Efficient top-(k,1) range query processing
for uncertain data based on multicore
architectures

Guoqing Xiao, Kenli Li, Keqin Li & Xu
Zhou

Distributed and Parallel Databases
An International Journal

VOLUME 33, NUMBER 3 SEPTEMBER 2015
ISSN 0926-8782
Number 3
Distrib Parallel Databases (2015) PA RA llEl
33:381-413 AND
DOI 10.1007/s10619-014-7156-8 DA TA BA SES

AN INTERNATIONAL JOURNAL

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 @ CrossMark
DOI 10.1007/s10619-014-7156-8

Efficient top-(k,/) range query processing for uncertain
data based on multicore architectures

Guoqing Xiao - Kenli Li - Keqin Li - Xu Zhou

Published online: 2 October 2014
© Springer Science+Business Media New York 2014

Abstract Query processing over uncertain data is very important in many applications
due to the existence of uncertainty in real-world data. In this paper, we first elaborate
a new and important query in the context of an uncertain database, namely uncertain
top-(k,/) range (UTR) query, which retrieves / uncertain tuples that are expected to
meet score range constraint [C R,C R;] and have the maximum top-k probabilities but
no less than a user-specified probability threshold g. In order to enable the UTR query
answer faster, we put forward some effective pruning rules to reduce the UTR query
space, which are integrated into an efficient UTR query procedure. What’s more, to
improve the efficiency and effectiveness of the UTR query, a parallel UTR (PUTR)
query procedure is presented. Extensive experiments have verified the efficiency and
effectiveness of our proposed algorithms. It is worth to notice that, comparing to the
UTR query procedure, the PUTR query procedure performs much more efficiently
and effectively.

G. Xiao - Kenli Li () - Keqin Li - X. Zhou

College of Information Science and Engineering, Hunan University, Changsha 410082, China
e-mail: Ikl@hnu.edu.cn

G. Xiao

e-mail: s12101024 @hnu.edu.cn

Keqin Li

e-mail: likq@hnu.edu.cn; lik@newpaltz.edu

X. Zhou
e-mail: happypanda2006 @ 126.com

Kenli Li
National Supercomputing Center in Changsha, Changsha 410082, China

Keqin Li
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-014-7156-8&domain=pdf

382 Distrib Parallel Databases (2015) 33:381-413

Keywords Uncertain data - Top-k query - Range query - Parallel optimization

1 Introduction

Due to data noise, data leakage, transmission delay, and inaccuracy or incompletion in
measurement etc, uncertain data exist widely in information retrieval, mobile object
tracking, Web services, and various other applications. In particular, some large-scale
applications, for instance, sensor networks and RFID, can generate a large amount
of uncertain data. This has created a need for uncertain data management algorithms
and applications [3,10], among which a pivotal technique in this respect is the query
processing over uncertain database, such as top-k query [7,12,15-18,20,21,25,26,29].
With the rapid development of data collection methods and the practical applications,
the issue of uncertain data query has drawn large amounts of attention in both academia
and industry [5].

Top-k query is a classic problem in the area of information retrieval. For a user-
defined scoring function and one given query, an algorithm needs to return k objects
which have the largest scores [11]. However, in uncertain data management, data
records are typically represented by probability distributions rather than determinis-
tic values [3]. Therefore, traditional definite top-k query cannot respond to uncertain
top-k query, thereby we have to redefine query semantics of top-k for uncertain query.
As for uncertain top-k query, the interaction between score and probability determine
the answers. Different combination of the two factors may generate various uncertain
query semantics, among which most are based on possible worlds semantics [1,23].

The top-k range reporting problem has been studied in various areas, such as infor-
mation retrieval, data streams, OLAP, etc. Given a data set D, a score interval [CR;,
C R;] and an integer k, a query reports, among all the tuples of D in [C Ry, C R3], the k
tuples with the best scores [24]. It finds applications in many situations where people
want to ascertain a few best objects, among only a subset of the data set meeting a range
predicate. For instance, a customer of a store database may be interested in discovering
the k best rated articles whose prices are in an appointed range. Likewise, for promo-
tion purposes, the manager of a company would like to find the k employees with the
best performance, among those salesmen whose salaries are in a designated range.

In uncertain data management, the range-based query processing also has attracted
recently more and more attention in various practical applications as a result of the
uncertainty, such as moving object tracking [13], location-based services [4,22], and
computer games [30] etc. For the uncertainty of objects, or privacy reasons, the records
we want to query usually locate in a finite range region, such as an interval range. For
instance, in the coal mine surveillance application, sensors are deployed in the tunnel
to collect data such as atmospheric pressure, density of gas, as well as temperature
and humidity. In order to keep the safety of workers, these metrics must maintain in an
accredited range, e.g., the temperature is in range [36, 86 °F], humidity in [80, 100 %],
and atmospheric pressure in [103, 108 hpa]. The manager would like to report those
data in the range with at least 75 % probability so as to grasp the circumstance in the
coal mine, which is a top-k range reporting problem with a user-specified probability
threshold.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 383

As another example, consider a meteorology system that monitors the tempera-
tures, humidity, UV indexes, etc [27]. In a large number of regions, the corresponding
readings are taken by sensors in local areas, and transmitted to a central database peri-
odically. The database content may not exactly reflect the current atmospheric status,
e.g., the actual temperature in a region may have changed since it was last measured. A
similar inquiry in a meteorology system may “identify those data whose temperatures
are in range [75, 80 °F], humidity in [40, 60 %], and UV indexes [4.5, 6] with at least
70 % likelihood”.

Although conventional range query in the context of deterministic data set has
been well studied [2,24], its solutions cannot apply directly to uncertain data without
considering the probabilistic requirements. To the best of our knowledge, there is
very little work that has studied range-based uncertain top-k queries with probability
threshold. In this paper, we firstly study the uncertain top-(k,/) range query (UTR
query) problem, i.e., for a user-specified probability threshold ¢ and an appointed
score range constraint CR = [CR|,CR»], the query returns / tuples which meet the
range constraint CR, i.e., s(t) € CR, and their top-k probabilities are no less than g.

At present, the vast majority of uncertain top-k queries mainly concentrate on
the study of serial uncertain top-k query algorithms. As far as we know, very few
techniques refer to parallel uncertain top-k query. However, with the explosion of
Internet information content, people need to query more and more data sets. This
requires top-k query to return results in time. Furthermore, due to the existence of
probability dimension, uncertain data query is processed in a possible world space
which grows exponentially. Although many query algorithms use pruning, indexing
and other heuristics techniques to improve the efficiency, the consumption of time
and space cannot be ignored. It is necessary to use more optimized techniques to
improve the query efficiency. In this paper, we put forward a parallel implementation
on uncertain top-(k,/) range (UTR) query algorithm, denoted by PUTR query, on the
basis of a divide and conquer strategy on a multicore architecture. In particular, we
use OpenMP [26] to parallelize the UTR query processing algorithm we proposed. To
the best of our knowledge, no previous work has studied the PUTR query problem in
the context of uncertain databases.

Our contributions made in this paper are summarized as follows.

e We first develop a new and crucial query, i.e., uncertain top-(k,/) range query by
taking range query and top-k query into overall consideration in the context of
uncertain databases.

e In order to improve the performance of the proposed algorithm, we present some
effective pruning techniques to reduce the search space, which are integrated into
an efficient UTR query procedure.

e A parallel implementation of UTR query, i.e., PUTR query, based on multicore
architecture is proposed for the purpose of improving further the performance of
UTR query as the data size increases rapidly.

e Extensive experiments are conducted over both real-world and synthetic data to
evaluate the performance of the proposed algorithms. The experimental results
show that our query algorithms perform well.

@ Springer

384 Distrib Parallel Databases (2015) 33:381-413

The rest of this paper is organized as follows. Section 2 mainly discuss the existing
related studies. Section 3 mainly introduces an uncertain data model and its corre-
sponding possible world semantics, and further gives the formal definitions concern-
ing UTR query processing. Section 4 presents several pruning rules to reduce the
UTR query search space. Section 5 presents the parallel optimization of UTR query.
Section 6 evaluates the proposed algorithms with experiments. Finally, in Sect. 7, we
make a conclusion with directions for future work.

2 Related work

In essence, a range-based uncertain top-k query inherits the characteristics of an uncer-
tain top-k query and a range-based query. As such, we review the existing studies on
these two queries in this section.

2.1 Uncertain top-k query processing

While research works on conventional top-k queries are mostly based on some deter-
ministic scoring functions, the new factor of tuple membership probability in uncertain
database makes evaluation of probabilistic top-k queries very complicated since the
top-k answer set depends not only on the ranking scores of candidate tuples but also
their probabilities [27]. As for uncertain databases, there exist all kinds of uncertain
top-k query semantics, among which the most influential include U-Topk [25,26],
U-kRanks [20,25], PT-k [15-17], Global-Topk [29], Expected Rank [7, 18], E-Score
Rank [7,18], c-typical-Topk [12], and PTkS [21] etc. U-Topk returns the most prob-
able k-tuple vector with the maximum aggregated probability of being top-k over all
possible worlds. U-kRanks returns a list of k tuples such that the ith-ranked tuple
has the highest aggregated probability in all possible worlds. These two query algo-
rithm proposed in [25] are inefficient due to lacking of pruning rules with an increas-
ing possible world space. PT-k query returns those tuples whose top-k probabilities
across all possible worlds are no less than a given probability threshold ¢, which
makes for approving performance without unfolding all possible worlds. Further-
more, a sampling method is developed to quickly compute an approximation with
quality guarantee to the answer set by extracting a small sample of the uncertain
dataset. Though the sampling method can lower the accuracy of answers, it can
improve efficiency to a large degree. In [29], Zhang etc proposed a Global-Topk
query semantic that returns k highest-ranked tuples on the basis of their probabil-
ities of being top-k answer set in all possible worlds. In [7], the expected rank of
each tuple over all possible worlds is regarded as the ranking function for obtaining
the answer set. E-Score Rank query takes the E-Score of each tuple as the rank-
ing function to find the final answers. In [12], the authors developed c-typical-Topk
query which returns a set of k-tuple vectors with the maximum probability of typi-
cal scores. Lian and Chen [21] proposed the probabilistic top-k star (PTkS) query,
which aims to retrieve k objects in an uncertain database that are “closest” to a
static/dynamic query point, considering both distance and probability aspects. In
[14], the authors presented the problem of Top-k frequent itemsets mining in sliding

@ Springer

Distrib Parallel Databases (2015) 33:381-413 385

windows. Li etc presented a unified approach to ranking and top-k query process-
ing in probabilistic databases by viewing it as a multi-criteria optimization problem
[19].

From these definitions, we can see that a pivotal problem of uncertain top-k query is
the calculation of possible world probability. Provided there is no good pruning tech-
nology, the performance of query may be comparatively low with a possible world
space which grows exponentially. Consequently, it is necessary to exploit some effi-
cient pruning strategies to reduce the computing of top-k probability for improving
the performance of algorithm.

2.2 Range-based query processing

Range-based query processing has recently obtained more and more attention in a
variety of practical applications due to the uncertainty, such as moving object tracking
[13], location-based services [4,22], and computer games [30] etc. For the uncertainty
of object, or privacy reasons, the records we want to query usually locate in a finite
range region, such as an interval range. Although conventional range query in the con-
text of deterministic dataset has been well studied [2,24], its solutions cannot apply
directly to uncertain data without considering the probabilistic requirements. Brodal
[2] and Tao [24] developed a static and dynamic structure for the top-k range report-
ing problem, respectively. In [14], Hu and Lee firstly presented the RKNN solution
for rectangular ranges. Lin et al. proposed the first range-based skyline query in LBS
[22]. In [6], Cheng et al. firstly put forward probabilistic range query based on one-
dimensional space. Tao et al. studied the uncertain range query for arbitrary probability
distribution function in multi-dimensional space [27]. Dai et al. [9] and Yiu et al. [28]
studied the probabilistic spatial range queries with R-tree for multi-dimensional data
in the context of uncertain dataset. R-tree is a good index structure and is efficient for
high dimensional data, which can be presented by attribute-level uncertainty. How-
ever, in this paper, what we consider is the tuple-level uncertainty which is inefficient
indexed by R-tree since it is only one dimension data. To the best of our knowledge,
there is very little work that has studied uncertain top-k query problem based on an
interval range. In this paper, we propose an uncertain top-k range query based on
score attribute range, which retrievals the uncertain database by appointing an interval
range.

3 Preliminaries

In this section, we first introduce some fundamental knowledge with respect to an
uncertain data model and its corresponding possible world semantics. After that, we
will give the formal definitions with regard to uncertain top-(k,/) range query process-
ing.

@ Springer

386 Distrib Parallel Databases (2015) 33:381-413

3.1 Uncertain data model

The fundamental difference between a traditional deterministic database and an uncer-
tain database is that an uncertain relation represents a set of possible relation instances,
rather than a single one [3]. Suppose an uncertain database D B, which is composed
of a set of n tuples #; (I < i < n). The uncertainty of every tuple #; in the uncertain
database D B is mainly represented by a confidence, i.e., its existence probability P (¢;)
in D B. For a given score ranking function s(¢), the score of each tuple #; is denoted by
s(t;). In fact, many uncertain data processing, including top-k query processing, pay
attention to mainly two types of uncertainty, i.e., tuple-level uncertainty and attribute-
level uncertainty. For tuple-level uncertainty, every tuple is uncertain while its attribute
value (i.e. score) is deterministic. For attribute-level uncertainty, every tuple is deter-
ministic while its attribute value is uncertain, and every attribute value corresponds
to a probability. In a probabilistic database, there may exist some generation rules
between tuples, such as exclusion or coexistence, but in most cases tuples are inde-
pendent of each other. In this paper, we only consider tuple-level uncertainty with all
tuples mutually independent. In practice, almost all tuples are mutually independent
in the context of tuple-level uncertainty.

There exist many works on modeling uncertain data. One of the most popular is
the model based on possible world semantics [1,23], where an uncertain database is
regarded as a set of possible world instances associated with their probabilities. Each
possible world W is a subset of uncertain database tuples, and the set of all worlds is
denoted by the possible world space §2. The probability of each world is computed as
the joint probability of the existence of the world’s tuples and the absence of all other
database tuples. Since all tuples are mutually independent, we can obtain

Pwy=[]Po J]P®. ()

tew tew

where P(1) = 1 — P(¢), and D wen PW) =1

3.2 Problem definition

With the aforementioned introductions and possible world semantics, in this subsec-
tion, we will put forward the query semantics concerning uncertain top-(k,/) query
based on a given probability threshold ¢ and Refs. [16,25,29].

Definition 1 (Score dominating) Let s(t) be a score ranking function. For arbitrary
two tuples #; and #;, if 5(¢;) > s(¢;), thent; > t;.

Definition 2 (Top-k probability [16,29]) Let DB be an uncertain database with pos-
sible world space £2, k be a positive integer, s(¢) be a score ranking function, and
Topix (W) be a set of k tuples in the front of possible world W on the basis of scoring
function s(¢). Then the probability of any tuple ¢ in DB Pyop« (t, D B) can be defined
as the summation of the probabilities of all possible worlds whose top-k answer set
Topr(W) contains ¢ , i.e.,

@ Springer

Distrib Parallel Databases (2015) 33:381-413 387

Popi(t,DB)= > P(W).)
Wes2, teTop, (W)

Note that top-k answer sets may be of cardinality less than k for some possible
worlds. We call such possible worlds as small worlds [29].

Definition 3 (Uncertain top-(k,l) range query, UTR query). Let DB be an uncer-
tain database, [be a positive integral number, C R be a given score range constraint
[CR1,CR:], g be a user-specified probability threshold, and Pyop-i (f, D B) be the top-
k probability of tuple ¢ in DB. Then the top-(k,l) query over uncertain database DB
returns / tuples which meet constraint C R and have top-k probabilities at least ¢, i.e.,

{t|s(t) € CR, Popk(t, DB) > q}, 3)
and

[{tls(t) € CR, Popi(t, DB) = q}| =1. “)

3.3 Compute top-k probability

Although there exist some differences between the semantics of top-(k,/) query and
global top-k query in [29], we find that they have the same computing method with
respect to top-k probability for any tuple . That is, for an uncertain database DB with
cardinality n, a positive integer k, a score ranking function s (¢), and #| >; tp > -« >
th—1 > Iy, the top-k probability of tuple #; holds the following recursion,

P(), 1<i<k

Piop-k(ti, DB) = { [Piop-k(ti—1, DB) - 58;:3 (5)

+Piop-k—1)(ti—1, DB)] - P(1;), i > k;

where P(t;_1) =1 — P(ti_1).
For the proof, the reader is referred to Appendix B in [29]. The commonly used
symbols and their descriptions are summarized in Table 1.

4 Pruning rules

On the basis of semantics of uncertain top-(k,/) query, we can know that the calculation
of top-k is very large with an exponentially growing world space. Therefore, it is
necessary to put forward some pruning techniques for reducing the computing of top-
k. In this section, we will introduce several theorems and lemmas on effective pruning
rules.

What we care about is those tuples that satisfy the score range constraint. So firstly
we can remove the tuples which do not meet the score constraint before calculating
the probability of top-k of tuples.

@ Springer

388

Distrib Parallel Databases (2015) 33:381-413

Table 1 Frequently used

symbols and their descriptions Symbols Descriptions
DB An uncertain database
|DB]| The cardinality of database DB
SDB An uncertain sub-dataset
t A tuple in DB
P(t) Tuple ¢ existing probability in DB
w Some possible world
P(W) The probability of W
s(t) A score ranking function
Topr (W) The set of k tuples in the front of W
based on s(7)
2 Possible world space
k,l Two positive integers
q A user-specified probability threshold

CR=[CR|,CRy]
Ptop—k(ta DB)
PGiop-k (1, DB)

PLtop—k (r, SDB)

The score range constraint

The top-k probability of tuple 7 in DB

The global top-k probability of tuple
tin DB

The local top-k probability of tuple
in SDB

P The number of cores (threads)
L; The local top-(k,l) answer set
(0] The global top-(k,/) result set
PR The pruning ratio

Lemma 1 (Pruning Rule 1) Let s(t) be a score ranking function, CR be a score
interval range, DB be an uncertain database. For any tuple t € DB, if s(t) ¢ CR,
thenwe can remove t immediately from the DB without calculating its top-k probability.

O

Theorem 1 The top-k probability of tuple t in an uncertain database DB, denoted by
Piop-k(t, DB), is at most its presence probability P(t), i.e., Piop.k(t, DB) < P(t).
O

The conclusion is obvious.

Lemma 2 (Pruning Rule 2) Let g be a user-specified probability threshold, P(t) be
the presence probability of tuple t, Pyop.i(t, DB) be t’s top-k probability. If P(t) < q,
then t can be excluded immediately from the DB without computing P,y (t, DB). O

According to Lemmas 1 and 2, before the calculation of top-k probability of a
tuple, we can prune some tuples potentially based on a given score range constraint
CR and a probability threshold g, respectively. They aim at decreasing the number of
the uncertain data set. The following Lemma 3 can remove further some tuples from
the uncertain data set.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 389

Lemma 3 (Pruning Rule 3) Given an uncertain database DB with cardinality n, and
1 >5 1 >5 -+ > ty. Let DBy, be the subset {t, 12, --- ,t;}, P(DBy, j) denote the
probability of any j tuples appearing in the set DB;,. If Zl;;(l) P(DBy;, j) < q, then
we can prune the tuples which rank lower than t;, i.e., forall1 <m <n—i,m € N4,
Piop-k(tixm, DB) < q, where q is a user-specified probability threshold.

Proof 1Tt is clear that

k—1
> P(DB,_,. j) = > P(W), (6)
j=0 Wes2, |tgltyeW Aty >=ti| <k—1

holds. Based on the proof of Theorem 1, we know
Popk(ti DB) = P (1)) > P(W).)
Wes2
|ts|ts €W ALg =t | <k—1

As a result, we can obtain

k—1
Popk(ti, DB) = P(t;) D P(DBy_,, j). ®)
Jj=0
Then, foralll <m <n—i,m € N4
k—1
Popk(titm» DB) = P(ti1m) D P(DB;,, . J). ©)
j=0

Next, we can get Piop-k (fi+m, DB) < g by induction.

(1) Suppose m = 1, then

k—1 k—1
> P(DB,, ,.j)=) P(DBy. j)<q. (10)
j=0 j=0

Asaresultof 0 < P(tj1n) < 1, we know that Piopk (tj4m, DB) < g holds.

2) SuEpose 1 <m <n—i,m e Ny. Without loss of generality, we assume that

Z/;(l) P(DBy,,,_,, j) < q when m=l. Then, for m=I[+1, we can obtain

k—1 k—1
Z P(DBlefl’ D= ZP(DBE‘H’ J)
j=0 j=0
k—1
= P(tix1) D P(DBy,_,.j—1)
j=1

@ Springer

390 Distrib Parallel Databases (2015) 33:381-413

k—1
+ (1= P(tiy1)) > P(DBy,, .)
j=0
k—2
= P(tiy))) P(DBy,,_,. J)
Jj=0
k—1
+ (1= P(ti41)) > P(DBy,, .)
j=0
k—1
< P(tiy1) Y P(DBy,,,. j)
Jj=0
k—1
+ (= P(ti) > P(DBy,, . J)
j=0
k-1 k—1
= P(ti1) D X+ 0= Pis)) D X,
j=0 j=0
k—1
= > P(DBy, . J) <q. (11)
Jj=0

Consequently, we can know that Zl;;l P(DBy,,,_,,Jj) < q also holds when m=[+1.
Asaresultof 0 < P(f; 1) < 1, we can get Piop i (ti1m, DB) < g, too. In conclusion,
for a given probability threshold ¢, if Zlﬁ;(l) P(DBy;, j) <g,thenforV1 < m <
n—1im e Ny, Popi(tivm, DB) < g holds. Accordingly, we can prune the tuples
which rank lower than ¢;. O

According to the third pruning technique, we can obtain a compact set, i.e., an
upper bound on the answer set. In subsequent experiments, we show that the pruning
technology has excellent efficiency and effectiveness with the pruning ratio at least 99
% if the size of the data set is large.

The three pruning techniques aforementioned all aim at cutting down the size of
the uncertain data set for reducing the query search space. However, these pruning
strategies do not consider the properties of top-k probability of tuples. One important
innovation of this paper is the demonstration of the mathematical properties of top-k
probability of tuples. In Sect. 5, we will give out several other pruning rules based on
these properties.

5 PUTR query

As what mentioned before, at present very few techniques refer to parallel uncertain
top-k query. And with the explosion of Internet information content, people need to
query more and more data sets and return results timely. Consequently, it is necessary
to propose a high performance query algorithm for uncertain top-k. In this section,

@ Springer

Distrib Parallel Databases (2015) 33:381-413 391

we first introduce briefly some basic knowledge on OpenMP programming and give
several theorems and lemmas concerning pruning rules based on the properties of top-
k probability. After that, we present the parallelization on uncertain top-(k,/) range
(i.e., PUTR) query processing based on divide and conquer strategy on the multicore
architecture.

With the development of single-core to multi-core/many-core in processors, pro-
grammers are required to find the parallelism in a program and to achieve them explic-
itly. In this paper, we tackle the parallelization problem of UTR query on the basis of
OpenMP parallel programming platform. The OpenMP [8] (Open Multiprocessing) is
an API that multi-platform shared memory multi-processing programming in C, C++,
and Fortran, on most processor architectures and operating systems. It consists of a
set of compiler directives, library routines, and environment variables that influence
running time behavior. It is an implementation of multithreading, a method of par-
allelizing whereby a master thread (a series of instructions executed consecutively)
forks a specified number of slave threads and a task is divided among them, then the
threads run concurrently. More detailed information about the usage of OpenMP can
be found on the website.!

Definition 4 (Global/local top-k probability) If tuple ¢ is a member of the final top-
(k,I) answer set, then we call its top-k probability as global top-k probability in DB,
denoted by Pgop-k(¢, DB). On the other hand, if is a member of the local top-(k.[)
answer set in a sub-database of SDB, then we call its top-k probability as local top-k
probability in the sub-database SDB, denoted by Py op-«(f, DB).

Theorem 2 Given an uncertain database DB with cardinality n, and t| > tr >
- >s tn. Then the top-k probability of tuple t; in the DB Py, (t;, DB) increases
with k, but no more than P(t;).

The conclusion is obvious.

Lemma 4 (Pruning Rule 4) Given a probability threshold g, an uncertain database
DB with cardinality n, and t\ > tp >g --- > tn. Then there exists a lower bound
LB of top-k probability of tuple t;, i.e., P (t;) Htj -t (1 — P(tj)), such that we can add
t; into the local top-(k,1) answer set without computing its complete top-k probability
when LB > q. O

Note that, in the processing of UTR query, we may put directly the tuples whose
lower bound LB are greater than or equal to ¢ into final answer set for the purpose of
making some comparisons with the PUTR query processing. So the number of tuples
in top-(k,l) answer set of the UTR query may be larger than / on account of adding
some tuples whose LB are no less than ¢g. But in either case, the answer set of the
UTR query always contains the PUTR query results. It can turn out to be true by our
theoretical analysis and experimental results in the following sections.

Theorem 3 Given an uncertain database DB with cardinality n, and t| > tr >
-+« >y ty. Then the global top-k probability of tuple t; PGop-k(ti, DB) is less than its
local top-k probability Ppiop-k(ti, DB), i.e., PGiop-k(ti, DB) < Priop-k(ti, DB).

1 http://openmp.org

@ Springer

http://openmp.org

392 Distrib Parallel Databases (2015) 33:381-413

Proof In order to prove the theorem, we can study it by two cases below.

Case 1 If the tuples from t; (1 < j <i and i — j > k) to t; are divided just right
into certain sub-database SD B, then any tuple with score lower than the score of ¢
does not have any influence on the top-k probability in that its presence in a possible
world will not affect the presence of #; in the top-k answer set of that world. Thus, in
this case we can obtain

PGtop-k(tis DB) = PLtop—k(liv DB). (12)

Case 2 If tuple ¢; is divided into some sub-database S D B with maximum score, then
on the basis of Equation (4), we can obtain

Priopk(ti, DB) = P(t;). (13)
And according to Theorem 1, we have

PGtopk (ti» DB) < P(t;). (14)

Therefore,
PGtop—k(tiv DB) < PLtop—k(tia DB). (15)

Consequently, combining Case 1 and Case 2, for any tuple #;, we can obtain

PGtop—k(liv DB) < PLtop—k(tis DB). (16)
This completes the proof of Theorem 3. O

Lemma 5 (Pruning Rule 5) Let g be a probability threshold, Py;op-« (t;, DB) be local
top-k probability of tuple t. If Prop-(ti, DB) < q, then t cannot be a member of the
global top-k answer set.

Proof As aresult of Ppp«(t;, DB) < ¢, in accordance to Theorem 3, we can obtain
PGiop-k (ti, DB) < q.However, what we need are those tuples whose top-k probability
no less than g. Therefore, tuple ¢ can be removed immediately from the S D B without
handling it in the merge process. Accordingly, it can not be a member of the global
top-k answer set. O

In summary, we can decrease efficiently the searching space by removing some
tuples based on these pruning methods we proposed, such as the score range constraint
pruning (Pruning Rule 1, see Sect. 4), the probability threshold pruning (Pruning Rule
2, see Sect. 4), the upper bound of answer set pruning (Pruning Rule 3, see Sect. 4), the
top-k probability lower bound pruning (Pruning Rule 4), and local top-k probability
pruning (Pruning Rule 5).

Now we elaborate the parallel uncertain top-(k,/) range (i.e., PUTR) query process-
ing algorithm. The algorithm is presented in Algorithm 1. Given an uncertain database
DB with cardinality n, a processor with p cores, the PUTR query algorithm mainly
contains the following two steps.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 393

Step 1 (Divide)

(1) According to the number of threads p, we divide the uncertain database DB into

p sub-databases SD B; with cardinality n; in tuple ID, where 1 < i < p and
D i<i< pNi = n, and the size of each sub-database is f%1 (line 4);
For example, given an uncertain database DB={t|, fp, ..., t,}, the subset
SDB={t,1, ..., tr%] } can be allocated into Thread Py as the first sub-database,
the subsetSDB,':{t(,-,])r%Hbt(i,])r%Hz, .. "tiF%T } can be allocated into Thread
P;_ as the ith sub-database, the subset SDBp:{t(p,])r%HI , t(pfl)r%1+2’ R
can be allocated into Thread P,_1 as the (p-1)th sub-database.

(2) For each thread P;, we first prune SD B; based on the score range pruning and
probability threshold pruning (Pruning Rules 1 and 2), then sort for remaining
tuples in SDB; in the light of the decreasing order based on the score ranking
function s(¢) (lines 6-11);

(3) Apply the upper bound of answer set pruning (Pruning Rule 3) for every sub-
dataset (lines 12—14);

(4) Apply the lower bound of top-k probability pruning (Pruning Rule 4) (lines 15—
18);

(5) Compute local top-k probability of tuples, use local top-k probability pruning
(Pruning Rule 5), and obtain eventually local top-(k,/) result sets L; (lines 19-30).

Step 2 (Merge)

(1) The master thread Py gathers local answer sets L; and combines them into a new
dataset (line 31);

(2) Sort the tuples in the new dataset in accordance with the decreasing order based
on the scoring function s(¢) (line 32);

(3) Repeat procedure (3) in Step 1 (lines 33-35);

(4) Compute global top-k probability of tuples and select / tuples which satisfy the
definitions and requirements (lines 36-37);

(5) Return the global top-(k,/) answer set Q (line 38).

Figure 1 illustrates the fundamental framework of PUTR query processing algo-
rithm.

Anillustrative example In a sensor network deployed in a “smart uniform” of the US
military, each sensor monitors pivotal biological parameters for determining the status
of physiology of a soldier [12]. Each sensor reading comes from a confidence value,
which shows the probability that the reading is valid. In the services of patient-centered,
different patients can need various medical attention. Based on these information, the
military staff may want to find the top-k soldiers for a range of medical attention and
allocate the appropriate resources to deliver to the battlefield. Then the staff need to
compute the top-k probability of every soldiers. Table 2 shows eight tuples that were
reported around the same time and thus estimating the same value for each soldier,
and illustrates the process of parallelization of top-(2,2) query of the eight mutually
independent tuples on a dual-core processor.

The thread Py deals with the first four tuples while the P; processes the remaining
four tuples based on their ID. At first, we can prune tuples #4 and #s on the basis of

@ Springer

394

Distrib Parallel Databases (2015) 33:381-413

pLAIp

ad1ow

Original
DB
—
— T
— \ T
& 3 ———
SDB, SDB; | e SDB, SDB,
Ipu 1P,-h; Pp 1

\Je\\ DB

Po

C a

. SR

Fig. 1 The fundamental framework of PUTR query

Table 2 An example of 8 tuples of PUTR query

\ local

SW
/ answer

set

global answer set

Tuple ID Soldier ID Time

Medical needs Prob.

(score)
1 134 13:40 25 0.4
1) 135 13:40 18 0.6
13 136 13:39 17 0.4
14 137 13:41 20 0.1
15 138 13:39 19 0.5
16 139 13:40 9 0.6
17 140 13:41 15 0.5
18 141 13:41 20 0.4
Thread Tuple ID Score Z}:O P(DBy;, j) LB Priop2(t, DB) L;
Py 31 25 1 0.4 - Lo ={11,n, 13}
o) 18 0.76 0.36 0.6
13 17 - 0.096 0.4
Py 13 20 1 0.4 - Ly ={tg,t5,t7}
ts 19 0.8 0.3 0.5
t7 15 - 0.12 0.5
Tuple ID Score Prob. }':O P(DBy;, j) PGrop2(t, DB) Q
1 25 0.4 1 0.4 {t1, 13}
13 20 0.4 0.84 0.4
ts 19 0.5 0.6 0.24
) 18 0.6 0.348 < 0.4 0.252
13 17 0.4 - -
17 15 0.5 - -

@ Springer

Distrib Parallel Databases (2015) 33:381-413 395

Pruning Rules 1 and 2 for a given probability threshold 0.4 and a score range C R=[15,
25]. In addition, we can put #; and tg immediately into local top-(2,2) answer set without
computing their local top-2 probability because their lower bound L B are all greater
or equal to than probability threshold 0.4 (Pruning Rule 4). Moreover, in the process
of merging, it is easy to know Z}zo P(DBy, j) =1 > 04, z;‘:o P(DBy, j) =
0.84 > 0.4, > _(P(DBy. j) = 0.6 > 04, > P(DB,,. j) = 0348 < 04,
so we can prune #3 and 77 directly based on Pruning Rule 3 without calculating their
global top-2 probability. From the figure, we can see that the thread pg returns 71, #»
and 73 as its local top-(2,2) answer set, and the pp returns g, 75 and t; as its local
top-(2,2) answer set similarly. After that, as shown in the figure, we obtain global
top-(2,2) results, i.e., {1, f3}, on the basis of their global top-2 probability. That is, for
a given medical attention range, soldiers 1 and 8 need the treatment the most.

Theorem 4 The algorithm of parallel uncertain top-(k,l) range query processing, i.e.,
PUTR query processing, can report the global optimal | tuples answer set.

Proof Let A; be the global top-(_k,l) answer set, Sub; A; be the local top-(k,/) answer
set in sub-database S D B;, Sub; A; be the intersection of A; and Sub; Ay, i.e.,

Sub;A; = A; N Sub; Ay, (17)
where | <i < p. o
First of all, we can get Sub; A; € Sub; A; by contradiction. Suppose there exists a

tuple ¢ which belongs to Sub; A; but not Sub; A;. Let U be the set of tuples in global
data space D B which their top-k probabilities are no less than that of 7, i.e.,

U= {t/|t/ € DB, Ptop—k(t/) = Ptop—k(t)}- (18)

Let Sub; U be the set of tuples in local data space SD B; which their top-k proba-
bilities are no less than that of ¢, i.e.,

Sub;U = {1'|t" € SDB;, Piopk(t') = Prop-r(1)}. (19)
Evidently,
Sub;U =UNSDB; CU. (20)
According to the definition of top-(k,/) query, we can have
Sub; A; € Sub; U. 21
Consequently, we can obtain

|U| > |Sub;U| > |Sub; A;| > [. (22)

@ Springer

396

Distrib Parallel Databases (2015) 33:381-413

Algorithm 1. PUTR Query Processing

Input:

An uncertain database DB with the cardinality n, a score ranking function s(¢), a user-specified
probability threshold ¢, a score range CR, two integral numbers k and /, p threads

Output:

PUTR query answer set Q

/*Divide*/

1:

B wN

initialize the top-(k,/) answer set Q «— 0;

. initialize the local top-(k,l) answer set L; <— 0 (1 <i < p);
: initialize the local candidate top-(k,/) answer set S; «+— 0 (1 <i < p);
: divide database DB into p sub-databases SDB; with cardinality n; in ID, where 1 <i < p and

Di<i<phi =1,

5: for each thread P, and sub-database SDB;, where 1 <i < p, par- do
6: for each tuple #;; in SDB;, where 1 < j < n; do
7 if (s(1;j) ¢ CR or P(t;;) < q) then
8: remove t;; from the SDB;;
9: end if
10: end for
11: sort for remaining tuples in SDB; in the decreasing order of the scoring function s(¢);
12: i35 (P(DB,,) < g then
13: prune the tuples which rank lower than #;; from the SDB;;
14: end if
15: compute the lower bound LB of local top-k probability of tuple ¢;; in SDB;;
16: if LB > g then
17: put ¢;; into into local top-(k,l) answer set L;, where 1 <i < p;
18: end if
19: compute local top-k probability of tuple #;; Pr;op—i(tij, SDB;) for the remaining tuples in the
SDB; using Algorithm 2;
20: ifPL,op,k(l‘ij,SDBi) < g then
21: remove t;; from the SDB;;
22: else
23: put #;; into local candidate answer set S;;
24: end if
25: if|S;| < L then
26: L,' — Si;
27: else
28: pick out [tuples with the maximum Py, (t;;,SDB;) from S; and insert them into the
local top-(k,[) answer set L;;
29: end if
30: end for
/*Merge*/
31: the master thread Py collects local top-(k,/) answer set L;, and groups them into a new database

32:
33:
34:
35:
36:
37:

38:

DB;
sort the new dataset DB in the decreasing order of the scoring function s(z);
if 3~ P(DBy,, j) < ¢ then
prune the tuples which rank lower than #; from the DB;
end if
compute top-k probability of tuple # B,,_«(t, DB) in DB using Algorithm 2;
select / tuples which have the maximum top-k probabilities but no less than ¢, and put them
into the global answer set Q;
return Q.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 397

Algorithm 2 . Compute top-k probability of tuples in uncertain database

Input:
An uncertain database DB with the cardinality n is sorted in the decreasing order based on the
score ranking function s(r), a user-specified probability threshold g, two integral numbers &
and /

Output:
The dynamic programming table ¢(0...k; 1...|DB)|)

1: for i=1to |DB| do

2: q(0,i)=0;

3: end for

4: for ktemp = 1to k do

5: q(ktemp,1) = P(t1);

6: end for

7: for i =2 to |DB| do

8: for ktemp =1to kdo

9: q(ktemp,i) = P(t;)q(ktemp,i—1)(1 = P(t;-1))/P(ti-1) + q(ktemp —1,i = 1);

10: end for
11: end for
12: return ¢(0...k;1...|DB|).

This leads to ¢ ¢ A; which contracts our assumption.
In addition, for the reason that A; is the set of the optimal / tuples in global space
DB, and the following holds,

A; € Ui<i<pSub; Ay (23)

Thus, for arbitrary a tuple t € A, it certainly belongs to the set consisted of the
optimal [tuples from the set U;<;<,Sub; A;. Consequently, we can obtain global
top-(k,[) answer set by sorting for the set Uj<;<,Sub; A; based on their global top-k
probabilities. O

Theorem 5 The time complexity of PUTR query processing algorithm is
max{O(n/p), O(ni/p*), O(kna/p), O((n2/p)log(na/p)), O(p*(+ x)*)], where,
n, ni, ny are the cardinality of original uncertain database, compact database based
on score value constraint pruning and probability threshold pruning, and dataset on
the grounds of the upper bound of answer set pruning and top-k probability lower
bound pruning, respectively. p is the number of cores (threads), x is the maximum
number of tuples got on the basis of probability lower bound pruning in the process
of local execution.

Proof The time of PUTR query processing algorithm mainly includes two parts, that
is, the local processing time and the merging processing time. It is easy to know that
the time complexity of merging is O(p>(I + x)?), where p is the number of cores
(threads), x is the maximum number of tuples got on the basis of probability lower
bound pruning in the process of local execution. On the other hand, for given p threads
and the dataset with cardinality n, each thread concurrently deals with [n/p]| data
with the same program. Therefore, the time complexity of local top-(k,/) processing is
max[O(n/p), O(n}/p?), O(kny/p), O((n2/p)log(na/p))l. where n, ny and n as

@ Springer

398 Distrib Parallel Databases (2015) 33:381-413

shown in Theorem 5. Consequently, the time complexity of PUTR query processing
algorithm is max[O(n/p). 0(n}/p?). O(kna/p). O((n2/p)log(na/p)). O(p*(+
x)9)].

Generally in practice, the values of p and [should typically be far much less than n,
n1 and nj. So the time complexity of the algorithm may be max[O(n/p), O (n%/pz),
O(kny/p), O((ny/p)log(na/p))] when n, ny and n; are very big. O

6 Experimental evaluation

In this section, we demonstrate the efficiency and effectiveness of UTR query and
PUTR query processing algorithms through a series of simulations over both real-
world and synthetic data. We take query running time, speedup, and pruning ratio P R
(as defined hereinafter) as the primary performance metric under various parameters.
All experiments were run on a PC with a2.13 GHz Intel® Xeon® CPU E5506, 2 Quad
Cores CPU with 8 GB of main memory, and a 1 TB hard disk, running Windows
Win7 64 bit Operating System. Our algorithms were implemented in Microsoft Visual
Studio 2010.

Definition 5 (Pruning Ratio, PR) Let NU Mper be the number of data set before
pruning, NU M,y be the size of the data set after pruning .We call

_ NUMper — NU Mg

PR = 24)
NU Mpes

pruning ratio, denoted as PR. It represents the efficiency of pruning techniques.

6.1 Results on the real-world data set

We use the International Ice Patrol (IIP) Iceberg Sightings Database® which contains
13,095 tuples to evaluate the efficiency and effectiveness of top-k queries on uncertain
data in real-world applications. This data set was used in previous works on ranking
queries in uncertain data [15-17]. We apply our UTR query and PUTR query on the
uncertain data set by setting k =1 = 10, ¢ = 0.3 and CR =[100,500]. The ranking
order is the number of days of iceberg drift descending order. The detailed information
about the result set of UTR query and PUTR query is showed in Tables 3 and 4,
including attribute scores (drifted days), presence probabilities, top-10 probabilities
and the corresponding ranks.

As shown in Table 3, the UTR query returns a set of 12 tuples {6903, 3610, 136125
16928, 14174, 14020, 18313, 18412, 18411, 18409, 18410, 13408} as the top-(10,10) answer set,
among which fg903 and 3619 (as shown in bold) are obtained by probability lower
bound pruning (Pruning Rule 4). Table 4 illustrates the top-(10,10) result set, i.e.,
{76903> 136125 169285 14174, 14020, 18313, 18412, 18411, 18409, 18410 }, of PUTR query. From
the results, we can see that the PUTR query results are included in the UTR query

2 http://nsidc.org/data/g00807.html

@ Springer

http://nsidc.org/data/g00807.html

Distrib Parallel Databases (2015) 33:381-413 399

Table 3 UTR query answer set in the IIP_2009 database

Tuples t6903 3610 13612 16928 14174 14020 8313 18412 18411 18409 18410 18408

Drifted days 500 500 495 488.7 439.5 427.6 423.5 4555 4352 431.6 431 4309
Presence prob. 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7
Top-10 prob. - - 0.8 0.8 038 08 08 07 07 07 07 0.7
Rank 1 2 3 4 5 6 7 8 9 10 11 12

Table 4 PUTR query answer set in the IIP_2009 database

Tuples 16903 13612 16928 14174 14020 18313 18412 18411 18409 18410 t3610 8408

Drifted days 500 495 488.7 439.5 427.6 423.5 455.5 4352 431.6 431 500 4309

Presence prob. 0.8 0.8 08 08 0.8 08 07 07 07 07 06 07
Top-10 prob. 0.8 0.8 0.8 08 08 0762236 0.7 07 07 07 06 07
Rank 1 3 4 5 6 7 8 9 0 11 2 12

Table 5 PT-k/Global-Topk queries answer set over the IIP_2009 database

Tuples 16903 13612 16928 14174 14020 13412 18411 18409 18410 18408 13610

Drifted days 500 495 488.7 439.5 427.6 455.5 4352 431.6 431 4309 500

Presence prob. 0.8 0.8 0.8 0.8 0.8 0.7 07 07 07 07 0.6
Top-10 prob. 0.8 0.8 0.8 0.8 0.766956 0.7 07 07 07 07 0.6
Rank 1 3 4 6 11 5 7 8 9 10 2

results. Although tuple #3601 (shown in bold) has the second largest score, it cannot be
a member of the global answer set for the reason that its presence probability and the
probability of being top-10 are all lower than that of tuples in the result set. Tuple #3403
(shown in bold) has the same top-10 probability with the tuples in the answer set, it
cannot be a member of the global result set because its score are all smaller than that of
tuples in the result set. From an experiment viewpoint, it verifies also the correctness
of PUTR query, that is, it can correctly report global optimal [tuples users wanted.

In summary, our PUTR query captures those important tuples with better efficiency
and effectiveness. In the following subsections, we will test the PUTR query on syn-
thetic data sets for evaluating its scalability and performance further.

On the other hand, as a comparison task, we apply our UTR query and two other
queries, i.e., PT-k query [15—-17] and Global-Topk query [29], on the uncertain dat
aset. The ranking order is still the number of days of iceberg drift descending order.
For UTR query, we set k = [= 10, ¢ = 0.3 and CR = [100,500], that is, the
researchers would want to observe those records whose drifted days are located at
between 100 and 500, and their probabilities of being top-10 are no less than 0.3. We
set k = 10 and g = 0.3 for PT-k query and k = 10 for Global-Topk query. The detailed
information about the result sets of these three queries are showed in Tables 3 and 35,
including attribute scores (drifted days), presence probabilities, top-10 probabilities
and the corresponding ranks.

@ Springer

400

Distrib Parallel Databases (2015) 33:381-413

Table 6 The experimental data

. . Datasets
sets under various distributions

Meanings

uu

un(0.5)

un(0.9)

uexp(0.2)

uexp(0.5)

The score and probability follow uniform
distribution

The score follows uniform distribution, and the
probability follows normal distribution with
mean value equal to 0.5, variance equal to 0.2

The score follows uniform distribution, and the
probability follows normal distribution with
mean value equal to 0.9, variance equal to 0.2

The score follows uniform distribution, and the
probability follows exponent distribution with
mean value equal to 0.2

The score follows uniform distribution, and the
probability follows exponent distribution with
mean value equal to 0.5

running time versus n on uu

UTR query
— [EPUTR query (p=2)
2 o IEPUTR query (p=4)
“E’ [EPUTR query (p=6)
2
€10°
2
2|
10 3 4 5 6 7 8 9
n=2K
(a) uu
" running time versus n on un(0.9)
10
UTR query

— [EPUTR query (p=2)|
3102 [CJPUTR query (p=4)
g [EPUTR query (p=6)
fn UTR =8
£ o
€10
2

1074

n=2"K

(¢) un(0.9)

running time versus n on un(0.5)

WUTR query
[EPUTR query (p=2)|

[EPUTR query (p=6)
PUTR query (p=8

running time (s)

(b) u;1(0.5)

running time versus n on uexp(0.2)

WUTR query
[EPUTR query (p=2)
[CIPUTR query (p=4)
[EPUTR query (p=6)
UTR 8

Qo

o
o

running time (s)
Il

n=2"K

(d) uexp(0.2)

running time versus n on uexp(0.5)

[EPUTR query (p=2)|
[CJPUTR query (p=4)
[EPUTR query (p=6)

5)

10°

PUTR query (p=8)

running time

3 4 5

6
n=2"K

7 8 9

(e) uexp(0.5)

Fig. 2 Running time versus n for various queries (different distributions)

All tuples with top-10 probability at least 0.3 and drifted days between 100 and
500 are reported by the UTR query. As shown in Table 3, the UTR query returns a

set of 12 tuples {6003, 13610, 13612, 16928, 14174, 14020, 18313, 18412, 13411, 18409, 18410,

@ Springer

Distrib Parallel Databases (2015) 33:381-413 401

speedup versus p on uu speedup versus p on un(0.5)
30y 30
—n=8K —n=8K
251—n=16K 251—n=16K
—n=32K —n=32K
o 20[~+-n=64K o 20fl+-n=64K
3 ~-n=128K 3 ~-n=128K
@ 15— n=256K & 15]1—n=256K
%10 —=-n=512K %10 ~=-n=512K
| 2-1deal linear speedup) / -~ Ideal linear speedup
5| 5
/
2 3 4 5 6 7 0 2 3 4 5 6 7
p p
(a) uu (b) un(0.5)
speedup versus p on un(0.9) speedup versus p on uexp(0.2)
4
0 —n=8K 30 —n=8K
—n=16K 251—n=16K
30f—n=32K —n=32K
o [[+-n=64K o 20fl+-n=64K
3 ~-n=128K 3 ~-n=128K
$ 20— n=256K 8 15— n=256K
& [[=-n=512K %10 ~=-n=512K
4gll2=!deal linear speedup) =-Ideal linear speedup)
l——————
o 2 3 4 5 6 7 0 2 3 4 5 6 7 8
p p
(c) un(0.9) (d) uexp(0.2)
speedup versus p on uexp(0.5)
30
—n=8K
25(—n=16K
—n=32K
o 20[+n=64K
2 ||-n=128k
$ 15— n=256K
& [=n=512K
10l|-Ideal linear speedup
5|] /
o _
1 2 3 4 5 6 7 8

P

(e) uexp(0.5)

Fig. 3 The speedup for different n (various probability distributions)

t3408 } as the top-(10,10) answer set, among which 993 and #3610 (shown in bold)
are obtained by probability lower bound pruning (Pruning Rule 4). Table 5 illustrates
the results of PT-k query and Global-Topk query. Although tuple #3691 (as shown in
bold) has the relatively low presence probability, it is regarded as a member of the
answer set for the reason that its score (drifted days) is larger or equal than that of
tuples in the result set. However, the tuple 3691 is not included in the answer set
of the PT-k query and Global-Topk query despite the fact that #360; has the largest
score in the given score range. In other words, the two queries lose some relatively
important tuples. From an real experiment viewpoint, it verifies also the effectiveness
of UTR query, that is, the query can accurately report those optimal tuples users
wanted.

The pruning ratio of the score range pruning and probability threshold pruning
(i.e., Pruning Rules 1 and 2), the upper bound pruning of answer set (i.e., Pruning
Technique 3) and probability lower bound pruning (i.e., Pruning Strategy 4) is 78.68,
99.46 and 13.33 %, respectively. The upper bound pruning of result set has a super
pruning effect with the pruning ratio at least 99 %. The effects of Pruning Techniques
1 and 2 rests with the score range and probability threshold user selected. Although
the Pruning Rule 4 has a relatively lower pruning effect, it contributes to our UTR

@ Springer

402 Distrib Parallel Databases (2015) 33:381-413

running time versus k on uu running time versus k on un(0.5)
800

@
S
S

3600 %600

(o3 @

£ £

5400 '©400

£ 2

c £

c 15

= 200] 2200

o 0 O O 0 O 0 |
100 1000 K 2000 3000 100 1000 K 2000 3000
(a) uu (b) un(0.5)
running time versus k on un(0.9) running time versus k on uexp(0.2)
800

600 =

o o UTR query

£ E

= 400 =1

£ 2

c £

c 15

3 3

N
=3
S

o

1 [l 1 [
100 1000 K 2000 3000 100 1000 K 2000 3000

(¢) un(0.9) (d) uexp(0.2)

running time versus k on uexp(0.5)
500

N
S
S

WUTR query
EPUTR query (p=2;
[CJPUTR query (p=4;

W
o
=

[EPUTR query (p=6

N
=3
S

running time (s)

=)
S

o

O u u O
100 1000 K 2000 3000
(e) uexp(0.5)

Fig. 4 Running time versus k for various queries (different distributions)

query capturing those important tuples missed by some uncertain top-k queries such
as the PT-k query and Global-Topk query.

6.2 Results on the synthetic data set

Since uncertain top-(k,l) query algorithms need to balance scores and probabilities
of tuples, the experimental data should consider different distributions with respect
to the scores and probabilities. In this section, we conduct the experiments on some
synthetic data sets under different distributions. Their scores all follow the uniform
distribution between zero and one hundred, and their probabilities obey uniform dis-
tribution, normal distribution, and exponent distribution, respectively. There is no
correlation between the score and the probability. Table 6 illustrates the experimental
data sets we adopted under various distributions.

6.2.1 Effects of the cardinality of database n

In this series of experiments, we vary the number of uncertain data n from 8K to
512K (K = 1000). Figure 2 (the y axis is log scale) shows the execution time of

@ Springer

Distrib Parallel Databases (2015) 33:381-413 403

speedup versus p on uu speedup versus p on un(0.5)

30, 30,
—k=100 —k=100

—k=1000 —k=1000
—k=2000 —k=2000
20{1-+k=3000 20{-+k=3000

--Ideal linear speedup] —-|deal linear speedup

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
p p
(a) uu (b) un(0.5)
speedup versus p on un(0.9) speedup versus p on uexp(0.2)

30 15

—k=100 —k=100

—k=1000 ——k=1000

—k=2000 —k=2000
20)1-+k=3000 10f-+k=3000

=~ Ideal linear speedup -—Ideal linear speedup

(¢) un(0.9) (d) uexp(0.2)

speedup versus p on uexp(0.5)

—k=100
—k=1000
—k=2000
k=3000
+-Ideal linear speedup)|

(e) uexp(0.5)

Fig. 5 The speedup for different k (various probability distributions)

various queries with the cardinality of data set n up to 512K under different data
sets, where CR = [10,90], ¢ = 0.2 and k = [= 100. We can see from the pic-
tures the time increases with n value, which is intuitive. Uu distribution pair and
un distribution pair have relatively big running time while uexp distribution pair
(e.p., the exp(0.2) distribution pair) has relatively small execution time for the UTR
query. This can be explained based on the fact that a small quantity of tuples have
relatively high probability under uexp distribution, thereby the number of prunable
tuples increase with n on the basis of the pruning strategies. However, for the un
distribution pair where a considerable number of tuples are highly probable, the prun-
able tuples decrease based on the pruning techniques. On the other hand, there is
a relatively longer execution time when a data set has a un distribution with larger
mean value, because their probabilities, especially some relatively high probabili-
ties, distribute so intensively that we can prune less tuples. As such, the execution
time is shorter when a data set has a uexp distribution with smaller mean value
because the mean value forces probability to decay relatively fast leading to a small
number of highly likely tuples. On the other side, as illustrated in the figure, the
running time decreases as the number of threads and the size of data set increase
obviously.

@ Springer

404 Distrib Parallel Databases (2015) 33:381-413

5 running time versus q on uu 5 running time versus q on un(0.5)
10 10
WUTR query WUTR query
PUTR query (p=2)| PUTR query (p=2)|
IR [CIPUTR query (p=4)| IO [CJPUTR query (p=4)
e 10 EPUTR query (p=6) 210 EPUTR query (p=6)
= UTR = UTR
2 2
€10’ €10’
2 2
10] 10]
00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q q
(a) uu (b) un(0.5)
5 running time versus g on un(0.9) 5 running time versus q on uexp(0.2)
10 10
WUTR query WUTR query
EPUTR query (p=2)| EPUTR query (p=2)|
IR [CIPUTR query (p=4)| IO [CJPUTR query (p=4)
2 10 [EPUTR query (p=6) e 10 [EPUTR query (p=6)
= UTR =t = PUTR query (p=8
o o
= £10'
c c
2 2
10] 10]
0().1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0[).1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q q
(c) un(0.9) (d) uexp(0.2)
running time versus q on uexp(0.5)

WUTR query
PUTR query (p=2)
[CJPUTR query (p=4)
[EPUTR query (p=6)|
PUTR

running time (s)

10041 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q

(e) uexp(0.5)

Fig. 6 Running time versus ¢ for various queries (different distributions)

The change tendency of speedup of PUTR query for n under various threads and
data sets is depicted in Fig. 3. Note that the black line denotes the ideal linear speedup,
similarly hereinafter. From these graphs, we can know that the PUTR query can obtain
super-linear speedup. One possible reason is that the data to be accessed in parallel
reside in each core cache while the data visited serially cannot all stay in a single
cache. So, compared to PUTR query, the UTR query takes more than p times time for
the reason that the serial procedure has to access the slower part of storage system.

6.2.2 Effects of the parameter k

In this experiment, we study the influence of k value on the performance of UTR query
and PUTR query under various types of data sets. We vary k value from 0.1K to 3K.
The experimental results are shown in Fig. 4. In this figure, we illustrates the query
running time with k value up to 3K, where CR =[10,90],4 =0.2,/=100and n =512K.
From the figure, we can know that the execution time increases almost linearly as k
value increases. The variation of running time of different distributions roughly has
the similar form with Fig. 2 as the same causes aforementioned. Figure 5 illustrates
the variation tendency of speedup for k£ under different threads and databases. On

@ Springer

Distrib Parallel Databases (2015) 33:381-413 405

speedup versus p on uu speedup versus p on un(0.5)

30y 30
—q=0.2 —q=0.2

—q=04 —q=0.4
—q=0.6 —q=0.6
20 q=0.8 20 q=0.8

=-Ideal linear speedup --Ideal linear speedup

01 2 3 4 5 6 7 8 cl1 2 3 4 5 6 7 8
[[
(a) uu (b) un(0.5)
speedup versus p on un(0.9) speedup versus p on uexp(0.2)
30 20
—q=0.2 —-—q=0.2
—q=0.4 —q=04
—q=0.6 15f—q=0.6
20+-q=0.8 q=0.8
=~ Ideal linear speedup -—Ideal linear speedup

(c) un(0.9) (d) uexp(0.2)

speedup versus p on uexp(0.5)

—q=0.2
—q=0.4
—q=0.6
q=0.8
=-Ideal linear speedup)

(e) uexp(0.5)

Fig. 7 The speedup for different g (various probability distributions)

the other hand, the speedup decreases as k value increases. We can see from these
pictures, in general, the PUTR query can obtain super-liner speedup for the similar
reasons aforementioned.

6.2.3 Effects of the probability threshold q

In this train of experiments, we vary probability threshold g value from 0.2 to 0.8.
The experimental results are shown in Fig. 6 (the y axis is log scale). In these figures,
we illustrate the query running time with g value up to 0.8, where CR = [10,90],
k =1 =100 and n = 512K. From the figures, we can know that the execution time
decreases as g value increases, which is intuitive. On the other hand, as is shown in
the figure, the running time declines dramatically with the number of threads and the
probability threshold increase.

The change tendency of speedup of PUTR query for ¢ under various threads and
data sets is depicted in Fig. 7. From these graphs, we can know that the PUTR query
can obtain super-linear speedup for smaller g value for the probable reason afore-
mentioned. In addition, the speedup declines as the probability threshold g increases.
On the other side, the speedup increases as p increases. However, the performance of

@ Springer

406 Distrib Parallel Databases (2015) 33:381-413

running time versus CR on uu running time versus CR on un(0.5)
1000 1000

= UTR query

= PUTR query (p=2)
PUTR query (p=4)
PUTR query (p=6)

= UTR query

= PUTR query (p=2)
PUTR query (p=4)
PUTR query (p=6)

N
o
s}
B
o
o

running time (s)

B
o
N
S}

running time (s)

= PUTR query (p=8) m PUTR query (p=8)
1 1
[10,90] [20,80] [30,70] [40,60] [10,90] [20,80] [30,70] [40,60]
(a) uu (b) un(0.5)
running time versus CR on un(0.9) running time versus CR on uexp(0.2)
1000 1000

= UTR query

m PUTR query (p=2)
PUTR query (p=4) PUTR query (p=4)
PUTR query (p=6) PUTR query (p=6)

m PUTR query (p=8) m PUTR query (p=8)

 UTR query
= PUTR query (p=2)

e
o
o
B
o
o

N
o
2
o

running time (s)
running time (s)

[10,90] [20,80] [30,70] [40,60] [10,90] [20,80] [30,70] [40,60]
CR CR

(¢) un(0.9) (d) uexp(0.2)

running time versus CR on uexp(0.5)
1000

"
Q
<]

= UTR query

= PUTR query (p=2)
PUTR query (p=4)
PUTR query (p=6)

= PUTR query (p=8)

o
o

running time (s)

[10,90] [20,80] [30,70] [40,60]
CR

(e) uexp(0.5)

Fig. 8 Running time versus C R for various queries (different distributions)

PUTR query can decline as ¢ and p increase. Because the number of prunable tuples
is so big, the data set decreases sharply. As what mentioned before, it requires more
overhead for OpenMP to start and distribute more threads. As a specific example,
Fig. 7 shows the performance of PUTR query is worse than that of UTR query for
uexp(0.2) distribution when ¢ is larger than 0.8.

6.2.4 Effects of the score range C R

Now, we vary score rang constraint C R for simulations. Figure 8 (the y axis is log
scale) shows the experimental results. We describe the running time for different score
range in the picture. Of course, in practice, the users may set the score range in terms
of their own demands. On the other side, the variation of running time of various kinds
of distribution data sets roughly has the approximate trend with the Figs. 4 and 6 as
the similar causes mentioned previously. In addition, as is shown in the picture, the
running time declines notably with p increases.

Figure 9 manifests the change trend of speedup for C R under different threads and
data sets. From these figures, we can see that the PUTR query can achieve super-linear
speedup for some score range for the possible reasons aforementioned. The variation
tendency of speedup for C R under different threads and databases is similar to that of
Fig. 7 for the same reasons mentioned before.

@ Springer

Distrib Parallel Databases (2015) 33:381-413 407

speedup versus p on uu speedup versus p on un(0.5)

(a) uu (b) unp(O.S)

speedup versus p on un(0.9) speedup versus p on uexp(0.2)

—CR=110,90]

30,70]
- CR=[40,60]
20f-»Ideal linear speedu

— 30,70]
- CR=[40,60]
|-~ Ideal linear speedu

(¢) un(0.9) (d) uexp(0.2)

speedup versus p on uexp(0.5)

[=-Ideal linear speedu

speedup

(e) uexp(0.5)

Fig. 9 The speedup for different C R (various probability distributions)

6.2.5 Effects of the score-probability correlations

In this series of experiments, we evaluate the effect of score-probability correlation
on the performance of query. We use the synthetic uncertain databases of mutu-
ally independent tuples with the score and probability values of uncorrelation, posi-
tive correlation, and negative correlation. Given this, we generate bivariate normal
data over score and probability, and control the correlation coefficient by adjust-
ing bivariate covariance matrix. In this paper, we vary the correlation coefficient
from —0.8 to 0.8 (mainly —0.8, —0.1, 0, 0.1, and 0.8). We evaluate the perfor-
mance of UTR query and PUTR query under various parameter settings. Experi-
mental results are shown in Figs. 10, 11, 12, and 13 (the y axis is log scale except
Fig. 11).

At first, we study the influence of n on the query performance with the settings CR
=[10,90], ¢ =0.2 and k = [= 100. In addition, we study the effect of k value on the
performance of UTR query and PUTR query under various correlation coefficients.
We vary k value from 0.1K to 2K, where CR =[10,90], ¢ =0.2,/ =100 and n =256K .
Another experiment illustrates the query execution time with g value up to 0.8, where

@ Springer

408 Distrib Parallel Databases (2015) 33:381-413

running time versus n on cor=0.8 running time versus n on cor=0.1

lUTR query WUTR query
[EPUTR query (p=2)| e [EPUTR query (p=2)|
: 102 [CJPUTR query (p=4) % 102 [JPUTR query (p=4)
£ [EPUTR query (p=6)| £ [EPUTR query (p=6)|
'; PUTR query (p= ‘; UTR =
£ £
€10° £10°
2 2
-2| -2|
10 3 4 5 6 7 8 0 3 4 5 6 7 8
n=2"K n=2%
(a) cor=0.8 (b) cor=0.1
" running time versus n on cor=0.0 B running time versus n on cor=-0.1
10 UTR query 10
. |[MPUTR query (p=2) P
£ 5 |[CIPUTR query (p=4) 2 5
2 10" IFPUTR query (p =6) 210
= lPUTR que =
£ 5 £ o
€10 €10
2 2
B 10"

102 [CJPUTR query (p=4)
[EPUTR query (p=6)

running time (s)

n=2"K

(e) cor=-0.8

Fig. 10 Running time versus n for various queries (different distributions)

CR=[10,90],k =1 = 100 and n =256 K . Atlast, we discuss the influence of different
score range on performance of query under the setting of ¢ = 0.2, k = [= 100 and
n =256K. We can know from these results that the positive correlation has positive
effects on the performance of query while anti-correlation has negative influences on
the performance. This can be explained based on the fact that for the data of positive
correlation, high score tuples are attributed with high probability, which allows pruning
considerably low probable tuples in advance to answer uncertain top-k range queries,
while for negatively correlated data, more tuples need to be visited before concluding
the answer set.

6.2.6 Pruning effects

In this subsection, we evaluate the efficiency and effectiveness of pruning techniques
for different types of data used previously. Experimental results are shown in Tables 7
and 8. Table 7 illustrates the pruning ratios of pruning strategies under various kinds
of probability distribution with the settings of CR =[10,90], ¢ =0.2, k =1 = 100
and n = 512K. Table 8 describes pruning ratios of these four pruning techniques
under different bivariate gaussian data over score and probability with the settings

@ Springer

Distrib Parallel Databases (2015) 33:381-413 409

running time versus k on cor=0.8 running time versus k on cor=0.1
ElUTR query 1500 EEUTR query
EEPUTR query (p=2) [EPUTR query (p=2)
. [CJPUTR query (p=4)| . CJPUTR query (p=4)
» [ERPUTR query (p=6)| w EAPUTR query (p=6)
° EPUTR query (p=8) © 1000 EPUTR qu: 8,
£ £
j=23 j=
£ £
€ £ 500
2 2
of 0
100 10k00 2000 100 10k00 2000
(a) cor=0.8 (b) cor=0.1
running time versus k on cor=0.0 running time versus k on cor=-0.1
[ElUTR query 1500 [@lUTR query
[EPUTR query (p=2)
— CIPUTR query (p=4) .
K EIPUTR query (p=6) o
) a o 1000
£ £
j=3 j=J
: £
g € 500
2 2
0f 0
100 10k00 2000 100 10k00 2000
(c) cor=0.0 (d) cor=-0.1

running time versus k on cor=-0.8

o
=}
=}

[EUTR query

o

Is]

=]
]
il
=
IS

o
=3
=]

running time (s)

100 10k00 2000
(e) cor=-0.8

Fig. 11 Running time versus & for various queries (different distributions)

of CR =[10,90], ¢ = 0.2, k = [= 100 and n = 256K . From the tables, we can
see that the Pruning Rule 3 (i.e., the upper bound pruning of answer set) has an
exceptional pruning efficiency with the pruning rate at least 99.9 %. Pruning Rules
1 and 2 (i.e., the score range pruning and the probability threshold pruning), as the
methods of predictive pruning, have also better pruning effects, which depends on
the score range and probability threshold user selected. Although the Pruning Rules
4 and 5 (i.e., the probability lower pruning) have lower pruning effect, they con-
tributes to our PUTR query capturing those important tuples with better efficiency and
effectiveness.

In a word, extensive experiments based on synthetic data have very well verified
the efficiency and effectiveness of our proposed algorithm for the uncertain parallel
top-(k,/) range query, in terms of shorter execution time compared to UTR query,
super-linear speedup, and excellent pruning ratio.

7 Conclusions

In real-world applications, uncertainty inherently exists in data. Therefore, it has
recently become crucial to explore how to answer various queries over uncertain data

@ Springer

410 Distrib Parallel Databases (2015) 33:381-413

running time versus q on cor=0.8 running time versus q on cor=0.1

10° 10°
UTR query UTR query
EPUTR query (p=2)| EPUTR query (p=2)|
o [CIPUTR query (p=4) @ [CIPUTR query (p=4)
2 10 [EPUTR query (p=6) e [EPUTR query (p=6)
= UTR =407 PUTR query (p=8)
2 2
10’ g
3 3
0| 0|
10().1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 100.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q q
(a) cor=0.8 (b) cor=0.1
5 running time versus q on cor=0.0 5 running time versus g on cor=-0.1
10 10
UTR query UTR query
[EPUTR query (p=2) [EPUTR query (p=2)
z [CIPUTR query (p=4) z
o 10 [PUTR query (p=6) 2 10
= PUTR query (p=8 =
£ 2
£ 10' £ 10’
3 3
107 107
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q q
(¢) cor=0.0 (d) cor=-0.1
running time versus g on cor=-0.8

10

WUTR query
[PUTR query (p=2)
[CIPUTR query (p=4)|
[EPUTR query (p=6)
PUTR quer

running time (s)
>
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q

(e) cor=-0.8

Fig. 12 Running time versus ¢ for various queries (different distributions)

effectively and efficiently. Since traditional definite query processing methods usu-
ally assume precise data, they are not directly applicable to handling uncertain data.
Thus, many query types in the uncertain database have to redefine query semantics
in order to obtain accurate results from uncertain data, such as uncertain range query
processing.

In this article, we present the definition of uncertain top-(k,/) range (UTR) query
processing based on a given attribute score range and a probability threshold. In
addition, we put forward some effective pruning rules to improve the performance
of UTR query algorithm. Specially, based on the properties of top-k probability,
we can find out an upper bound concerning the result set and a lower bound of
top-k probability of tuples. What’s more, with the rapid growth of Internet data,
users need to obtain query results timely. Given this, a parallel implementation of
UTR (PUTR) query on the grounds of the OpenMP on multicore architecture is
developed for improving further the performance of UTR query. Extensive exper-
iments have excellently verified the efficiency and effectiveness of our proposed
approaches.

As for future work, we will extend mainly the query processing algorithm on the
basis of the assumptions aforementioned, including tuple-level uncertainty with any

@ Springer

Distrib Parallel Databases (2015) 33:381-413

411

running time versus CR on cor=0.8

1000

I
o
o

B
o

running time (s)

[10,90] [20,80] [30,70] [40,60]

CR

(a) cor=0.8

running time versus CR on cor=0.0

1000

I
Q
o

running time (s)

o
o

[10,90] [20,80] [30,70] [40,60]

(c) cor=0.0

10000

1000

running time (s)
"

= (=}

o o

.

10000

1000
= UTR query

= PUTR query (p=2)
= PUTR query (p=4)

PUTR query (p=6)
= PUTR query (p=8)

running time (s)
=
o
o

[10,90] [20,80] [30,70] [40,60]

1000

.
o
o

= UTR query
= PUTR query (p=2)
= PUTR query (p=4)

PUTR query (p=6)
m PUTR query (p=8)

running time (s)

"
o

[10,90] [20,80] [30,70] [40,60]

running time versus CR on cor=0.1

CR

(b) cor=0.1

(d) cor=-0.1

running time versus CR on cor=-0.8

= UTR query
= PUTR query (p=2)
= PUTR query (p=4)

PUTR query (p=6)
®m PUTR query (p=8)

[10,90] [20,80] [30,70] [40,60]
CR

(e) cor=-0.8

Fig. 13 Running time versus C R for various queries (different distributions)

Table 7 The pruning ratio
under different probability
distributions

Table 8 The pruning ratio
under various bivariate normal
distributions

= UTR query
= PUTR query (p=2)
= PUTR query (p=4)

PUTR query (p=6)
= PUTR query (p=8)

running time versus CR on cor=-0.1

= UTR query

m PUTR query (p=2)

= PUTR query (p=4)
PUTR query (p=6)

= PUTR query (p=8)

Datasets/PR PR17(%) P R3(%) P Rys5 (%)
uu 35.28 99.94 8.20
un(0.5) 35.38 99.95 8.09
un(0.9) 35.31 99.95 6.25
uexp(0.2) 45.80 99.93 5.56
uexp(0.5) 70.29 99.82 2.94
Datasets/PR PR12 (%) PR3 (%) PRys5 (%)
Dataset with cor = 0.8 18.65 99.93 0.64
Dataset with cor = 0.1 18.47 99.92 1.21
Dataset with cor = 0.0 18.48 99.92 1.20
Dataset with cor=—0.1 18.54 99.92 0.61
Dataset with cor= —0.8 18.21 99.92 0.57

generationrules, attribute-level uncertainty. In addition, we will study some new extend
queries by combining the uncertain top-k query with some other classical queries,
e.g., group query, nearest neighbour query, skyline query, and subspace query etc.

@ Springer

412 Distrib Parallel Databases (2015) 33:381-413

Furthermore, we will study their performance of parallel optimization on the basis
of some parallel programming platforms, e.g., MPI, GPU, MIC, and MapReduce
etc.

Acknowledgments The authors would like to thank the three anonymous reviewers for their valuable and
helpful comments on improving the manuscript. This research was partially funded by the Key Program of
National Natural Science Foundation of China (Grant Nos.61133005, 61432005), and the National Natural
Science Foundation of China (Grant Nos.61370095, 61202109, 1472124), Project supported by the National
Science Foundation for Distinguished Young Scholars of Hunan (12JJ1011).

References

1. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of sets of possible worlds.
In: SIGMOD (1987)

2. Afshani, P, Brodal, G.S., Zeh, N.: Ordered and unordered top-k range reporting in large data sets. In:
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 390400
(2011)

3. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl.
Data Eng. 21, 609-623 (2009)

4. Chen, J., Cheng, R.: Efficient evaluation of imprecise location-dependent queries. In: Proceedings of
the 23th International Conference on Data Engineering (2007)

5. Cheng, R., Kalashn, I.D., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In:
Proceeding of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 551—
562. ACM Press, New York (2003)

6. Cheng, R., Xia, Y., Prabhakar, S., et al.: Efficient indexing methods for probabilistic threshold queries
over uncertain data. In: Proceedings of the VLDB (2004)

7. Cormode, G., Li, F,, Yi, K.: Semantics of ranking queries for probabilistic data and expected ranks.
In: Proceedings of the International Conference on Data Engineering, pp. 305-316. IEEE Computer
Society Press, Washington (2009)

8. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE
Comput. Sci. Eng. 5(1), 46-55 (1998)

9. Dai, X.Y., Yiu, M.L., Mamoulis, N., Tao, Y.E,, Vaitis, M.: Probabilistic spatial queries on existentially
uncertain data. In: SSTD, pp. 400-417 (2005)

10. Ding, X.F., Jin, H.: Efficient and progressive algorithms for distributed skyline queries over uncertain
data. IEEE Trans. Knowl. Data Eng. 24(8), 1148-1162 (2012)

11. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top-k lists. SIAM J. Discret. Math. 17(1), 134-160
(2004)

12. Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: on score distribution and typical
answers. In: Proceedings of the SIGMOD, pp. 375-388. ACM Press, New York (2009)

13. Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Processing moving queries over moving objects using motion-
adaptive indexes. IEEE Trans. Knowl. Data Eng. 18(5), 651-668 (2006)

14. Hu, H.B., Lee, D.L.: Range nearest-neighbor query. IEEE Trans. Knowl. Data Eng. 18(1), 78-91
(2006)

15. Hua, M., Pei, J.: Ranking queries on uncertain data. VLDB J. 20(1), 129-153 (2011)

16. Hua, M., Pei, J., Zhang, W.J., Lin, X.M.: Ranking queries on uncertain data: a probabilistic threshold
approach. In: Proceedings of the SIGMOD, pp. 673-686. ACM Press, New York (2008)

17. Hua, M., Pei, J., Zhang, W.J., Lin, X.M.: Efficiently answering probabilistic threshold top-k queries on
uncertain data. In: Proceedings of the International Conference on Data Engineering, pp. 1403—-1405.
IEEE Computer Society Press, Washington (2008)

18. Jestes, J., Cormode, G., Li, EF, Yi, K.: Semantics of ranking queries for probabilistic data. IEEE
Trans. Knowl. Data Eng. 23(12), 1903-1917 (2010)

19. Li,J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic databases. Proc. VLDB
Endow. 2(1), 502-513 (2009)

20. Lian, X., Chen, L.: Probabilistic ranked queries in uncertain databases. In: Proceedinggs of the EDBT,
pp. 511-522. ACM Press, New York (2008)

@ Springer

Distrib Parallel Databases (2015) 33:381-413 413

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

Lian, X., Chen, L.: Shooting Top-k stars in uncertain databases. J. VLDB 20(6), 819-840 (2011)
Lin, X., Xu, J.L., Hu, H.B.: Range-based skyline queries in mobile environments. IEEE Trans Knowl.
Data Eng. 25(4), 835-849 (2013)

Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data.In: ICDE
(2006)

Sheng, C., Tao, Y.F.: Dynamic top-k range reporting in external memory. In: Proceedings of ACM
Symposium on Principles of Database Systems (PODS), pp. 121-130 (2012)

Soliman, M.A., Ilyas, L.LF., Chang, K.C.C.: Top-k query processing in uncertain databases. In: Pro-
ceedings of the International Conference on Data Engineering, pp. 896-905. IEEE Computer Society
Press, Washington (2007)

Soliman, M.A., Ilyas, I.LF.: Ranking with uncertain scores. In: Proceedings of the ICDE, pp. 317-328.
IEEE Computer Society Press, Washington (2009)

Tao, Y.F,, Cheng, R., Xiao, X.K.: Indexing multi-dimensional uncertain data with arbitrary probability
density functions. In: Proceedings of the VLDB (2005)

Yiu, M.L., Mamoulis, N., Dai, X.Y., Tao, Y.F., Vaitis, M.: Efficient evaluation of probabilistic advanced
spatial queries on existentially uncertain data. IEEE Trans. Knowl. Data Eng. 21(1), 108-122 (2009)
Zhang, X., Chomicki, J.: On the semantics and evaluation of Top-K queries in probabilistic databases.
Distrib. Parallel Databases 26(1), 67-126 (2009)

Zhang,Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring over moving objects.
IEEE Trans. Knowl. Data Eng. 20(9), 1205-1216 (2008)

@ Springer

	Efficient top-(k,l) range query processing for uncertain data based on multicore architectures
	Abstract
	1 Introduction
	2 Related work
	2.1 Uncertain top-k query processing
	2.2 Range-based query processing

	3 Preliminaries
	3.1 Uncertain data model
	3.2 Problem definition
	3.3 Compute top-k probability

	4 Pruning rules
	5 PUTR query
	6 Experimental evaluation
	6.1 Results on the real-world data set
	6.2 Results on the synthetic data set
	6.2.1 Effects of the cardinality of database n
	6.2.2 Effects of the parameter k
	6.2.3 Effects of the probability threshold q
	6.2.4 Effects of the score range CR
	6.2.5 Effects of the score-probability correlations
	6.2.6 Pruning effects

	7 Conclusions
	Acknowledgments
	References

