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With the rapid development of data collection methods and their practical applications, the

management of uncertain data streams has drawn wide attention in both academia and in-
dustry. System capacity planning and Quality of service (QoS) metrics are two very important

problems for data stream management systems (DSMSs) to process streams e±ciently due to

unpredictable input characteristics and limited memory resource in the system. Motivated by

this, in this paper, we explore an e®ective approach to estimate the memory requirement, data
loss ratio, and tuple latency of continuous queries for uncertain data streams over sliding

windows in a DSMS. More speci¯cally, we propose a queueing model to address these problems

in this paper. We study the average number of tuples, average tuple latency in the queue, and

the distribution of the number of tuples and tuple latency in the queue under the Poisson arrival
of input data streams in our queueing model. Furthermore, we also determine the maximum

capacity of the queueing system based on the data loss ratio. The solutions for the above

problems are very important to help researchers design, manage, and optimize a DSMS, in-
cluding allocating bu®er needed for a queue and admitting a continuous uncertain query to the

system without violation of the pre-speci¯ed QoS requirements.

Keywords : Data management; data streams; QoS; queueing theory; sliding windows; uncertain

databases.

1. Introduction

In recent years, uncertain data management has received wide attention with the

emergence of a large number of practical applications, such as sensor network,
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market surveillance, location-based service (LBS), mobile object tracking and other

various applications. Uncertain data is inherent in these applications due to various

factors, such as data noise, data leakage, transmission delay, privacy preservation,

and inaccuracy or incompletion in measurement, etc. Similarly, surveys and impu-

tation techniques create data which is uncertain in nature. This has created a need

for uncertain data management algorithms and applications in both academia and

industry,2 among which pivotal techniques in this respect include query processing

over uncertain databases, such as top-k query,18,33,35 skyline query,15,24,38 and

nearest neighbour query,9,25 etc.

What's more, data in many scenarios aforementioned are often generated dy-

namically and continuously with uncertainty which can be modeled as an uncertain

(or a probabilistic) stream database.11,13,20,30,22,23 For instance, locations of objects

are usually updated periodically in LBS applications, while many sensors connected

to the base stations collect uncertain data continuously in sensor networks. As an-

other example, an online comparative shopping application gets up-to-date goods

from multiple websites dynamically. Each good is associated with a trustability

value which is derived from customers' feedback on product quality, service quality,

and surrounding environment, etc. This \trustability" value can also be regarded as

existence probability of the product since it represents the probability that the good

occurs exactly as described in the website in terms of quality and surrounding en-

vironment.5,37 Thus, trustability is an important factor which de¯nes whether cus-

tomers purchase the product. Generally, this kind of databases can be modeled as an

uncertain (or a probabilistic) stream database. For all these applications, the se-

mantics of continuous query processing need to be extensively studied. The queries

should allow customers to perform real-time tracking on streaming data, and their

results are continuously updated to re°ect the change of streams.

Continuous query processing over uncertain data streams, however, is challenging

for several reasons.6 First, the probabilistic streams generated are highly correlated

both temporally and spatially. These correlations must be taken into account during

query evaluation, since they can dramatically alter the ¯nal query results. Second,

high-rate data streams should be handled in real-time and e±ciently. Third, query

semantics become ambiguous since we are dealing with sequences of tuples and not

sets of tuples, thereby we have to rede¯ne the query semantics for uncertain streams.

It is therefore imperative to design both space- and time-e±cient query processing

techniques and develop e±cient data stream management systems (DSMSs) that can

e±ciently perform query processing over such streams.

The processing requirements for uncertain streaming databases are very di®erent

from traditional database applications, since research on traditional database

management systems (DBMSs) mainly concentrates on the data that has been col-

lected and stored. However, the streaming data management applications are re-

quired to process data in a single pass and they have to perform queries fast enough

in order to keep up with the high-rate data streams. A number of applications even
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demand a pre-speci¯ed quality of service (QoS), e.g. memory requirement, tuple la-

tency, and data loss ratio, etc., to be be satis¯ed for answering queries in a timely way.

It is clear that a traditional DBMS, which has little consideration about QoS

requirements, is not designed to process uncertain streaming data since it assumes

that stored data can be accessed as many times as required. Those new processing

requirements are forcing a re-examination of the techniques and methods used in a

DBMS. Recently, a number of designated DSMSs have been proposed to support

those new requirements for traditional operators,4,8,10,27 such as Select, Project,

and Join, etc. A common feature of these system architectures is that they associate a

queue with each operator to support continuous queries over data streams. There

is consensus that a queue structure is necessary for e®ectively dealing with the

unpredictable features of a continuous data stream. However, none of them has

analyzed how a queue in such a system a®ects its performance, and how it can be

used to satisfy pre-speci¯ed QoS requirements.

Jiang et al.21 studied the problems of system capacity planning and QoS veri¯-

cation for traditional unbounded data streams. However, due to the intrinsic dif-

ferences between uncertain stream databases and traditional stream databases, these

methods and techniques aforementioned cannot be applied to process uncertain data

streams directly. Additionally, queries on uncertain data streams are very chal-

lenging because of the strict space and time requirements of processing both arriving

and expiring tuples in high-rate streams, combined with the di±culty of dealing with

the exponential blowup in the number of possible worlds induced by the uncertain

data model. On the other hand, e±cient stream processing techniques are di±cult to

design because of the unbounded characteristic of data streams. Motivated by this,

the focus of this paper is on the analysis of queues used for continuous uncertain

streaming data processing as a ¯rst step in this direction, including system capacity

planing, tuple latency, and data loss ratio, etc.

Our contributions. System capacity planning and QoS metrics are two very

important problems for DSMSs to process uncertain data streams e±ciently due to

unpredictable input characteristics and limited memory resource in the system. This

motivated us to explore an e®ective strategy to estimate the memory requirement,

data loss ratio, and tuple latency of continuous queries for uncertain data streams

over sliding windows in a DSMS. More speci¯cally, we propose a queueing model to

address these problems in this paper. We study the average number of tuples, av-

erage tuple latency in the queue, and the distribution of the number of tuples and

tuple latency in the queue under the Poisson arrival input data streams in our

queueing model. Furthermore, we also determine the relationship between the

maximum capacity of the queueing system and the data loss ratio.

The solutions for above problems are very important to help researchers design,

manage, and optimize a DSMS, including allocating bu®er needed for a queue and

admitting a continuous uncertain query to the system without violation of the

pre-speci¯ed QoS requirements.
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The rest of this paper is organized as follows. Section 2 brie°y reviews continuous

query processing over uncertain data streams and related works about e±cient de-

sign of data stream management systems. Section 3 introduces the preliminaries

about uncertain data stream, sliding-window model, possible world model, and QoS

metrics de¯nitions. Section 4 gives the queueing analysis under steady state. Finally,

Sec. 5 concludes this paper.

2. Related Work

As continuous query processing for uncertain data streams over sliding-windows in

a DSMS is inherently related to continuous uncertain queries (Sec. 2.1) and e±-

cient design of DSMSs (Sec. 2.2), some representative works are summarized in this

section.

2.1. Continuous uncertain queries

In recent years, with the rapid development of data collection methods and the

practical applications, many query processing techniques and algorithms have been

proposed to deal with the problem of continuous queries for uncertain data streams

in database community.

Following the possible world semantics, researchers studied in succession the

aggregate operators, top-k queries, and skyline queries for uncertain data streams

based on sliding windows. Aggregates, such as averages, histograms, heavy hitters,

etc., over uncertain data streams have been studied recently.12,19,20 Cormode and

Garofalakis12 presented for the ¯rst time space- and time-e±cient algorithms for

approximating complex aggregate queries, including the number of distinct values

and join/self-join sizes, over uncertain data streams. Jayram et al.19,20 proposed

algorithms for computing commonly used aggregates over an uncertain data stream.

The authors presented the ¯rst one pass streaming algorithms for estimating the

expected mean of an uncertain stream, and proposed a general method to obtain

unbiased estimators for frequency moments for uncertain databases. Aggarwal and

Yu1 provided a general framework for clustering uncertain data stream. Zhang

et al.36 designed sampling-based algorithms for probabilistic streaming data to

identify all likely frequent items with theoretically guaranteed high probability and

accuracy, and the approaches proposed only cost sublinear memory and showed

excellent scalability frequent items retrieval in uncertain data streams. Jin et al.22,23

designed a uni¯ed framework for processing sliding window top-k queries on uncer-

tain streams. Zhang et al.37 studied the problem of e±cient processing of continuous

skyline queries over sliding windows on uncertain streaming data for a user-de¯ned

probability threshold. Ding et al.16 presented a novel sliding window skyline model

where an uncertain tuple may take the probability to be in the skyline at a certain

timestamp t. Feng et al.17 presented probabilistic top-k dominating query over

sliding windows.
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We can see from these query semantics that almost all existing works study query

processing on uncertain data streams on the basis of possible world semantics.

However, these works focus only on query semantics without taking limited memory,

response time, and data loss ratio into account. In this paper, for the ¯rst time,

we study the QoS required by a continuous query for uncertain data streams over

sliding windows based on possible world semantics.

2.2. E±cient design of DSMSs

As mentioned before, since the stored data can be accessed as many times as needed,

a traditional DBMS cannot be used to process streaming data directly. Those new

processing requirements are forcing a re-examination of the techniques and

approaches used in a DBMS. From the perspective of a system, a number of di®erent

DSMSs have been proposed and investigated to support those new requirements for

traditional operators,4,8,10,27,21,29 such as Select, Project, and Join, etc.

Babu and Widom4 proposed the STEAM architecture which tried to build a

general data processing system that could support the functionalities of traditional

databases and stream databases. Carney et al.8 presented the Aurora architecture

which processed data streams with some pre-speci¯ed QoS requirements by decou-

pling continuous queries into several operators. Chen et al.27 proposed the Fjord

system which supported both continuous data streams and traditional static data-

bases by connecting the push-based operators with the pull-based operators by

means of queues. The three works provided a processing framework of data streams

from the perspective of macro; and all of them used a queue data structure to perform

query processing in real-time or with pre-speci¯ed QoS requirements. None of them

has taken the problem of how the behavior of a queue a®ects the performance of

the system into account, and how to predict the response time of the system from

the perspective of micro. Arasu et al.3 characterized the memory requirements of a

continuous query for all possible instances of streams, and their results provided a

way to estimate a continuous query within limited memory. But they have not

presented an approach to evaluate the tuple latency (i.e. the response time) re-

quirement of a continuous query given the computing resource and memory size of a

system. Jiang and Chakravarthy21 presented the analysis of relational operators used

for traditional unbounded data streams using queueing theory and studied the

behaviors of streaming data in a continuous query processing system.

However, due to the intrinsic di®erences between uncertain stream databases and

traditional stream databases, these methods and techniques aforementioned cannot

be applied to process uncertain data streams directly. In addition, queries on un-

certain data streams are very challenging because of the strict space and time

requirements of processing both arriving and expiring tuples in high-rate streams,

combined with the di±culty of dealing with the exponential blowup in the number of

possible worlds induced by the uncertain data model. What's more, e±cient stream

processing techniques are di±cult to design because of the unbounded and
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unpredictable characteristic of data streams. Motivated by this, in this paper, we

provide analysis of queues for continuous uncertain streaming data query processing

for the ¯rst time.

3. Preliminaries

In this section, we ¯rstly introduce the uncertain data stream model. Then we

present two types of sliding-window model, namely, count-based window and time-

based window, in Sec. 3.1. In Sec. 3.2, we provide the basics with respect to an

uncertain data model and its corresponding possible world semantics. After that, we

proceed to give the formal de¯nitions of the QoS metrics in Sec. 3.3.

Let DS be an uncertain data stream containing a sequence of tuples in a d-dimen-

sional numeric space. Each uncertain tuple t can be represented by a quality vector

ðt:1; t:2; . . . ; t:dÞ, where t:i (1 � i � d) denotes the evaluation value of t on the ith

quality attribute. PrðtÞ ð0 < PrðtÞ � 1ÞÞ denotes the appearance probability that

tuple t exists in DS. Without loss of generality, we assume that the values of t:i is

numerical non-negative scores and is normalized in [0,1]. Besides, smaller score values

are preferable on each dimension. Let fð�Þ be a ranking function, for arbitrary two

uncertain tuples t and o, we denote t�f o if fðtÞ < fðoÞ, and we say t's rank is

higher than that of o; in a similar fashion, t�f o means t's rank is lower than o's.

Without loss of generality, we assume that the ranks of all uncertain tuples are unique.

In many applications, a data stream is append-only,23,26,34 that is, there is no deletion

of data element involved before its expiration. In this paper, we study the memory

allocation and QoS metrics restricted to the append-only uncertain data stream.

3.1. Sliding-window model

Due to the unbounded characteristic of data streams, e±cient stream processing

techniques are di±cult to design. Streaming data is also highly time-sensitive: each

(uncertain) tuple arrives with a timestamp, and people are usually more interested in

the recent tuples than those in the far past.

There are two types of models for dealing with the time-dependent data streams.

One of them is the so-called time-decaying model, which assigns a weight to each

tuple that is exponentially decreasing over time. This model usually works together

with statistical aggregates, such as mean, median, count, etc., but may not be well

de¯ned for some other query processing techniques, such as top-k queries, skyline

queries, etc. The other one is the sliding-window model, where people are interested

in evaluating queries on tuples that have arrived in, say, the last 24 hours or the most

recentN tuples, whereas expired or older tuples are not taken into account since they

are of less importance, as illustrated in Fig. 1. In addition, sliding-window queries are

generally required to be continuous, that is the users should be warned no matter

when the query results change, so that they always have the up-to-date query results

for the current sliding window.
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A sliding window takes a range w (i.e. the window size) and an optional slide s

(i.e. the granularity of window sliding) as parameters. It disintegrates an input

uncertain data stream into sequences of tuples by sliding the window. In general,

there exist two types of basic sliding window, i.e. count-based sliding window and

time-based sliding window. In a count-based sliding window, the number of active

tuples remains unchanged, thus r new tuples arrive then the r oldest tuples expire. In

a time-based sliding window, the number of active tuples may be non-constant, and

the set of active tuples is made up of all tuples arrived in the last T run-time

instances.

Let us suppose that the tuples from the uncertain data stream are processed in a

¯rst in, ¯rst out (FIFO) way, that is, the tuple arrived ¯rst expires ¯rst, too. For

simplicity, we assume that N is the sliding window size, and the most recent N items

in DS are denoted by DSN. In the streaming databases, time progresses in every

update, and the arrival and expiration time instances of a tuple t satisfy

t:exp ¼ t:arrþN . Furthermore, we label tuples by integers in terms of the arriving

orders of streaming data. Particularly, the order of any tuple t in DS is labeled by an

integer �ðtÞ, which means that t arrives �ðtÞth in DS.

3.2. Possible world model

Given an uncertain stream database DS composed of a sequences of tuples. Many

uncertain data processing pay attention to mainly two types of uncertainty, namely,

tuple-level uncertainty and attribute-level uncertainty. For tuple-level uncertainty,

every tuple is uncertain while its attribute value is deterministic. For attribute-level

uncertainty, every tuple is certain while its attribute value is uncertain, and every

attribute value corresponds to a probability. In an uncertain database, there may

exist some generation rules between tuples, such as exclusion or coexistence, but in

most cases tuples are independent of each other. In this paper, we only consider

tuple-level uncertainty with all tuples mutually independent. In practice, almost all

tuples are mutually independent in the context of tuple-level uncertainty.

There exist many works on modeling uncertain data. One of the most popular

is the model based on possible world semantics,14 where an uncertain database is

regarded as a set of possible world instances associated with their probabilities.

Fig. 1. An example of the sliding-window model.
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Each possible world W is a subset of uncertain data objects, and the set of all worlds

is denoted by the possible world space �. The probability of each world is computed

as the joint probability of the existence of the world's objects and the absence of all

other data objects. Since all objects are mutually independent, we can obtain:

PrðWÞ ¼
Y
t2W

PrðtÞ �
Y
t 62W

ð1� PrðtÞÞ; ð1Þ

where
P

W2�PrðWÞ ¼ 1

3.3. QoS metrics de¯nition

Although uncertain data streams tend to be strongly correlated in space and time,

the correlations are generally quite structured, with the same set of dependence and

independence repeated across time. What's more, most real-life uncertain data

streams are Markovian in essence, with the state at time instance \t+1" being

independent of the states at previous time instances given the state at time \t". In

some situations, the state at time \tþ 1" may depend on an invariable number of

states in the recent past. In general, this is a result of the underlying physical process

itself being Markovian essentially.6,28,31,32 This motivates us to apply a queueing

model to study the system capacity planning and QoS requirements in a DSMS.

Tuple latency (i.e. response time), memory requirement, and data loss ratio are

fundamental QoS metrics used by most stream-based applications. We propose a

queueing model to address these problems on the basis of the Markovian char-

acteristics of uncertain data streams aforementioned. Speci¯cally, we study the av-

erage number of uncertain tuples, average tuple latency, and the distribution of the

number of tuples and tuple latency in our queueing model, respectively. Moreover,

we also study the relationship between the maximum capacity of the queueing sys-

tem and the data loss ratio. In the following, we give the formal de¯nition of both

tuple latency and memory requirement in a DSMS.

Problem De¯nition 1 (Memory Requirement). Given a continuous uncer-

tain query Q over an uncertain data stream DS, the total memory requirement CðtÞ
needed by this query Q depends on the number of the uncertain tuples at time

instance t,

CðtÞ ¼ } � N ðtÞ; ð2Þ

where } is the size of an uncertain tuple, and NðtÞ is the number of uncertain tuples

in the queue.

Problem De¯nition 2 (Tuple Latency). Given a continuous uncertain query

Q over an uncertain data stream DS, the tuple latency (i.e. the response time) LðtÞ at
time instance t is de¯ned as the summation of the waiting time WðtÞ and the service

time SðtÞ in the queue, i.e.

LðtÞ ¼ WðtÞ þ SðtÞ: ð3Þ
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However, the waiting time WðtÞ, the service time SðtÞ, and the number of un-

certain tuples NðtÞ in the above de¯nitions are random variables with a continuous

parameter, namely, time parameter t. It is very hard to solve the probability dis-

tribution function (pdf) for the number of uncertain tuples NðtÞ and cumulative

distribution function (cdf) for tuple latency LðtÞ in the queue. On the other hand,

even if we can obtain the solutions on them, the overhead to continuously evaluate

their values is extremely large.

Consequently, in this paper, we try to ¯nd their approximate mean values, in

which they can provide su±cient information to design, optimize, and manage the

QoS requirements of DSMSs. As a result, the above problem de¯nitions can be

simpli¯ed as the following problems that determine their mean values.

Problem De¯nition 3 (Mean Memory Requirement). Given a continuous

uncertain query Q over an uncertain data stream DS, the total mean memory re-

quirement CðtÞ needed by this queryQ depends on the mean number of the uncertain

Table 1. Frequently used symbols and their descriptions.

Symbol Description

DS an uncertain stream database
o an uncertain tuple in DS

PrðoÞ object o existing probability in DS

d the size of dimensionality

W a possible world
PrðWÞ the probability of W
� possible world space

fð�Þ the ranking function
WN the size of the sliding window

� the acceptable maximum data loss ratio

} the size of each uncertain tuple

B the maximum capacity of the queueing system
� the arrival ratio of streaming tuples

� the service ratio of the queueing system

CðtÞ the total memory requirement at time instance t

NðtÞ the number of uncertain tuples in the queue at time instance t

LðtÞ the tuple latency at time instance t

WðtÞ the waiting time at time instance t
SðtÞ the service time at time instance t

CðtÞ the total mean memory requirement at time instance t

NðtÞ the mean number of tuples in the queue at time instance t

LðtÞ the mean tuple latency at time instance t

WðtÞ the mean waiting time at time instance t

SðtÞ the mean service time at time instance t

N the mean queue length in the steady state

N q
the mean length of waiting queue in the steady state

W the mean sojourn time of each tuple in the steady state

Wq the mean waiting time of each tuple in the steady state

F qðtÞ the distribution function of mean waiting time in the steady state

Queueing Analysis of Continuous Queries for Uncertain Data Streams Over Sliding Windows
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tuples at time instance t,

CðtÞ ¼ E½CðtÞ� ¼ } � E½N ðtÞ� ¼ } � N ðtÞ; ð4Þ

where } is the size of an uncertain tuple, and NðtÞ is the mean number of uncertain

tuples in the queue.

Problem De¯nition 4 (Mean Tuple Latency). Given a continuous uncertain

query Q over an uncertain data stream DS, the mean tuple latency (i.e. the mean

response time) LðtÞ at time instance t is de¯ned as the summation of the mean

waiting time WðtÞ and the mean service time SðtÞ in the queue, i.e.

LðtÞ ¼ E½LðtÞ� ¼ E½WðtÞ� þ E½SðtÞ� ¼ WðtÞ þ SðtÞ: ð5Þ

The frequently used symbols and their descriptions in this paper are summarized

in Table 1.

4. Steady State Analysis

Generally, we only study the situation of steady state of the queue system. The queue

system comes to a steady state if the arrival rate of uncertain tuples is equal to their

leaving rate. In this section, we study the queueing model where the arriving process

of uncertain data streams conforms to a Possion distribution.

At ¯rst, we study the situation of the arriving process of uncertain streams is a

Possion stream, i.e. the time interval sequences fJk; k � 1g of arrival of uncertain

tuples are independent and obey the negative exponential distribution F ðtÞ ¼
1� e��t ðt � 0Þ with parameter � ð� > 0Þ, where � is the average arriving rate of

uncertain tuples per unit time. On the other hand, the service time sequences fBk;

k � 1g of uncertain streaming tuples are also independent and conform to the

negative exponential distribution GðtÞ ¼ 1� e��t ðt � 0Þ with parameter � ð� � 0Þ,
where � is the average leaving rate of uncertain tuples per unit time, namely the

average service rate of the queueing system. The assumption is reasonable since we

need to process the exponential blowup in a number of possible worlds induced by

the uncertain data model. Furthermore, the arriving process fJk; k � 1g and ser-

vice process fBk; k � 1g of uncertain tuples are mutually statistically independent

of each other. For a single processor, its bu®er size is the maximum capacity of the

queueing system, denoted by B. Due to the uncertain data stream being un-

bounded and in¯nite, the problems of system capacity planning and QoS metrics

can be modeled as an optimization problem of in the M=M=1=B=1 queueing

system.

Suppose that � ¼ �=�, Pn denotes the probability which has n uncertain tuples in

the queueing system. On the basis of the conclusion of the M=M=1=B=1 queueing

system,7 the mean waiting time of each uncertain tuple Wq in the steady state is the

G. Xiao et al.
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following:

Wq ¼
1

�

�

1� �
� B�B

1� �B

� �
; � 6¼ 1;

1

2�
ðB � 1Þ; � ¼ 1;

8>><
>>:

ð6Þ

the distribution function of mean waiting time F qðtÞ in the steady state is:

F qðtÞ ¼
1� 1� �

1� �B
XB�1

n¼1

�n
Xn�1

r¼0

e��t ð�tÞr
r!

; � 6¼ 1;

1� 1

B
XB�1

n¼1

Xn�1

r¼0

e��t ð�tÞr
r!

; � ¼ 1;

8>>>>><
>>>>>:

ð7Þ

the mean sojourn time of each tuple W in the steady state is:

W ¼ Wq þ
1

�
¼

1

�

1

1� �
� B�B

1� �B

� �
; � 6¼ 1;

1

2�
ðB þ 1Þ; � ¼ 1;

8>><
>>:

ð8Þ

the average queue length N in the system under steady state is:

N ¼ �e � W ¼
�ð1� �BÞ

ð1� �Þð1� �Bþ1Þ �
B�Bþ1

1� �Bþ1
; � 6¼ 1;

B
2
; � ¼ 1;

8>><
>>:

ð9Þ

and the average length of the waiting queue N q in the queueing system is:

N q ¼ N � ð1� P0Þ ¼ �e � Wq ¼
�

1� �
� �ð1þ B�BÞ

1� �Bþ1
; � 6¼ 1;

BðB � 1Þ
2ðB þ 1Þ ; � ¼ 1;

8>><
>>:

ð10Þ

where

P0 ¼
1� �

1� �Bþ1
; � 6¼ 1;

1

B þ 1
; � ¼ 1;

8>><
>>:

ð11Þ

Pn ¼
ð1� �Þ�n

1� �Bþ1
; � 6¼ 1;

1

B þ 1
; � ¼ 1;

8>><
>>:

ð12Þ
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�e ¼ �ð1� PBÞ ¼ �ð1� P0Þ denotes the e®ective arriving rate of uncertain stream-

ing tuples, and

1� PB ¼
1� �B

1� �Bþ1
; � 6¼ 1;

B
B þ 1

; � ¼ 1:

8>><
>>:

ð13Þ

Theorem 1. In the steady state, the mean memory requirement tuple latency CðtÞ
in terms of the mean queue length N :

CðtÞ ¼ } � N ¼
} � �ð1� �BÞ

ð1� �Þð1� �Bþ1Þ �
B�Bþ1

1� �Bþ1
; � 6¼ 1;

} � B
2
; � ¼ 1;

8>><
>>:

ð14Þ

where } is the size of each uncertain tuple.

Theorem 2. In the steady state, the mean tuple latency LðtÞ, namely, the mean

sojourn time of an uncertain tuple, is the summation of the mean waiting time and the

mean service time:

LðtÞ ¼ W ¼ Wq þ
1

�
¼

1

�

2� �

1� �
� B�B

1� �B

� �
; � 6¼ 1

1

2�
ðB þ 3Þ; � ¼ 1

8>><
>>:

; ð15Þ

where 1=� is the mean service time of each uncertain tuple.

Theorem 3. In the steady state, the maximum capacity of the queueing system B
satis¯es:

ð1� �Þ�B

1� �Bþ1
� �; � 6¼ 1

B � 1

�
� 1; � ¼ 1

8>><
>>:

; ð16Þ

where � is the acceptable maximum data loss ratio.

Proof. In the steady state, the arrival rate should be equal to the rate of departure.

In this case, the data ratio is PB, which denotes the probability that the queueing

system is full.

Thus, if � is the acceptable maximum data loss ratio, then

PB � �

should be satis¯ed.
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According to Eq. (12), we have

ð1� �Þ�B

1� �Bþ1
� �; � 6¼ 1

B � 1

�
� 1; � ¼ 1

8>><
>>:

:

Theorem 4. Given the computation resource, in the steady state, the maximum

input rate the queueing system can handle should satisfy:

� � 1� �

1� �Bþ1
� Wq þ � � WN ; ð17Þ

where WN is the size of the sliding window.

Proof. Assume the average queueing length that maintains the sliding window be

Lq, the size of the sliding window be WN , the service rate is 1=�, then in the steady

state, we have

Lq ¼ WN � � � N q ;

that is,

WN � N q þ � ¼ � � 1� �

1� �Bþ1
� Wq þ �:

5. Conclusions

In this paper, we propose a queueing model to analyze theoretically system capacity

planning and QoS requirements. We study the average number of tuples, average

tuple latency in the queue, and the distribution of the number of tuples and tuple

latency in the queue under the Poisson arrival of input data streams in our queueing

model. Furthermore, we also determine the maximum capacity of the queueing

system based on the data loss ratio. In terms of the queueing model, we can deter-

mine whether a DSMS can process a continuous query with QoS requirements over

given an uncertain data streams. The estimation of memory requirement provides

useful guideline for the bu®er allocation. The tuple latency estimation provides an

e®ective guideline to manage and optimize DSMSs.
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