
SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2017)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2472

JDAS: a software development framework for multidatabases

Guoqi Xie1,2,*,† , Yuekun Chen1,2, Yan Liu1,2, Chunnian Fan3, Renfa Li1,2 and Keqin Li1,4

1College of Computer Science and Electronic Engineering, Hunan University, China
2Key Laboratory for Embedded and Network Computing of Hunan Province, China

3Nanjing University of Information Science and Technology, China
4Department of Computer Science, State University of New York, New Paltz, New York, USA

SUMMARY

Modern software development for services computing and cloud computing software systems is no longer
based on a single database but on existing multidatabases and this convergence needs new software archi-
tecture and framework design. Most current popular frameworks are not designed for multidatabases, and
many practical problems in development arise. This study designs and implements a software development
framework called Java data access service (JDAS) for multidatabases using the object-oriented programming
language Java. The JDAS framework solves related problems that arise when other frameworks are employed
in practical software development with multidatabases by presenting and introducing design methods. JDAS
consists of the modules of the database abstract, object relational mapping, connection pools management,
configuration management, data access service, and inversion of control. Results and case study reveal that
the JDAS framework effectively reduces development complexity and improves development efficiency of
the software systems with multidatabases. Copyright © 2017 John Wiley & Sons, Ltd.

Received 29 May 2016; Revised 22 October 2016; Accepted 23 November 2016

KEY WORDS: design methods; development framework; Java; multidatabases; object-oriented program-
ming

1. INTRODUCTION

1.1. Background

Services computing and cloud computing are two mainly co-existing paradigms that are widely
demanded at present software systems [1]. The services computing paradigm aims at the devel-
opment of medium-sized and large distributed inter-organizational systems by assembling it as a
system of service providers and consumers, known as a service-oriented computing application
[2]. In turn, the cloud computing paradigm aims to provide a cost-effective, scalable and dynamic
provision of IT resources (processing, storage, and networking) for elastic demands [3, 4]. Most
works focus on the problem of satisfying the one or multiple quality of service (QoS) require-
ments for users while keeping satisfactory performance of the software systems [5, 6]. However,
both services computing and cloud computing software systems rely on large amounts of data pro-
cessing to provide efficient services and provision [7]. A typical mature data storage method is the
database storage [8, 9]. With the merging, sharing and integration of different software systems,
multidatabases have become the most important storage of current services computing and cloud
computing software systems [10]. For example, office automation, e-commerce, and e-government

*Correspondence to: Guoqi Xie, College of Computer Science and Electronic Engineering, Hunan University, Changsha,
Hunan, 410082, China.

†E-mail: xgqman@hnu.edu.cn

Copyright © 2017 John Wiley & Sons, Ltd.



G. XIE ET AL.

have grown rapidly with the expansion of the business requirements of enterprizes and governments
by integrating multidatabases, such as Oracle, MySQL, Sybase, and Microsoft SQL Server. There-
fore, modern software development for services computing and cloud computing software systems
is no longer based on a single database but on existing multidatabases and this convergence needs
new software architecture and framework design.

1.2. Motivation

Different developers who use various frameworks have developed many software systems with the
extensive growth of data in services computing and cloud computing software systems. Data integra-
tion, exchange, and sharing among different databases are common in current software development
practice [11, 12]. However, many popular frameworks are designed merely for single database rather
than multidatabases. As a result, low development efficiency is caused in practice.

First, large-scale software systems are usually developed by different developers of various com-
panies in different phases. These developers often choose their own framework combination that
they are familiar with (e.g., Spring [13] and Hibernate [14]), preferred database products (e.g., Ora-
cle, MySQL, Sybase, and Microsoft SQL Server), and connection pool technologies (e.g., C3P0
and DBCP [15]) to develop required functions. As a result, the system integrates various bytecode
files of different frameworks. Some frameworks may be incompatible, and the system easily results
in the potential risk of fault propagation. Moreover, further development and maintenance have
increasingly become difficult because of the increasing complexity of the system.

Second, data should be divided and stored according to purpose, security, and performance in
large-scale information systems. For example, databases usually include basic, core business, solu-
tion, sharing, public service, and other databases. However, the current mainstream frameworks
(e.g., Spring and Hibernate) merely focus on the software development with single database. When
these frameworks are applied to the software systems with multidatabases, the data integration,
exchange, and sharing of different databases need to handle. However, completing these functions
require many bloated and inflexible codes to be written. These codes cannot even be understood by
developers themselves. As a result, many problems (e.g., poor software quality, lower development
efficiency, and higher development complexity) arise when these frameworks are used.

The root of the issues earlier is that current many software development frameworks are oriented
to a single database, and cannot be adapted to multidatabases environments of services computing
and cloud computing software systems. Therefore, it is necessary to introduce new design methods
to implement an efficient software development framework for multidatabases, thereby to improve
development efficiency in practice.

1.3. Our contributions

To solve the issues earlier in software development practice with multidatabases, an effective
software development framework called Java data access service (JDAS) for multidatabases imple-
mented by the object-oriented programming (OOP) language Java is presented in this study. Our
contributions contain two parts (i.e., data related part and service related part) and are described
as follows:

(1) In data related part, we implement the following modules in JDAS: (i) we implement the
module of database abstraction (DA) to simplify the diversity of table-level multidatabases by
abstracting them as common interface; (ii) we implement the module of object relational map-
ping (ORM) to optimize compound primary key, timestamp, and primary and foreign keys
association; (iii) we implement the module of connection pools management to seamlessly
integrate any connection pool technologies into JDAS by using parameterized factory method
pattern; and (iv) we implement the module of configuration management to configure the map-
ping between database interfaces and connection pool instances, and to configure the remote
data access, and the local data access for databases

(2) In service related part, we implement the following modules in JDAS: (i) we implement the
module of data access service (DAS) to merge the business logic and data access layers by

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

using template method pattern; a DAS object is the combination of the business logic and data
access objects (DAOs) and it extends many methods and can execute create, retrieve, update,
and delete (CRUD) operations without adding any additional codes; (ii) we implement the
module of IoC based on the dependency lookup, and any DAS object can be obtained with the
same method in any program (e.g., JSPs, Servlets, Actions, and Components).

In summary, JDAS skillfully combines the data and service on the basis of the aforementioned
presented modules. Developers write only a few of codes to complete the basic functions by JDAS
in the software development with multidatabases.

The rest of this paper is organized as follows. Section 2 presents related frameworks. Section 3
designs and implements the JDAS framework. Section 4 verifies the performance of the JDAS
framework. Section 5 concludes this study.

2. RELATED FRAMEWORKS

Table I lists important acronyms and abbreviations that are used in this study.
Java is a widely used object-oriented programming language with the characteristics open-source

and cross-platform [16, 17]. A typical software framework contains presentation layer, business
logic layer, and data access layer [18]. This study focuses on the data access and business logic
layers.

2.1. Data access layer frameworks

Persistence is the core component in the data access layer. ORM is a method of mapping objects in
the memory and data in databases [19]. The object does not bind by any special restriction except
for the getter/setter methods. Thus, the object is usually defined as a plan old Java object (POJO) in
Java. Many persistence technologies have been implemented with Java, and the most popular ORM
framework is Java persistence API (JPA) [20], which was released in 2006, and Hibernate is an
important implementation of JPA. Hibernate (or JPA) has become crucial in software development
with database, but it still faces the following problems in practical development with multidatabases.

(1) Hibernate does not effectively handle data exchange and sharing in multidatabases because
it needs to build a Hibernate instance for each database. Too many instances would consume
more resources in large-scale multidatabases.

(2) In the same database, various table design solutions often come from different designers in
various development phases. For example, some designers employ program-controlled table
design solution where primary and foreign keys associations are not reflected in tables. In other
words, the primary foreign keys association is only indicated by the database design documen-
tation provided by the designers. Programmers write code by hand to control the association
when writing programs. However, a new designer may use Hibernate in the development of

Table I. Important important acronyms and
abbreviations that are used in this study.

JDAS Java data access service
QoS quality of service
OOP object-oriented programming
DA database abstraction
ORM object relational mapping
DAS data access service
DAO data access object
CRUD create, retrieve, update, and delete
POJO plan old Java object
JPA Java persistence API
HQL Hibernate query language
IoC Inversion of control
JNDI Java naming and directory interface

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

software systems with multidatabases. If he or she considers the primary foreign keys asso-
ciation using Hibernate, then unpredictable structural change of tables caused by Hibernate
would occur.

(3) Compound primary keys are usually used for some complex tables. However, when developers
use Hibernate, they need to write an additional compound primary key class according to
the strict specification of Hibernate. This specification is too complex and time consuming in
practical development.

(4) Timestamp is widely used in the data exchange of multidatabases. When one record of a table
is added or modified, the timestamp field can denote the relative order with 16 hexadecimals
in some databases (e.g., Sybase and Microsoft SQL Server) or indicate the modifying time of
the record in other databases (e.g., Oracle and MySQL). However, Hibernate does not directly
support this timestamp mechanism, such that it would render data exchange very complicated.

(5) Hibernate query language (HQL) is the persistence language of Hibernate, and this language
has lower query performance than JDBC because of the multilayer encapsulations of the
SQL language. Furthermore, the Hibernate N+1 SELECT’s problem often happen. Hence,
Hibernate is not suitable for performance-critical systems aimed at data query and analysis.

2.2. Business logic layer frameworks

Inversion of control (IoC) means that the creation and maintenance of an object is attributed to the
container rather than the program [21]. Objects can be obtained using the dependency lookup or
the dependency injection in IoC. Spring is a very mature and widely used lightweight IoC open-
source framework in Java technology systems [13, 22], but it also faces many problems in practical
development with multidatabases.

(1) Excessive interface-oriented design can easily result in the low efficiency of system develop-
ment. If each Java class uses the interface-oriented dependency injection, problems of interface
abuse, and too many classes would occur. These problems increase maintenance cost. For
example, if a function needs to be added in the presentation layer, the business logic and data
access layers also need to be amended accordingly.

(2) In practical development with multidatabases, some databases have the same table names
and table structures. For example, database business_db_01 is used to store the data of
district A, and databases business_db_02 and business_db_03 are used to store the
data of districts B and C, respectively. Another situation is that business_db_01 stores
the primary data, and business_db_02 and business_db_03 store the backup data of
business_db_01. The table structures are completely equal in these databases. This database
set is referred as table-level multidatabases. However, Spring does not effectively han-
dle these table-level multidatabases. For example, assume that three databases exist (e.g.,
business_db_01, business_db_02, and business_db_03), and each has an equal table
called AuditPOJO . If developers want to operate the AuditPOJO of each database,
then they need to create three business logic beans (i.e., AuditPOJO01ServiceBean,
AuditPOJO02ServiceBean, and AuditPOJO03ServiceBean). All these beans imple-
ment the interface AuditPOJOService. However, if developers do not specify one concrete
business logic bean (or its name) to be injected into the AuditPOJOService, then the sys-
tem throws an exception. In other words, the advantage of the dependency injection of the
Spring framework no longer exists and even becomes a hindrance in the software development
with table-level multidatabases.

(3) Some programs (e.g., JSP, Servlet, and Filter) cannot be managed by the Spring framework.
Thus, the dependency injection is invalid in these programs. Hence, the business logic beans
are obtained only by the dependency lookup that specifies the object name. As a result,
developers need use different methods (i.e., dependency injection and dependency lookup
together) to obtain the same business logic beans in the same Java platform. These inconsistent
approaches increase programming complexity and lower code readability.

(4) Many connection pool technologies are developed for various platforms and databases. How-
ever, Spring manages only use the specified connection pool technologies (e.g., C3P0 and

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

DBCP) and does not directly support many third-party connection pool technologies. For
example, the UniEAP pool developed by the company NeuSoft [23] cannot be supported by
Spring.

3. JDAS FRAMEWORK

Figure 1 describes the functional modules of the JDAS framework and shows the relationships
between the database layer (including multidatabases and multiconnection pools) and the presenta-
tion layer (including JSPs, Servlets, and Actions). JDAS consists of the modules of the DA, ORM,
connection pools management, configuration management, DAS, and IoC. In general, the first four
belong to the data part, and the latter two belong to the service part.

3.1. Database abstraction

DA is the basis for simplifying the software development with multidatabases. JDAS provides
a maker interface Database, which does not employ any methods or fields, and identifies
only the semantics of the DA. For a concrete database, developers should define an inter-
face that extends the Database interface. The advantage is that developers simply define
a common DA interface for table-level multidatabases. For example, developers define two
DA interfaces, NetworkDA and BusinessDA, as shown in Figure 2. The DA interface

Figure 1. Modules of JDAS. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Example of database abstract. [Color figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

NetworkDA is the database abstract of the database network_db, whereas the DA inter-
face BusinessDA is the database abstract of the table-level multidatabases business_db_01,
business_db_02, and business_db_03. The main objective of DA is to simplify the diversity
of the table-level multidatabases. More concrete details of DA will be discussed together with
other modules.

3.2. Object relational mapping

JPA supports the use of XML-based ORM [19]. Excessive XML files lower the readability of the
codes because developers need to separately watch the codes and the XML files. Annotation has
been the main mapping and configuration and the annotation-based ORM can address the problem
stated earlier. Hence, JDAS also uses the annotation-based ORM and makes the following important
improvements relative to Hibernate (JPA) ORM.

(1) The mapping of the compound primary key is improved. A compound primary key consists
of two or more attributes that uniquely identify a record in Hibernate. The problem is that all
the compound primary key fields must be defined in an embedded class and cannot intuitively
reflect the correspondence of the fields between POJOs and tables. To address the problems
stated earlier, JDAS first discards the embedded class and introduces the annotation @Pk to
mark each primary key field in the POJO CustomerPk directly, as shown in Figure 3. In
contrast to Hibernate ORM, JDAS ORM reduces complexity and improves the intuition of the
compound primary key.

(2) The annotation @Stamp is used. Timestamp data type is very useful for the data exchange
of multidatabases as mentioned earlier. However, Hibernate ORM does not directly support
timestamp. JDAS introduces the annotation @Stamp to mark the field timestamp. As shown
in Figure 3, the field tstamp is a byte[] data type, and this field is marked with the anno-

Figure 3. Annotation-based ORM of compound key in JDAS. [Color figure can be viewed at wileyonlineli-
brary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

tation @Stamp. When the CRUD operations are executed, JDAS processes the annotation
@Stamp.

(3) The primary and foreign keys association is disregarded. Some designers prefer to directly
define such association in databases and annotate it in POJOs, whereas others do not prefer the
association in databases and use the program to control it instead. To prevent the unpredictable
structural changes and risks, the JDAS ORM disregards the association in POJOs and directly
controls this association in programs.

(4) The ORM and the operations are separated. Hibernate ORM is usually employed to map and
execute CRUD operations with HQL. However, Hibernate ORM should create one instance
for each database in advance. However, this approach increases the complexity of the devel-
opment. To solve the problems stated earlier, JDAS ORM is only for mapping and not for the
operations. The concrete CRUD operations are responsible for the DAS module, as discussed
in Section 4.5.

3.3. Connection pools management

Connection pools can reduce the waiting time of a connection and resource overhead when CRUD
operations are executed [24]. Many connection pool technologies (e.g., DBCP and C3P0) imple-
ment the javax:sql:Datasource interface, and some containers (e.g., JBoss) provide connection
pool technologies based on the Java naming and directory interface (JNDI) lookup. These two types
described earlier can be supported by the Spring framework. However, partial connection pool tech-
nologies developed by some companies (e.g., the UniEAP pool developed by the company Neusoft
[23]) do not implement javax:sql:Datasource. These technologies cannot be supported by the
Spring framework. To clear the underlying problem, a industrial practical example is illustrated
as follows.

As shown in Figure 4, a project was developed by the UniEAP framework and the UniEAP pool.
This project uses the database Sybase, which is performance-matched with the UniEAP pool. Later,
other developers took over this project for further development. However, they are not familiar with
the UniEAP framework. If they continue to use the UniEAP framework to develop this project,
then the development period cannot be controlled. If they consider using the Spring framework to
develop, then many additional configuration and Jar files are introduced, which easily results in a
conflict with the UniEAP framework. Moreover, the Spring framework cannot directly support the
UniEAP pool, which cannot be replaced by other connection pool technologies because the UniEAP
pool, Sybase database, and UniEAP framework are significantly performance-matched. If they
replace the UniEAP Pool with the DBCP Pool, both the Sybase database and the UniEAP frame-
work become unstable. Hence, the Spring framework is not suitable for the further development of
this project.

Figure 4. Example of connection pools management. [Color figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

JDAS can solve the problems stated earlier. JDAS uses a mechanism to make the framework
compatible with the UniEAP pool by implementing a maintainable and compatible connection pools
management solution using the parameterized factory method pattern [25, 26].

The parameterized factory method pattern is the extension of the factory method pattern. As
shown in Figure 5, a factory method was first defined in the factory class (i.e., the getConnection./
method in the PoolManager class), and allow the getConnection./ method to generate various
connection objects with different input parameters (i.e., the databaseName and the poolName),
which generate an instance of the ConnectionPool class. Hence, the getConnection./ method
is a parameterized factory method. The parameterized factory method pattern is different from
the general factory method pattern because the factory implements the factory method (e.g., the
getConnection./ method). Hence, the factory class is no longer an abstract class of the initial
factory method pattern. For example, to make the JDAS framework and the UniEAP pool com-
patible, developers do the following tasks: (i) define a class UniEAPPool that implements the
ConnectionPool interface (Note that the concrete implemented details are omitted in this study);
(ii) obtain the UniEAP pool by invoking the parameterized factory method getConnection./ of
the factory class PoolManager with different input parameters (e.g., the databaseName and the
poolName). These parameters are configured in a specified configuration file. More details of the
configuration file can be seen in Section 4.4.

In summary, only if all the connection pool classes implement the ConnectionPool interface,
then they can be managed by JDAS without changing the existing codes. Concrete operations, such

Figure 5. Connection pools management implemented by parameterized factory method pattern. [Color
figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

as opening connection, obtaining the connection, and closing connection, are implemented by the
connection pool classes themselves.

3.4. Configuration management

Although only a common database interface is required for table-level multidatabases as mentioned
in Section 4.1, each database should still configure its own connection pool classes and instances. In
other words, if n databases exist, developers should provide n connection pool instances to connect
the databases and JDAS. Hence, developers should configure the mapping relationship between the
database interfaces and the connection pool instances, and following information was configured in
the file ‘jdas:properties’.

(1) Aliases of the connection polls. Section 4.3 defines the concrete connection pool classes for all
the connection poll technologies using the fully qualified name of a concrete connection pool
class. For convenience, an alias was defined for each connection pool class (e.g., the alias of the
DBCPPool class is dbcp, and that of the UniEAPPool class is eap), as shown Figure 6.

(2) Names of the databases. For table-level multidatabases, merely defining the common
database interface is not enough because each database has its own property values
(e.g., driver class, connection uniform resource locator (URL), username, password, etc.).
These property values are organized in their individual dependent files. For example,
three property files exist (business_db_01:properties, business_db_02:properties,
and business_db_03:properties) for the table-level multidatabases business_db_01,
business_db_02, and business_db_03 to save the individual property values. Consequently,
the database business_db_01 and the connection poll unieap are mapped with the form of
Œbusiness_db_01, unieap, business_db_01:properties� (Figure 6). That is, the informa-
tion of database business_db_01 is organized in the business_db_01:properties, which
is configured with the connection poll unieap.

(3) Local and remote databases. JDAS provides two database access modes,
namely, the local database access and remote data access. Developers config-
ure the database network_db as the local database (e.g., network_db_local =
Œnetwork_db; dbcp; network_db:properties� of Figure 6). For table-level multi-
databases, only one database is configured with the local database, and the remaining
databases should be configured with the remote databases. For example, assuming that the
database business_db_01 is configured with the local database, databases business_db_02
and business_db_03 should be configured with the remote databases. In other words,
business_db_01 is the default database of the DA interface BusinessDA that can be
directly accessed. If developers want to access the remote database business_db_02, they
should use the ‘business_db_02’ as as an input parameter to access. concrete access details
can be seen Sections 4.5 and 4.6.

3.5. Data access service

In the data access layer, the data access objects implement the corresponding DAO interfaces to
execute the CRUD operations. In the business logic layer, the business logic objects invoke the
data access objects based on oriented-interface programming. However, the design earlier generates
a large number of data access and business logic objects. These objects consume more memory
resource and increase the maintenance cost as mentioned earlier. To address the problems stated

Figure 6. Example of configuration management. [Color figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

Figure 7. Data access service implemented by template method pattern. [Color figure can be viewed at
wileyonlinelibrary.com]

earlier, JDAS merges the data access and business logic layers. The core objects in JDAS are called
the DAS objects. Figure 7 shows the concrete design of the DAS objects.

First, the generic interface DAO < T > was defined to specify the common data
access methods. Note that type parameter T represents a POJP. Second, the generic abstract
class JdbcDAOSupport < D; T > was defined and it is a data access operation sup-
port class that implements the DAO < T > interface, where D represents the interface
of a database and T inherits the T in DAO < T >. JdbcDAOSupport < D; T >
is the common implementation of relational databases. Note that the concrete SQL opera-
tions for each method in the JdbcDAOSupport < D; T > are transferred to the class
JdbcDAOSupportCRUD < T >. The JdbcDAOSupport < D; T > contains many CRUD
operations (only two methods are listed for simplicity), but it is designed as an abstract class.
Hence, the JdbcDAOSupport < D; T > cannot create any instance. This design is reasonable
because D and T are unknown. The JdbcDAOSupport < D; T > class should be extended
by concrete DAS classes. For example, the DAS class ApplicationPOJOServiceBean
extends the JdbcDAOSupport < NetworkDA;ApplicationPOJO >. That
is, the ApplicationPOJOServiceBean class inherits all the CRUD methods
of the JdbcDAOSupport < NetworkDA;ApplictationPOJO >. Hence,
ApplicationPOJOServiceBean can directly operate the POJO ApplicationPOJO
of the DA interface NetworkDA without adding or modifying any methods.
Similarly, AuditPOJOServiceBean should extend the JdbcDAOSupport <
BusinessDA;AuditPOJO > class, and can directly operate the POJO AuditPOJO of the
DA interface BusinessDA. Certainly, both the ApplictationPOJOServiceBean and the
AuditPOJOServiceBean can also add new business logic methods if necessary.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

The design of the DAS object is the typical template method pattern [27], which is a behavioral
design pattern. This pattern defines the program skeleton of an algorithm in the template method.
This template method defers some steps to its subclasses and allows certain steps of the algorithm
to be redefined without changing the algorithm’s structure. The JdbcDAOSupport < D; T >

is the program (CRUD) skeleton, and the methods in CRUD are the template methods. On the one
hand, the JdbcDAOSupport < D; T > constrains the behavior of its subclasses; that is, these
subclasses presented as the data access objects. On the other hand, JdbcDAOSupport < D; T >
allows these subclasses to redefine and add certain methods; that is, these subclasses are also denoted
as the business logic objects. Hence, JdbcDAOSupport < D; T > achieves reusable DAS with
the generic and the refection of Java. Note that JDAS combines the data access and business logic
layers, but this choice does violate the principles of abstraction and separation of concerns because
these two functions still relative separated.

The save./ and saveByPoolName./ methods are used to explain the CRUD operations. The
DA interface NetworkDA is only the abstract of the database network_db, which is configured
with the local database. The ApplictationPOJOServiceBean invokes the save./ method to
saveApplictationPOJO objects directly. However, the DA interfaceBusinessDA is the abstract
of the table-level multidatabases business_db_01, business_db_02, and business_db_03.
Except for that the business_db_01 database is configured with the local database, the other
databases should invoke the saveByPoolName./ method to save AuditPOJO objects by
inputting the database name because developers can only configure a database as the local
database for the DA interface BusinessDA, and the other databases should be configured with
remote databases. Moreover, JDAS has higher development efficiency than the Spring framework
because JDAS defines only one class AuditPOJOServiceBean, whereas the Spring frame-
work needs to define three classesAuditPOJO01ServiceBean,AuditPOJO02ServiceBean,
AuditPOJO03ServiceBean to access the POJO AuditPOJO in the three databases.

3.6. Inversion of control

As the DAS objects are the core components of the JDAS framework, managing and obtaining the
DAS objects constitute a major problem. As mentioned earlier, many Java components (e.g., JSP,
Servlet, and Filter) cannot be handled by the Spring container. In other words, the dependency injec-
tion is invalid for the components. In the Web context, if developers want to obtain one Spring Bean
instance in Servlets, Filters, or JSPs, developers should determine the ServletContext in advance.
Furthermore, different web components use various methods to obtain the ServletContext .
For example, the ServletContext is obtained by the ServletConf ig:getServletContext./
method in Servlets, the F ilterConf ig:getServletContext./ method in Filters, and the
pageContext:getServletContext./ method in JSPs.

To address the problems earlier, JDAS uses the dependency lookup approach to obtain the DAS
objects in any program of the same Java platform. This approach is implemented as follows: (i) scan
all the DAS classes, which extends the JdbcDAOSupport < D; T > class; (ii) use the reflec-
tion technology to generate one XxxServiceBean instance for each XxxServiceBean class
when it is started; (iii) organize the < XxxServiceBean:class, XxxServiceBeaninstance>
in its context; (iv) use the Service:get.XxxServiceBean:class/ method to obtain the
XxxServiceBean instance. The greatest advantage of this approach is that any DAS object
defined in the program can be obtained with the unified Service:get.XxxServiceBean:class/
method in any programs. Moreover, JDAS not only supports CRUD operations, but also supports
directly SQL operations and commands for complex queries. Hence, JDAS is more convenient and
deterministic than the Spring framework in obtaining the XxxServiceBean instance.

3.7. Calling process

On the basis of the previously presented modules, developers write only a few of codes to complete
the basic functions in the software development with multidatabases. The calling process of the
example was shown in Figure 8: (i) define two DA interfaces NetworkDA and BusinessDA. (ii)

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

Figure 8. Example of calling process using JDAS. [Color figure can be viewed at wileyonlinelibrary.com]

define two POJO classesApplictationPOJO andAuditPOJO; and (iii) define two DAS classes
ApplictationPOJOSericeBean and AuditPOJOServiceBean.

Developers can call the business methods of the DAS classes in JSPs, Servlets, and Actionss,
and others. For example, the save./ method of the AuditPOJOServiceBean is called to save
the auditPOJO to the local database business_db_01. The saveByPoolName./ method of
the AuditPOJOServiceBean is called to save the POJO auditPOJO to the remote databases
business_db_02 and business_db_03, respectively.

4. EXPERIMENTS AND CASE STUDY

This study collects the experimental data of a practical multidatabases web project to analyze the
code effect. The goal of the framework is to reduce development complexity and improve develop-
ment efficiency. Thus, this study mainly evaluates the code effect. Code effect refers to the number
of codes, configuration files, and libraries, and it would affect the development complexity and effi-
ciency. This study selects the frameworks JDBC, Hibernate, MyBatis, and Spring that are free (i.e.,
open-source), relatively popular, and do not require a Java enterprise edition (JEE) for compari-
son. The project runs on JDK 1.7. 0, Windows 7 Professional, and Pentium dual-core processor
(2.0 GHZ/3.0 GB RAM).

4.1. Code impact experiments

Modern software development usually integrates IoC frameworks (e.g., Spring) and persistence
frameworks (e.g., Hibernate and MyBatis) to improve development efficiency and reduce develop-
ment complexity. JDAS itself is a framework integrated with persistence and IoC. To better reflect
the code effect of practical development process, other persistence frameworks are integrated with
the Spring framework in experiments.

Experiment 1. This experiment compares the total code lines (including the lines of Java code and
those of the configuration code) of different frameworks (e.g., Spring and JDBC, Spring and
MyBatis, Spring and Hibernate, and JDAS). All frameworks implement the business operations
of the POJO ApplicationPOJO . The configuration files include XML and property files.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

Table II. Lines of code of a single database.

Framework Lines of Java code Lines of configuration code Total lines of code

JDBC&Spring 1,440 25 1,465
MyBatis&Spring 732 712 1,444
Hibernate&Spring 656 156 812
JDAS 115 20 135

Figure 9. Total code lines of the table-level multidatabase. [Color figure can be viewed at wileyonlineli-
brary.com]

Table II shows the lines of code for different frameworks of a single database Sybase 12.5.
The combination of JDBC and Spring has the most number of Java code lines among all the
frameworks. The total code lines for MyBatis and Spring are not significantly reduced compared
with those of JDBC and Spring because the combination still requires developers to write SQL to
deal with the CRUD operations, although the SQL code is freed from the Java code for MyBatis.
JDAS has the least Java code lines and configuration codes. The total of the code lines for JDAS
is only 135, which is significantly less than the lines of all the other frameworks (i.e., only
approximately 1/10 of JDBC and Spring, 1/10 of MyBatis and Spring, and 1/5 of Hibernate
and Spring). The reason for this behavior can be explained as follows: (i) JDAS merges the
database access of the object and business logic layers into the DAS layer; (ii) The DAS objects
automatically inherit many complete CRUD methods, which can be directly invoked by many
programs.

The significant advantage of employing the JDAS framework is that it is completely appli-
cable to multidatabases. Hence, this experiment achieves at most 10 table-level multidatabases.
Figure 9 shows the total code lines for varying number of the databases. As can be seen that, with
an increase in databases, the code line number for JDAS remains very small. However, the code
line number for other frameworks almost increases linearly with the number of databases.

Experiment 2. Merely considering the number of the codes does not fully reflect the size of the
application. In some cases, especially in hardware-constrained environments, the size of exe-
cutable codes (i.e., byte codes, libraries, etc.) is not a negligible problem because the library size
in bytes affects the system’s startup and memory’s usage. Hence, this experiment compares the
size in bytes (including the size in bytes of the business logic classes, configuration of files, core
libraries, and external libraries) of different frameworks (Spring and JDBC, Spring and MyBatis,
Spring and Hibernate, and JDAS).

Table III shows the size in bytes of a single database. As observed, the size in bytes of the business
classes for JDAS is significantly less than that of other frameworks (i.e., only approximately 1/10
of JDBC and Spring, 1/6 of MyBatis and Spring, and 1/5 of Hibernate and Spring). Except for the
database driver file and library files, JDBC and JDAS do not require other third-party libraries. The
core library file of JDAS is only 300 KB, which is significantly less than that of Hibernate and
MyBatis.

Figure 10 indicates the total size in bytes for varying number of databases. As can be seen that,
with an increase in databases, the total size in bytes for JDAS is relative stable, whereas the total size

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

Table III. Size in bytes of a single database.

Framework Business classes Configuration files Required libraries Core files

JDBC&Spring 20,900 100 0 50
MyBatis&Spring 13,300 11,800 420 620
Hibernate&Spring 10,100 5,400 4,400 4,400
JDAS 2,000 90 0 300

Figure 10. Total size in bytes of table-level multidatabase. [Color figure can be viewed at wileyonlineli-
brary.com]

in bytes for the other frameworks almost increases linearly with the number of databases. Hence,
JDAS has higher development efficiency than the other popular frameworks in developing table-
level multidatabases.

4.2. Case study

In order to provide more effective and convenient services to enterprizes and citizens, e-governments
have grown rapidly in the past years. E-government software systems are large-scale multidatabases
systems that integrate, exchange, and share massive data among different databases. We demon-
strated the applicability and the possible benefits of our framework with a case study derived from
a real sub-project called online business application and approval (OBAA) of the e-government
project deployed in Java environments and developed by JDAS.

In OBAA, users submit their applications from the Internet to the Intranet. Then staffs in the
Intranet approve the applications and make the final decision return to the user in the Internet.
The OBAA sub-project involves multidatabases because the external part (for users) and inter-
nal system (for staffs) are relatively independent due to security considerations, but they should
share partial data because of the interaction. As shown in Figure 11, the sub-project involves three
DAs: NetworkDA (network_db), BusinessDA (business_db_01,..., business_db_02,...,
business_db_10), and Workf lowDA (workf low_db).

This main details and process of the OBAA sub-project are as follows:

(1) A user fills the POJO ApplicationPOJO information and persists it into the database
network_db in the external system.

(2) A staff receives the POJO ApplicationPOJO from network_db and modifies it in the
internal system.

(3) If the ApplicationPOJO is eligible after a series of approvals, then it is converted to the
AuditPOJO and stored into one of the databases (business_db_01, business_db_02,...,
business_db_10) of the DA interface BusinessDA according to the region of the
ApplicationPOJO that it belongs to.

(4) If the ApplicationPOJO is not eligible, it is sent back to the users. Moreover, the
database workf low_db records the audit information (workflow processing) of the
ApplicationPOJO , which can be access by both users and staffs.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

Figure 11. Case study of a industrial practical multidatabases web project. [Color figure can be viewed at
wileyonlinelibrary.com]

Note that the connection pool DBCP is used for the DA interface NetworkDA in both the exter-
nal and internal systems. DBCP is also used for the databaseworkf low_db in the external systems.
The connection pool UniEAP is used for the databases business_db_01, business_db_02,...,
business_db_10 and the database workf low_db in the internal system. The reason is that the
internal system was first developed with the UniEAP framework. In other words, the internal sys-
tem is further developed based on the UniEAP framework, whereas the external system is a newly
developed system with JDAS.

Many design problems encountered in this project can be solved easily by JDAS, which simplifies
the design and development of the project. The main completed work and design methods of JDAS
are as follows:

(1) DA. 12 databases exist in the internal system. JDAS defines DA interfaces NetworkDA,
BusinessDA, and Workf lowDA. Databases business_db_01, business_db_02,..., and
business_db_10 can be accessed by configuring the local and the remote based.

(2) ORM. Some tables exist in the primary and foreign keys association, whereas some tables do
not exist such association; meanwhile, other some tables use the compound keys. For con-
sistency, JDAS does not consider the association and uses an intuitive compound primary
key mapping to simplify the design and reduce the risk. Moreover, a timestamp attribute was
added for each table to facility data exchange without affecting the stable runs of the previous
functions.

(3) Connection pool integration. The internal system was developed by earlier developers with
the UniEAP framework and pool. JDAS can directly manage the UniEAP pool, such that the
compatibility of the system can be met and the risk of further development can be minimized.

(4) DAS. DAS can complete many CRUD operations for multidatabases using the minimum
codes. Moreover, DAS can be directly invoked in all the original programs developed by ear-
lier developers (e.g., JSP, Servlet, Listener, and any Java code). In other words, JDAS can be
easily integrated into any other framework without affecting the original functions.

5. CONCLUSION

This study develops an efficient software development framework JDAS for software systems with
multidatabases, such as services computing and cloud computing. The JDAS framework is designed
to and addresses many practical problems in the software development with multidatabases by
presenting and implementing many novel modules. Results reveal that the JDAS framework effec-
tively reduces development complexity and improves the development efficiency over the popular
frameworks in software development with multidatabases. We applied this framework to an e-
governmental case study, and showed it can effectively simplify the design and development of the
project. At present, JDAS is mainly for relational multidatabases. In the future, we will extend JDAS
to including heterogeneous no-SQL multidatabases. JDAS will also include the models transac-

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe



G. XIE ET AL.

tion management of multidatabases, cache management, security management, and aspect-oriented
programming (AOP).

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the anonymous reviewers for their constructive
comments which have helped to improve the quality of the paper. This work was partially supported
by the National Key Research and Development Plan of China under Grant No. 2016YFB0200405
and 2012AA01A301-01, the Natural Science Foundation of China under Grant Nos. 61672217,
61173036, 61432005, 61370095, 61300037, 61370097, 61502405, and 61502162, the China Post-
doctoral Science Foundation under Grant No. 2016M592422, the Priority Academic Program
Development of Jiangsu Higer Education Institutions (PAPD), and the Jiangsu Collaborative
Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET).

REFERENCES

1. Reyes-Delgado PY, Mora M, Duran-Limon HA, Rodríguez-martínez LC, O’Connor RV, Mendoza-gonzalez R. The
strengths and weaknesses of software architecture design in the rup, msf, mbase and rup-soa methodologies: A
conceptual review. Computer Standards & Interfaces 2016; 47:24–41.

2. Zhu Y, Huang Z, Zhou H. Modeling and verification of web services composition based on model transformation.
Software: Practice and Experience 2016. DOI:10.1002/spe.2434.

3. Quinton C, Romero D, Duchien L. Saloon: a platform for selecting and configuring cloud environments. Software:
Practice and Experience 2016; 46(1):55–78.

4. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K. A privacy-preserving and copy-deterrence content-based image
retrieval scheme in cloud computing. IEEE Transactions on Information Forensics and Security 2016; 11(11):
2594–2608.

5. Dastjerdi AV, Garg SK, Rana OF, Buyya R. Cloudpick: a framework for qos-aware and ontology-based service
deployment across clouds. Software: Practice and Experience 2014; 45(2):197–231.

6. Zeng L, Xu S, Wang Y, Kent KB, Bremner D, Xu C. Toward cost-effective replica placements in cloud storage
systems with qos-awareness. Software: Practice and Experience 2016. DOI: 10.1002/spe.2441.

7. Xia Z, Wang X, Sun X, Wang Q. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud
data. IEEE Transactions on Parallel and Distributed Systems 2015; 27(2):340–352.

8. Fu Z, Sun X, Liu Q, Zhou L, Shu J. Achieving efficient cloud search services: Multi-keyword ranked search over
encrypted cloud data supporting parallel computing. IEICE Transactions on Communications 2015; 98(1):190–200.

9. Ren Y, Shen J, Wang J, Han J, Lee S. Mutual verifiable provable data auditing in public cloud storage. Journal of
Internet Technology 2015; 16(2):317–323.

10. Rui HRP, Ortin F. Modularizing application and database evolution c an aspect-oriented framework for orthogonal
persistence. Software: Practice and Experience 2016. DOI:10.1002/spe.2415.

11. Wu H, Li DX. Integration of distributed enterprise applications: a survey. IEEE Transactions on Industrial
Informatics 2014; 10(1):35–42.

12. Bernstein PA, Haas LM. Information integration in the enterprise. Communications of the ACM 2008; 51(9):72–79.
13. Johnson R, Hoeller J, Arendsen A, Risberg T, Kopylenko D. Professional java development with the spring

framework. APC, Paris, 2007:195–237.
14. Bauer C, King G. Hibernate in action (in action series). In Guide to Web Development with Java. Manning

Publications Co.: Greenwich, London, 2004; 137–184.
15. Hohenstein U, Jaeger MC, Bluemel M. Improving connection pooling persistence systems. International Conference

on Intensive Applications and Services, Intensive 2009, Valencia, Spain, 2009; 71–77.
16. Balland E, Moreau PE, Reilles A. Effective strategic programming for java developers. Software: Practice and

Experience 2014; 44(2):129C162.
17. Portillo-Dominguez AO, Perry P, Magoni D, Wang M, Murphy J. Trini: an adaptive load balancing strategy based on

garbage collection for clustered java systems. Software: Practice and Experience 2016; 46(12):1705–1733.
18. Maenhaut PJ, Moens H, Ongenae V, Turck FD. Migrating legacy software to the cloud: approach and verification by

means of two medical software use cases. Software: Practice and Experience 2016; 46(1):31C54.
19. Torres A, Galante R, Pimenta MS. Towards a uml profile for model-driven object-relational mapping. in Xxiii

Brazilian Symposium on Software Engineering, Fortaleza, 2009; 94–103.
20. Linskey PC, Prud’hommeaux M. An in-depth look at the architecture of an object/relational mapper. Proceedings of

the 2007 ACM SIGMOD International Conference on Management of Data, ACM, 2007; 889–894.
21. Fowler M. Inversion of control containers and the dependency injection pattern: Beijing, 2004. Available at: http://

martinfowler.com/articles/injection.html, 2004 [last accessed 23 January 2004].
22. Arthur J, Azadegan S. Spring framework for rapid open source j2ee web application development: a case study.

International Conference on Software Engineering, Artificial Intelligence, NETWORKING and Parallel/distributed
Computing, 2005 and First Acis International Workshop on Self-Assembling Wireless Networks, Snpd/sawn, Towson,
2005; 90–95.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe

http://martinfowler. com/articles/injection. html 
http://martinfowler. com/articles/injection. html 


JDAS: A SOFTWARE DEVELOPMENT FRAMEWORK FOR MULTIDATABASES

23. Cao Y, Wang L, Xu H. Research on business platform software product development process based on knowl-
edge integration–neusoft business platform software product unieap for example. 2010 International Conference on
Management and Service Science, MASS 2010, IEEE, Wuhan, 2010; 1–4.

24. Basanta-Val P, Garcia-Valls M, Estevez-Ayres I. A dual programming model for distributed real-time java. IEEE
Transactions on Industrial Informatics 2011; 7(4):750–758.

25. Stencel K, Wegrzynowicz P. Detection of diverse design pattern variants. 2008 15th Asia-Pacific Software
Engineering Conference, IEEE, Beijing, 2008; 25–32.

26. Ellis B, Stylos J, Myers B. The factory pattern in api design: A usability evaluation. Proceedings of the 29th
International Conference on Software Engineering, IEEE Computer Society, 2007; 302–312.

27. Gamma E. Design Patterns: Elements of Reusable Object-Oriented Software. Pearson Education: India, 1995.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe


	JDAS: a software development framework for multidatabases
	Summary
	Introduction
	Background
	Motivation
	Our contributions

	Related Frameworks
	Data access layer frameworks
	Business logic layer frameworks

	JDAS Framework
	Database abstraction
	Object relational mapping
	Connection pools management
	Configuration management
	Data access service
	Inversion of control
	Calling process

	Experiments and Case Study
	Code impact experiments
	Case study

	Conclusion
	Acknowledgements
	REFERENCES


