMM-IARCKF algorithm does not introduce a significant loss of
efficiency due to the complexity when compared to the traditional IMM-CKF algo-
rithm.

In addition, the execution efficiencyof the IMM-CKF, IMM-IARCKF, andFLIMM-
IARCKF was comparatively tested to compare their true operating efficiency in the
experimental system. This experiment was divided into five groups, in each of which
the time spent by each of the three algorithms to operate 1000 consecutive times
after being integrated into the IPC of NEXCOM NISE3800E with the Intel Core i5
processor was recorded. The experimental results are listed in Table 6.

The experimental results in Table 6 show that the average took 56.13ms for the
FLIMMIARCKF algorithm to run once and 41.87ms and 48.82ms for the IMM-CKF
and IMM-IARCKF to run once, respectively. Although the average time consumption
of the FLIMM-IARCKF algorithm for single-time operation was slightly higher than
that of the other twofiltering algorithms, the output period of the continentalmillimeter
wave radar,modelARS408-21,was between70and80ms, and the execution efficiency
of FLIMM-IARCKF could certainly satisfy the real-timeliness requirement of system
filtering. Furthermore, the hardware configuration of the system still could have been
further optimized, which would provide a sufficient guarantee of adequate computing
power to enable the efficient execution of the algorithm.

5 Conclusion

Vehicle target tracking is crucial to target perception and the multisensor fusion of
intelligent driving. Measurement outliers and motion estimation model mismatching
significantly impact the tracking accuracy of vehicle targets. To suppress the inter-
ference of model errors and measurement outliers while improving the accuracy of
vehicle target state estimation, an adaptive vehicle target tracking enhancement algo-
rithm based on fuzzy interacting multiple model robust cubature Kalman filtering
(FLIMM-IARCKF) is presented. In this algorithm, the cost function of adaptive robust
nonlinear filtering is constructed by combining the improved fading factor with a con-
vex robust function. An improved derivative-free adaptive robust cubature Kalman
filter is designed based on this cost function, which suppresses the effects of the
errors of the measurement model and motion estimation model. Integrating these ele-
ments, the combined fuzzy reasoning method is designed to act on the interacting
multiple model algorithm, which further enhances the tracking performance and esti-
mation accuracy of the algorithm by adaptively regulating the process noise covariance
matrix while increasing the efficiency of model probability updating. Simulated and
real-vehicle experiments verify that the FLIMM-IARCKF algorithm demonstrates
significant advantages in terms of estimation accuracy, adaptive robustness, and effi-
ciency of model probability updates. The average MAPE and RMSE are increased by
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Table 6 Efficiency of algorithm execution

Group number IMM-CKF(s) IMM-IARCKF (s) FLIMM-IARCKF(s)

1 41.93 48.71 56.12

2 41.82 49.08 56.23

3 42.08 48.82 56.27

4 41.83 48.68 55.96

5 41.73 48.79 56.08

Mean value of time 41.87 48.82 56.13

approximately 30% versus competitive algorithms, which verifies the effectiveness of
our algorithm and its accuracy for tracking estimation.
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