
A
U

TH
O

R
 C

O
P

Y

Journal of Intelligent & Fuzzy Systems 31 (2016) 1109–1120
DOI:10.3233/JIFS-169040
IOS Press

1109

Probabilistic top-k range query processing
for uncertain databases

Guoqing Xiaoa, Fan Wua,∗, Xu Zhoua and Keqin Lia,b
aCollege of Information Science and Engineering, Hunan University, Changsha, Hunan, China
bDepartment of Computer Science, State University of New York, New Paltz, NY, USA

Abstract. Query processing over uncertain data is very important in many applications due to the existence of uncertainty
in real-world data. In this paper, we propose a novel and important query for uncertain data, namely probabilistic top-(k, l)
range (PTR) query, which retrieves l uncertain tuples that are expected to meet score range constraint [s1, s2] and have the
maximum top-k probabilities but no less than a given probability threshold q. In order to accelerate the PTR query, we
present some effective pruning techniques to reduce the search space of PTR query, which are integrated seamlessly into an
efficient PTR query procedure. Extensive experiments over both real-world and synthetic datasets verify the efficiency and
effectiveness of our proposed approaches.

Keywords: Data management, probabilistic top-k query, query processing, range query, uncertain data

1. Introduction

Uncertain data exists widely in information
retrieval, mobile object tracking, web services and
other various applications. In particular, some large-
scale applications, for instance, sensor networks and
RFID, can generate more uncertain data. There are
many reasons for producing uncertain data, such
as data noise, data leakage, transmission delay and
inaccuracy or incompletion in measurement, etc.
Similarly, surveys and imputation techniques crate
data which is uncertain in nature. This has created a
need for uncertain data management algorithms and
applications [2, 18], among which a pivotal tech-
nique in this respect is the query processing over
uncertain database, such as top-k query [6, 9, 12–
14, 17, 20]. With the rapid development of data
collection methods and the practical applications, the
issue of uncertain data query has drawn large amounts
of attention in both academia and industry [3].

∗Corresponding author. Fan Wu, College of Information Sci-
ence and Engineering, Hunan University, Changsha 410082,
Hunan, China. Tel.: +86 18907483881; Fax: +86 0731 88664161;
E-mail: wufan whu@163.com.

Top-k query is a classic problem in the area of
information retrieval. For a user-defined scoring func-
tion and one given query, algorithms return k objects
which have the largest scores. However, in uncer-
tain data management, data records are typically
represented by probability distributions rather than
deterministic values [2]. Therefore, traditional def-
inite top-k query cannot respond to uncertain top-k
query, thereby we have to redefine query semantics
of top-k for uncertain query. As for uncertain top-k
query, the interaction between score and probabil-
ity determine the answers. Different combination of
the two factors may generate various uncertain query
semantics, among which most are based on possible
worlds semantics [7]. In this paper, we propose an
extended uncertain top-k query top-(k,l) query and
several effective pruning strategies on the basis of a
given probability threshold. It will be introduced in
detail in Sections 3 and 5.

The range-based uncertain data query process-
ing problem has drawn increasing attention to many
researchers, and emerged some range-based uncer-
tain query algorithms, such as location-based query
[4], range-based nearest neighbor (NN) query [11]

1064-1246/16/$35.00 © 2016 – IOS Press and the authors. All rights reserved

A
U

TH
O

R
 C

O
P

Y

1110 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

and skyline range query [15]. To the best of our
knowledge, very few works refer to uncertain top-
k range query processing. In this paper, we propose
a range-based probabilistic top-(k,l) query (PTR
query), i.e., for a given probability threshold q and
a score range constraint s = [s1, s2], the algorithm
returns l tuples which meet s and their top-k prob-
abilities are no less than q. We will introduce it at
length in Sections 3 and 5.

Our contributions made in this paper are as follows.

• We first develop an new and crucial query,
i.e., probabilistic top-(k,l) range (PTR) query by
taking range query and top-k query into over-
all consideration in the context of uncertain
databases.
• We present several effective pruning rules to

reduce the search space, which are integrated
into an efficient PTR query procedure.
• Particularly, we can find that a lower bound of

top-k probability of certain tuple and an upper
bound of the answer set by studying the proper-
ties of top-k probability.
• Extensive experiments are conducted over both

real-world and synthetic data to evaluate the
performance of the proposed algorithm. The
experimental results show that our query algo-
rithm perform well.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work on uncertain top-k queries
and range-based queries. Section 3 mainly introduces
the uncertain data model and further gives the for-
mal definitions concerning PTR query processing.
Section 4 presents some properties of top-k prob-
ability and corresponding pruning rules. Section 5
pictures the PTR query algorithm. Section 6 evaluates
the proposed algorithm with experiments. Finally,
we make a conclusion with directions for future
work.

2. Related work

We review the existing works on uncertain (prob-
abilistic) top-k query and range-based query in this
section.

2.1. Uncertain Top-k query processing

While research works on conventional top-k
queries are mostly based on some deterministic scor-
ing functions, the new factor of tuple membership

probability in uncertain database makes evaluation
of probabilistic top-k queries very complicated since
the top-k answer set depends not only on the ranking
scores of candidate tuples but also their probabili-
ties. As for uncertain databases, there exist all kinds
of uncertain top-k query semantics, among which
the most influential include U-Topk [17], U-kRanks
[17], PT-k [12], Global-Topk [20], Expected Rank
[6], E-Score Rank [6], PTkS [14], and PTI query [19]
etc. U-Topk returns the most probable k-tuple vector
with the maximum aggregated probability of being
top-k over all possible worlds. U-kRanks returns a
list of k tuples such that the ith-ranked tuple has the
highest aggregated probability in all possible worlds.
These two query algorithm proposed in [17] are of
inefficient due to lacking of pruning rules with an
increasing possible world space. PT-k query returns
those tuples which their top-k probabilities across all
possible worlds are no less than a given probabilistic
threshold q, which makes for approving performance
without unfolding all possible worlds. Furthermore, a
sampling method is developed to quickly compute an
approximation with quality guarantee to the answer
set by extracting a small sample of the uncertain
dataset. Though the sampling method can lower the
accuracy of answers, it can improve efficiency to a
large degree. In [20], Zhang etc propose a Global-
Topk query semantic that returns k highest-ranked
tuples on the basis of their probabilities of being
top-k answer set in all possible worlds. In [6], the
expected rank of each tuple over all possible worlds
is regarded as the ranking function for obtaining the
answer set. E-Score Rank query takes the E-Score of
each tuple as the ranking function to find the final
answers. Lian and Chen [14] propose the probabilis-
tic top-k star (PTkS) query, which aims to retrieve k
objects in an uncertain database that are “closest" to a
static/dynamic query point, considering both distance
and probability aspects. In [18], the authors present
the problem of Top-K frequent itemsets mining in
sliding windows. Xiao et al. proposed a probabilis-
tic top-l influential (PTI) query to identify the l

most favorite objects [19]. From these definitions,
we can see that a pivotal problem of uncertain top-k
query is the calculation of possible world probabil-
ity. Provided there is no good pruning technology, the
performance of query may be comparative low with
an exponential growth large possible world space.
Consequently, it is necessary to exploit some effi-
cient pruning strategies to reduce the computing of
top-k probability for improving the performance of
algorithm.

A
U

TH
O

R
 C

O
P

Y

G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases 1111

2.2. Range-based query processing

Range-based query processing has recently more
and more attention in various practical applications
as a result of the uncertainty, such as moving object
tracking [10], location-based services [15] and com-
puter games [21] etc. For the uncertainty of object,
or privacy reasons, the records we want to query usu-
ally locate in a finite range region, such as an interval
range, rectangular or circular range. Existing some
rage-based query algorithms, e.g., range-based kNN
query [11], range-based skyline query [15] etc. In
[11], Hu and Lee firstly presented the RkNN solution
for rectangular ranges. Lin et al. proposed the first
range-based skyline query in LBS [15]. In [5], Cheng
et al. firstly put forward probabilistic range query
based on one-dimensional space. Tao et al. studied
the uncertain range query for arbitrary probabil-
ity distribution function in multi-dimensional space.
To the best of our knowledge, there is very little
works that has studied range-based uncertain top-k
queries. Brodal [1] and Tao [16] developed a static
and dynamic structure for the top-k range reporting
problem, respectively. In this paper, we propose an
uncertain top-k range query based on score attribute
range, which retrievals the uncertain database by
appointing a score range.

3. Preliminaries

In this section, we first introduce an uncertain data
model, then we give the formal definitions concerning
the probabilistic top-(k,l) range query.

3.1. Uncertain date model

The fundamental difference between a traditional
deterministic database and an uncertain database is
that an uncertain relation represents a set of possible
relation instances, rather than a single one [2]. Sup-
pose an uncertain database DB, which is composed
of a set of n tuples ti (1 ≤ i ≤ n). The uncertainty
of every tuple ti in the uncertain database DB is
mainly represented by a confidence, i.e., its existence
probability P(ti) in DB. For a given score rank-
ing function s(t), the score of each ti is denoted by
s(ti). In fact, many uncertain data processing, includ-
ing top-k query processing, pay attention to mainly
two types of uncertainty, i.e., tuple-level uncertainty
and attribute-level uncertainty. For tuple-level uncer-
tainty, every tuple is uncertain while its attribute value

(i.e. score) is deterministic. For attribute-level uncer-
tainty, every tuple is deterministic while its attribute
value is uncertain, and every attribute value corre-
sponds to a probability. In a probabilistic database,
there may exist some generation rules between tuples,
such as exclusion or coexistence, but almost tuples are
independent of each other. In this paper, we only con-
sider tuple-level uncertainty with all tuples mutually
independent.

There exist many works on modeling uncertain
data. One of the most popular is the model based
on possible world semantics [7], where an uncer-
tain database is regarded as a set of possible world
instances associated with their probabilities. Each
possible world W is a subset of uncertain database
tuples, and the set of all worlds is denoted by the pos-
sible world space �. The probability of each world
is computed as the joint probability of the existence
of the world’s tuples and the absence of all other
database tuples. Since all tuples are mutually inde-
pendent, we can obtain

P(W) =
∏

t∈W
P(t)

∏

t /∈ W

−
P (t), (1)

where
−
P (t) = 1− P(t), and

∑
W∈� P(W) = 1.

3.2. Problem definition

With the aforementioned introductions and pos-
sible world semantics, in this subsection, we put
forward the query semantics concerning probabilistic
top-(k,l) query based on a given probability threshold
q and Refs. [9, 12, 20].

Definition 1. (Score dominating) Let s(t) be a score
ranking function, for arbitrary two tuples ti, tj , if
s(ti) > s(tj), then ti �s tj .

Definition 2. (Top-k probability) Let DB be an
uncertain database with possible world space �, k be
a positive integer, s(t) be a score ranking function, and
Topk(W) be a set of k tuples in the front of possible
world W on the basis of scoring function s(t). Then
the probability of any tuple t in DB Ptop−k(t, DB) can
be defined as the summation of the probabilities of
all possible worlds whose top-k answer set Topk(W)
contains t , i.e.,

Ptop−k(t, DB) =
∑

W∈�, t∈Topk(W)

P(W). (2)

A
U

TH
O

R
 C

O
P

Y

1112 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

Note that top-k answer sets may be of cardinality
less than k for some possible worlds. We call such
possible worlds as small worlds [20].

Definition 3. (Probabilistic top-(k, l) range query,
PTR query) Let DB be an uncertain database, l be a
positive integral number, s be a given score range con-
straint (e.g., s = [s1, s2]),q be a probability threshold,
and Ptop−k(t, DB) be the top-k probability of tuple t in
DB. Then the top-(k,l) query over uncertain database
DB returns l tuples which meet constraint s and have
the maximum top-k probabilities but no less than
q, i.e.,

{t|s(t) ∈ s, Ptop−k(t, DB) ≥ q}, (3)

and

|{t|s(t) ∈ s, Ptop−k(t, DB) ≥ q}| = l. (4)

4. Pruning rules

On the basis of semantics of uncertain top-(k,l)
query, we can know that the calculation of top-k
is very large with exponentially growing possible
worlds. Therefore, it is necessary to put forward some
pruning techniques for reducing the computing of
top-k.

Lemma 1. (Pruning Rule 1) Let s(t) be a score rank-
ing function, s be a given score range constraint, DB
be an uncertain database. For any tuple t, if s(t) /∈ s,
then we can remove t immediately from the DB with-
out calculating its top-k probability. �

Theorem 1. The top-k probability of tuple t in an
uncertain database DB, denoted by Ptop−k(t, DB),
is at most its presence probability P(t), i.e.,
Ptop−k(t, DB) ≤ P(t).

Lemma 2. (Pruning Rule 2) Let q be a probability
threshold, P(t) be the presence probability of tuple
t, Ptop−k(t, DB) be t’s top-k probability. If P(t) <

q, then t can be excluded immediately from the DB
without computing Ptop−k(t, DB).

According to Lemmas 1 and 2, before the calcula-
tion of top-k probability of a tuple, we can pre-prune
some tuples potentially based on a given score range
constraint s and a probability threshold q, respec-
tively. They aim at decreasing the size of the uncertain
dataset.

Lemma 3. (Pruning Rule 3) Given an uncertain
database DB with cardinality n, and t1 �s t2 �s

· · · �s tn. Let DBti be the subset {t1, t2, . . . , ti},
P(DBti , j) denote the probability of any j tuples
appearing in the set DBti , denoted by xti,j . If∑k−1

j=0 xti,j < q, then we can prune the tuples which
rank lower than ti, i.e., for∀1 ≤ m ≤ n− i, m ∈ N+,
Ptop−k(ti+m, DB) < q, where q is a given probability
threshold.

According to the pruning technique 3, we can
obtain a compact set about the answer set. In sub-
sequent experiments, we show that the pruning
technology has excellent efficiency and effectiveness
with pruning rate at least 99%.

The three pruning techniques aforementioned all
aim at cutting down the size of the uncertain dataset
for reducing the query search space. However, these
pruning strategies do not or few consider the prop-
erties of top-k probability of tuples. One important
innovation of this paper is the demonstration of the
mathematical property of top-k probability of tuples.
Next, we will give out the other pruning rules based
on the nature.

Theorem 2. Given an uncertain database DB with
t1 �s t2 �s · · · �s tn. Then Ptop−k(ti, DB) increases
with k, but no more than P(ti).

Lemma 4. (Pruning Rule 4) Given a probability
threshold q, an uncertain database DB with cardi-
nality n, and t1 �s t2 �s · · · �s tn. Then there exists
a lower bound LB of top-k probability of tuple ti,
i.e.,P(ti)

∏
tj�sti

(1− P(tj)), such that we can add ti

into the top-(k,l) answer set without computing its
complete top-k probability when LB ≥ q.

As a matter of fact, the LB of tuple t is its sky-
line probability in this uncertain DB if we take the
uncertain data as the points in two-dimensional space
[8, 22, 23].

Note that, we may put directly the tuples whose
lower bound LB are equal or greater than q into the
answer set. So the number of tuples in top-(k,l) answer
set of the PTR query may larger than l on account
of adding some tuples whose LB are no less than
q. In subsequent experiments, we will demonstrate
that the probability lower pruning not only reduces
the PTR query search space, but it also grasps some
relatively important tuples missed by some uncer-
tain top-k queries, e.g., PT-k query and Global-Topk
query.

In summary, we can decrease efficiently the search
space by removing some tuples based on these prun-
ing rules we proposed, such as the score range
constraint pruning (Pruning Rule 1), the probability

A
U

TH
O

R
 C

O
P

Y

G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases 1113

threshold pruning (Pruning Rule 2), the upper bound
of answer set pruning (Pruning Rule 3) and the top-k
probability lower bound pruning (Pruning Rule 4).

5. PTR query

In this section, we will present our probabilis-
tic top-(k,l) range query processing algorithm, i.e.,
PTR query, including a description of the algorithm
(Section 5.1) and complexity analysis of the algo-
rithm (Section 5.2).

5.1. The algorithm framework

We now describe the probabilistic top-(k,l) range
(i.e., PTR) query processing algorithm. The algo-
rithm is presented in Algorithm 1. Initially, we empty
a queue Q for saving the answer set (line 1). Clearly,
one straightforward way to answer the uncertain
query is in terms of its semantics and pruning tech-
niques we proposed. That is, for each uncertain tuple
in the uncertain database DB, we firstly remove some
tuples which do not meet the score range constraint
and probability upper bound constraint (i.e., proba-
bility threshold), based on Lemmas 1 and 2 (lines
2–6). After that, we can obtain a compact database
with smaller cardinality. Then, we sort the database
in accordance with the decreasing order based on

Algorithm 1. PTR Query Processing
Input:

an uncertain database DB with the cardinality n, an score
ranking function s(t), a probability threshold q, a score range
[s1,s2], two integral numbers k and l

Output:
top-(k,l) query answer set Q

1: initialize the top-(k,l) answer set Q← ∅;
2: for each tuple t in DB do
3: if (s(t) /∈ s or P(t) < q) then
4: remove t from the database DB;
5: sort for remaining tuples in DB in the decreasing order of the

scoring function s(t);

6: if
∑k−1

j=0 xti,j < q then
7: prune the tuples which rank lower than ti from the DB;
8: for the remaining tuples in DB, compute the lower bound LB

of top-k probability of tuple ti in DB;
9: if LB ≥ q then

10: put ti into top-(k,l) answer set Q;
11: for the remaining tuples in DB, compute top-k probability of

tuple t Ptop−k(t, DB);
12: select l tuples which have the maximum top-k probabilities

but no less than q, and put them into the answer set Q;
13: return Q.

the scoring function s(t) and sequentially scan tuples
in the database (line 7). Next, we further prune the
dataset in light of the upper bound of top-(k,l) answer
set (lines 8–10). Then for the remaining tuples in DB,
we compute the lower bound of their top-k probabil-
ity and insert the tuples whose LB are no less than
q into answer set Q (lines 11–14). After that, for the
remaining tuples in the uncertain database, we com-
pute their probabilities of being top-k (line 15). Last
but not least, on the basis of the top-k probabilities and
q, we select l tuples which have the maximum top-k
probabilities but no less than q, and put them into the
answer set Q (line 16). Finally, the algorithm returns
l as its output. Its correctness and complexity analysis
are demonstrated in the following subsection.

5.2. Correctness and complexity analysis

In this section, we will concentrate on the proof of
correctness of the PTR query processing algorithm
and the analysis of complexity.

Theorem 3. The algorithm of top-(k,l) range query
processing, i.e., PTR query processing, on the basis
of pruning rules we proposed can accurately find out
the optimal tuples we wanted.

Proof. From the definition of top-(k,l) range query,
we can know that, for a score range constraint s and
a probability threshold q, the query returns l tuples
which meet constraint s and have maximum top-k
probabilities but no less than q, i.e.,

{t|s(t) ∈ s, Ptop−k(t, DB) ≥ q}, (5)

and

|{t|s(t) ∈ s, Ptop−k(t, DB) ≥ q}| = l. (6)

Note that the top-(k,l) range query processing func-
tions only on remaining dataset after Pruning Rules
1, 2 and 3, so the three pruning techniques do not
have an effect on the accuracy of the query. On the
other hand, as previously mentioned, the number of
PTR query answer set may larger than l on account
of adding some tuples whose LB are no less than q.
But however it happens, the answer set of the PTR
query always reports the optimal tuples we wanted.

Thus, as long as Line 11 of Algorithm 1, correctly
calculates the top-k probability of tuples, the query
can return a valid top-(k,l) answer set. Based on the
Proposition 1 in Ref. [4], we can know that Algorithm
2 accurately compute the probability of being top-k
of tuples in Equation (4). �

A
U

TH
O

R
 C

O
P

Y

1114 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

Theorem 4. The complexity of PTR query process-
ing algorithm, in the worst case, is max[O(n), O(n1 ∗
n1), O(kn2), O(n2logn2)], where, n, n1, n2 are the
cardinality of original uncertain database, compact
database based on score value constraint pruning
and probability threshold pruning, and dataset on the
grounds of the upper bound of answer set pruning and
top-k probability lower bound pruning, respectively.

Proof. Now we consider the complexity of the PTR
query processing algorithm in the following. The
most complicated operations are sorting the uncer-
tain database, the upper bound of answer set pruning
and the calculation of probability of being top-k of
tuples. Assume that the cardinality of original indeter-
minate database is n, then the complexity of Pruning
Rules 1 and 2 based on score range constraint and
probability threshold is O(n). Next, we need to sort
the remaining tuples in compact database, and the
worst sorting operation is O(n1 ∗ n1), where n1 is
the cardinality of the compact database. Then, the
upper bound of answer set pruning takes O(n1 ∗ n1)
in the worst case to compute a dynamic program-
ming table. The following lower bound pruning cost,
in the worst case, is O(n1 ∗ n1/2). In practice, the
cost is far from it because the LB value may be
zero for the lower-ranked tuples. Suppose the num-
ber of tuples in database is n2 this moment. Then,
Algorithm 2 takes O(kn2) to calculate a dynamic
programming table for the computing of top-k prob-
ability of tuples. Finally, the query algorithm takes
O(n2logn2) in the worst case to maintain the sets Q.
Consequently, the worst case time complexity of PTR
query processing algorithm is max[O(n), O(n1 ∗
n1), O(kn2), O(n2logn2)]. �

6. Experimental evaluation

In this section, we demonstrate the efficiency
and effectiveness of PTR query processing algo-
rithm based on some pruning techniques we proposed
through a series of simulations over both real-world
and synthetic data. We take query execution time and
PR (pruning rate, as defined hereinafter) as the pri-
mary performance metrics under various parameter
settings. All experiments were run on a PC with a 2.60
GHz AMD AthlonTM II X4 620 processor with 4 GB
of main memory, and a 500 GB hard disk, running
Windows Win7 32 bit Operating System. Our algo-
rithm was implemented in Microsoft Visual Studio
2010.

Definition 4. (Pruning Ratio, PR) Let NUMbef be
the number of dataset before pruning, NUMaft be the
size of the dataset after pruning, we call

PR = NUMbef −NUMaft

NUMbef

(7)

pruning ratio, denoted as PR. It represents the effi-
ciency of pruning techniques.

6.1. Results on the real-world dataset

We use the International Ice Patrol (IIP) Iceberg
Sightings Database1 to evaluate the effectiveness of
PTR query over uncertain data in real-world appli-
cations. This dataset was used in previous works on
ranking queries in uncertain data [12]. The IIP col-
lects information on iceberg activity in the North
Atlantic. Its mission is to measure, plot and pre-
dict iceberg drift, and broadcasting all known ice to
prevent icebergs threatening. In this database, each
sighting record is regarded as a tuple, including some
of importance attributes, such as sighting source,
position (longitude and latitude) and the number of
the drifted days etc. Among them, the number of
days of iceberg drift is dated from the IIP drift and
deterioration computer model, which is pivotal in
determining the status of icebergs. It is interesting
to find the icebergs drifting for a long period. In this
real experiment, we consider drifted days as attribute
score of tuples for top-k queries, and the larger the
score value is, the more important the tuple is.

Moreover, each sighting record in this database is
associated with a confidence-level in terms of the
source of sighting. There are six types of sighting
source, including R/V (radar and visual), VIS (visual
only), RAD (radar only), SAT-LOW (low earth orbit
satellite), SAT-MED (medium earth orbit satellite)
and SAT-HIGH (high earth orbit satellite). The dif-
ferences in confidence-level of these sighting sources
are classified and presented by probability values
which are 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 to the six
confidence-levels aforementioned, respectively.

The IIP 2009 database which contains 13,095
tuples is used to conduct the real experiment. We
apply our PTR query and two other queries, i.e.,
PT-k query and Global-Topk query, on the uncertain
dataset. The ranking order is the number of days of
iceberg drift descending order. For PTR query, we
set k = l = 10, q = 0.3 and s = [100, 500], that is,
the researchers would want to observe those records

1http://nsidc.org/data/g00807.html

A
U

TH
O

R
 C

O
P

Y

G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases 1115

Table 1
PTR query answer set over the IIP 2009 database

Tuples t6903 t3610 t3612 t6928 t4174 t4020 t8313 t8412 t8411 t8409 t8410 t8408

Drifted days 500 500 495 488.7 439.5 427.6 423.5 455.5 435.2 431.6 431 430.9
Presence prob. 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7
Top-10 prob. – – 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7
Rank 1 2 3 4 6 11 12 5 7 8 9 10

Table 2
PT-k/Global-Topk queries answer set over the IIP 2009 database

Tuples t6903 t3612 t6928 t4174 t4020 t8412 t8411 t8409 t8410 t8408 t3610
Drifted days 500 495 488.7 439.5 427.6 455.5 435.2 431.6 431 430.9 500
Presence prob. 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6
Top-10 prob. 0.8 0.8 0.8 0.8 0.766956 0.7 0.7 0.7 0.7 0.7 0.6
Rank 1 3 4 6 11 5 7 8 9 10 2

Table 3
The experimental datasets under various distributions

Datasets Meanings

uu the score and probability follow uniform distribution;
un(0.5) the score follow uniform distribution, and the probability

follow normal distribution with mean value equals to 0.5;
un(0.9) the score follow uniform distribution, and the probability

follow normal distribution with mean value equals to 0.9;
uexp(0.2) the score follow uniform distribution, and the probability

follow exponent distribution with mean value equals to 0.2;
uexp(0.5) the score follow uniform distribution, and the probability

follow exponent distribution with mean value equals to 0.5.

whose drifted days are located at between 100 and
500, and their probabilities of being top-10 are no
less than 0.3. We set k = 10 and q = 0.3 for PT-
k query and k = 10 for Global-Topk query. The
detailed information about the result sets of these
three queries are showed in Tables 2 and 3, including
attribute scores (drifted days), presence probabilities,
top-10 probabilities and the corresponding ranks.

All tuples with top-10 probability at least 0.3 and
drifted days between 100 and 500 are reported by the
PTR query. As is shown in Table 1, the PTR query
returns a set of 12 tuples {t6903, t3610, t3612, t6928,
t4174, t4020, t8313, t8412, t8411, t8409, t8410, t8408} as
the top-(10,10) answer set, among which t6903 and
t3610 (as shown in bold) are obtained by probabil-
ity lower bound pruning (Pruning Rule 4). Table 2
illustrates the results of PT-k query and Global-Topk
query. Although tuple t3601 (as shown in bold) has the
relatively low presence probability, it is regarded as a
member of the answer set for the reason that its score
(drifted days) is larger or equal than that of tuples in
the result set. However, the tuple t3601 is not included
in the answer set of the PT-k query and Global-Topk
query despite the fact that t3601 has the largest score in
the given score range. In other words, the two queries

lose some relatively important tuples. From an real
experiment viewpoint, it verifies also the effective-
ness of PTR query, that is, the query can accurately
report those optimal tuples users wanted.

The pruning ratios of the score range pruning and
probability threshold pruning (i.e., pruning rules 1
and 2), the upper bound pruning of answer set (i.e.,
pruning technique 3) and probability lower bound
pruning (i.e., pruning strategy 4) are 78.68%, 99.46%
and 13.33%, respectively. The upper bound prun-
ing of result set has a super pruning effect with the
pruning ratio at least 99%. The effects of pruning of
pruning techniques 1 and 2 rests with the score range
and probability threshold user selected. Although the
pruning rule 4 has a relatively lower pruning effect, it
contributes to our PTR query capturing those impor-
tant tuples missed by some uncertain top-k queries
such as the PT-k query and Global-Topk query.

Furthermore, for the real-world uncertain database,
we also conduct several experiments to evaluate the
efficiency and effectiveness of PTR query under dif-
ferent parameter settings. The experimental results
are shown in Figs. 1–3. Figure 1 pictures the query
running time of the query with k value up to 1K (K =
1000, similarly hereinafter), where s = [100, 500],

A
U

TH
O

R
 C

O
P

Y

1116 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

Fig. 1. Running time versus k over the IIP 2009 database.

Fig. 2. Running time versus q over the IIP 2009 database.

Fig. 3. Running time versus s over the IIP 2009 database.

q = 0.3 and l = 100. As illustrated in this picture,
the time increases almost linearly with k value, which
is intuitive. In the other one trial, we illustrate the
influence of probability threshold on the efficiency
and effectiveness of PTR query. Figure 2 describes
the experimental results under the setting of s =
[100, 500] and k = l = 100. We can see intuitively
from the picture that the execution time decreases as q

value increases. However, the tendency of decreasing
is not obvious for the reason that the size of IIP 2009
database is too small. In order to study the extendibil-
ity of PTR query, we will test the PTR query on

massive synthetic data in the next subsection. In the
last one experiment, we illustrate the effect of various
score range s on the query time, where q = 0.3 and
k = l = 100. The experimental result is described in
Fig. 3. As shown, we can evaluate the performance
of PTR query based on different score range users
given. As a matter of fact, users can decide the range
interval on the basis of their own preference.

In summary, our PTR query captures those impor-
tant tuples missed by the PT-k query and Global-Topk
query with better effectiveness. This experiment on
real-world database elaborates also the differences
among the various kinds of top-k queries for uncer-
tain data. In the following, we will test the PTR query
on synthetic datasets for evaluating its scalability and
performance further.

6.2. Results on the synthetic dataset

In order to evaluate the query answering qual-
ity and the scalability of our proposed algorithms,
we generate some kinds of synthetic data. Since
uncertain top-(k,l) query algorithm needs to balance
scores and probabilities of tuples, the experimen-
tal data should consider different distribution with
respect to the scores and probabilities. In this sec-
tion, we conduct the experiments on some synthetic
datasets under different distributions. Their scores
all follow the uniform distribution between zero and
one hundred, and their probabilities obey uniform
distribution, normal distribution and exponent distri-
bution, respectively. There is no correlation between
the score and the probability. Table 3 illustrates
the experimental datasets we adopted under various
distributions.

We still take query running time as the primary
performance metric under different parameter set-
tings. Note that the time includes the sorting time
after Pruning Rules 1 and 2.

6.2.1. Effects of the cardinality of database n

In this series of experiments, we vary the num-
ber of uncertain data n from 16K to 512K. The best
case for the query algorithm is to find highly probable
tuples frequently after sorting the uncertain database,
which allows obtaining strong candidates to prune
other low probability candidates aggressively based
on these pruning techniques, and thus report the query
quickly. Figure 4 shows the execution time of PTR
query with the cardinality of dataset n up to 512K

under different datasets, where s = [10, 90], q = 0.2
and k = l = 100. We can see from the picture the

A
U

TH
O

R
 C

O
P

Y

G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases 1117

time increases sharply as n value increases, which is
intuitive. For example, for the uniform distribution
pair, the PTR query time approaches 2,500 seconds
for the size of database of 512K, while the time is
under 1 seconds for 16K. Uu distribution pair and un

distribution pair have the relatively big running time
while uexp distribution pair (e.p., the exp(0.2) dis-
tribution pair) has the relatively small execution time
for the PTR query. This can be explained based on
the fact that a small quantity of tuples have relatively
high probability under uexp distribution, thereby the
number of prunable tuples increase with n on the
basis of the pruning strategies. However, the un dis-
tribution pair where a considerable number of tuples
are highly probable, leading to the prunable tuples
decrease based on the pruning techniques. On the
other hand, there is a relatively longer execution time
when dataset meets un distribution with larger mean
value, because their probabilities, especially some
relatively high probabilities, distribute so intensively
that we can prune less tuples. As such, there need
a shorter time when dataset meets uexp distribution
with smaller mean value. Because the mean value
forces probability to decay relatively fast leading to
a small number of highly likely tuples.

6.2.2. Effects of the parameter k

In this experiment, we study the influence of k

value on the performance of PTR query under various
types of datasets. We vary k value from 0.1K to 3K.
The experimental results are shown in Fig. 5. In this
picture, we illustrates the query running time with k

value up to 3K, where s = [10, 90], q = 0.2, l = 100
and n = 256K. From the picture, we can know that
the execution time increases almost linearly as k value
increases. PTR query execution time is close to 600
seconds for uniform distribution and norm distribu-
tion pair, while the running time is under 130 seconds
for exponential distribution with mean value 0.2. The
variation of running time of different distributions
roughly has the similar form with the Fig. 5 as the
same causes aforementioned.

6.2.3. Effects of the probability threshold q

In this train of experiments, we discuss the rela-
tionship between different probability threshold and
performance of query. We vary probability thresh-
old q value from 0.2 to 0.8. The experimental results
are shown in Fig. 6. In this experiment, we illustrate
the query running time with q value up to 0.8, where
s = [10, 90], k = l = 100 and n = 256K. From the
picture, we can know that the query execution time

Fig. 4. Running time versus n (various probability distributions).

Fig. 5. Running time versus k (various probability distributions).

decreases obviously as q value increases for the rea-
son that the number of dataset decreases with q

increases. For instance, the query time exceeds 590
seconds for threshold 0.2, while the time is under 35
seconds for threshold 0.8 under un(0.9) distribution.
On the other hand, as what mentioned before, the
query time of various kinds of distribution datasets
has the similar tendency of variation with Figs. 4
and 5.

6.2.4. Effects of the score range s

Now, we vary score rang constraint s for simula-
tions. Figure 7 shows the experimental results. In the
drawing, we demonstrate the PTR query execution
time with score rang s, where q = 0.2, k = l = 100
and n = 256K. We describe the running time for
different score range in the picture. Of course, in prac-
tice, the users may set the score range in terms of their
own demands. On the other side, the variation of run-
ning time of various kinds of distribution datasets
roughly has the approximate trend with the Figs. 4–6
as the similar causes mentioned previously.

A
U

TH
O

R
 C

O
P

Y

1118 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

Fig. 6. Running time versus q (various probability distributions).

Fig. 7. Running time versus s (various probability distributions).

Fig. 8. Running time versus k (various bivariate normal distribu-
tions).

6.2.5. Effects of the score-probability
correlations

In this series of experiments, we evaluate the effect
of score-probability correlation on the performance
of query. We use the synthetic uncertain databases
of mutually independent tuples with the score and

Fig. 9. Running time versus q (various bivariate normal distribu-
tions).

Fig. 10. Running time versus s (various bivariate normal distribu-
tions).

probability values of uncorrelation, positive correla-
tion and negative correlation. Given this, we generate
bivariate normal data over score and probability,
and control the correlation coefficient by adjusting
bivariate covariance matrix. The size of these syn-
thetic dataset is all 256K with different correlation
coefficient. We evaluate the performance of PTR
query under various parameter settings. Experimen-
tal results are shown in Figs. 8–10. In Fig. 8, we
study the effect of k value on the performance of
PTR query under various correlation coefficient. We
vary k value from 0.1K to 2K, where s = [10, 90],
q = 0.2, l = 100 and n = 256K. Figure 9 illustrates
the query execution time with q value up to 0.8, where
s = [10, 90], k = l = 100 and n = 256K. In addi-
tion, we discuss the influence of different score range
on performance of query under the setting of q = 0.2,
k = l = 100 and n = 256K, as illustrated in Fig. 10.
We can know from these graphs that the positive cor-
relation has positive effects on the performance of

A
U

TH
O

R
 C

O
P

Y

G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases 1119

Table 4
The pruning ratio under different probability distributions

Datasets/PR PR12 PR3 PR4

uu 35.28% 99.94% 8.20%
un(0.5) 35.38% 99.95% 8.09%
un(0.9) 35.31% 99.95% 6.25%
uexp(0.2) 45.80% 99.93% 5.56%
uexp(0.5) 70.29% 99.82% 2.94%

Table 5
The pruning ratio under various bivariate normal distributions

Datasets/PR PR12 PR3 PR4

dataset with cor=0.8 18.67% 99.92% 1.86%
dataset with cor=0.1 18.58% 99.92% 0.61%
dataset with cor=0.0 18.63% 99.92% 1.23%
dataset with cor=-0.1 18.55% 99.92% 1.19%
dataset with cor=-0.8 18.23% 99.92% 1.21%

query while anti-correlation has negative influences
on the performance. This can be explained based
on the fact that for the data of positive correlation,
high score tuples are attributed with high probabil-
ity, which allows pruning considerable low probable
tuples in advance to answer uncertain top-k range
queries, while for negatively correlated data, more
tuples need to be visited before concluding results.

6.2.6. Pruning effects
In this subsection, we evaluate the efficiency and

effectiveness of pruning techniques for different types
of data used previously. Experimental results are
shown in Tables 4 and 5. Table 4 illustrates the
pruning ratios of pruning strategies under various
kinds of probability distribution with the settings of
s = [10, 90], q = 0.2, k = l = 100 and n = 512K.
Table 5 describes pruning ratios of these four prun-
ing techniques under different bivariate gaussian data
over score and probability with the settings of s =
[10, 90], q = 0.2, k = l = 100 and n = 256K. From
the tables, we can see that the pruning rule 3 has an
unexceptionable pruning efficiency with the pruning
rate at least 99.9%. Pruning strategies 1 and 2, as
the methods of predictive pruning, have also better
pruning effects, which depends on the score range
and probability threshold user selected. Although the
pruning rule 4 has a lower pruning effect, it con-
tributes to our PTR query capturing those important
tuples missed by some uncertain top-k queries such
as the PT-k query and Global-Topk query.

In a word, extensive experiments based on syn-
thetic data have very well verified the efficiency and
effectiveness of our proposed algorithm for the uncer-

tain top-k range query, in terms of few execution time
excellent pruning effects and more optimal query
results.

7. Conclusions

In real-world applications, uncertainty is inher-
ently exist in data. It has recently become crucial
to explore how to answer various queries for uncer-
tain data effectively and efficiently. In this article, we
develop an new and important probabilistic top-(k,l)
range query, i.e., PTR query, algorithm in terms of
a given attribute score range constraint and a proba-
bility threshold. In addition, we put forward several
effective pruning strategies to improve the perfor-
mance of the query algorithm we proposed. Extensive
experiments have verified the efficiency and effec-
tiveness of our proposed approaches. As for future
work, we will extend the query processing algo-
rithm on the basis of the assumptions aforementioned,
including tuple-level uncertainty with any generation
rules, attribute-level uncertainty.

Acknowledgments

The research was partially funded by the Key
Program of National Natural Science Foundation
of China (Grant Nos. 61133005, 61432005), the
National Natural Science Foundation of China (Grant
Nos. 61370095, 61472124), the International Sci-
ence & Technology Cooperation Program of China
(Grant No. 2015DFA11240), the National High-tech
R&D Program of China (Grant No. 2015AA015303),
the Hunan Provincial Innovation Foundation For
Postgraduate (Grant No. CX2016B066), and the Out-
standing Graduate Student Innovation Fund Program
of Collaborative Innovation Center of High Perfor-
mance Computing.

References

[1] P. Afshani, G. Brodal and N. Zeh, Ordered and unordered
top-k range reporting in large data sets, In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2011, pp. 390–400.

[2] C.C. Aggarwal and P.S. Yu, A survey of uncertain data algo-
rithms and applications, IEEE Trans on Knowledge and Data
Engineering 21(5) (2009), 609–623.

[3] I. Barba, B. Weber, C. Del Valle and A. Jiménez-Ramı́rez,
User recommendations for the optimized execution of busi-

A
U

TH
O

R
 C

O
P

Y

1120 G. Xiao et al. / Probabilistic top-k range query processing for uncertain databases

ness processes, Data & Knowledge Engineering 86 (2013),
61–84.

[4] J.C. Chen and R. Cheng, Efficient evaluation of imprecise
location-dependent queries, In Proc of the 23rd Int Conf on
Data Engineering (ICDE), IEEE, 2007, pp. 586–595.

[5] R. Cheng, Y.N. Xia, S. Prabhakar, R. Shah and J.S. Vit-
ter, Efficient indexing methods for probabilistic threshold
queries over uncertain data, In Proceedings of the 13th Inter-
national Conference on Very Large Data Bases-Volume 30,
VLDB Endowment, 2004, pp. 876–887.

[6] G. Cormode, F. Li and K. Yi, Semantics of ranking queries
for probabilistic data and expected ranks, In Proc of the
25th Int Conf on Data Engineering (ICDE), IEEE, 2009,
pp. 305–316.

[7] A. Das Sarma, O. Benjelloun, A. Halevy and J. Widom,
Working models for uncertain data, In Proc of the 22nd Int
Conf on Data Engineering (ICDE), IEEE, 2006, pp. 7–7.

[8] X.F. Ding and H. Jin, Efficient and progressive algorithms
for distributed skyline queries over uncertain data, IEEE
Trans on Knowledge and Data Engineering 24(8) (2012),
1448–1462.

[9] T.J. Ge, S. Zdonik and S. Madden, Top-k queries on uncertain
data: On score distribution and typical answers, In Proc of the
ACM Int Conf on Management of Data (SIGMOD), ACM,
2009, pp. 375–388.

[10] B. Gedik, K.L. Wu, P.S. Yu and L. Liu, Processing moving
queries over moving objects using motionadaptive indexes,
IEEE Trans on Knowledge and Data Engineering 18(5)
(2006), 651–668.

[11] H.B. Hu and D.L. Lee, Range nearest-neighbor query, IEEE
Trans on Knowledge and Data Engineering 18(1) (2006),
78–91.

[12] M. Hua, J. Pei, W.J. Zhang and X.M. Lin, Ranking queries on
uncertain data: A probabilistic threshold approach, In Proc
of the ACM Int Conf on Management of Data (SIGMOD),
ACM, 2008, pp. 673–686.

[13] X. Lian and L. Chen, Probabilistic ranked queries in uncer-
tain databases, In Proc of the 11th Int Conf on Extending
Database Technology: Advances in Database Technology
(EDBT), ACM, 2008, pp. 511–522.

[14] X. Lian and L. Chen, Shooting top-k stars in uncertain
databases, The VLDB Journal 20(6) (2011), 819–840.

[15] X. Lin, J.L. Xu and H.B. Hu, Range-based skyline queries in
mobile environments, IEEE Trans on Knowledge and Data
Engineering 25(4) (2013), 835–849.

[16] C. Sheng and Y.F. Tao, Dynamic top-k range reporting in
external memory, In Proceedings of the 31st symposium on
Principles of Database Systems, ACM, 2012, pp. 121–130.

[17] M.A. Soliman, I.F. Ilyas and K.C.C. Chang, Topk query pro-
cessing in uncertain databases, In Proc of the 23rd Int Conf
on Data Engineering (ICDE), IEEE, 2007, pp. 896–905.

[18] J. Van Hulse and T. Khoshgoftaar, Knowledge discovery
from imbalanced and noisy data, Data & Knowledge Engi-
neering 68(12) (2009), 1513–1542.

[19] G.Q. Xiao, K.L. Li and K.Q. Li, Reporting l most favorite
objects in uncertain databases with probabilistic reverse top-
k queries, In 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), IEEE, 2015, pp. 1592–1599.

[20] X. Zhang and J. Chomicki, On the semantics and evaluation
of top-k queries in probabilistic databases, In Proc of the 29th
Int Conf on Data Engineering Workshops (ICDEW), IEEE,
2008, pp. 556–563.

[21] Z.J. Zhang, Y. Yang, A. Tung and D. Papadias, Continuous
k-means monitoring over moving objects, IEEE Trans on
Knowledge and Data Engineering 20(9) (2008), 1205–1216.

[22] X. Zhou, K.L. Li, Y.T. Zhou and K.Q. Li, Adaptive process-
ing for distributed skyline queries over uncertain data, IEEE
Trans on Knowledge and Data Engineering 28(2) (2016),
371–384.

[23] X. Zhou, Y.T. Zhou, G.Q. Xiao, Y.F. Zeng and F. Zheng,
Effective approach for an extended p-skyline query, Journal
of Intelligent & Fuzzy Systems (2016), 1–10.

