
Journal of Systems Architecture 70 (2016) 3–14

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

High performance real-time scheduling of multiple mixed-criticality

functions in heterogeneous distributed embedded systems

Guoqi Xie

a , b , ∗, Gang Zeng

c , Liangjiao Liu

a , b , Renfa Li a , b , Keqin Li a , d

a College of Computer Science and Electronic Engineering, Hunan University, China
b Key Laboratory for Embedded and Network Computing of Hunan Province, China
c Graduate School of Engineering, Nagoya University, Japan
d Department of Computer Science, State University of New York, New Paltz, New York, USA

a r t i c l e i n f o

Article history:

Received 8 September 2015

Revised 7 December 2015

Accepted 14 April 2016

Available online 28 April 2016

Keywords:

Criticality level

Deadline missed ratio (DMR)

Deadline-span

High performance

Real-time

a b s t r a c t

The architectures of high-end embedded system have evolved into heterogeneous distributed integrated

architectures. The scheduling of multiple distributed mixed-criticality functions in heterogeneous dis-

tributed embedded systems is a considerable challenge because of the different requirements of systems

and functions. Overall scheduling length (i.e., makespan) is the main concern in system performance,

whereas deadlines represent the major timing constraints of functions. Most algorithms use the fairness

policies to reduce the makespan in heterogeneous distributed systems. However, these fairness policies

cannot meet the deadlines of most functions. Each function has different criticality levels (e.g., severity),

and missing the deadlines of certain high-criticality functions may cause fatal injuries to people under

this situation. This study first constructs related models for heterogeneous distributed embedded systems.

Thereafter, the criticality certification, scheduling framework, and fairness of multiple heterogeneous ear-

liest finish time (F_MHEFT) algorithm for heterogeneous distributed embedded systems are presented.

Finally, this study proposes a novel algorithm called the deadline-span of multiple heterogeneous earli-

est finish time (D_MHEFT), which is a scheduling algorithm for multiple mixed-criticality functions. The

F_MHEFT algorithm aims at improving the performance of systems, while the D_MHEFT algorithm tries

to meet the deadlines of more high-criticality functions by sacrificing a certain performance. The experi-

mental results demonstrate that the D_MHEFT algorithm can significantly reduce the deadline miss ratio

(DMR) and keep satisfactory performance over existing methods.

© 2016 Elsevier B.V. All rights reserved.

1

1

h

w

m

c

a

n

7

n

t

s

l

c

c

t

a

m

c

E

I

w

t

m

s

h

1

. Introduction

.1. Background

High-end embedded system architectures have evolved into

eterogeneous distributed architectures because of the size,

eight, and power consumption (SWaP) for cost and high perfor-

ance benefits. For example, automotive electronic architectures

onsist of many heterogeneous electronic control units (ECUs) that

re distributed on multiple network buses, which are intercon-

ected by a central gateway. Today, a luxury car comprises at least

0 heterogeneous ECUs with approximately 2500 signals [1] . The

umber of ECUs is expected to increase further in future automo-

ive electronic systems.
∗ Corresponding author.

E-mail addresses: xgqman@gmail.com , xgqman@hnu.edu.cn (G. Xie),

ogo@ertl.jp (G. Zeng), llj1984109@qq.com (L. Liu), lirenfa@hnu.edu.cn (R. Li),

ik@newpaltz.edu (K. Li).

p

b

t

s

s

ttp://dx.doi.org/10.1016/j.sysarc.2016.04.008

383-7621/© 2016 Elsevier B.V. All rights reserved.
The aforementioned distributed architecture leads to an in-

rease in distributed functions (also called functionalities or appli-

ations in a few studies) with precedence-constrained tasks in au-

omotive electronic systems [2] . Examples of active safety functions

re x-by-wires and adaptive cruise control [3] . The integration of

ultiple functions in the same architecture is called “integrated ar-

hitecture,” in which multiple functions can be supported by one

CU and one function can be distributed over multiple ECUs [3] .

ntegrated architectures are indeed an essential evolution to cope

ith the SWaP problems and seize the opportunity for cost reduc-

ion. This transition requires the development of new models and

ethods [3] .

Integrated architecture drives the integration of several levels of

afety-criticality and non-safety-criticality functions into the same

latform; criticality levels and mixed-criticality systems have also

een introduced [4] . Criticality level is represented by the automo-

ive safety integrity level (ASIL) in the automotive functional safety

tandard ISO 26262 [5] . ASIL refers to a classification of inherent

afety goals required by the standard to ensure the accomplish-

http://dx.doi.org/10.1016/j.sysarc.2016.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.04.008&domain=pdf
mailto:xgqman@gmail.com
mailto:xgqman@hnu.edu.cn
mailto:sogo@ertl.jp
mailto:llj1984109@qq.com
mailto:lirenfa@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.sysarc.2016.04.008

4 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

2

d

p

r

t

2

g

i

b

D

p

o

l

i

c

T

g

t

m

v

t

s

m

p

[

s

a

p

t

g

H

e

s

T

s

t

[

i

n

p

l

(

n

v

2

a

a

e

r

m

fl

t

e

i

m

t

ment of goals in the system; ASIL D and ASIL A represent the high-

est and lowest criticality levels, respectively [5] . Mixed-criticality

systems are new systems that attempt to combine multiple func-

tions with different criticality levels on the same platform.

1.2. Motivations

To make full use of the numerous ECUs in automobiles, efficient

scheduling policies are required to achieve substantially high per-

formance improvement. However, scheduling multiple distributed

mixed-criticality functions in heterogeneous distributed embedded

systems involves the following challenges.

First, many scheduling methods for mixed-criticality systems

have been developed in the past years, but such methods are

mainly based on periodic and sporadic task models. Many dis-

tributed functions have apparent precedence constraints among

tasks in high-end heterogeneous distributed embedded systems

(e.g., automotive electronic systems). Evidence shows that mod-

els for mapping distributed functions are highly criticality to the

analysis of automotive electronic systems. A few models, such as

time chains [6] and task chains [7] , have been employed in au-

tomobiles; however, these models are only suitable for simple

distributed functions. With the increasing complexity and paral-

lelization of automobile functions, a model that accurately reflects

the distributed characteristics of automotive functions is desirable.

In heterogeneous distributed systems, a distributed function with

precedence-constrained tasks at a high level is described as a di-

rected acyclic graph (DAG), in which the nodes represent the tasks

and the edges represent the communication messages between the

tasks [1,8] . The DAG-based model has also been applied to automo-

tive electronic systems [9,10] .

Second, systems and functions in heterogeneous distributed

embedded systems involve considerable conflicts. Overall schedul-

ing length (makespan) is the main concern in system performance,

whereas deadlines are the major timing constraints of functions.

The deadlines of all functions cannot be met in heterogeneous dis-

tributed embedded systems, particularly in resource-constrained

distributed embedded environments. A high-criticality function

(i.e., a function with high criticality level) has a considerably im-

portant and strict timing constraint for a given deadline. Missing

the deadlines of high-criticality functions results in fatal injuries to

people. Most algorithms use fairness policies to reduce the overall

makespan of systems in heterogeneous distributed systems; how-

ever, these policies could lead to the failure to meet the deadlines

of high-criticality functions. Therefore, both performance and tim-

ing constraints should be considered to achieve a good makespan

and low deadline miss ratio (DMR) [11] .

1.3. Our contributions

Our contributions are summarized as follows. First, we con-

struct a series of models for heterogeneous distributed embedded

systems from the “distributed computing” and “functional safety”

perspectives. Second, we propose a functional level scheduling al-

gorithm with a round-robin fairness policy from the “system per-

formance” perspective. Third, we further propose a functional level

scheduling algorithm with a deadline-span-driven policy to achieve

satisfactory system performance and low DMR.

The rest of this paper is organized as follows. Section 2 re-

views the related literature. Section 3 constructs a series of models

for heterogeneous distributed embedded systems. Section 4 pro-

poses the certification method, scheduling framework, and round-

robin fairness scheduling. Section 5 proposes a scheduling algo-

rithm with a deadline-span-driven policy. Section 6 verifies the

performance ratios of all the proposed methods of this study.

Section 7 concludes this study.
. Related works

High performance is an important concern of heterogeneous

istributed systems, whereas timing constraints represent an im-

ortant requirement of high-criticality functions. This section first

eviews the related research for high performance scheduling and

hen discusses real-time scheduling.

.1. High performance scheduling

The scheduling of a single distributed function (also called sin-

le DAG-based function scheduling) is the basis of the schedul-

ng of multiple distributed functions (also called multiple DAG-

ased function scheduling). Thus, we briefly introduce the single

AG-based function list scheduling. List scheduling includes two

hases: the first phase orders tasks according to the descending

rder of priorities (task prioritizing), whereas the second phase al-

ocates each task to a proper processor (task allocation). Schedul-

ng tasks for a single DAG-based function with the fastest exe-

ution is a well-known NP-hard optimization problem [8] . In [8] ,

opcuoglu et al. proposed the popular algorithm called the hetero-

eneous earliest finish time (HEFT) for the single DAG-based func-

ion scheduling in heterogeneous distributed systems to reduce

akespan to a minimum. The HEFT algorithm uses upward rank

alues for task ordering and the earliest finish time (EFT) based on

he insertion-based policy for task allocation. The aforementioned

tudy further inspired substantial investigations and the develop-

ent of other algorithms, including constrained EFT (CEFT) [12] ,

redict EFT (PEFT) [13] , and heterogeneous selection value (HSV)

1] .

The multiple DAG-based functions scheduling of heterogeneous

ystems also involves two steps, namely, task prioritizing and task

llocation. In [14] , Honig et al. first proposed a composition ap-

roach to merge multiple distributed functions into one new func-

ion and then used a single DAG-based function scheduling al-

orithm (e.g., HEFT) to schedule the new DAG-based function.

owever, apparent unfairness to functions with short makespans

merges because the upward rank values of these functions are

ignificantly lower than those of functions with long makespans.

his approach limits the execution opportunities of functions with

hort makespans, and such limitation results in an unfairness to

hem and in a considerably long overall makespan in systems. In

15] , Zhao et al. first identified the fairness issue in the schedul-

ng of multiple DAG-based functions. The authors proposed a fair-

ess scheduling algorithm called Fairness with a slowdown-driven

olicy that ensures the fairness of different functions. Other re-

ated studies, such as those on online workflow management

OWM) [16] for overall makespan minimization and fairness dy-

amic workflow scheduling (FDWS) [17] for minimization of indi-

idual functions were conducted.

.2. Real-time scheduling

The mixed-criticality scheduling problem was first identified

nd formalized by Vestal [18] . whose work has been extended

nd has inspired further substantial investigations [19–22] . How-

ver, the models of these works are only periodic [19,20] and spo-

adic tasks models [21,22] . Hence, these works only considered

ixed-criticality from the “task level” perspective and cannot re-

ect the distributed characteristics of functions in automobiles. For

he functional safety of automobiles, scheduling should be consid-

red at the “functional level” and not at the “task level.”

Some related researches are concerned about function schedul-

ng with deadline constraints [23–25] . However, these solutions are

erely for single DAG-based scheduling, and not suitable for mul-

iple DAG-based scheduling issues.

G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14 5

Fig. 1. Example of a CAN cluster with four buses interconnected by a central gate-

way.

b

t

i

t

l

H

m

p

r

j

t

t

e

s

w

s

i

[

b

o

n

b

i

c

c

p

p

a

f

s

d

t

h

p

s

3

3

m

t

i

e

s

g

a

P

|

u

3

(

d

t

S

(

l

a

l

t

[

t

t

a

p

3

F

t

n

(

e

t

(

i

d

i

t

d

p

d

n

t

m

m

a

t

u

a

s

b

c

i

3

t

M

c

t

M

a

t

i

b

o

m

a

In recent years, the functional level scheduling of multiple DAG-

ased distributed functions in heterogeneous distributed architec-

ures has been studied. In [26] , Wang et al. presented maximiz-

ng throughput of multi-DAGs with deadline algorithm to improve

he ratio of functions which can be accomplished within dead-

ine by timely abandoning the functions that exceed the deadline.

owever, some high-criticality functions cannot be abandoned in

ixed-criticality systems such that the algorithm cannot be ap-

lied to such systems. Hu et al. investigated the scheduling of pe-

iodic functions on time-triggered FlexRay systems [27] , the ob-

ective of which is to guarantee that all instances of all func-

ions can meet their respective deadlines. A series of investiga-

ions about mixed-criticality functions were proposed by Tamas

t al. [28–31] . In [28,29] , the authors considered functions to be

eparated and used a temporal and spatial-partitioning scheme, in

hich safety-criticality functions are scheduled using static-cycling

cheduling and non-safety-criticality functions are scheduled us-

ng fixed-priority preemptive scheduling. The major problems for

28,29] are as follows: 1) they only considered two criticality levels

ased on dual-criticality systems and 2) the communication times

f messages for connecting precedence-constrained tasks are ig-

ored. In [30] , the authors considered processors interconnected

y the TTEthernet-based protocol for mixed-criticality systems and

n [31] , the authors used a static-cyclic scheduling for multiple-

riticality distributed functions on cost-constrained partitioned ar-

hitectures. The main limitation of the above works is that the

latform only supports partitioned scheduling and cannot be ap-

lied to global scheduling.

The objective of the above works is to meet the deadlines of

ll functions. However, as mentioned earlier, the deadlines of all

unctions cannot be met in heterogeneous distributed embedded

ystems, particularly in resource-constrained distributed embed-

ed environments. This study will present high performance real-

ime scheduling approach that reduce the DMR when functions

ave various criticality levels and deadlines based on global non-

reemptive scheduling, and keep satisfactory performance under

ignificantly reducing the DMRs.

. Modeling

.1. System architecture

CAN bus is configured with the event-triggered non-preemptive

echanism. When a task is executed completely in one ECU, this

ask sends messages to all its successor tasks that may be located

n the different ECUs of different buses. For example, task n 1 is

xecuted on ECU ECU 1 of CAN 1 . It then sends a message m 1, 2 to its

uccessor task n 2 located in ECU 6 of CAN 3 (See Fig. 1). The central

ateway is a highly important node that connects CAN clusters and

llows messages to be passed from one bus to another. We use

 = { P 1 , P 2 , ..., P | P| } to represent a set of heterogeneous ECUs; here,

 P | represents the size of set P . Note that for any set X , this study

ses | X | to denote its size.
.2. Criticality level

ISO 26262 identifies four criticality levels denoted by ASILs

i.e., A, B, C, and D) for systematic failures with severity and ran-

om hardware failures with exposure (i.e., reliability) of automo-

ive functions. Severity also involves four criticality levels, namely,

0, S1, S2, and S3, where S0 represents the lowest criticality level

i.e., no injuries) and S4 represents the highest criticality level (i.e.,

ife-threatening to fatal injuries) [5,32] . Similar to [31] , we do not

ddress the issue of reliability (which is orthogonal to our prob-

em), and we assume that the designer has developed the func-

ions such that they provide the required level of fault tolerance

31] . Hence, S = { S 0 , S 1 , S 2 , S 3 } is employed to represent a set of

he criticality levels of a system. Our systems comprise more than

wo criticality levels (hence the name multiple-criticality systems)

nd are thus different from dual-criticality systems, which com-

rise only two criticality levels [28,29] .

.3. Mixed-criticality function model

A distributed mixed-criticality function is represented by a DAG

 m

= (N, M, C, W, criticality,

lowerbound, deadline, makepsan). F m

represents the m th func-

ions in systems. N represents a set of nodes in F m

, and each node

 i ∈ N represents a task with different worst-case execution times

WCETs) on different ECUs. M is a set of communication edges, and

ach edge e i, j ∈ M represents the communication message from n i
o n j . Accordingly, c i, j represents the worst-case transmitting time

WCTT) of e i, j . Notice that the WCTT includes the gateway process-

ng time of e i, j . pred (n i) represents the set of the immediate pre-

ecessor tasks of n i . ind (n i) represents the in-degree of n i , which

ndicates the cardinality of pred (n i). succ (n i) represents the set of

he immediate successor tasks of n i . outd (n i) represents the out-

egree of n i , which indicates the cardinality of succ (n i). For sim-

licity, a function comprises only one entry task, which has no pre-

ecessor task and is denoted as n entry and one exit task, which has

o successor task and is denoted as n exit . W is an | N | × | P | ma-

rix, in which w i, k denotes the WCET of n i runs on p k . The afore-

entioned parameters are the basic properties of the distributed

ixed-criticality functions of heterogeneous distributed systems,

nd are used by several algorithms (e.g., HEFT [8] and HSV [1]).

For a distributed mixed-criticality function, the remaining at-

ributes (criticality, lowerbound, deadline , and makespan) need to be

sed. criticality ∈ S represents the criticality level of F m

. lowerbound

nd deadline represent the lower-bound and deadline of F m

, re-

pectively. criticality, lowerbound , and deadline must be certificated

y a certification authority (CA) (refer to Section 4.1 for concrete

ertification). makespan represents the actual makespan of F m

and

s generated with the proposed algorithm.

.4. Mixed-criticality systems model

A mixed-criticality system comprises of multiple dis-

ributed mixed-criticality functions and is denoted as

S = {{ F 1 , F 2 , ..., F | MS| } , criticality, makespan } where criticality indi-

ates the current criticality level of the system. In distinguishing

he ambiguities, we use MS.criticality to express the criticality of

S , and use F m

.criticality to express the criticality of F m

. Other

ttributes use the same expression. MS.criticality can be changed

o high-criticality levels and back to low-criticality levels. A change

n MS.criticality indicates a switch in system mode. F m

can only

e executed on the modes in which F m

.criticality is higher than

r equal to MS.criticality. MS.makespan represents the overall

akespan of MS and reflects system performance. MS.makespan is

lso generated with the proposed algorithm.

6 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

Fig. 2. Motivating example of mixed-criticality systems containing three distributed mixed-criticality functions (F 1 .criticality = S 3 , F 2 .criticality = S 2 , and F 3 .criticality = S 0).

Table 1

WCETs for tasks of all functions in Fig. 2 .

WCETs for tasks of F1

Criticality S3

ECU
Task

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

p1 14 13 11 13 12 13 7 5 18 21

p2 16 19 13 8 13 16 15 11 12 7

p3 19 18 19 17 10 9 11 14 20 16

ranku 109 78 81 81 70 64 43 36 45 15

08dnuob-rewoL

09enildaeD

WCETs for tasks of F2

Criticality S2

ECU
Task

n1 n2 n3 n4 n5

p1 4 9 18 21 7

p2 5 10 17 15 6

p3 6 11 16 19 5

ranku 42 20 31 35 6

Lower-bound 36

Deadline 46

WCETs for tasks of F3

Criticality S0

ECU
Task

n1 n2 n3 n4 n5 n6

p1 8 14 9 18 18 5

p2 11 13 12 15 16 10

p3 19 8 16 14 20 7

ranku 110 91 63 31 39 8

Lower-bound 54

Deadline 64

(

r

e

c

t

c
This study considers static scheduling and not dynamic

scheduling. The reason is that we can observe the results for

an optimistic system analysis and design. In static scheduling, all

functions are released simultaneously. This type of scheduling is

thus widely used in the many functions of automobiles. For ex-

ample, integrated safety systems include the functions of anti-lock

braking system (ABS), acceleration slip regulation (ASR), and elec-

tronic stability program (ESP). To avoid possible collision in emer-

gent state, these functions will released simultaneously. If a task

is allocated to different ECUs with partitioned scheduling, then

such task generates heavy communication cost (i.e., WCTT of mes-

sages) between any two ECUs. Hence, different from the parti-

tioned scheduling in [28–31] , this study considers the global non-

preemptive scheduling.

3.5. Motivating example

Fig. 2 shows a motivating example of mixed-criticality sys-

tems with three functions, namely, F 1 , F 2 , and F 3 , and with

F 1 .criticality = S 3 , F 2 .criticality = S 2 , and F 3 .criticality = S 0 . The

shapes of F 2 and F 3 functions are similar to the examples of

[33] , whereas F 1 is a relative complex function. Table 1 shows the

WCETs of tasks for F 1 , F 2 , and F 3 in Fig. 2 . The example shows ten

tasks for F 1 , five tasks for F 2 , and six tasks for F 3 . This study as-

sumes three ECUs for the system in this motivating example. Al-

though the example is simple, it involves three ECUs, three func-

tions, and three criticality levels. Hence, this example can reflect

the characteristics of multiple ECUs, multiple functions, and mul-

tiple criticality levels for heterogeneous distributed embedded sys-

tems. The weight 18 of the edge between task F 1 . n 1 and task F 1 . n 2
represents the WCTT of F 1 . m 1, 2 if F 1 . n 1 and F 1 . n 2 are not assigned

in the same ECU. The weight 14 of F 1 . n 1 and p 1 in Table 1 rep-

resents the WCET and is denoted as F 1 . w 1, 1 = 14. Section 4.1 ex-

plains the meaning of rank u , lowerbound , and deadline of Table 1 .

4. Certification and framework

4.1. Lower-bound and deadline

The HEFT algorithm is the most popular single DAG-based func-

tion scheduling algorithm for reducing makespan to a minimum

while achieving low complexity and high performance in heteroge-

neous distributed systems [8] . The two-phase HEFT algorithm has

two important contributions.

First, the HEFT algorithm uses the upward rank value (rank u) of

a task given by Eq. (1) as the common task priority standard. In

this case, the tasks are ordered according to the decreasing order

of rank u . Table 1 shows the upward rank values of all the tasks
 Fig. 2), which are obtained with Eq. (1) :

ank u (n i) = w i + max
n j ∈ succ(n i)

{ c i, j + rank u (n j) } . (1)

Second, the attributes EST (n j , p k) and EFT (n j , p k) represent the

arliest start time (EST) and the EFT, respectively, of task n j on pro-

essor p k . EFT (n j , p k) is considered the common task allocation cri-

erion because it can meet the local optimal of each precedence-

onstrained task by using the greedy policy. The aforementioned

G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14 7

a⎧⎨
⎩

a

E

a

f

i

i

s

T

b

f

a

b

r

f

t

f

t

g

t

a

F

w

p

b

h

a

c

f

b

4

m

d

p

l

(

(

(

s

(

Fig. 3. Scheduling framework of multiple distributed mixed-criticality functions.

n

h

s

g

d

t

(

c

F

f

a

T

m

F
ttributes are calculated as follows:

EST (n entry , p k) = 0 ;
EST (n j , p k) = max

(
a v ail[p k] , max

n i ∈ pred(n j)
{ AF T (n

i
) + c

′
i, j

}
)

;

(2)

nd

F T (n j , p k) = EST (n j , p k) + w j,k . (3)

vail [p k] is the earliest available time when processor p k is ready

or task execution. AFT (n i)is the actual finish time of task n i . n j
s allocated to the processor with the minimum EFT by using the

nsertion-based scheduling policy that n j can be inserted into the

lack with the minimum EFT.

High-criticality functions have strict real-time requirements.

herefore, a convincing standard algorithm needs to be employed

y CAs to assess the lower-bound of a distributed mixed-criticality

unction. The lower-bound refers to the minimum makespan of

 function when all processors are monopolized by the function

y using the standard single DAG-based function scheduling algo-

ithm. As a known algorithm with low complexity and high per-

ormance, the HEFT algorithm can be and should be selected as

he standard algorithm for certifying distributed mixed-criticality

unctions. The present study uses the HEFT algorithm as the cer-

ification algorithm to explain the certification process (other al-

orithms can be easily selected and employed as an alternative to

he HEFT algorithm). The lower-bound of function F m

is calculated

s

 m

.lowerbound = AF T (F m

.n exit) , (4)

here F m

.n exit represents the exit task of F m

. Moreover, the CA also

rovides a deadline for each function on the basis of the lower-

ound and actual physical time requirement obtained after the

azard analysis and risk assessment. Note that the concrete hazard

nalysis and risk assessment are not discussed in this paper be-

ause our main focus is scheduling; that is, the deadline of each

unction has been obtained in advance. Table 1 lists the lower-

ound and deadline of each function of the motivating example.

.2. Scheduling framework

We present the scheduling framework of multiple distributed

ixed-criticality functions for heterogeneous distributed embed-

ed systems (Fig. 3). The scheduling framework comprises three

riority queues, namely, task priority, common ready, and task al-

ocation queues.

1) In the task priority queue (task _ pr ior ity _ queue) of each func-

tion, tasks are ordered according to decreasing rank u (n i) .

2) In the common ready queue (common _ ready _ queue) of systems

for storing ready tasks (selecting one ready task with maximum

rank u from each function), tasks are also ordered according to

decreasing rank u (n i) .

3) The task allocation queue (task _ al l ocation _ queue) of each pro-

cessor is for storing allocated tasks.

We present a round-robin fairness policy on the basis of the

cheduling framework. Each step in the proposed fairness policy

 Fig. 3) is described as follows:

Step (1) Task priority: Put the tasks of each function into the

corresponding task priority queue task _ pr ior ity _ queue ac-

cording to the decreasing order of rank u (n i) .

Step (2) Task ready with fairness policy: Select the ready tasks

with the highest rank u (n i) from each function, and put them

into the common _ ready _ queue according to the decreasing

order of rank u (n) .
i
Step (3) Task allocation with fairness policy: Select a task with

the highest rank u (n i) from the common _ ready _ queue, and put

it into the task allocation queue of the processor p k (denoted

as task _ al l ocation _ queue (p k)) with minimum EFT (n i , p k) us-

ing the insertion-based scheduling policy.

Step (4) Task execution: Execute these tasks on their corre-

sponding processors after assigning them to the task allo-

cation queues.

This study proposes a scheduling algorithm called the fair-

ess of multiple heterogeneous earliest finish time (F_MHEFT) for

eterogeneous distributed embedded systems. The steps are de-

cribed in Algorithm 1 . The time complexity of the F_MHEFT al-

orithm is analyzed as follows. All functions must be traversed

uring scheduling. This requirement can be fulfilled in O(| MS |)

ime. All the tasks of a function can be scheduled in O(N max) time

 N max = max (| F 1 .N| , | F 2 .N| , ..., | F | MS| .N|)). The EFT values of all tasks

an be computed in O(N max × | P |) time. Thus, the complexity of the

_MHEFT algorithm is O(| MS| × N

2
max × | P |).

Fig. 4 shows the scheduling process of the F_MHEFT algorithm

or the motivating example. Accordingly, Table 2 shows the task

llocation steps, each of which indicates a fairness for all functions.

he overall makespan of the system is 100; however, all functions

iss their deadlines.

The similar method for minimization of individual functions is

DWS [17] . The main difference between FDWS and F_MHEFT in

8 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

Fig. 4. Scheduling result of the F_MHEFT algorithm for the motivating example.

Algorithm 1 F_MHEFT Algorithm

Input: P = { p 1 , p 2 , ..., p | P| } , MS = { F 1 , F 2 , ..., F | MS| }
Output: { F 1 .makespan, F 2 .makespan, ..., F | MS| .makespan } ,

MS.makespan

1: Calculate rank u for all tasks of all functions in MS, and put

these tasks into corresponding task _ pr ior ity _ queue (F m

) ;

2: while (there are tasks to be allocated) do

3: for (m = 1 ; m < = | MS|; m + +) do

4: n i = task _ pr ior it y _ queue (F m

) .out () ;

5: common _ ready _ queue.put(n i) ; //select one task from each

task priority queue, and put it into the common ready

queue;

6: end for

7: while (! common _ ready _ queue.empty ()) do

8: n i = common _ ready _ queue.out() ; //select one task from the

common ready queue to be allocated

9: assign n i to task _ al l ocation _ queue (p k) the minimum EFT

using the insertion-based scheduling policy;

10: end while

11: end while

Table 2

Task allocation steps of the F_MHEFT algorithm for the motivat-

ing example.

Step Task allocation

1 F 3 . n 1 , F 1 . n 1 , F 2 . n 1
2 F 3 . n 2 , F 1 . n 3 , F 2 . n 4
3 F 1 . n 4 , F 3 . n 3 , F 2 . n 3
4 F 1 . n 2 , F 3 . n 5 , F 2 . n 2
5 F 1 . n 5 , F 3 . n 4 , F 2 . n 5
6 F 1 . n 6 , F 3 . n 6
7 F 1 . n 9
8 F 1 . n 7
9 F 1 . n 8
10 F 1 . n 10

m

t

f

o

5

o

o

y

a

D

r

f

F

t

o

d

w

T

E

F

t

a

5

s

e

o

a

A

O

r

i

w

s

c

i

m

f

o

c

f

l

static scheduling is that FDWS and F_MHEFT select the task with

highest rank r (n i) (Eq. (5)) and rank u (n i) from the common ready

queue, respectively, in Step (3) of Fig. 3 :

ran k r (F m

. n i) =

1

P RT (F m

)
× 1

CP L (F m

)
, (5)

where PRT (F m

) and CPL (F m

) represent the percentage of remain-

ing task (PRT) number and the critical path length (CPL) of the

function F m

, respectively. We will see that F_MHEFT would outper-

form FDWS on large-scale function sets in experiments. Moreover,

F_MHEFT is the basis of our subsequent works to reduce DMR.

5. Mixed-criticality scheduling

We can use the F_MHEFT algorithm (Algorithm 1) to schedule

all functions with different criticality levels and achieve a short
akespan. However, the deadlines of many high-criticality func-

ions may be missed. To meet the deadlines of high-criticality

unctions and reduce the DMRs of systems, a novel solution based

n F_MHEFT is proposed and discussed in this section.

.1. Deadline-span

The CA uses the HEFT algorithm to generate the lower-bounds

f functions and provides a deadline for each function on the basis

f the lower-bound of the function obtained after the hazard anal-

sis and risk assessment. Each task should have a lower-bound and

 deadline. The following definition is provided as an explanation.

efinition 1. (Deadline-span) The deadline-span of a function rep-

esents the value of the deadline minus the lower-bound of the

unction, that is,

 m

.d ead linespan = F m

.d ead line − F m

.lowerbound. (6)

F m

.deadline and F m

.lowerbound are provided and calculated by

he CA; thus, F m

.deadlinespan can be obtained easily. The deadline

f task n i (n i ∈ F m

) can then be generated. Thus,

 ead line (F m

.n i) = lowerbound(F m

.n i) + F m

.d ead linespan, (7)

here lowerbound(F m

.n i) = AF T (F m

.n i) for certification.

he deadline-spans of all functions are obtained using

q. (6) (F 1 .d ead linespan = 10 , F 2 .d ead linespan = 10 , and

 3 .d ead linespan = 10) of the motivating example. Thereafter,

he deadlines of all tasks are calculated using Eq. (7) . Table 3 , 4 ,

nd 5 show all the values.

.2. The D_MHEFT algorithm

On the basis of the analysis in Section 5.1 , we propose a

cheduling algorithm called the deadline-span of mutliple het-

rogeneous earliest finish time (D_MHEFT) to meet the deadlines

f high-criticality functions and consequently achieve low DMR

nd satisfactory system performance. The steps are described in

lgorithm 2 .

The time complexity of the D_MHEFT algorithm should be

(| MS| × N

2
max × | P |), which is equal to that of the F_MHEFT algo-

ithm. In other words, changing the systems criticality does not

ncrease the time complexity. A function can be scheduled only

hen its criticality is higher than or equal to the criticality of the

ystem. The D_MHEFT algorithm is driven by the change in the

riticality of the system. The main idea of the D_MHEFT algorithm

s that when the deadline of any high-criticality function cannot be

et, the system’s criticality is changed up to the criticality of the

unction. Then, only functions whose criticality levels are equal to

r larger than the system’s criticality are scheduled. The system’s

riticality is changed down to the lowest criticality level after the

unction is scheduled complected. Finally, the remaining tasks of

ow-criticality functions are scheduled.

G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14 9

Table 3

Lower-bounds and deadlines of tasks in the F 1 function.

Tasks F 1 . n 1 F 1 . n 2 F 1 . n 3 F 1 . n 4 F 1 . n 5 F 1 . n 6 F 1 . n 7 F 1 . n 8 F 1 . n 9 F 1 . n 10

Lower-bound 9 40 28 26 38 42 49 62 68 80

Deadline 19 50 38 36 48 52 59 72 78 90

Fig. 5. MS.criticality = S 0 ; the tasks of functions F 1 , F 2 , and F 3 are scheduled with the fairness policy until makespan (F 2 . n 3) > deadline (F 2 . n 3).

Algorithm 2 D_MHEFT Algorithm

Input: P = { p 1 , p 2 , ..., p | P| } , MS = { F 1 , F 2 , ..., F | MS| }
Output: { F 1 .makespan, F 2 .makespan, ..., F | MS| .makespan } ,

MS.makespan

1: Calculate rank u for all tasks of all functions in MS, and put

these tasks into corresponding task _ pr ior ity _ queue (F m

) ;

2: MS.criticality = S 0 ;

3: while (there are tasks to be allocated) do

4: for (m = 1 ; m < = | MS|; m + +) do

5: if (F m

.criticality < MS.criticality) then

6: continue;

7: end if

8: n i = task _ pr ior it y _ queue (F m

) .out () ;

9: common _ ready _ queue.put(n i) ; //select one task from each

task priority queue, and put it into the common ready

queue;

10: end for

11: while (! common _ ready _ queue.empty ()) do

12: F m

.n i = common _ ready _ queue.out() ; //select one task from

the common ready queue to be allocated;

13: Assign F m

.n i to task _ al l ocation _ queue (p k) with the mini-

mum EFT using the insertion-based scheduling policy;

14: if (makespan (F m

.n i) > d ead line (F m

.n i) && F m

.criticality >

MS.criticality) then

15: Cancel the allocation of tasks in this round except for the

tasks in scheduled completed functions;

16: Put the cancelled tasks back to individual task priority

queues;

17: Clear the tasks in the common ready queue and put

them back to individual task priority queues;

18: Change the criticality of the system to the criticality of

F m

, namely, MS.criticality = F m

.criticality .

19: end if

20: if (F m

is the function causing the criticality of the system

to be changed up and F m

is scheduled completed) then

21: Clear the tasks in the common ready queue and put

them back to individual task priority queues.

22: Change the criticality of the system to S 0 , namely,

MS.criticality = S 0 .

23: end if

24: end while

25: end while

Table 4

Lower-bounds and deadlines of tasks in the F 2 function.

Task F 2 . n 1 F 2 . n 2 F 2 . n 3 F 2 . n 4 F 2 . n 5

Lower-bound 4 20 22 21 36

Deadline 14 30 32 31 46

Table 5

Lower-bounds and deadlines of tasks in the F 3 function.

Task F 3 . n 1 F 3 . n 2 F 3 . n 3 F 3 . n 4 F 3 . n 5 F 3 . n 6

Lower-bound 8 22 31 36 49 54

Deadline 18 32 41 46 59 64

a

F

t

>

F

c

r

t

c

M

(

a

s

4

l

M

F

m

(

r

p

M

(

s

F

F

Figs. 5 –9 show the scheduling steps and results of the D_MHEFT

lgorithm for the motivating example.

In Fig. 5 with MS.criticality = S 0 , the tasks (F 3 . n 1 , F 1 . n 1 , F 2 . n 1 ,

 3 . n 2 , F 1 . n 3 , F 2 . n 4 , F 1 . n 4 , F 3 . n 3 , and F 2 . n 3) of F 1 , F 2 , and F 3 func-

ions are scheduled with the fairness policy until makespan (F 2 . n 3)

 deadline (F 2 . n 3). Thereafter, the allocated tasks (i.e., F 3 . n 2 , F 1 . n 3 ,

 2 . n 4 , F 1 . n 4 , F 3 . n 3 , and F 2 . n 3) (denoted as shadowgraphs) in the

urrent and previous rounds is cancelled. Given that the current

ound is not completed, the next round would still be the alloca-

ion of current round if the allocation of current round is merely

ancelled. Hence, in this case, the two rounds need to be cancelled.

Fig. 6 shows that the criticality of the system is changed up to

S.criticality = S 2 because F 2 .criticality = S 2 . Thereafter, the tasks

i.e., F 1 . n 3 , F 2 . n 4 , F 1 . n 4 , F 2 . n 3 , F 1 . n 2 , F 2 . n 2 , F 1 . n 5 , and F 2 . n 5) of F 1
nd F 2 functions are scheduled with the fairness policy until all the

cheduled tasks of F 2 are allocated. In this mode, F 2 .makespan =
4 , which is less than F 2 .d ead line = 46 . Hence, F 2 meets its dead-

ine and is safe.

Fig. 7 shows that the system criticality is changed down to

S.criticality = S 0 . Thereafter, the tasks (i.e., F 3 . n 2 and F 1 . n 6) of

 1 and F 3 functions are scheduled with the fairness policy until

akespan (F 1 . n 6) > deadline (F 1 . n 6). Thereafter, the allocated tasks

e.g., F 1 . n 5 , F 3 . n 2 , and F 1 . n 6) (denoted as shadowgraphs) in the cur-

ent and previous rounds is cancelled. Note that F 2 has been com-

leted, and its tasks cannot be cancelled.

Fig. 8 shows that the criticality of the system is changed up to

S.criticality = S 3 because F 1 .criticality = S 3 . Thereafter, the tasks

i.e., F 1 . n 5 , F 1 . n 6 , F 1 . n 9 , F 1 . n 7 , F 1 . n 8 , and F 1 . n 10) of F 1 function are

cheduled with the fairness policy until all the scheduled tasks of

 1 are allocated. In this mode, F 1 .makespan = 89 , which is less than

 .d ead line = 90 . Hence, F meets its deadline and is safe.
1 1

10 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

Fig. 6. The criticality level of the system is changed up to MS.criticality = S 2 . The tasks of the F 1 and F 2 functions are scheduled with the fairness policy until all the

scheduled tasks of F 2 are allocated.

Fig. 7. System criticality is changed down to MS.criticality = S 0 . The tasks of the F 1 and F 3 functions are scheduled with the fairness policy until makespan (F 1 . n 6) >

deadline (F 1 . n 6).

Fig. 8. The criticality level of the system is changed up to MS.criticality = S 3 . The tasks of the F 1 function are scheduled until all the scheduled tasks of F 1 are allocated.

Fig. 9. System criticality is changed down to MS.criticality = S 0 . The tasks of the F 3 function are scheduled with the fairness policy.

g

i

t

l

F

D

a

Fig. 9 shows that the system criticality is changed down to

MS.criticality = S 0 . Thereafter, the tasks (i.e., F 3 . n 2 , F 3 . n 3 , F 3 . n 5 ,

F 3 . n 4 , and F 3 . n 6) of F 3 function are scheduled with the fairness

policy. Considering that the criticality of F 3 is S 0 , it cannot be

changed up. Thereafter, for F 3 , F 3 .makespan = 105 , which is larger

than F 3 .d ead line = 64 . Hence, F 3 misses its deadline; however, it is

a non-safety function and will not cause fatal injuries to people in

this situation.
On the basis of the results of the F_MHEFT and D_MHEFT al-

orithms for the motivating example, we can make the follow-

ng observations. (1) The F_MHEFT algorithm has a short sys-

em makespan value of 100, but all functions miss their dead-

ines. (2) The D_MHEFT algorithm meets the deadline of F 1 and

 2 and still has a satisfactory system makespan of 105. (3) The

_MHEFT algorithm has the same time complexity as the F_MHEFT

lgorithm.

G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14 11

Table 6

DMRs for varying numbers of functions using FDWS, F_MHEFT, and D_MHEFT.

Algorithms FDWS F_MHEFT D_MHEFT

Criticality levels S 0 S 1 S 2 S 3 S 0 S 1 S 2 S 3 S 0 S 1 S 2 S 3

| MS| = 40 0 .8 0 .4 0 .6 0 .8 0 .7 0 .7 0 .6 0 .5 0 .7 0 .6 0 .7 0 .2

| MS| = 80 0 .6 0 .65 0 .7 0 .55 0 .75 0 .65 0 .85 0 .6 0 .85 0 .5 0 .5 0 .2

| MS| = 160 1 .0 0 .975 0 .95 0 .95 0 .975 0 .975 1 .0 1 .0 1 .0 0 .925 0 .775 0 .375

| MS| = 320 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .55

| MS| = 640 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .9875

6

6

o

M

D

w

c

t

u

a

t

s

p

d

o

4

a

v

i

m

6

m

t

n

o

t

a

F

[

t

i

a

i

l

s

w

f

t

t

|

F

0

Table 7

Overall makespans (μs) for varying numbers of

functions using FDWS, F_MHEFT, and D_MHEFT.

Algorithms FDWS F_MHEFT D_MHEFT

| MS| = 20 7286 7450 7166

| MS| = 40 7256 7090 7179

| MS| = 60 8306 7879 9721

| MS| = 80 10,058 9599 13,717

| MS| = 100 15,265 14,936 22,269

f

f

a

s

e

t

r

D

p

l

b

t

t

S

c

a

o

D

i

S

u

H

s

M

r

t

f

r

a

F

d

a

t

t

t

t
. Performance evaluation

.1. Experimental metrics

The performance metrics selected for comparison are the DMR

f functions [11] and overall makespan of systems [17] .

Overall makespan is given by

S.makespan = max
F m ∈ MS

{ F m

.makespan } . (8)

DMR is calculated using

M R (S x) =

| M S miss (S x) |
| M S(S x) | , (9)

here | MS miss (S x)| represents the number of the functions with

riticality level S x missing their deadlines and | MS (S x)| represents

he number of all the functions with criticality level S x .

We implemented the simulated CAN clusters with four buses

sing Java on a standard desktop computer. Considering that there

re at least about 70 ECUs in a luxury car [1] , this platform con-

ains 100 ECUs and can generate and run a variety of functions

amples with different criticality levels (including active safety,

assive safety, and non-safety functions). Function samples are ran-

omly generated depending on the following realistic parameters

f automotive functions. 10 0 μs ≤ w i, k ≤ 40 0 μs , 10 0 μs ≤ c i, j ≤
00 μs , 8 ≤ | N | ≤ 30. Three algorithms (i.e., FDWS [17] , F_MHEFT,

nd D_MHEFT) are used for the experiment and then compared for

erification. The reason for choosing the FDWS algorithm is that it

s a state-of-the-art fairness algorithm that minimizes individual

akespans of functions.

.2. Experimental results

Experiment 1 . This experiment is to compare the overall

akespans and DMRs on different scale function sets. Func-

ion samples are randomly selected from the sample space. The

umber of functions is changed from 40 to 640. The number

f functions reflects the workload of the systems. These func-

ions are evenly distributed to four criticality levels (S 0 , S 1 , S 2 ,

nd S 3). The deadline-span of each function F m

is calculated as

 m

.d ead linespan = F m

.lowerbound/ 40 . Three algorithms (i.e., FDWS

17] , F_MHEFT, and D_MHEFT) are used for the experiment and

hen compared for verification.

Table 6 shows the DMRs for varying numbers of functions us-

ng the three algorithms. In overall, D_MHEFT generates consider-

bly lower DMRs than FDWS and F_MHEFT in all cases. Specifical-

ty, the DMRs are extremely high (at least 0.95 for all the criticality

evels) for FDWS and F_MHEFT in middle and large-scale function

ets (more than 160 functions). Moreover, all the results reach 1.0

hen the function number reaches or exceeds 320. The DMRs of

unctions with S 3 generated by D_MHEFT are always much lower

han FDWS and F_MHEFT. In other words, D_MHEFT can meet

he deadlines of more active-safety functions. For example, when

 MS| = 160 and | MS| = 320 , the DMRs generated by FDWS and

_MHEFT are 1.0, whereas those generated by D_MHEFT are merely

.375 and 0.5, respectively.
Table 7 shows the overall makespans for varying numbers of

unctions using the three algorithms. Except for the small-scale

unction sets (| MS| = 20), F_MHEFT outperform FDWS in middle

nd large-scale function sets. Similarly, except for the case of

mall-scale (| MS| = 20 and | MS| = 40), Both FDWS and F_MHEFT

xhibits better performance than D_MHEFT. In other words, with

he large number of functions exist in systems, F_MHEFT is supe-

ior than FDWS and D_MHEFT.

According to the results of Table 6 and 7 , it is verified that

_MHEFT can significantly reduce the DMR by sacrificing certain

erformance.

Experiment 2 . Given that the system cannot meet the dead-

ines of all the functions with S 3 in Experiment 1, the num-

er of such functions should be reduced. In this experiment,

he total number of functions is fixed with 320. These func-

ions are first evenly distributed to four criticality levels (S 0 , S 1 ,

 2 , and S 3), then partial functions with the criticality level S 3 is

hanged to S 0 . The deadline-span of each function F m

is still fixed

s F m

.d ead linespan = F m

.lowerbound/ 40 . Considering that F_MHEFT

utperforms FDWS in the previous experiments, only F_MHEFT and

_MHEFT are used for the experiment and then compared for ver-

fication.

Table 8 shows the DMRs for varying numbers of functions with

 0 and S 3 using the F_MHEFT and D_MHEFT algorithms. The DMRs

sing F_MHEFT are always 1.0 in all different criticality levels .

owever, the DMR of functions with S 3 using D_MHEFT is reduced

tep by step. When the number is reduced to 10, the DMR is 0.

eanwhile, the DMR of functions with S 2 using D_MHEFT are also

educed from 1.0 to 0.6875. That is, we implement the objective

hat the system meet the deadlines of all the functions with S 3 .

Table 9 shows the overall makespans for varying numbers of

unctions with S 0 and S 3 using the F_MHEFT and D_MHEFT algo-

ithms. We can see that the overall makespan using F_MHEFT is

lways fixed as 9686 μs . D_MHEFT generate longer makespan than

_MHEFT, and the differences are relative values (3808- 5355 μs).

This experiment indicates that D_MHEFT can significantly re-

uce the DMR and keep satisfactory performance.

Experiment 3 . Another method for meeting the deadlines of

ll the functions with S 3 is modifying the deadline-span. Hence,

his experiment aims to modify the deadline-span of each func-

ion to observe the results. In this experiment, the number of func-

ions is fixed with 320. These functions are also evenly distributed

o four criticality levels (S , S , S , and S). The deadline-span of
0 1 2 3

12 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

Table 8

DMRs for varying numbers of functions with S 0 and S 3 using F_MHEFT and D_MHEFT.

Algorithms F_MHEFT D_MHEFT

Criticality levels S 0 S 1 S 2 S 3 S 0 S 1 S 2 S 3

| MS(S 0) | = 80 , | MS(S 1) | = 80 , | MS(S 2) | = 80 , | MS(S 3) | = 80 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .6625

| MS(S 0) | = 100 , | MS(S 1) | = 80 , | MS(S 2) | = 80 , | MS(S 3) | = 60 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .975 0 .5666

| MS(S 0) | = 120 , | MS(S 1) | = 80 , | MS(S 2) | = 80 , | MS(S 3) | = 40 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .9375 0 .35

| MS(S 0) | = 140 , | MS(S 1) | = 80 , | MS(S 2) | = 80 , | MS(S 3) | = 20 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .8 0 .1

| MS(S 0) | = 150 , | MS(S 1) | = 80 , | MS(S 2) | = 80 , | MS(S 3) | = 10 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .6875 0 .0

Table 9

Overall makespans (μs) for varying numbers of functions with S 0 and S 3 using F_MHEFT and D_MHEFT.

Algorithms F_MHEFT D_DMHEF DIFFERENCES

| MS(S 0) | = 80 , | MS(S 1) | = 80 , | MS(S 2) = | 80 , | MS(S 3) | = 80 9686 14,089 4403

| MS(S 0) | = 100 , | MS(S 1) | = 80 , | MS(S 2) = | 80 , | MS(S 3) | = 60 9686 15,041 5355

| MS(S 0) | = 120 , | MS(S 1) | = 80 , | MS(S 2) = | 80 , | MS(S 3) | = 40 9686 14,593 4907

| MS(S 0) | = 140 , | MS(S 1) | = 80 , | MS(S 2) = | 80 , | MS(S 3) | = 20 9686 14,586 4900

| MS(S 0) | = 150 , | MS(S 1) | = 80 , | MS(S 2) = | 80 , | MS(S 3) | = 10 9686 13,494 3808

Table 10

DMRs for varying deadline-spans using F_MHEFT and D_MHEFT.

Algorithm F_MHEFT D_MHEFT

Criticality S 0 S 1 S 2 S 3 S 0 S 1 S 2 S 3

F m .d ead linespan = F m .lowerbound/ 40 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .7125

F m .d ead linespan = F m .lowerbound/ 30 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .6125

F m .d ead linespan = F m .lowerbound/ 20 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .55

F m .d ead linespan = F m .lowerbound/ 10 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .3

F m .d ead linespan = F m .lowerbound/ 5 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .8625 0 .1125

Table 11

Overall makespans (μs) for varying deadline-spans using F_MHEFT and D_MHEFT.

Algorithm F_DMHEFT D_DMHEFT DIFFERENCES

F m .d ead linespan = F m .lowerbound/ 40 9805 13,966 4161

F m .d ead linespan = F m .lowerbound/ 30 9805 13,822 4017

F m .d ead linespan = F m .lowerbound/ 20 9805 13,980 4175

F m .d ead linespan = F m .lowerbound/ 10 9805 14,089 4284

F m .d ead linespan = F m .lowerbound/ 5 9805 14,089 4284

7

D

t

m

d

i

i

t

t

i

h

o

c

A

a

h
each function F m

is gradually changed from F m

.lowerbound /40 to

F m

.lowerbound /5. Two algorithms (i.e., F_MHEFT and D_MHEFT) are

used for the experiment and then compared for verification.

Table 10 shows the DMRs for varying deadline-spans us-

ing the F_MHEFT and D_MHEFT algorithms. The DMR values

using F_MHEFT are always 1.0 in all the cases. However, the

DMRs of functions with S 3 using D_MHEFT are reduced step by

step. When the deadline-span is reduced to F m

.d ead linespan =
F m

.lowerbound/ 5 , the DMR of functions with S 3 is merely 0.1125;

meanwhile, the DMR of functions with S 2 is also reduced to

0.8625. By expanding the deadline-span, we implement the objec-

tive that the system meet the deadlines of more functions with S 3 .

Table 11 shows the overall makespans for varying deadline-

spans using the F_MHEFT and D_MHEFT algorithms. The overall

makespan using F_MHEFT is always fixed as 9805 μs . We can see

that D_MHEFT generate longer makespan than F_MHEFT. The dif-

ferences (4017-4284 μs) are also relatively stable.

This experiment also indicates that D_MHEFT can significantly

reduce the DMR and keep satisfactory performance. Considering

that changing the deadline-span of a function is actually chang-

ing its deadline, D_MHEFT can provide certain design guideline to

deadline certification in actual system design.
s
. Conclusions

We develop a novel functional level scheduling algorithm called

_MHEFT with a deadline-span-driven policy to achieve satisfac-

ory system performance and low DMR of multiple distributed

ixed-criticality functions in heterogeneous distributed embed-

ed systems. The D_MHEFT algorithm is implemented by chang-

ng up or down the system’s criticality to achieve fair schedul-

ng of functions whose criticality levels are larger than or equal

o the system’s criticality. The extensive experiments conducted in

his study demonstrate that the D_MHEFT algorithm achieves sat-

sfactory overall makespan when meeting the deadlines of more

igh-criticality functions compared with existing methods. More-

ver, D_MHEFT can provide certain design guideline to deadline

ertification in actual system design.

cknowledgments

The authors would like to express their gratitude to the

nonymous reviewers for their constructive comments which have

elped to improve the quality of the paper. This study was partially

upported by the National High-Tech Research and Development

G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14 13

P

o

6

w

S

f

R

[

[

[

[

[

[

[

[

[

[

[
lan of China with Grant No. 2012AA01A301-01, the Key Program

f National Natural Science Foundation of China with Grant No.

1432005 , and the National Natural Science Foundation of China

ith Grant Nos. 61173036 and 61370095 .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.sysarc.2016.04.008

eferences

[1] G. Xie , R. Li , K. Li , Heterogeneity-driven end-to-end synchronized scheduling
for precedence constrained tasks and messages on networked embedded sys-

tems, J. Parallel Distr. Comput. 83 (2015) 1–12 .
[2] D. Goswami , R. Schneider , A. Masrur , M. Lukasiewycz , S. Chakraborty , H. Voit ,

A. Annaswamy , Challenges in automotive cyber-physical systems design, in:

Embedded Computer Systems (SAMOS), 2012 International Conference on,
IEEE, 2012, pp. 346–354 .

[3] M.D. Natale , A. Sangiovanni-Vincentelli , Moving from federated to integrated
architectures in automotive: the role of standards, methods and tools, Proc.

IEEE 98 (4) (2010) 603–620 .
[4] S. Baruah , H. Li , L. Stougie , Towards the design of certifiable mixed-critical-

ity systems, in: Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), 2010 16th IEEE, IEEE, 2010, pp. 13–22 .
[5] I. ISO , 26262–road vehicles-functional safety, ISO Standard (2011) .

[6] M. Zeller , C. Prehofer , G. Weiss , D. Eilers , R. Knorr , Towards self-adaptation
in real-time, networked systems: efficient solving of system constraints for

automotive embedded systems, in: Self-Adaptive and Self-Organizing Systems
(SASO), 2011 Fifth IEEE International Conference on, IEEE, 2011, pp. 79–88 .

[7] P. Heinrich , C. Prehofer , Network-wide energy optimization for adaptive em-

bedded systems, ACM SIGBED Rev. 10 (1) (2013) 33–36 .
[8] H. Topcuoglu , S. Hariri , M.-y. Wu , Performance-effective and low-complexity

task scheduling for heterogeneous computing, Parallel Distr. Syst IEEE Trans.
13 (3) (2002) 260–274 .

[9] H. Zeng , M. Di Natale , P. Giusto , A. Sangiovanni-Vincentelli , Stochastic analysis
of can-based real-time automotive systems, Indus. Inf. IEEE Trans. 5 (4) (2009)

388–401 .

[10] H. Zeng , M.D. Natale , A. Ghosal , A. Sangiovanni-Vincentelli , Schedule optimiza-
tion of time-triggered systems communicating over the flexray static segment,

Indus. Inf. IEEE Trans. 7 (1) (2011) 1–17 .
[11] S. Manolache , P. Eles , Z. Peng , Task mapping and priority assignment for soft

real-time applications under deadline miss ratio constraints, ACM Trans. Em-
bedded Comput. Syst. (TECS) 7 (2) (2008) 19 .

[12] M.A. Khan , Scheduling for heterogeneous systems using constrained critical
paths, Parallel Comput. 38 (4) (2012) 175–193 .

[13] H. Arabnejad , J.G. Barbosa , List scheduling algorithm for heterogeneous sys-

tems by an optimistic cost table, Parallel Distr. Sys. IEEE Trans. 25 (3) (2014)
682–694 .

[14] U. Hönig , W. Schiffmann , A meta-algorithm for scheduling multiple dags in
homogeneous system environments, in: Proceedings of the Eighteenth IASTED

International Conference on Parallel and Distributed Computing and Systems
(PDCS06), 2006 .

[15] H. Zhao , R. Sakellariou , Scheduling multiple dags onto heterogeneous systems,

in: Parallel and Distributed Processing Symposium, 2006 (IPDPS 2006) 20th
International, IEEE, 2006, pp. 14–pp .
[16] C.-C. Hsu , K.-C. Huang , F.-J. Wang , Online scheduling of workflow applications
in grid environments, Future Gener. Comput. Syst. 27 (6) (2011) 860–870 .

[17] H. Arabnejad , J. Barbosa , Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems, in: Parallel and Distributed Processing

with Applications (ISPA), 2012 IEEE 10th International Symposium on, IEEE,
2012, pp. 633–639 .

[18] S. Vestal , Preemptive scheduling of multi-criticality systems with varying de-
grees of execution time assurance, in: Real-Time Systems Symposium, 2007

(RTSS 2007) 28th IEEE International, IEEE, 2007, pp. 239–243 .

[19] J. Anderson , S. Baruah , B.B. Brandenburg , Multicore operating-system support
for mixed criticality, in: Proceedings of the Workshop on Mixed Criticality:

Roadmap to Evolving UAV Certification, Citeseer, 2009 .
20] M.S. Mollison , J.P. Erickson , J.H. Anderson , S.K. Baruah , J.A. Scoredos , Mixed–

criticality real-time scheduling for multicore systems, in: Computer and In-
formation Technology (CIT), 2010 IEEE 10th International Conference on, IEEE,

2010, pp. 1864–1871 .

[21] N. Guan , P. Ekberg , M. Stigge , W. Yi , Effective and efficient scheduling of certifi-
able mixed-criticality sporadic task systems, in: Real-Time Systems Symposium

(RTSS), 2011 IEEE 32nd, IEEE, 2011, pp. 13–23 .
22] S. Baruah , V. Bonifaci , G. D’Angelo , H. Li , A. Marchetti-Spaccamela , S. Van Der

Ster , L. Stougie , The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems, in: Real-Time Systems (ECRTS), 2012

24th Euromicro Conference on, IEEE, 2012, pp. 145–154 .

23] S. Abrishami , M. Naghibzadeh , D.H. Epema , Cost-driven scheduling of grid
workflows using partial critical paths, Parallel Distr. Syst. IEEE Trans. 23 (8)

(2012) 1400–1414 .
24] S. Abrishami , M. Naghibzadeh , D.H. Epema , Deadline-constrained workflow

scheduling algorithms for infrastructure as a service clouds, Future Gener.
Comput. Syst. 29 (1) (2013) 158–169 .

25] M. Mao , M. Humphrey , Auto-scaling to minimize cost and meet application

deadlines in cloud workflows, in: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ACM,

2011, p. 49 .
26] W. Wang , Q. Wu , Y. Tan , F. Wu , Maximize throughput scheduling and cost-fair-

ness optimization for multiple dags with deadline constraint, in: Algorithms
and Architectures for Parallel Processing, Springer, Cham, Switzerland, 2015,

pp. 621–634 .

[27] M. Hu , J. Luo , Y. Wang , B. Veeravalli , Scheduling periodic task graphs for safe-
ty-critical time-triggered avionic systems, IEEE Trans. Aerosp. Electron. Syst. 51

(2015) .
28] D. T ̆ama ̧s -Selicean , P. Pop , Optimization of time-partitions for

mixed-criticality real-time distributed embedded systems, in: Ob-
ject/Component/Service-Oriented Real-Time Distributed Computing Workshops

(ISORCW), 2011 14th IEEE International Symposium on, IEEE, 2011, pp. 1–10 .

29] D.T. Selicean , P. Pop , Design optimization of mixed-criticality real-time appli-
cations on cost-constrained partitioned architectures, in: Real-Time Systems

Symposium (RTSS), 2011 IEEE 32nd, IEEE, 2011, pp. 24–33 .
30] D. T ̆ama ̧s -Selicean , P. Pop , W. Steiner , Design optimization of ttethernet-based

distributed real-time systems, Real-Time Systems 51 (1) (2015) 1–35 .
[31] D. T ̆ama ̧s -Selicean , P. Pop , Design optimization of mixed-criticality real-time

embedded systems, ACM Trans. Embedded Comput. Syst. (TECS) 14 (3) (2015)
50 .

32] V. Scheuch , G. Kaiser , M. Korte , P. Grabs , F. Kreft , F. Holzmann , A safe torque

vectoring function for an electric vehicle, in: Electric Vehicle Symposium and
Exhibition (EVS27), 2013 World, IEEE, 2013, pp. 1–10 .

33] P. Pop , P. Eles , Z. Peng , Analysis and optimisation of heterogeneous real-time
embedded systems, IEE Proc. Comput. Digital Tech. 152 (2) (2005) 130–147 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.1016/j.sysarc.2016.04.008
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30024-8/sbref0033

14 G. Xie et al. / Journal of Systems Architecture 70 (2016) 3–14

e from Hunan University, China, in 2014. He was a postdoctoral researcher at Nagoya

stdoctoral researcher at Hunan University, China, since 2015. His major interests include
rks, real-time systems, and cyber-physical systems.

ol of Engineering, Nagoya University. He received his Ph.D. degree in Information Science
was a researcher, and then assistant professor at the Center for Embedded Computing

ce, Nagoya University. His research interests mainly include power-aware computing and
EE and IPSJ.

iversity, China, in 2009. He is currently working toward the Ph.D. degree at Hunan Uni-

stems, distributed systems, and cyber-physical systems.

nic engineering, and the dean of College of Computer Science and Electronic Engineering,
oratory for Embedded and Network Computing of Hunan Province, China. He is also an

Center in Changsha, China. His major research includes embedded systems, distributed

er of IEEE, and a senior member of ACM.

science. His current research interests include parallel computing and high-performance
ting and communication, heterogeneous computing systems, cloud computing, big data

ulticore computing, storage and file systems, wireless communication networks, sensor
ting, service computing, Internet of things and cyber-physical systems. He has published

ference papers, and has received several best paper awards. He is currently or has served
 Distributed Systems , IEEE Transactions on Computers , IEEE Transactions on Cloud Computing ,

 fellow.
Guoqi Xie received his Ph.D. degree in computer scienc

University, Japan, from 2014 to 2015. He is currently a po
embedded systems, distributed systems, in-vehicle netwo

Gang Zeng is an associate professor at the Graduate Scho
from Chiba University in 2006. From 2006 to 2010, he

Systems (NCES), the Graduate School of Information Scien
real-time embedded system design. He is a member of IE

Liangjiao Liu received his master degree from Hunan Un

versity, China. His research interests include embedded sy

Renfa Li is a full professor of computer science and electro
Hunan University, China. He is the director of the Key Lab

expert committee member of National Supercomputing

systems, and cyber-physical systems. He is a senior memb

Keqin Li is a SUNY Distinguished professor of computer
computing, distributed computing, energy-efficient compu

computing, CPU-GPU hybrid and cooperative computing, m
networks, peer-to-peer file sharing systems, mobile compu

over 370 journal articles, book chapters, and refereed con
on the editorial boards of IEEE Transactions on Parallel and

Journal of Parallel and Distributed Computing . He is an IEEE

	High performance real-time scheduling of multiple mixed-criticality functions in heterogeneous distributed embedded systems
	1 Introduction
	1.1 Background
	1.2 Motivations
	1.3 Our contributions

	2 Related works
	2.1 High performance scheduling
	2.2 Real-time scheduling

	3 Modeling
	3.1 System architecture
	3.2 Criticality level
	3.3 Mixed-criticality function model
	3.4 Mixed-criticality systems model
	3.5 Motivating example

	4 Certification and framework
	4.1 Lower-bound and deadline
	4.2 Scheduling framework

	5 Mixed-criticality scheduling
	5.1 Deadline-span
	5.2 The D_MHEFT algorithm

	6 Performance evaluation
	6.1 Experimental metrics
	6.2 Experimental results

	7 Conclusions
	 Acknowledgments
	 Supplementary material
	 References

