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a b s t r a c t 

As multi-core processors continue to scale, more and more multiple distributed applications with 

precedence-constrained tasks simultaneously and widely exist in multi-functional embedded systems. 

Scheduling multiple DAGs-based applications on heterogeneous multi-core processors faces conflicting 

high-performance and real-time requirements. This study presents a multiple DAGs-based applications 

scheduling optimization with respect to high performance and timing constraint. We first present the 

fairness and the whole priority scheduling algorithms from high performance and timing constraint per- 

spectives, respectively. Thereafter, we mix these two algorithms to present the partial priority scheduling 

algorithm to meet the deadlines of more high-priority applications and reduce the overall makespan of 

the system. The partial priority scheduling is implemented by preferentially scheduling the partial tasks 

of high-priority applications, and then fairly scheduling their remaining tasks with all the tasks of low- 

priority applications. Both example and experimental evaluation demonstrate the significant optimization 

of the partial priority scheduling algorithm. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

Multi-core processors are increasingly used in the implementa-

ion of embedded control systems as well as many other compute-

ntensive application. To satisfy the demand of multi-functional

mbedded systems such as real-time image recognition, automo-

ive control systems, and human body interaction plus gesture con-

rol, heterogeneous processors are needed [1–4] . A heterogeneous

ulti-core processor integrates different types of processors in the

ame chip. As multi-core processors continue to scale, increasing

ultiple distributed applications (also called functions or dataflows

n some studies) with precedence-constrained tasks simultane-

usly widely exist in multi-functional embedded systems [5] . To

ake full use of heterogeneous multi-cores processors, schedul-

ng is always an important topic. Traditional real-time scheduling

n multi-core processors are usually based on only tasks models
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1–3] . That is, these works only consider the scheduling from a

task level” perspective. The real-time community has been re-

ently active in trying to provide new models and update clas-

ic scheduling theory to such relatively new platforms and appli-

ations [6] . Different parallel applications models have been pro-

osed for multi-core processors, e.g., the fork/join model [7] and

he synchronous parallel model [4] . A model called directed acyclic

raph (DAG) that reflects the complexity and parallelization of such

pplications was widely used [8–11] . The nodes represent the tasks

nd the edges represent the communication messages between the

asks in DAG [8,9] . Multiple DAGs represent multiple applications

hat run on the same multi-core platform [5] . 

.2. Motivation 

There is an increasing interest for multi-core processors requir-

ng both high-performance and real-time requirements [6] . How-

ver, these two requirements are in conflict with each other in

ulti-functional real-time scheduling. 

Minimizing the overall scheduling length (i.e., makespan) of the

ystem is the major requirement from a high performance perspec-

ive [12,13] , whereas meeting the deadlines of applications is one

f the most important safe requirements from a timing constraint
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perspective [14] . Generally, fairness polices (e.g., slowdown [12] ,

round-robin [15] , etc.) aim to reduce the overall makespan of the

system or individual makespans of applications. However, different

applications have varied deadlines. The system cannot meet the

deadlines of all applications, particularly in resource-constrained

embedded environments. Many applications miss their deadlines

and thereby their timing requirements cannot be satisfied in this

case. 

Each application has a priority property, and a high-priority ap-

plication means it has a highly important and strict timing con-

straint on the deadline. Thus, missing the deadline of such appli-

cation may cause severe safe problems. Scheduling applications in

decreasing order of priorities can meet the timing constraints of a

few high-priority applications, but many other applications would

still miss their deadlines. The system would even experience a sub-

stantially long makespan because fairness is completely ignored in

the aforementioned situation. 

In summary, the two requirements are in conflict with each

other, and major solutions that consider different requirements

are required. New algorithms for multiple DAGs-based applications

scheduling should be designed to optimize high performance and

timing constraint in resource-constrained embedded systems. The

object of this study is devoted to the real-time scheduling of mul-

tiple DAGs-based applications on heterogeneous multi-core proces-

sors. 

1.3. Our contributions 

The main contributions of this study are as follows: 

(1) We present the static multiple DAGs-based applications

scheduling algorithm with round-robin fairness policy to

minimize the overall makespan of the system from a high

performance perspective. 

(2) We present the static multiple DAGs-based applications

scheduling algorithm with the whole priority policy to meet

the deadlines of a few high-priority applications. 

(3) We mix the fairness and whole priority policies and present

the static multiple DAGs-based applications scheduling al-

gorithm with the partial priority policy. This policy enable

more applications to meet their deadlines from a timing

constraint perspective while reducing the overall makespan

of the system from a high performance perspective. 

(4) We evaluate the different scheduling polices (e.g., fairness,

whole priority, and partial priority polices) through several

experiments to demonstrate the significant optimization of

the proposed partial priority policy. 

The rest of this paper is organized as follows. Section 2

reviews the related research. Section 3 presents the multiple

applications model. Section 4 proposes the fairness scheduling

algorithm. Section 5 proposes the whole priority scheduling algo-

rithm. Section 6 proposes the partial priority scheduling algorithm.

Section 7 verifies the performance of all our proposed algorithms.

Section 8 concludes this paper. 

2. Related works 

List scheduling is one of the well-known methods of DAG-based

application scheduling [8,9] . List scheduling includes two phases:

the first phase orders tasks according to the descending order of

priorities (task prioritizing), whereas the second phase allocates

each task to a proper core (task allocation) [8] . Scheduling tasks

of a DAG-based application for rapid execution is a well-known

nondeterministic polynomial (NP)-hard optimization problem, and

many heuristic list algorithms have been proposed to generate
ear-optimal solutions based on global non-preemptive scheduling

olicy [8,9,16,17] . Meanwhile, the issue of static (i.e., all appli-

ations are triggered by the same time) multiple DAGs-based

pplications scheduling were also conducted [12,18,19] . Merging

ultiple DAGs-based applications into one application for schedul-

ng [18,19] is a simple but not effective method to minimize the

verall makespan, because they do not considers the fairness

mong multiple DAGs-based application. Zhao et al. [12] first

dentified the fairness issue in multiple DAGs-based applications

cheduling and proposed a fairness scheduling algorithm called

airness with a slowdown-driven strategy that ensures the fairness

f different applications. Online workflow management (OWM)

13] and fairness dynamic workflow scheduling (FDWS) [20] are re-

ated dynamic (i.e., all applications arrive at different time instants)

ultiple DAGs-based applications scheduling approaches. The main

bjective of the preceding investigations of multiple DAGs-based

pplications scheduling merely reduces the overall makespan of

he system [12,13] or individual makespans of applications [12,20] .

Some related scheduling algorithms are concerned about DAG-

ased application scheduling with deadline constraints [10,21,22] .

owever, these approaches are merely for single DAG-based ap-

lication, and not suitable for the issues of multiple DAGs-based

pplications. Recently, the multiple DAGs-based parallel applica-

ions scheduling considering deadline were studied. In [14] , Wang

t al. presented the algorithm of considering maximize through-

ut of multi-DAGs under deadline constraint to improve the ra-

ios of applications which can be accomplished within deadlines by

imely abandoning the applications exceed their deadlines. How-

ver, some high-criticality applications cannot be abandoned in

afety-critical systems such that the algorithm cannot be applied

o such systems. Hu et al. investigated the scheduling of periodic

pplications on time-triggered systems [23] . The objective is to

chedule all tasks in all instances of all applications in one hyper

eriod to guarantee that all instances of all applications can meet

heir respective deadlines. However, these works merely focus on

eeting the deadlines of all applications and do not include the

ystem performance into consideration. In practical heterogenous

ystems, the deadlines of all applications cannot be met, particu-

arly in resource-constrained environments. Moreover, different ap-

lications shouldn’t completely fair and they should have different

riorities according to their importance to systems. For example, at

east three types of applications exist in automotive embedded sys-

ems according to the classification of safety, namely, active safety,

assive safety, and non safety applications. Missing the deadline of

igh-priority (active safety) applications could cause severe safety

roblems. 

In summarizing the above research of multiple DAGs-based ap-

lications scheduling, we find that there are two different ob-

ectives and no paper considers them together: (1) one objective

ims to reduces the overall makespan of the system or individ-

al makespans of applications, and disregard the deadline require-

ents of applications; (2) the other objective is to meets the dead-

ines of applications, and ignores the performance requirement of

he system. To solve the above problem, the objective of this study

s to enable more high-priority applications to meet their dead-

ines from a timing constraint perspective while reducing the over-

ll makespan of the system from a high performance perspective. 

. Modeling 

.1. System model 

We use P = { p 1 , p 2 , ..., p | P| } to represent a set of heterogeneous

ulti-cores that are completely inter-connected. All communi-

ations can be performed concurrently. | P | represents the size

f set P . This study uses | X | to denote the size of any set X .
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Fig. 1. Example of three applications with precedence-constrained tasks of hetero- 

geneous multi-core processors. 
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Table 1 

Computation time matrixes of the example in Fig. 1 . 

(a) Computation time matrix of G 1 

Tasks G 1 . n 1 G 1 . n 2 G 1 . n 3 G 1 . n 4 G 1 . n 5 G 1 . n 6 

p 1 12 9 7 13 18 15 

p 2 8 15 12 15 10 10 

p 3 9 11 16 18 20 8 

rank u 77 58 55 34 33 11 

(b) Computation time matrix of G 2 

Tasks G 2 . n 1 G 2 . n 2 G 2 . n 3 G 2 . n 4 G 2 . n 5 

p 1 4 9 18 21 7 

p 2 5 10 17 15 6 

p 3 6 11 16 19 5 

rank u 42 20 31 35 6 

(c) Computation time matrix of G 3 

Tasks G 3 . n 1 G 3 . n 2 G 3 . n 3 G 3 . n 4 G 3 . n 5 G 3 . n 6 

p 1 8 14 9 18 18 5 

p 2 11 13 12 15 16 10 

p 3 19 8 16 14 20 7 

rank u 110 91 63 31 39 8 
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he preceding assumption is equal to many famous classical

lgorithms (i.e., HEFT [9] , critical path on a processor [9] , and

eterogenous selection value [8] ) on heterogenous systems. We

mploy P L = { pr ior ity 1 , pr ior ity 2 , ..., pr ior ity | PL | } to represent a set

f priorities. Each priority is denoted with a positive integer. The

alue 1 represents the lowest priority; the larger the value, the

igher the priority. 

A parallel application is represented by DAG G = ( N, E, C, W, pri-

rity, lowerbound, deadline, makespan ). N represents a set of | N |

odes and each node n i ∈ N represents a task that has different

omputation times on various cores. E is a set of communication

dges and each edge e i, j ∈ E represents the transmitted message

rom task n i to n j . Accordingly, c i, j ∈ C represents the communi-

ation time of e i, j only when n i and n j are assigned to different

ores. The communication time is 0 if n i and n j are assigned to

he same core. pred ( n i ) represents the set of n i ’s immediate pre-

ecessor tasks. A task is triggered to execute only if all its pre-

ecessor tasks have been executed. succ ( n i ) represents the set of

 i ’s immediate successor tasks. The task that has no predecessor

ask is called n entry , whereas the task that has no successor task

s called n exit . W is a | N | × | P | matrix, in which w i, k denotes the

omputation time to run task n i on core p k . priority ∈ PL is the

nique identifier and represents the priority of the application. If

wo applications G m 

and G n satisfy G m 

.priority > G n .priority , then

 m 

has a higher priority than G n . The lowerbound means the min-

mum makespan of an application when all cores are monopo-

ized by the application using a standard single DAG-based appli-

ation scheduling algorithm (e.g., HEFT [9] ). The deadline means

he timing constraint of the application; this timing constraint

hould be larger than or equal to the lowerbound . Thus, the dead-

ine should comply with the basic condition deadline ≥ lowerbound .

dditional information on lowerbound and deadline is provided in

ection 4.1 . The system consists of multiple DAGs-based applica-

ions and is represented by GS = {{ G 1 , G 2 , G 3 , ..., G | GS| } , makespan } .
he makespan represents the overall makespan of GS (i.e., the max-

mum makespan of all applications) and reflects the performance

f the system. Similar to all the works reviewed in Section 2 , this

tudy also considers the global non-preemptive scheduling policy. 

.2. Motivating example 

Fig. 1 shows an example with three applications of G 1 , G 2 , and

 3 . The priorities of G 1 , G 2 , and G 3 are 1, 2, and 3, respectively,

here G 1 and G 3 have the highest and lowest priorities, respec-

ively. Table 1 shows the computation times for G 1 , G 2 , and G 3 of

ig. 1 . The example shows six, five, and six tasks for G 1 , G 2 , and G 3 ,

espectively. This example assumes that three cores exist. Although

he example is simple, it involves three cores, three application,
nd three priorities. Hence, this example can reflect the charac-

eristics of heterogenous multi-core processors executing multiple

AGs-based applications with different priorities. The weight of 8

f the edge between tasks G 1 . n 1 and G 1 . n 2 in Fig. 1 (a) represents

he communication time when G 1 . n 1 and G 1 . n 2 are not assigned

n the same core. The weight of 12 of G 1 . n 1 and p 1 in Table 1 (a)

epresents the computation time denoted by G 1 . w 1, 1 = 12. 

. Fairness scheduling 

.1. Lower-bound and deadline 

HEFT is the well-known precedence-constrained task schedul-

ng based on the DAG model to reduce makespan to a minimum

ombined with low complexity and high performance in heteroge-

ous systems [9] . Two important contributions were proposed for

he two phases of HEFT. 

First, HEFT uses the upward rank value ( rank u ) of a task given

y Eq. (1) as the common task priority standard, where the

asks are arranged according to the decreasing order of rank u .

able 1 shows the upward rank values of all tasks shown in

ig. 1 using Eq. (1) 

ank u (n i ) = w i + max 
n j ∈ succ(n i ) 

{ c i, j + rank u (n j ) } . (1)

Second, the attributes EST ( n j , p k ) and EFT ( n j , p k ) represent the

arliest start time (EST) and the earliest finish time (EFT), respec-

ively, of task n j on core p k . EFT ( n j , p k ) is considered the common

ask allocation criteria, because it can meet the local optimal of

ach precedence-constrained task using the greedy policy. Both are

alculated by 
 

 

 

EST (n entry , p k ) = 0 ;
EST (n j , p k ) = max 

(
a v ail[ p k ] , max 

n i ∈ pred(n j ) 
{ AF T (n 

i 
) + c 

′ 
i, j 

} 
)

; (2) 

nd 

F T (n j , p k ) = EST (n j , p k ) + w j,k , (3)

here avail [ p k ] is the earliest available time when core p k is ready

or task execution and c 
′ 
i, j 

represents the communication time. If

 i and n j are allocated to the same core, then c 
′ 
i, j 

= 0 ; otherwise,

 

′ 
i, j 

= c i, j . AFT ( n i ) is the actual finish time of task n i . n j is allocated

o the core with minimum EFT using an insertion scheduling pol-

cy. The insertion-based strategy is explained bellow: if n j can be
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Table 2 

Properties of tasks and applications in Fig. 1 . 

Application G 1 G 2 G 3 

Task priority G 1 . n 1 , G 1 . n 2 , G 1 . n 3 , 

G 1 . n 4 , G 1 . n 5 , G 1 . n 6 

G 2 . n 1 , G 2 . n 4 , G 2 . n 3 , 

G 2 . n 2 , G 2 . n 5 

G 3 . n 1 , G 3 . n 2 , G 3 . n 3 , 

G 3 . n 5 , G 3 . n 4 , G 3 . n 6 
priority 1 2 3 

lowerbound 59 36 54 

deadline 69 41 64 
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Fig. 2. Scheduling framework of heterogenous multi-core processors. 
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inserted into one of the slacks of cores, then it is inserted into the

slack with the minimum EFT. 

Lower-bound means the minimum makespan of an application

when all cores are monopolized by the application using a stan-

dard single DAG-based application scheduling algorithm as men-

tioned earlier. HEFT is a well-known algorithm with low complex-

ity and high performance that should be selected as the standard

algorithm to assess parallel application. HEFT is used as the stan-

dard algorithm to explain the proposed algorithms in this study.

Other algorithms can also be easily selected and employed for a

simple replacement. The lower-bound of the application G m 

is the

actual finish time of n exit , namely 

G m 

.lowerbound = AF T (G m 

.n exit ) , (4)

where G m 

.n exit represents the exit task of G m 

. The user specifies

a deadline for each application based on the value of the lower-

bound after it is obtained. 

Table 2 lists the properties for each application of the ex-

ample in Fig. 1 . The task priority of each application can

be obtained according to the descending order of rank u (n i ) ,

and then acquire the lower-bounds of the three application:

G 1 .lowerbound = 59 , G 2 .lowerbound = 36 , and G 3 .lowerbound = 54 ,

respectively. The deadline of the application is specificated under

the condition G m 

.deadline ≥ G m 

.lowerbound . Finally, the deadlines

of the three applications are G 1 .d ead line = 69 , G 2 .d ead line = 41 ,

and G 3 .d ead line = 64 , respectively. 

4.2. Scheduling framework 

Fairness policies are effective approaches to achieve an im-

proved performance. This subsection presents a round-robin fair-

ness policies for multiple DAGs-based applications scheduling. 

First, we present the scheduling framework for multiple DAGs-

based applications on heterogeneous multi-core processors ( Fig. 2 ).

The scheduling framework contains three priority queues,

namely, task priority, common ready, and task allocation queues. 

(1) The task priority queue ( task _ pr ior ity _ queue ) of each appli-

cation is where tasks are ordered according to the decreas-

ing rank u (n i ) . 

(2) The common ready queue ( common _ ready _ queue ) of the sys-

tem is for storing ready tasks (one ready task with the

maximum rank u (n i ) is selected from each application) and

where the tasks are also ordered according to the decreas-

ing rank u (n i ) . 

(3) The task allocation queue ( task _ al l ocation _ queue ) of each

core is for storing allocated tasks. 

Second, each step (see Fig. 2 ) of the proposed round-robin fair-

ness policy in this paper is described as follows: 

tep (1) Task priority: The tasks of each application are putted into

corresponding task priority queue task _ pr ior ity _ queue ac-

cording to the decreasing order of rank u (n i ) . 

tep (2) Task ready with round-robin fairness policy: ready tasks

with the maximum rank u (n i ) are selected from appli-

cation, and are putted into the common ready queue
common _ ready _ queue according to the decreasing order of

rank u (n i ) . 

tep (3) Task allocation with round-robin fairness policy:

tasks with the maximum rank u (n i ) is selected from

common _ ready _ queue, and are putted into the task al-

location queue task _ al l ocation _ queue of the core with

minimum EFT ( n i ) using the insertion scheduling policy. 

tep (4) Task execution: Tasks are executed according to the cor-

responding cores after all tasks are assigned to the task

allocation queues. 

.3. The F_MHEFT algorithm 

We propose a scheduling algorithm called fairness on multiple

EFT (F_MHEFT) for parallel applications and describe the steps of

he algorithm in Algorithm 1 . 

The time complexity of the F_MHEFT algorithm is analyzed

s follows: Scheduling all applications must traverse all appli-

ations that can be completed in O(| GS |) time. Scheduling all

asks of an application can be completed in O( N max ) time, where

 max = max (| G 1 . N |, | G 2 . N |, … ,| G | GS | . N |). Computing the EFT values of

ll tasks can be done in O( N max × | P | ) time. Thus, the complexity

f the F_MHEFT algorithm is O( | GS| × N 

2 
max × | P | ). 
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Fig. 3. Scheduling result of the example in Fig. 1 using F_MHEFT. 

Algorithm 1 F_MHEFT algorithm 

Input: P = { p 1 , p 2 , ..., p | P| } , GS = { G 1 , G 2 , ..., G | GS| } , and all types of 

queues. 

Output: { G 1 .makespan, G 2 .makespan, ..., G | GS| .makespan } , 
GS.makespan 

1: Calculate rank u (n i ) of each task; 

2: Put all tasks into the task priority queues of applications ac- 

cording to the descending order of rank u (n i ) ; 

3: N max = max (| GS.G 1 .N| , | GS.G 2 .N| , ..., , | GS.G | GS| .N| ) ; 
4: while (N max > 0) do 

5: for (m = 1 ; m < = | GS|; m + +) do 

6: n i = task _ pr ior it y _ queue (G m 

) .out () ; 

7: common _ ready _ queue.put(n i ) ; 

8: end for 

9: while (! common _ ready _ queue.empty ()) do 

10: n i = common _ ready _ queue.out() ; 

11: Assign n i to task _ al l ocation _ queue (p k ) of the core p k with 

the minimum EFT using the insertion-based scheduling 

policy; 

12: end while 

13: N max −−; 

14: end while 

Table 3 

Task allocation step of the ex- 

ample in Fig. 1 using F_MHEFT. 

Steps Task allocation 

1 G 3 . n 1 , G 1 . n 1 , G 2 . n 1 
2 G 3 . n 2 , G 1 . n 2 , G 2 . n 4 
3 G 3 . n 3 , G 1 . n 3 , G 2 . n 3 
4 G 3 . n 5 , G 1 . n 4 , G 2 . n 2 
5 G 1 . n 5 , G 3 . n 4 , G 2 . n 5 
6 G 1 . n 6 , G 3 . n 6 
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Fig. 3 shows the scheduling process of the example in Fig. 1 us-

ng F_MHEFT. Accordingly, Table 3 shows the steps of the task allo-

ation, where each step is a round-robin fairness for all application.

he overall makespan of the system is 73. However, all applications

iss their deadlines ( Fig. 3 ). 

. Whole priority scheduling 

The example using the F_MHEFT algorithm demonstrated that

airness scheduling is prone to minimize the overall makespan

f the system and ignores the timing constraints of applications.

issing the deadlines of low-priority applications may cause no

afe problem; however, severe safe problems will occur once the

eadlines of high-priority applications are missed. 
.1. The WP_MHEFT algorithm 

We propose a scheduling algorithm called whole priority

n multiple HEFT (WP_MHEFT) for parallel applications with

ifferent priorities. The core idea of WP_MHEFT is preferen-

ially scheduling high-priority applications by sacrificing the fair

cheduling opportunity of low-priority application. S queue called

pplication _ pr ior ity _ queue is introduced for the priority ordering of

pplication. We describe the steps of this queue in Algorithm 2 . 

lgorithm 2 WP_MHEFT algorithm 

Input: P = { p 1 , p 2 , ..., p | P| } , GS = { G 1 , G 2 , ..., G | GS| } , and all types of

queues 

Output: { G 1 .makespan, G 2 .makespan, ..., G GS .makespan } , 
GS.makespan 

1: Calculate rank u (n i ) of each task; 

2: Put all tasks into the task priority queues of applications ac-

cording to the descending order of rank u (n i ) ; 

3: Put all applications into the application _ pr ior ity _ queue accord-

ing to the descending order of pr ior ity (G m 

) ; 

4: while (! application _ pr ior it y _ queue.empt y ()) do 

5: G m 

= application _ pr ior it y _ queue (GS) .out () ; 

6: while (! task _ pr ior it y _ queue (G m 

) .empt y ()) do 

7: n i = task _ pr ior it y _ queue (G m 

) .out () ; 

8: Assign n i to task _ al l ocation _ queue (p k ) of the core p k with

the minimum EFT using the insertion-based scheduling

policy; 

9: end while 

10: end while 

The time complexity of the WP_MHEFT algorithm is analyzed

s follows. Scheduling all applications must traverse all application,

hich can be completed in O(| GS |) time. Scheduling all tasks of

n application can be completed in O( N max ) time. Computing the

FT values of all tasks can be done in O( N max × | P | ) time. Thus,

he time complexity of the WP_MHEFT algorithm is also O( | GS| ×
 

2 
max × | P | ). 

.2. Example of the WP_MHEFT algorithm 

Fig. 4 shows the scheduling result of the example in Fig. 1 using

P_MHEFT. Table 4 shows the steps of task allocation. Figs. 3 and

 show that the overall makespan of the system are 73 and 100 us-

ng F_MHEFT and WP_MHEFT, respectively. F_MHEFT performs bet-

er than WP_MHEFT from the high performance perspective. How-

ver, all applications miss their deadlines using F_MHEFT ( Fig. 3 ),

hereas G 2 can meet its timing constraint using WP_MHEFT

 Fig. 4 ). 
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Fig. 4. Scheduling result of the example in Fig. 1 using WP_MHEFT. 

Table 4 

Task allocation step of the example in Fig. 1 using 

WP_MHEFT. 

step task allocation 

1 G 1 . n 1 , G 1 . n 2 , G 1 . n 3 , G 1 . n 4 , G 1 . n 5 , G 1 . n 6 
2 G 2 . n 1 , G 2 . n 4 , G 2 . n 3 , G 2 . n 2 , G 2 . n 5 
3 G 3 . n 1 , G 3 . n 2 , G 3 . n 3 , G 3 . n 5 , G 3 . n 4 , G 3 . n 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3 PP_MHEFT Algorithm 

Input: P = { p 1 , p 2 , ..., p | P| } , GS = { G 1 , G 2 , ..., G | GS| } , and all types of 

queues 

Output: { G 1 .makespan, G 2 .makespan, ..., G | GS| .makespan } , 
GS.makespan 

1: Calculate rank u (n i ) of each task; 

2: Put all tasks into the task priority queues of applications ac- 

cording to the descending order of rank u (n i ) ; 

3: Put all applications into the application _ pr ior ity _ queue accord- 

ing to the descending order of pr ior ity (G m 

) ; 

4: while (! application _ pr itor it y _ queue.empt y ()) do 

5: G m 

= application _ pr ior it y _ queue (GS) .out () ; 

6: Obtain the applications the priorities of which are less than 

or equal to G m 

and put them to the low-priority application 

set low _ applicat ion _ set ; 

7: Probe to fairly schedule G m 

and all the applications in 

low _ application _ set together using the F_MHEFT algorithm; 

8: while (G m 

.makespan > G m 

.d ead line ) do 

9: Cancel the previous allocation of the F_MHEFT algorithm; 

10: if (! task _ pr ior it y _ queue (G m 

) .empt y ()) then 

11: n i = task _ pr ior it y _ queue (G m 

) .out () ; 

12: Allocate n i to task _ al l ocation _ queue (p k ) of the core 

p k with the minimum EFT using the insertion-based 

scheduling policy; 

13: Probe to fairly schedule the remaining task of G m 

and all 

the applications in low _ application _ set together using the 

F_MHEFT algorithm; 

14: end if 

15: end while 

16: end while 
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6. Partial priority scheduling 

On the one hand, the round-robin fairness policy can reduce the

overall makespan of the system for an improved performance. We

can use the F_MHEFT algorithm ( Algorithm 1 ) to schedule together

all applications with different priorities. The overall makespan can

be reduced to a minimum, but the deadlines of the vast majority

of applications may be missed. Note that a high-priority applica-

tion means highly important and strict timing constraint on dead-

line. The F_MHEFT algorithm is significantly optimistic on timing

constraint because it is only concerned with the performance of

the system and ignores the timing constrains of all application. 

On the other hand, the deadlines of all applications cannot be

met in resource-constrained embedded systems. The WP_MHEFT

algorithm ( Algorithm 2 ) can meet the deadlines of a few high-

priority applications by preferentially scheduling whole tasks of

these application. However, WP_MHEFT is urgently meets the

deadlines of high-priority applications at the start and causes

many other applications not to be handled positively. The dead-

lines of these applications are missed, and the overall makespan

of the system is considerably long. The WP_MHEFT algorithm is

pessimistic on timing constrain, because it is only concerned with

the deadlines of a few high-priority applications, and ignores the

deadlines of other high-priority applications and performance of

the system. 

Timing constraint is not to schedule high-priority applica-

tions earlier. In fact, a time span exists between the lower-

bound and deadline of an application. Timing constraint is still

met as long as the application executes completely before the

deadline. 

6.1. The PP_MHEFT algorithm 

We present a optimized scheduling algorithm called partial pri-

ority on multiple HEFT (PP_MHEFT) to make more applications can

meet their deadlines and reduce the overall makespan as much as

possible. The steps are described in Algorithm 3 . 

The time complexity of the PP_MHEFT algorithm is analyzed as

follows. Scheduling all applications must traverse all application,

which can be completed in O(| GS |) time. Scheduling all tasks of

an application can be completed in O( n max ) time. Scheduling using
he F_MHEFT algorithm can be completed in O( | GS| × N 

2 
max × | P | )

ime. Thus, the complexity of the PP_MHEFT algorithm is O( | GS| 2 ×
 

3 
max × | P | ). The key points of the PP_MHEFT algorithm are de-

cribed as follows. 

(1) We probe to fairly schedule G m 

and all the low-priority

applications together using the F_MHEFT algorithm. If

G m 

.makespan ≤ G m 

.deadline , then the F_MHEFT algorithm

can meet the deadline of G m 

. Otherwise, the previous al-

location of the F_MHEFT algorithm should be canceled. The

partial tasks of G m 

are preferentially scheduled until G m 

can

meet its deadline by fairly scheduling the remaining tasks

of G m 

and its low-priority applications using the F_MHEFT

algorithm. 

(2) We constantly check the deadline of G m 

after a task of G m 

is

preferentially scheduled such that the number of preferen-

tially scheduled tasks of G m 

is minimum. 
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Fig. 5. Scheduling process 1 of the example in Fig. 1 using PP_MHEFT. 

Fig. 6. Scheduling process 2 of the example in Fig. 1 using PP_MHEFT. 

Fig. 7. Scheduling process 3 of the example in Fig. 1 using PP_MHEFT. 
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.2. Example of the PP_MHEFT algorithm 

Figs. 5 –9 show the whole scheduling process of the example in

ig. 1 using PP_MHEFT. 

(1) The current application is G 1 because it is the highest pri-

ority application of the system. We use the F_MHEFT algo-

rithm to schedule { G 1 , G 2 , G 3 } together. The makespan of G 1 

is G 1 .makespan = 70 , which is larger than G 1 .d ead line = 69 .

G 1 misses its deadline ( Fig. 5 ). 

(2) To meet the deadline of G 1 , we cancel the allocations of { G 1 ,

G 2 , G 3 } and use the partial priority policy to allocate task

G 1 . n 1 to p 2 ( Fig. 6 ). 

(3) Schedule the remaining tasks (i.e., G 1 . n 2 , G 1 . n 3 , G 1 . n 4 , G 1 . n 5 ,

G 1 . n 6 ) of G 1 and low-priority applications (i.e., G 2 and

G 3 ) using the F_MHEFT algorithm. The makespan of G 1 

is reduced to G 1 .makespan = 63 , which is smaller than

G 1 .d ead line = 69 (i.e., G 1 meets its deadline) ( Fig. 7 ). 

(4) Given that G 1 has bee scheduled, we change the current ap-

plication to G 2 , which is the highest priority application to

be scheduled in the remaining applications. We can see from

Fig. 7 that the makespan of G 2 is G 2 .makespan = 63 , which

is larger than G 2 .d ead line = 41 (i.e., G 2 misses its deadline).

To meet the deadline of G 2 , we cancel the previous alloca-

tions of { G 2 , G 3 }, and use the partial priority policy to allo-

cate tasks G . n , G . n , G . n , and G . n of G ( Fig. 8 ). 
2 1 2 4 2 3 2 2 2 
(5) The remaining task G 2 . n 5 of G 2 and all tasks of G 3 are

scheduled using the F_MHEFT algorithm. The makespan

of G 2 is reduced to G 2 .makespan = 41 , which is equal to

G 2 .d ead line = 41 (i.e, G 2 misses its deadline) ( Fig. 9 ). 

Finally, G 3 .makespan = 83 is larger than G 3 .d ead line = 61 (i.e, G 3 

isses its deadline). Thus,the overall makespan of the system is

S.makespan = 83 . 

Table 5 shows the results of the example using the three algo-

ithms. The overall makespan of the system is 83 using PP_MHEFT.

Combined with results of F_MHEFT ( Fig. 3 ) and WP_MHEFT

 Fig. 4 ), we can find the following results. 

(1) F_MHEFT has a short overall makespan value of 73, but all

applications with different priorities miss their deadlines. 

(2) WP_MHEFT preferentially schedules G 1 because it is the

highest priority application. Even though the deadline of G 1 

is met, the result is an increased overall makespan of the

system with value of 100. 

(3) PP_MHEFT has a relatively short overall makespan value

of 83, which is smaller than WP_MHEFT and longer than

F_MHEFT. However, PP_MHEFT meets the deadline of G 1 

and G 2 by sacrificing minimum partial fairness to im-

plement minimum partial priority allocation. Obviously, 

PP_MHEFT makes maximum optimization between fair- 

ness and priority on the example. However, PP_MHEFT
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Fig. 8. Scheduling process 4 of the example in Fig. 1 using PP_MHEFT. 

Fig. 9. Scheduling process 5 of the example in Fig. 1 using PP_MHEFT. 

Table 5 

Results of the example in Fig. 1 using WP_MHEFT. 

Algorithm F_MHEFT WP_MHEFT PP_MHEFT 

Overall makespan 73 100 83 

Applications meeting deadlines G 1 G 1 , G 2 
Time complexity ( | GS| × N 2 max × | P| ) ( | GS| × N 2 max × | P| ) O( | GS| 2 × N 3 max × | P| ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Overall makespans ( μs ) for varying numbers of applications. 

Algorithms FDWS F_MHEFT WP_MHEFT PP_MHEFT 

| MS| = 30 7978 7484 8135 7715 

| MS| = 40 7470 7055 7475 7300 

| MS| = 50 7937 7612 10036 7967 

| MS| = 60 8738 8352 10694 9208 

| MS| = 70 9208 8799 12815 9333 
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has a higher time complexity than both F_MHEFT and

WP_MHEFT. 

6.3. Summarization of the three algorithm 

The F_MHEFT, WP_MHEFT, and PP_MHEFT algorithms are com-

pared as follows: 

(1) The F_MHEFT algorithm considers that all the applications

are scheduled fairly and completely ignore the priorities of

different application. 

(2) The WP_MHEFT algorithm considers that low-priority appli-

cations can be scheduled only if the entire high-priority ap-

plications are scheduled. 

(3) The PP_MHEFT algorithm first preferentially schedules par-

tial tasks of the highest priority application. Then it fairly

schedules the remaining tasks of the highest priority appli-

cations and all the tasks of low-priority applications using

F_MHEFT. The PP_MHEFT algorithm actually mix the fair-

ness and whole priority policies, and thereby it can meet the

deadlines of more high-priority applications and reduce the

overall makespan of the system as much as possible. 

7. Experiments 

7.1. Experimental metrics 

The performance metrics selected for comparison are the DMR

of applications [24] and overall makespan of the system [20] . 

Overall makespan is given by 

MS.makespan = max 
G m ∈ MS 

{ G m 

.makespan } . (5)
DMR is calculated using 

M R (X ) = 

| M S miss (X ) | 
| M S(X ) | , (6)

here | MS miss ( X )| represents the number of the application miss-

ng their deadlines and | MS ( X )| represents the number of all the

pplications with parameter X . 

We implemented a simulated heterogenous multi-core platform

sing Java on a standard desktop computer (2.6 GHz Intel CPU and

 GB memory). This simulated platform contains 32 heterogeneous

ores and can generate and run a variety of applications samples

ith different priorities. Application samples are randomly (an uni-

orm distribution) generated depending on the following realis-

ic parameters of automotive applications. 100 μs ≤ w i, k ≤ 400 μs ,

00 μs ≤ c i, j ≤ 400 μs , 8 ≤ | N | ≤ 23. 

.2. Experimental results 

Experiment 1 . This experiment is to compare the overall

akespans of the system and DMRs of applications on different

cale application sets. The number of applications is changed in

he 30 to 70 range with 10 increments. Each application was
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Table 7 

DMRs for varying numbers of applications. 

Algorithms FDWS F_MHEFT WP_MHEFT PP_MHEFT 

DMR TOTAL LOW HIGH TOTAL LOW HIGH TOTAL LOW HIGH TOTAL LOW HIGH 

| MS| = 30 0 .867 0 .867 0 .867 0 .7 0 .6 0 .8 0 .567 0 .733 0 .4 0 .533 0 .667 0 .4 

| MS| = 40 0 .925 0 .95 0 .9 0 .9 0 .9 0 .9 0 .75 0 .95 0 .55 0 .625 0 .85 0 .4 

| MS| = 50 0 .98 0 .96 1 .0 1 .0 1 .0 1 .0 0 .72 0 .96 0 .48 0 .62 0 .96 0 .28 

| MS| = 60 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .72 1 .0 0 .44 0 .66 0 .9 0 .43 

| MS| = 70 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .814 1 .0 0 .628 0 .8 1 .0 0 .6 

Table 8 

DMRs for varying deadlines. 

Algorithms FDWS F_MHEFT WP_MHEFT PP_MHEFT 

DMR TOTAL LOW HIGH TOTAL LOW HIGH TOTAL LOW HIGH TOTAL LOW HIGH 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 40 0 .96 1 .0 0 .92 1 .0 1 .0 1 .0 0 .7 0 .92 0 .48 0 .64 0 .92 0 .36 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 30 0 .96 1 .0 0 .92 1 .0 1 .0 1 .0 0 .7 0 .92 0 .48 0 .72 0 .96 0 .48 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 20 0 .96 1 .0 0 .92 0 .98 1 .0 0 .92 0 .64 0 .92 0 .36 0 .7 0 .96 0 .4 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 10 0 .94 0 .96 0 .92 0 .92 0 .92 0 .92 0 .58 0 .88 0 .28 0 .52 0 .8 0 .24 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 5 0 .72 0 .76 0 .68 0 .68 0 .68 0 .68 0 .4 0 .68 0 .12 0 .24 0 .68 0 .04 

Table 9 

Overall makespans ( μs ) for varying deadlines. 

Algorithm FDWS F_DMHEFT WP_DMHEFT PP_DMHEFT 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 40 8481 8172 9251 8510 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 30 8481 8172 9251 8511 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 20 8481 8172 9251 8290 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 10 8481 8172 9251 8875 

G m .d ead line = G m .l owerbound + G m .l owerbound/ 5 8481 8172 9251 8735 
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pecificated a unique priority. The deadline of each application G m 

s calculated as G m 

.d ead line = G m 

.l owerbound + G m 

.l owerbound/ 40 .

our algorithms (i.e., FDWS [20] , F_MHEFT, WP_MHEFT, and

P_MHEFT) are used for the experiment and then compared

or verification. Similar to F_MHEFT, FDWS is a state-of-the-art

airness algorithm that minimizes individual makespans of appli-

ations. The main difference between FDWS and F_MHEFT in static

cheduling is that FDWS and F_MHEFT select the task with highest

ank r (n i ) ( Eq. (7) ) and rank u (n i ) from the common ready queue,

espectively, in Step (3) of Fig. 2 . 

an k r ( F m 

. n i ) = 

1 

P RT ( F m 

) 
× 1 

CP L ( F m 

) 
, (7)

here PRT ( F m 

) and CPL ( F m 

) represent the percentage of remain-

ng task (PRT) number and the critical path length (CPL) of the

unction F m 

, respectively. 

Table 6 shows the overall makespans for varying numbers of

pplications using the four algorithms. For the algorithms with

airness, we can see that F_MHEFT has lower overall makespans

han FDWS in all cases, the difference is about 400 μs . For the pro-

osed algorithms in this study, F_MHEFT and WP_MHEFT generate

est and worst performance, respectively; the overall makespans

enerated by PP_MHEFT are always between the results generated

y F_MHEFT and WP_MHEFT. 

Table 7 shows the DMRs for varying numbers of applications

sing the four algorithms. TOTAL represents the DMR of total

pplications, LOW represents the DMR of the low-priority appli-

ations (accounting for half of the total), and HIGH represents

he DMR of the high-priority applications (accounting for half of

he total). For the algorithms with fairness, the total DMRs are

xtremely high for FDWS (0.867-1.0) and F_MHEFT (0.7-1.0) in

ost cases, and all the results reach 1.0 when the applications

umber reaches 60. For the proposed algorithms in this study,

_MHEFT and PP_MHEFT generate highest and lowest DMRs (in-

luding TOTAL, LOW, and HIGH), respectively; the DMRs gener-
ted by WP_MHEFT are always between the results generated by

_MHEFT and PP_MHEFT. 

Combining the results of Table 6 and 7 , we find that PP_MHEFT

btains lowest DMR. Although it sacrifices a certain performance,

he results still outperform WP_MHEFT and close to FDWS. 

Experiment 2 . Given that the system cannot meet the deadlines

f all the high-priority applications in Experiment 1, the number of

uch applications should be reduced. A simple method for meet-

ng the deadlines of all the high-priority applications is to modify

he deadline. Hence, this experiment aims to modify the deadline

f each application to observe the results. In this experiment, the

umber of applications is fixed with 50. The deadline of each ap-

lication G m 

is changed from G m 

.lowerbound + G m 

.lowerbound/ 40

o G m 

.lowerbound + G m 

.lowerbound/ 5 . Note that the deadlines of

unctions cannot be modified in actual situation; hence, the objec-

ive of this experiment is merely to analyze the DMRs and overall

akespans generated by different algorithms. 

Table 8 shows the DMRs for varying deadlines using the

DWS, F_MHEFT, WP_MHEFT, and PP_MHEFT algorithms. We

an see that the DMRs are reduced with the reductions of

eadlines. When G m 

.d ead line = G m 

.l owerbound + G m 

.l owerbound/ 5 ,

MR ( HIGH ) generated by WP_MHEFT and PP_MHEFT are reduced

o 0.12 (three high-priority application misses its deadline) and

.04 (only one high-priority application misses its deadline) miss

heir deadlines, respectively. DMR ( TOTAL ) generated by WP_MHEFT

nd PP_MHEFT are reduced to 0.4 and 0.24, respectively.

ote that when G m 

.d ead line = G m 

.l owerbound + G m 

.l owerbound/ 20 ,

P_MHEFT generates lower DMRs than PP_MHEFT in TOTAL, LOW,

nd HIGH; these results indicate that WP_MHEFT also has the con-

ribution and necessity of existence in our proposed algorithms.

eanwhile, DMR ( HIGH ) and DMR ( TOTAL ) generated by FDWS and

_MHEFT are also reduced, but the values are still very high (larger

han or equal to 0.68) 

Table 9 shows the overall makespans for varying deadlines us-

ng the FDWS, F_MHEFT, WP_MHEFT, and PP_MHEFT algorithms.
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Table 10 

Running time ( ms ) for varying numbers of applications. 

Algorithms FDWS F_MHEFT WP_MHEFT PP_MHEFT 

| MS| = 30 490 223 186 7898 

| MS| = 40 468 218 261 27635 

| MS| = 50 487 203 184 49828 

| MS| = 60 610 268 264 143344 

| MS| = 70 675 366 353 267411 
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The overall makespan using FDWS, F_MHEFT, and WP_MHEFT

are always fixed as 8481, 8172, and 9251 μs , respectively. We

can see that F_MHEFT generates the lowest overall makespan of

all the algorithms. Although the DMR generated by PP_DMHEFT

is reduced to a minimum when G m 

.d ead line = G m 

.lowerbound +
G m 

.lowerbound/ 5 ( Table 8 ), the overall makespan is not reduced.

In other words, changing the deadlines of applications does

not changing the overall makespan of the system greatly for

PP_DMHEFT, namely, PP_DMHEFT generates relatively stable over-

all makespan when the applications number is fixed. 

Experiment 3 . Given that the time complexity of the PP_MHEFT

is higher than that of F_MHEFT and WP_MHEFT in the previous

analysis, we are interested in observing the actual running time of

different algorithms, although it is not critical in static scheduling. 

Table 10 shows the running time of each algorithm for vary-

ing numbers of applications. As we expect, FDWS, F_MHEFT, and

WP_MHEFT consume merely a few hundred milliseconds, whereas

PP_MHEFT needs tens or even hundreds of thousands of millisec-

onds. With increasing number of applications, the consumed time

of PP_MHEFT grows rapidly. For example, although the function

number is changed from 60 to 70, the increased time is 267411-

143344 = 124067 ms (nearly 2 minutes). Meanwhile, we can see

the consumed time of F_MHEFT is about half of that of FDWS. The

reason is that FDWS needs recalculate the rank r ( Eq. (7) ) of each

task in the Step (3) of Fig. 2 . 

8. Conclusions 

A mixed real-time scheduling of multiple DAGs-based appli-

cations on heterogeneous multi-core processors has been devel-

oped in this study. Considering that the timing constraint is not

to schedule high-priority applications earlier and a time span ex-

ists between the lower-bound and deadline of an application, we

presented the PP_MHEFT algorithm to meet the deadlines of high-

priority applications and reduce the overall makespan of the sys-

tem. PP_MHEFT is implemented by preferentially scheduling partial

tasks of these applications; and then fairly scheduling the remain-

ing tasks with other low-priority tasks together. PP_MHEFT actu-

ally mixes the fairness and whole priority policies, and thereby

it can meet the deadlines of more high-priority applications and

reduce the overall makespan of the system as much as possi-

ble. Therefore, PP_MHEFT significantly optimizes the static mul-

tiple DAGs-based applications scheduling between high perfor-

mance and timing constraint. Experiments demonstrate that the

PP_MHEFT algorithm can achieve useful optimization with high

performance and timing constraint for static multiple DAGs-based

applications scheduling on heterogeneous multi-core processors. 
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