
J. Parallel Distrib. Comput. 83 (2015) 1–12
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Heterogeneity-driven end-to-end synchronized scheduling for
precedence constrained tasks and messages on networked
embedded systems
Guoqi Xie a,b,∗, Renfa Li a,b, Keqin Li a,c
a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
b Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Introduce a completely heterogeneous network topology for accurate analysis on message and route.
• Make both the computation time and communication time relate to the specific processor.
• Consider the processor and route selection both from ‘‘upward’’ and ‘‘downward’’ comprehensively.
• Synchronize tasks and messages by the task earliest start time and the link finish time.
• End-to-end synchronized scheduling for tasks and messages for processor and route selection synchronously.

a r t i c l e i n f o

Article history:
Received 15 September 2014
Received in revised form
5 April 2015
Accepted 30 April 2015
Available online 7 May 2015

Keywords:
Heterogeneity
Networked embedded systems
DAG
Communication contention
Synchronized scheduling

a b s t r a c t

Scheduling for a directed acyclic graph (DAG) on networked embedded systems is to maximize concur-
rency and minimize inter-processor communication for minimum end-to-end worst-case response time
(WCRT). Time accuracy and synchronization are critical for scheduling on heterogeneous networked em-
bedded systems, where computing and networking are both heterogeneous and deeply jointed. Most
algorithms use the upward rank value for task prioritization, and the earliest finish time for processor
selection. In order to obtain accurate and efficient schedules in heterogeneous networked systems, the
above approaches can be improved. Moreover, synchronization with tasks and messages is critical for
end-to-end WCRT. However, task scheduling and message scheduling are isolated in most approaches
in communication contention environments. In this paper, a heterogeneity-driven task scheduling algo-
rithm called Heterogeneous Selection Value (HSV) based on the classicmodel, and a heterogeneity-driven
end-to-end synchronized scheduling algorithm called Heterogeneous Selection Value on Communication
Contention (HSV_CC) based on the communication contention model are proposed to address the above
problems. Both benchmark and extensive experimental evaluation demonstrate significant performance
improvement of the proposed algorithms.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Over the last few years, the increasing number of processors,
including sensors, actuators, and electronic control units (ECUs) in

∗ Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan, 410082, China.

E-mail addresses: xgqman@126.com (G. Xie), lirenfa@vip.sina.com.cn (R. Li),
lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.jpdc.2015.04.005
0743-7315/© 2015 Elsevier Inc. All rights reserved.
automobile, has increased the complexity of automotive electronic
systems. Several vehicle heterogeneous buses, such as controller
area network (CAN), FlexRay, Media Oriented System Transport
(MOST), and Ethernet [23,30], have been deployed in automobile
networks. Currently, there are at least about 70 ECUs with around
2500 signals in a luxury car [6,21]. Therefore, automobile electronic
systems are heterogeneous systems, where computation and com-
munication are both heterogeneous. Furthermore, parallel and dis-
tributed automobile functions with precedence constrained tasks
have increased dramatically in automotive electronic systems
[10,38]. Examples of active safety functions are x-by-wires and

http://dx.doi.org/10.1016/j.jpdc.2015.04.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.04.005&domain=pdf
mailto:xgqman@126.com
mailto:lirenfa@vip.sina.com.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2015.04.005

2 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
adaptive cruise control (ACC). Therefore, automobile electronic
systems can be described as heterogeneous networked embedded
systems with heterogeneous computing, heterogeneous network-
ing, and parallel processing.

More and more evidences show that the model for mapping
functions is highly critical to the analysis of automobile elec-
tronic systems. Some models such as time chains [37], function
chains [15], and task chains [13] have been employed for functions
of automobiles. However, these are only suitable for simple ap-
plications. With increasing complexity and parallelization of auto-
mobile functions, a model for accurately reflecting the distributed
characteristics of automobile applications is desirable.

An applicationwith precedence constrained tasks at a high level
of parallel and distributed computing is described as a directed
acyclic graph (DAG), where nodes represent tasks, and edges rep-
resent communication messages between tasks. Undoubtedly, the
DAG model can also be applied to heterogeneous networked em-
bedded systems [18,19]. Scheduling tasks on processors with the
objective of minimizing overall scheduling length (makespan) of
a DAG is called the general multiprocessor scheduling problem.
Scheduling tasks for fastest execution is a well-known NP-hard
optimization problem, and many heuristic list scheduling algo-
rithms have been proposed to generate near-optimal solutions of
the problem in parallel and distributed systems [3,5,11,12,17,33].

List scheduling is the most popular method for precedence
constrained task scheduling based on the DAG model. The basic
idea of list scheduling is to put all tasks into a priority queue in
a nonincreasing order, and a ready task with a higher priority is
scheduled before a ready taskwith a lower priority. List scheduling
is generally accepted as an attractive approach, since it combines
the low complexity with good results [31,32].

Time accuracy is extremely strict in embedded real-time
systems [1,29]. However, most DAG scheduling algorithms use the
upward rank value for ordering tasks, where computation times
for calculating the upward rank value are given by average values,
and the earliest finish time (EFT) for selecting processors [31,32,35]
from ‘‘downward’’, not from ‘‘upward’’. In order to obtain accurate
and efficient schedules in heterogeneous networked systems, the
above approaches can be improved.

Besides the accuracy of time, a more critical aspect is syn-
chronized scheduling with tasks and messages, such that timing
constraint with end-to-end worst-case response time (WCRT) is
determined. End-to-end WCRT means a unified end-to-end exe-
cution and transmission path combined with tasks and messages
to determine whether it can meet the real-time requirements [2].
There has been increasing interest and importance in end-to-end
synchronized scheduling on networked embedded systems. How-
ever, although some approaches refer to synchronization, they do
not take full advantage of DAG in parallel and distributed com-
puting, and also do not create accurate and efficient schedules
[18,19,22].

1.2. Our contributions

In this paper, we investigate end-to-end synchronized schedul-
ing for precedence constrained tasks and messages on heteroge-
neous networked embedded systems. Our scheduling problems
contain two topics, namely, scheduling precedence constrained
tasks, and synchronized scheduling for tasks and messages. Ac-
cordingly, there are two types of scheduling models, namely, the
classic model and the communication contention model.

The classic model for communication is described as fol-
lows [24,27].

(1) Every processor possesses a dedicated communication subsys-
tem.
(2) The processors or the communication network are fully
connected.

(3) All communications can be performed concurrently.

An important aspect missed by the classic model is the
contention for communication resources. If a resource is occupied
by one communication, any other communication requiring the
same resource has to wait until it becomes available. In turn,
the task depending on the delayed communication is also forced
to wait. Thus, conflicts among communications generally result
in a higher overall execution time [27]. The above scenarios
are regarded as the communication contention problems. Hence,
contention for communication resources is not considered in task
scheduling.

In the communication contention model, however, comput-
ing systems and networking systems are deeply jointed. The con-
tention for communication resources has a strong influence on the
execution time of a parallel application, and the topology of a net-
work is also required to be considered seriously. Therefore, we
make the following agreement in this paper. Scheduling in the clas-
sical model is called DAG task scheduling, while scheduling in the
communication contention model is treated as DAG task and mes-
sage scheduling.

We will propose a novel DAG task scheduling algorithm called
HSV (Heterogeneous Selection Value) with accurate analysis of
time on computing heterogeneity by observing the upward rank
value and the earliest finish time based on the classic model.
We will also propose a novel DAG task and message scheduling
algorithm called HSV_CC (Heterogeneous Selection Value on
Communication Contention) with accurate analysis of time on
networking heterogeneity, and synchronization of task and
message by introducing a model of heterogeneous networks. Our
scheduling problems and realistic data for experiments are also
based on heterogeneous HS-CAN/LS-CAN (High-Speed-CAN/Low-
Speed-CAN) networks connected by a gateway of automobiles.

The rest of the paper is organized as follows. In Section 2, we
review related research. In Section 3, we propose and analyze a
DAG task scheduling algorithm for the classic model. In Section 4,
we propose and analyze a DAG task and message scheduling
algorithmwith synchronization for the communication contention
model. In Section 5, we present simulation data and realistic data
to verify the performance ratios of all our heuristic algorithms and
approaches. We conclude the paper in Section 6.

2. Related work

The core idea of DAG list scheduling includes two phases, where
the first phase is to order tasks according to a list in descending
order of priorities, and the second phase is to assign each task
to a proper processor. In [35], Topcuoglu et al. proposed the
most famous and classical algorithms called HEFT (Heterogeneous
Earliest Finish Time) and CPOP (Critical Path On a Processor) for
scheduling tasks with precedence constraint on heterogeneous
computing systems to reduce makespan to a minimum. This work
has been extended in [3–5,12,31–33], and inspired substantial
further investigation. The investigation in [16] is the latestwork for
above conditions, in which, an algorithm called CEFT (Constrained
Earliest Finish Time) was proposed by defining and employing the
constrained critical paths. Most algorithms use the upward rank
value for ordering tasks, and the earliest finish time for selecting
processors, where computation times and communication times
are both based on average values for calculating. Therefore,
these approaches do not obtain accurate and efficient schedules
for networked embedded systems, where accuracy of time is
extremely critical.

The main features of the above algorithms are only inter-
ested in task scheduling, and do not take message scheduling into

G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12 3
Table 1
Protocols for each communication bus standard with communication contention.

Bus standard Protocol

LIN Serial network
CAN CSMA/CR (Carrier Sense Multiple Access/Collision Resolution)
FlexRay TDMA (Time Division Multiple Access)
MOST TDMA
Ethernet CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
consideration in their problems. That is, a simple classic model is
used in the above algorithms to heavily idealize the target paral-
lel systems. It is simplified that all communications can happen
at the same time, and that all processors are fully connected. In
other words, there is no contention for communication resources
[24,25,28]. However, computing and networking are both hetero-
geneous, and have equal importance in networked embedded sys-
tems. The approach of merely considering task scheduling cannot
reflect the realistic characteristics of such systems, and does not
suffice for accurate and efficient scheduling. Experiments in [26]
also showed that the consideration of contention for communica-
tion is essential for the generation of accurate and efficient sched-
ules.

Schedulingwith communication contention has also been stud-
ied extensively by many researchers. In early research, LogP is a
communication contention model of parallel computation [8], and
LogGPS is a communication contention model for synchronization
analysis [14]. Recently, list scheduling of the communication con-
tention model has also attracted many investigations. In [24,25],
Sinnen et al. proposed a contention aware modified list scheduling
scheme for realistic communication subsystem models of homo-
geneous computing systems. The algorithm resolves contention by
appropriate communication routing. The approach in [28] was ex-
tended to reduce scheduling path based on task duplication [27].
In [34], Tang et al. presented the list scheduling algorithm for com-
munication contention with arbitrary processor network (APN) on
heterogeneous computing systems. In [7], Choudhury et al. even
considered online scheduling of dynamic task graphs with com-
munication contention for homogeneous multiprocessor embed-
ded systems, where broadcast and point-to-point communication
models were presented.

Even though the accuracy and efficiency of scheduling were
significantly improved by considering communication contention,
the above work cannot be applied to heterogeneous networked
embedded systems for three reasons. First, these are mainly based
on homogeneous computing environments. However, comput-
ing is fully heterogeneous in heterogeneous networked embed-
ded systems. Second, the topology graph of a network mostly
uses BTN (binary tree network) or LWT (LAN with switch) with
only one communication route, or APN also called fully con-
nected processors with p(p − 1)/2 communication routes, where
p represents the number of processors. However, the topology
of embedded networks, e.g., automobile networks, are integrated
withmultiple heterogeneous networks and gateways for exchange
messages; and the number of communication routes is different
between different processors, namely, communication route is
required to be computed by strict searching. Third and most
important, end-to-end synchronized scheduling for tasks and
messages is critical in networked embedded systems, such that
timing constraints including end-to-end deadlines are satisfied.
However, current and existing DAG scheduling algorithms with
communication contention assume that tasks are not synchronized
with the messages, where communication delays are possible and
induce performance degradation on end-to-endWCRT [19]. There-
fore, end-to-end WCRT should be rigorously considered and ana-
lyzed based on synchronized scheduling of tasks and messages for
an application in networked embedded systems.
Table 2
Computation time matrix in Fig. 1.

Task p1 p2 p3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

Both the classic model and communication contention model
can be applied to some real applications. The classic model can
be suitable for the heterogeneous network-on-chip (NoC) systems
where there are particular communication links between two
cores, namely, communication is parallel. The communication
contention model is suitable for many heterogeneous automobile
electronic systems where most communication bus standard
(e.g., LIN, CAN, FlexRay, MOST, and Ethernet) are serial. Table 1
shows the protocols for each communication bus standard with
communication contention.

3. Task scheduling

3.1. Application model

An application can be represented by a DAG G = (N, E,W). N
represents a set of n nodes, and each node ni ∈ N represents a task,
which has different computation values on different processors. E
is a set of communication edges, and each edge ei,j ∈ E represents
the communication message from task ni to nj. Accordingly,
msg(ei,j) represents the size of message ei,j. pred(ni) represents the
set of ni’s immediate predecessor tasks. ind(ni) represents ni’s in-
degree, which means the cardinality of pred(ni). A task is triggered
to execute only if all its predecessor tasks have been executed.
succ(ni) represents the set of ni’s immediate successor tasks.
outd(ni) represents ni’s out-degree, whichmeans the cardinality of
succ(ni). The taskwhich has no predecessor task is called nentry, and
the task which has no successor task is called nexit .W is a |N| × |P|

matrix, in which wi,u denotes the computation time to run task ni
on processor pu.

Fig. 1 shows a benchmark of DAG with assigned task and
edge weights. The benchmark was employed by many algorithms,
e.g., CPOP [35], HEFT [35], HCNF (Heterogeneous Critical Node
First) [5], and HCPFD (Heterogeneous Critical Parents with Fast
Duplicator) [12]. Table 2 is a matrix of computation times in Fig. 1.
The benchmark shows 10 tasks and 3 processors. The weight 18 of
edge between n1 and n2 represents the message size denoted by
msg(ei,j) = 12. The weight 14 of n1 and p1 in Table 2 represents
the computation time denoted by w1,1 = 14.

3.2. Task prioritizing

In DAG task scheduling, the computation time is the actual
execution time of a task, while the communication time is the

4 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
Table 3
Values of HPRV in Fig. 1.

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

ranku(ni, p1) 113 81 79 88 77 65 45 37 52 21
ranku(ni, p2) 103 67 75 64 58 60 39 29 32 7
ranku(ni, p3) 110 83 86 89 72 65 44 41 49 16
hranku(ni) 108.7 77 80 80.3 69 63.3 42.7 35.7 44.3 14.7
outd(ni) 5 2 1 2 1 1 1 1 1 0
HPRV (ni) 543.3 154 80 160.7 69 63.3 42.7 35.7 44.3 0
Fig. 1. A benchmark of DAG with 10 tasks.

average communication time of a message denoted by

ci,j =
msg(ei,j)
speed(ei,j)

, (1)

where msg(ei,j) means the size of message ei,j mentioned before,
and speed(ei,j) denotes the communication speed of ei,j. All
messages have the same communication speed in the classical
model, which is denoted by 1, namely, the communication time
has the same value as the size of a message.

As we know, the upward rank value of a task given by Eq. (2) is
employed in many algorithms [12,33,35],

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)}, (2)

and is considered as the common task prioritizing, where the tasks
are ordered according to a nonincreasing order of ranku.

We find that Eq. (2) uses the average computation time wi.
However, in heterogeneous computing systems, each task has
variable computation time on different processors. Hence, for
accuracy, each task should have its own upward rank value on
different processors. We define in Eq. (3) a new upward rank value
for each task on different processors:
ranku(ni, pu) = max

nj∈succ(ni)
{ranku(nj, pu) + wi,u + ci,j};

ranku(nexit , pu) = wexit,u.
(3)

Then, ranku(ni, pu) for all processors is averaged as

hranku(ni) =
1
|P|

×

pu∈P

ranku(ni, pu). (4)

Undoubtedly, hranku(ni) can get more accurate sorting results
compared with ranku(ni). However, it is not enough, and we give a
new definition to explain.
Definition 1 (Heterogeneous Priority RankValue (HPRV)). TheHPRV
of task ni represents the product of the out-degree and the average
upward rank value for task ni, namely,

HPRV (ni) = outd(ni) × hranku(ni). (5)

The out-degree of a task also affects the task priority ordering.
If a task with more immediate successor tasks is not executed
preferentially, it may result in unreadiness of all its successors, and
increase the scheduling length directly or indirectly. Therefore, the
descending order of HPRV (ni) is treated as the task prioritizing in
our approach.

Table 3 shows the values of each task’s ranku(ni, pu), hranku(ni),
and HPRV (ni) of the example. All tasks are ordered according to
a nonincreasing order of HPRV (ni). Hence, the task ordering is
{n1, n4, n2, n3, n5, n6, n9, n7, n8, n10} in the example of Fig. 1.

3.3. Processor selection

Aswe know, the attributes EST (nj, pu) and EFT (nj, pu) represent
the earliest start time (EST) and the earliest finish time of task nj on
processor pu respectively. There are calculated by

EST (nentry, pu) = 0;

EST (nj, pu) = max

avail[pu], max

ni∈pred(nj)
{AFT (ni) + ci,j}

;

(6)

and

EFT (nj, pu) = EST (nj, pu) + wj,u. (7)

avail[pu] is the earliest available time when processor pu is ready
for task execution. ci,j represents communication time. If ni and nj
are allocated to the same processor, then ci,j = 0, else ci,j = ci,j.
AFT (ni) is the actual finish time of task ni. If ni is the exit task,
AFT (nexit) is the schedule length of DAG. That is,

makespan = AFT (nexit). (8)

HEFT and other algorithms [31–33,35] only consider the earliest
finish time as the processor selection criteria from ‘‘downward’’.
However, it neglects one more important effective factor, that is,
from ‘‘upward’’. A new concept for ‘‘upward’’ is defined as the
longest distance exit time (LDET), and is given by

LDET (ni, pu) = ranku(ni, pu) − wi,u. (9)

A task, which has smaller value of EFT but larger value of LDET,
may not get expected result effectively. Since the topology of DAG
also influences the overall scheduling length. Therefore, we are
required to optimize the processor selection criteria not only from
‘‘downward’’, but also from ‘‘upward’’, and give a new definition
for processor selection.

Definition 2 (Heterogeneous Selection Value (HSV)). The HSV of
task ni means the product of EFT and LDET of task ni executed on
process pu. That is,

HSV (ni, pu) = EFT (ni, pu) × LDET (ni, pu). (10)

G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12 5
Fig. 2. Gantt charts of five task scheduling algorithms.
HSV considers the selection of processor from both ‘‘down-
ward’’ and ‘‘upward’’ comprehensively, and this is the biggest
improvement compared with most classical DAG algorithms
[31,32,35], Therefore, we will propose the task scheduling algo-
rithm called HSV in the next section.

3.4. The HSV algorithm

We describe the steps of the HSV algorithm in Algorithm 1.

Algorithm 1 HSV Algorithm
1: Compute each task’s ranku(ni, pu), hranku(ni), and HPRV (ni),

and put all tasks into a priority queue according to a
nonincreasing order of HPRV (ni);

2: while there are tasks to be scheduled in the priority queue do
3: Select the task nr with the maximum HPRV (nr);
4: Compute the EFT (nr , pu), LDET (nr , pu), and HSV (nr , pu) of

task nr ;
5: Assign task nr to the processor pu that has the minimum

HSV (nr , pu) using an insertion-based scheduling policy;
6: Mark nr as a scheduled task;
7: end while

The time complexity of a scheduling algorithm for parallel
applicationswithDAGs is usually expressed in termsof the number
of tasks n and the number of processors p. The time complexity of
the HSV algorithm is analyzed as follows. Computing ranku(ni, pu),
hranku(ni), and HPRV (ni) must traverse all tasks and compare
all processors, which can be done within O(p × n) time in an
initialization phase. Scheduling all tasks must traverse all tasks,
which can be done in O(n) time. Computing the HSV values of
all tasks can be done in O(p × n) time. Thus, the complexity of
algorithm HSV is O(p × n2), which is the same as the complexity
of the HEFT and CPOP algorithms, and outperforms the CEFT
algorithm which is O(p × n3).

We list the Gantt graphs of some algorithms where the
benchmark were employed, as shown in Fig. 2. The task ordering
of the HSV algorithm is {n1, n4, n2, n3, n5, n6, n9, n7, n8, n10}, and
the schedule length is 73. We can see that the makespan of the
CPOP and HEFT algorithms are 86 and 80 respectively. The HSV
algorithm has shorter makespan and less communication times.
The makespan of the HCNF and HCPFD algorithms, which employ
task duplication, are also 73 [5,12]. The HSV algorithm, without
employing task duplication and increasing the time complexity,
achieves the same schedule length as the HCNF and HCPFD
algorithms.

4. Synchronized scheduling

Communication is concurrent, and it is isolated with compu-
tation in the classical model. In order to obtain a more realistic
description, communication contention was introduced to sched-
ule messages in most algorithms [24–26,28,34]. However, most of
them ignore two critical issues, i.e., the heterogeneity of network-
ing, and the synchronization of tasks and messages, which could
also affect the scheduling length. Next,wewill propose a novel syn-
chronized scheduling algorithm, which includes the heterogeneity
of networking and synchronization into consideration formore ac-
curate and efficient schedules.

4.1. Heterogeneous networks

Automobile networks are no longer bus topologies completely,
but a mixture of various types of network topologies, including
bus, star, ring, tree, mesh types, etc. For example, CAN and
FlexRay are usually configured with a bus topology, but they can
be divided by means of gateways to form other topology over
different domains. MOST in automotive networks is generally
configured with a ring topology. Therefore, compared with many
different types of single networks [24–26,28,34], the topology of an
automotive network is a hybrid network topology, which consists
of different network technologies with different bandwidth.
Therefore, the same message transmitted in different links has
different communication speeds.

We use an undirected graph TG = ⟨P, S, L⟩ to represent a het-
erogeneous network as follows. P is a set of heterogeneous proces-
sors mentioned before. S represents a set of gateways or switches.
L = {l1, l2, . . . , lv} represents a set of v links, and the value of a link
represents its communication speed. Assume that we are given a
message epsrc ,pdesti,j to be transmitted from task ni to task nj, where
psrc represents the source processor assigned to ni, and pdest rep-
resents the destination processor assigned to nj. Therefore, there
exist multiple communication routes between psrc and pdest for
message epsrc ,pdesti,j . We use Rpsrc ,pdest = {rpsrc ,pdest1 , rpsrc ,pdest2 , . . . ,

rpsrc ,pdestz } to denote the route set between psrc and pdest . Each route,
which may pass through multiple processors, gateways, and other

6 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
Fig. 3. A sample heterogeneous automobile network.

physical equipments, is composed of multiple links with different
communication speeds. The routes of a message can be searched
by the depth-first search (DFS) or the breadth-first search (BFS) al-
gorithms [34].

Fig. 3 shows a simple example of automobile networks. There
are 2 routes between p1 and p2, denoted by Rp1,p2 = {rp1,p21 , rp1,p22 },
where rp1,p21 = {l11, l

1
2} and rp1,p22 = {l21, l

2
4, l

2
3} represent the links

set of each route respectively, namely, route rp1,p21 is composed of
two links l1 and l2, and route rp1,p22 is composed of three links l1, l4,
and l3. Furthermore, each link has different communication speed.
Communication heterogeneity includes different communication
protocols and speeds for different links. In this paper, we
mainly focus on the heterogeneity of communication speeds.
Undoubtedly, the heterogeneous network model can also be
suitable for generic networks.

In the communication contention environments, the network
topology of [28] is a star network topology with only 1 route
between two processors; while APN presented in [34] considers
that there are p(p − 1)/2 routes between any processors. These
are both too idealistic, and do not conform to the reality of
heterogeneous automobile networks. Hence, the heterogeneous
network topology proposed in this paper is according to the
characteristics of automobile networks, where the number of
routes between two processors belongs to the range of [1, p(p −

1)/2], and is based on strict searching approaches with BFS or DFS.
This is the biggest difference with work in [28] and [34].

4.2. Task prioritizing in communication contention

We also find that Eq. (3) for calculating upward rank values use
the average communication time. However, for the requirement
of time accuracy, we recognize that each message has different
communication times on different source processors. Thus, we
have
ranku(ni, psrc) = wi,src + max

nj∈succ(ni)
{ranku(nj, psrc) + cpsrci,j };

ranku(nexit , psrc) = wexit,src;
(11)

where cpsrci,j represents the average communication time on source
processor psrc . Therefore, the problem of obtaining more accurate
value of cpsrci,j is required to be solved.

First, assume that there exist z routes denoted by Rpsrc ,pdest =

{rpsrc ,pdest1 , rpsrc ,pdest2 , . . . , rpsrc ,pdestz } for message epsrc ,pdesti,j . In order
to get cpsrci,j , we should obtain the communication speeds of
Rpsrc ,pdest denoted by speed(Rpsrc ,pdest) in advance. The value of
speed(Rpsrc ,pdest) is the average value of speed for all routes, namely,

speed(Rpsrc ,pdest) =
1
z

z
t=1

speed(rpsrc ,pdestt). (12)
Table 4
Communication speeds of routes in Fig. 3.

Route Rp1,p2 Rp1,p3 Rp2,p3 Rp2,p1 Rp3,p1 Rp3,p2

Speed 1 1 2 1 1 2

Table 5
Communication speeds of processors in Fig. 3.

Route p1 p2 p3

Speed 1.0 1.5 1.5

We assume that the gateway is only for message for-
warding with cut-through communication scheme. Hence, the
speed(Rpsrc ,pdest) is determined by a link with the minimum speed
of Rpsrc , namely,

speed(Rpsrc ,pdest) =
1
z

z
t=1

speed(rpsrc ,pdestt)

=
1
z

z
t=1

min
lv∈L

{speed(ltv)}. (13)

For example, there are 2 routes with {l1, l4} and {l1, l2, l3}
between p1 and p3 of Fig. 3. In {l1, l2, l3}, although the speed of l3
is 3, it is restricted by the speed of l1 and l2, which is 1. Hence, the
speed of route {l1, l2, l3} is 1, which is the same as l1 and l2.

According to Eq. (13), we can conclude the communication
speeds for different routes of heterogeneous networks, as shown
in Table 4.

Moreover, we let speed(psrc) represent the communication
speed of source processor psrc , and the value of speed(psrc) is the
average value of communication speed between psrc and other
processors, namely,

speed(psrc) =
1

|P| − 1

pdest∈P,pdest ≠psrc

speed(Rpsrc ,pdest). (14)

According to (14), we can get the communication speed of each
source processor, as shown in Table 5.

To this step, we can get the value cpsrci,j we require, namely,

cpsrci,j =
msg(ei,j)
speed(psrc)

. (15)

Comparedwith other algorithms based on communication con-
tention, the biggest difference is that wemake the communication
time related to the specific processor, namely, each processor has
its own average communication time. This approach is more accu-
rate on time, and can obtain more reliable and efficient schedules
than some approaches in [24,27], where the communication time
is equal for all processors.

Similarly, in the environments of communication contention,
we have

hrankucc(ni) =
1
|P|

×

pu∈P

rankucc(ni, pu), (16)

and

HPRV_CC(ni) = outd(ni) × hrankucc(ni), (17)

where hrankucc represents the hranku for communication con-
tention. The HPRV_CC represents the heterogeneous priority rank
value for communication contention, and it is employed for task
prioritizing.

By means of Eq. (17), the priorities of tasks for the benchmark
with communication contention is {n1, n4, n2, n3, n5, n6, n9, n7, n8,
n10}.

G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12 7
4.3. Synchronization for processor selection

Similarly, the earliest start time is also critical for processor
selection in communication contention environments. However,
the value is not only determined by processor pdest , but also by
route rpsrc ,pdestz :

EST (nentry, pdest , rpsrc ,pdestz) = 0;
EST (nj, pdest , rpsrc ,pdestz) = max{avail[pdest],

max
ni∈pred(nj),proc(ni)=psrc ,psrc∈P

{MFT (epsrc ,pdesti,j , rpsrc ,pdestz)}};
(18)

where MFT (epsrc ,pdesti,j , rpsrc ,pdestz) represents the finish time of mes-
sage epsrc ,pdesti,j on route rpsrc ,pdestz . Even more, we use MFT (epsrc ,pdesti,j ,

rpsrc ,pdestz) to represent the finish time of the last link lzend of route
rpsrc ,pdestz . We have

EST (nentry, pdest , rpsrc ,pdestz) = 0;
EST (nj, pdest , rpsrc ,pdestz) = max{avail[pdest],

max
ni∈pred(nj),proc(ni)=psrc ,psrc∈P

{LFT (epsrc ,pdesti,j , lzend, r
psrc ,pdest
z)}};

(19)

where LFT (epsrc ,pdesti,j , lzend, r
psrc ,pdest
z) represents the link finish time

(LFT). A detailed definition and a calculation method of LFT will
be presented later. Eq. (19) indicates that EST and LFT are closely
related. When a task starts a message, it may not immediately
transfer. Since the communication links to be transmitted may be
occupied by others messages until there are idle.

Similarly, the earliest finish time of a task in communication
contention environments is changed to

EFT (nj, pdest , rpsrc ,pdestz) = EST (nj, pdest , rpsrc ,pdestz) + wj,u. (20)

By means of the above analysis, we can synchronize tasks and
messages. Since the earliest start time of a task depends on the
message transmission time; while the message transmission time
is restricted by the actual link finish time LFT. Therefore, for the
value of LFT, we are required to obtain the link start time (LST) in
advance.

The LST (epsrc ,pdesti,j , lzx+1, r
psrc ,pdest
z) represents the lzx+1’s start time

when message epsrc ,pdesti,j is transferred on route rpsrc ,pdestz . The
recursive equation of LST is

LST (epsrc ,pdesti,j , lz1, r
psrc ,pdest
z) = max{AFT (npsrc

i), avail(lz1)};
LST (epsrc ,pdesti,j , lzx+1, r

psrc ,pdest
z)

= max{LST (epsrc ,pdesti,j , lzx, r
psrc ,pdest
z), avail(lzx+1)}.

(21)

Similarly, we use LFT (epsrc ,pdesti,j , lzx+1, r
psrc ,pdest
z) to represent link

finish time, which is:
LFT (epsrc ,pdesti,j , lz1, r

psrc ,pdest
z)

= LST (epsrc ,pdesti,j , lz1, r
psrc ,pdest
z) + MCLT (epsrc ,pdesti,j , lz1);

LFT (epsrc ,pdesti,j , lzx+1, r
psrc ,pdest
z)

= max{LFT (epsrc ,pdesti,j , lzx, r
psrc ,pdest
z),

LST (epsrc ,pdesti,j , lzx+1, r
psrc ,pdest
z) + MCLT (epsrc ,pdesti,j , lzx+1)};

(22)

where MLCT (epsrc ,pdesti,j , lzx) represents the communication time of
message epsrc ,pdesti,j on link lzx , namely,

MLCT (epsrc ,pdesti,j , lzx) =
w(epsrc ,pdesti,j)

speed(lzx)
, (23)

where speed(lzx) represents the communication speed of link lzx .
Similarly, we are required to change the processor selection

criteria in communication contention environments. That is,

LDET_CC(ni, pu) = rankucc(ni, pu) − wi,u, (24)
and

HSV_CC(nj, pdest , rpsrc ,pdestz) = EFT (nj, pdest , rpsrc ,pdestz)

× LDET_CC(ni, pdest), (25)

where LDET_CC represents the longest distance exit time for com-
munication contention. HSV_CC represents the heterogeneous se-
lection value for communication contention, and it is employed for
processor selection in communication contention environments.

Based on the above analysis, we consider the synchronization
of tasks and messages by the task earliest start time in commu-
nication contention environments, namely, we join the task and
message from the view of end-to-endWCRT for an application, and
the selections of processors and routes can be obtained simultane-
ously. Compared with the work in [24,27,28,34], where the task
earliest time and the link finish time are calculated separately, our
approach can obtain more accurate results. This is the maximum
improvement compared with other approaches in communication
contention environments.

4.4. The HSV_CC algorithm

We describe the steps of the HSV_CC algorithm in Algorithm 2.

Algorithm 2 HSV_CC Algorithm
1: Compute each task’s rankucc(ni, pu), hrankucc(ni), and

HPRV_CC(ni), and put all tasks into a priority queue according
to a nonincreasing order of HPRV_CC(ni);

2: while there are tasks to be scheduled in the priority queue do
3: Select the task nr with the maximum HPRV_CC(nr);
4: Compute the HSV_CC(nr , pu, r

psrc ,pu
z) of task nr ;

5: Assign task nr to the processor pu and route rpsrc ,puz that
has the minimum HSV_CC(nr , pu, r

psrc ,pu
z) based on an

insertion-based scheduling policy to synchronize selection
for processor and route;

6: Mark nr as a scheduled task;
7: end while

The time complexity of the HSV_CC algorithm is analyzed as
follows. Traversing all tasks for scheduling all tasks can be done
in O(n) time. Computing the HSV_CC of each task can be done in
O(n×p3 × l) time, where l represents the number of links, namely,
traversing the immediate predecessor tasks for O(p), traversing the
routes for O(p2), and traversing the links for O(l). Therefore, the
complexity of algorithm HSV_CC is O(n2

× p3 × l).
We also give the Gantt graph of the HSV_CC algorithm based

on the benchmark, as shown in Fig. 4, where the left half is
task to processor assignment and the right half is message to
link assignment. The schedule length of the HSV_CC algorithm is
67, and the schedule length of the HSV algorithm is 73 (Fig. 2).
Task priorities of the HSV and HSV_CC algorithms are not the
same. HSV_CC reduces the scheduling length by 6 compared with
the HSV algorithm, since the link l3 has higher communication
speed and transfers critical messages. This also indicates that the
synchronized scheduling can obtain more accurate and efficient
schedules than pure task scheduling to certain extent.

5. Experimental evaluation

5.1. Experimental metrics

The performance metrics chosen for comparison are schedule
length ratio (SLR), speedup, and execution time. SLR is computed

8 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
Fig. 4. Gantt chart of HSV_CC synchronized scheduling algorithm.
by dividing the real schedule length by the minimum execution
time of all tasks in the critical path, as shown in Eq. (26):

SLR =
makespan

ni∈CP
min
pu∈P

{wi,u}
. (26)

Speedup is computed by dividing the sequential execution time
by the parallel execution time, as shown in Eq. (27):

Speedup =

min
pu∈P

ni∈N

wi,u

makespan

. (27)

Meanwhile, we also consider the real computing environments,
and choose WCRT as one of the metrics [36]. WCRT is the main
performance evaluation of automotive electronic systems.

Random task graphs have been generated by TGFF (Task Graphs
For Free) 3.5 [9], and programmed by Java to compare the results.

TGFF allows user to generate a variety of test DAGswith various
characteristics depending on several input parameters, namely,
number of tasks set n = {30, 40, 50, 60, 70, 80, 90, 100}, out de-
gree set β = {1, 2, 3, 4, 5}, in-degree set γ = {1, 2, 3, 4, 5}, shape
parameter set α = {0.5, 1.0, 2.0}, range percentage of computa-
tion time set η = {0.1, 0.5, 1.0, 2.0, 4.0}, and communication to
computation ratio (CCR) CCR = {0.1, 0.5, 1.0, 5.0, 10.0}.

η is the heterogeneity factor of actual processor computation
power. A high percentage value of η causes significant differences
among a task’s computation times on processors, while a low
percentage indicates that the expected execution time of a task
is almost equal on any given processor in systems. Therefore,
the larger the η, the larger differences in computation times on
different processors, namely, the more obvious heterogeneity of
computation. The computation time of task ni on processor pu is
a random value in the following range:

wi(1 − η/4) ≤ wi,u ≤ wi(1 + η/4). (28)
CCR is basically the heterogeneity factor of communication for
transmitting time. If CCR < 1, the computation is dominated in
systems. However, if CCR > 1, and the larger the CCR, the larger
proportion the communication time, namely, the more obvious
heterogeneity of communication.

All algorithms are scheduled with fixed 3 processors, and
all algorithms involved the HSV_CC algorithm use the network
topology of Fig. 3.

Experimental results are shown with ‘‘box and whiskers
graphs’’, which can show the concrete valueswithmaximumpoint,
minimum point, middle point (the median), and the middle points
of the two halves (sub-medians) clearly.

5.2. Experiments on task scheduling

The algorithms for comparing with HSV are CPOP, HEFT, and
CEFT, where the HEFT algorithm, the most quoted and famous
algorithm, represents the characteristic of the ‘‘earliest finish time’’
type of algorithms. The CPOP algorithm, being from the same
work with HEFT, represents the basic characteristic of the ‘‘critical
path’’ approach. While CEFT, the latest proposed algorithm, is also
suitable for comparison.

Experiment 1. We analyze the results of SLR and speedup for
varying number of tasks respectively to verify the superiority of
algorithms in scheduling performance. η is fixed with 1. CCR is also
fixed with 1. The numbers of tasks are changed in the range of
30–100 with 10 increments. Values of 1000 experimental results
are randomly selected from the sample space, as shown with box
and whiskers graphs in Figs. 5 and 6.

It is observed that in all cases, the HSV algorithm has the best
performance for both SLR and speedup as task number increases,
and the best case reaches 25%. This is explained as follows. The
processor selection criteria is HPRV, which considers the EFT from
‘‘downward’’ and LDET from ‘‘upward’’ comprehensively. Since all
tasks on a critical path are assigned to one processor, CPOP has the
worst performance. CEFT is also not good in performance, since

G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12 9
Fig. 5. SLR for varying number of tasks.

Fig. 6. Speedup for varying number of tasks.

Fig. 7. SLR for varying η.

some tasks on constrained critical paths are also assigned to the
same processors.

Experiment 2. We observe the results on SLR for varying η, which
is a heterogeneity factor of computation, as shown in Fig. 7. The
numbers of tasks is fixed with 50. CCR is fixed with 1. η is changed
in the range of 0.1–4.0. Values of 1000 experimental results are
also randomly selected from the sample space. The larger η is,
the more heterogeneous of computation. As we expect, the HSV
algorithm has better performance than other algorithms on SLR in
all cases. Since theHSV algorithmoptimizes the upward rank value
for priority ordering phase, and considers the processor selection
from both ‘‘upward’’ and ‘‘downward’’ comprehensively.

5.3. Experiments on synchronized scheduling

For the problem of different topologies with [28,34], we do not
choose these algorithms for comparison. However, the HSV_CC
algorithm is an improvement of the HSV algorithm by considering
communication contention and synchronization. Therefore, the
HSV algorithm is suitable for comparison with the HSV_CC
algorithm. Since the HSV algorithm does not consider message
scheduling,we assume that communication is concurrent, butwith
equal transmission speed.
Fig. 8. SLR for different numbers of tasks.

Fig. 9. Speedup for different numbers of tasks.

Experiment 3. We observe the results of SLR and speedup for
varying number of tasks respectively to verify the superiority of the
algorithms in scheduling performance and accuracy of scheduling
results in communication contention environments. η is fixedwith
1. CCR is also fixed with 1. The numbers of tasks are changed in the
range of 30–100 with 10 increments. Values of 1000 experimental
results are randomly selected from the sample space, as shown in
Figs. 8 and 9.

It is observed that the HSV_CC algorithm has better perfor-
mance than the HSV algorithm for both SLR and speedup as
task number increases, and with the increasing number of tasks,
the algorithm is more superior. This experiment verifies that the
HSV_CC algorithm includes two important issues into considera-
tion, namely, the heterogeneity of both computation and commu-
nication for task ordering, and synchronized scheduling with tasks
and messages for communication contention.
Experiment 4. We observe the results the on SLR for varying CCR,
which is a heterogeneity factor of communication. The numbers
of tasks is fixed with 50. η is fixed with 1. CCR is changed in the
range of 0.1–10.0. Values of 1000 experimental results are also
randomly selected from the sample space, as shown in Fig. 10. The
larger CCR is, the more heterogeneous of communication. As we
expect, theHSV_CC algorithmhas better performance than theHSV
algorithm in all cases. The HSV_CC algorithm fully considers the
heterogeneity of both computation and communication for task
priority ordering phase, and the synchronization with tasks and
messages for processor and route selection.

10 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
Fig. 10. SLR for varying CCR.

Fig. 11. Execution time for different numbers of tasks.

Experiment 5. We observe the scheduling times of the static algo-
rithms themselves for varying number of tasks respectively. Notice
that this experiment is to calculate the static scheduling times of
algorithms themselves, not the actual running times. We also take
the values of 1000 experimental results, as shown in Fig. 11. It is
observed that there are no obvious gaps between the HSV algo-
rithm and the HEFT algorithm on the execution times. The results
mean that the task ordering criteria and the processor selection cri-
teria of the HSV algorithm are not critical for runtime performance.
However, this experiment shows that the HSV_CC algorithm needs
more execution time compared with the HSV algorithm and the
HEFT algorithm since it includes the synchronized scheduling with
tasks and messages for communication contention.

5.4. Automobile electronic systems environments

Experiment 6. Automobile electronic systems are typical hetero-
geneous networked embedded systems, where computing and
networking are both heterogeneous and deeply jointed. We have
analyzed the WCRT for different numbers of messages in real au-
tomobile electronic environments by using the HSV and HSV_CC
algorithms. Currently, CAN is the most widespread networking
standard in automotive industries. CAN exhibits very predictable
behavior, making it ideally suited for real-time distributed systems
Fig. 12. Topology of HS-CAN/LS-CAN heterogeneous networks.

Fig. 13. WCRT for different numbers of messages.

due to its non-destructive and strictly deterministic medium arbi-
tration. Therefore, we use CANnetworks to do the experiment [20].
We employ the real message set based on HS-CAN/LS-CAN hetero-
geneous networks, which consist of two types of 500 Kbps for HS-
CAN and 250 Kbps for LS-CAN respectively.

The message set contains total of 128 tasks (not including
gateway tasks) and 64 messages, and is assigned in 14 ECUs. The
architecture platform of our target system consists of 14 ECUs. All
ECUs have different computation power, which is actually true in
real systems. Fig. 12 shows the above described topology of HS-
CAN/LS-CAN heterogeneous networks. CAN1, CAN2, and CAN3 are
configuredwith bus topologies, CAN4 and CAN5 are configuredwith
ring topologies. The numbers ofmessages are changed in the range
of 4–64. Accordingly, the numbers of tasks are changed in the range
of 8–128. Values of 100 experimental results are also randomly
selected from the sample space.

As shown in Fig. 13, the results show that the HSV_CC algorithm
has shorter end-to-endWCRT and outperforms the HSV algorithm
by 20%.

6. Conclusions

This paper proposes two novel and heterogeneity-driven DAG
scheduling algorithms for heterogeneous networked embedded
systems. For the problem that the task prioritizing and processor
selection of existing efficient DAG task list scheduling algorithms
can be improved, we employ HPRV for task ordering, and HSV for
processor selection to propose the HSV algorithm based on the
classic model for accurate and efficient schedules. For the prob-
lems that current DAG task and message scheduling algorithms do
not fully consider the heterogeneity of communication, and syn-
chronization of tasks and messages in communication contention
environments, we propose the HSV_CC algorithm based on the
communication contention model to get minimum end-to-end

G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12 11
WCRT on heterogeneous network embedded systems. The bench-
mark and experiments show that the HSV and HSV_CC algorithms
can create accurate and efficient schedules compared with other
algorithms. Gateways are only for message forwarding with cut-
through communication scheme in this paper, wewill consider the
store-and-forward routing scheme, communication heterogeneity
with different communication protocols, and communication con-
gestion in our future work.

Acknowledgments

The authors thank the anonymous reviewers for their helpful
remarks. This work was partially supported by the National High-
Tech Research and Development Plan of China under Grant No.
2012AA01A301-01, the Key Program of National Natural Science
Foundation of China under Grant No. 61432005, and the National
Natural Science Foundation of China under Grant Nos. 61173036
and 61370095.

Appendix

Abbreviations
DAG = Directed Acyclic Graph
WCRT = Worst-Case Response Time
HSV = Heterogeneous Selection Value
HSV_CC = Heterogeneous Selection Value on Communication

Contention
ECU = Electronic Control Unit
CAN = Controller Area Network
MOST = Media Oriented System Transport
ACC = Adaptive Cruise Control
EFT = Earliest Finish Time
NoC = Network-on-Chip
CSMA/CR = Carrier Sense Multiple Access/Collision Resolution
TDMA = Time Division Multiple Access
CSMA/CD = Carrier Sense Multiple Access with Collision

Detection
HS-CAN/LS-CAN = High-Speed-CAN/Low-Speed-CAN
HEFT = Heterogeneous Earliest Finish Time
CPOP = Critical Path On a Processor
CEFT = Constrained Earliest Finish Time
APN = Arbitrary Processor Network
BTN = Binary Tree Network
HCNF = Heterogeneous Critical Node First
HCPFD = Heterogeneous Critical Parents with Fast Duplicator
HPRV = Heterogeneous Priority Rank Value
EST = Earliest Start Time
LDET = Longest Distance Exit Time
DFS = Depth-First Search
BFS = Breadth-First Search
LFT = Link Finish Time
LST = Link Start Time
SLR = Schedule Length Ratio
TGFF = Task Graphs For Free
CCR = Communication to Computation Ratio

References

[1] K. Albers, F. Bodmann, F. Slomka, Hierarchical event streams and event
dependency graphs: A new computational model for embedded real-time
systems, in: Real-Time Systems, 2006. 18th Euromicro Conference on, IEEE,
2006, 10pp.

[2] E. Azketa, J.J. Gutiérrez, J.C. Palencia, M.G. Harbour, L. Almeida, M. Marcos,
Schedulability analysis ofmulti-packetmessages in segmented can, in: Emerg-
ing Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on,
IEEE, 2012, pp. 1–8.

[3] R. Bajaj, D.P. Agrawal, Improving scheduling of tasks in a heterogeneous
environment, IEEE Trans. Parallel Distrib. Syst. 15 (2) (2004) 107–118.
[4] S. Bansal, P. Kumar, K. Singh, Dealing with heterogeneity through limited
duplication for scheduling precedence constrained task graphs, J. Parallel
Distrib. Comput. 65 (4) (2005) 479–491.

[5] S. Baskiyar, P.C. SaiRanga, Scheduling directed a-cyclic task graphs on
heterogeneous network of workstations to minimize schedule length,
in: Parallel Processing Workshops, 2003. Proceedings. 2003 International
Conference on, IEEE, 2003, pp. 97–103.

[6] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stahle, A. Knoll, The
software car: Building ict architectures for future electric vehicles, in: Electric
Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, pp. 1–8.

[7] P. Choudhury, P. Chakrabarti, R. Kumar, Online scheduling of dynamic task
graphs with communication and contention for multiprocessors, IEEE Trans.
Parallel Distrib. Syst. 23 (1) (2012) 126–133.

[8] D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E. Schauser, R.
Subramonian, T. von Eicken, Logp: A practical model of parallel computation,
Commun. ACM 39 (11) (1996) 78–85.

[9] R.P. Dick, D.L. Rhodes, W. Wolf, Tgff: task graphs for free, in: Proceedings of
the 6th internationalworkshop onHardware/software codesign, IEEE Comput.
Soc. (1998) 97–101.

[10] S. Fürst, Challenges in the design of automotive software, in: Proceedings of
the Conference on Design, Automation and Test in Europe, European Design
and Automation Association, 2010, pp. 256–258.

[11] A. Gerasoulis, T. Yang, A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors, J. Parallel Distrib. Comput. 16 (4)
(1992) 276–291.

[12] T. Hagras, J. Janeček, A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems, Parallel Comput. 31
(7) (2005) 653–670.

[13] P. Heinrich, C. Prehofer, Network-wide energy optimization for adaptive
embedded systems, ACM SIGBED Rev. 10 (1) (2013) 33–36.

[14] F. Ino, N. Fujimoto, K. Hagihara, Loggps: a parallel computational model
for synchronization analysis, in: ACM SIGPLAN Notices, vol. 36, ACM, 2001,
pp. 133–142.

[15] J.-P. Katoen, T. Noll, H.Wu, T. Santen, D. Seifert, Model-based energy optimiza-
tion of automotive control systems, in: Proceedings of the Conference on De-
sign, Automation and Test in Europe, EDA Consortium, 2013, pp. 761–766.

[16] M.A. Khan, Scheduling for heterogeneous systems using constrained critical
paths, Parallel Comput. 38 (4) (2012) 175–193.

[17] S.C. Kim, S. Lee, J. Hahm, Push-pull: Deterministic search-based dag scheduling
for heterogeneous cluster systems, IEEE Trans. Parallel Distrib. Syst. 18 (11)
(2007) 1489–1502.

[18] H. Zeng, M. Di Natale, A. Ghosal, A. Sangiovanni-Vincentelli, Schedule
optimization of time-triggered systems communicating over the flexray static
segment, IEEE Trans. Indus. Inform. 7 (1) (2011) 1–17.

[19] H. Zeng, M. Di Natale, P. Giusto, A. Sangiovanni-Vincentelli, Stochastic analysis
of can-based real-time automotive systems, IEEE Trans. Indus. Inform. 5 (4)
(2009) 388–401.

[20] M. Sojka, P. Písa, O. Spinka, Z. Hanzálek, Measurement automation and
result processing in timing analysis of a linux-based can-to-can gateway,
in: Intelligent Data Acquisition and Advanced Computing Systems, IDAACS,
2011 IEEE 6th International Conference on, vol. 2, IEEE, 2011, pp. 963–968.

[21] E.G. Schmidt, K. Schmidt, Message scheduling for the flexray protocol: The
dynamic segment, IEEE Trans. Vech. Technol. 58 (5) (2009) 2160–2169.

[22] K. Schmidt, E.G. Schmidt, A longest-path problem for evaluating the worst-
case packet delay of switched ethernet, in: Industrial Embedded Systems
(SIES), 2010 International Symposium on, IEEE, 2010, pp. 205–208.

[23] S.-H. Seo, J.-H. Kim, S.-H. Hwang, K.H. Kwon, J.W. Jeon, A reliable gateway for
in-vehicle networks based on lin, can, and flexray, ACM Tran. Embed. Comput.
Syst. 11 (1) (2012) 7.

[24] O. Sinnen, L.A. Sousa, Communication contention in task scheduling, IEEE
Trans. Parallel Distrib. Syst. 16 (6) (2005) 503–515.

[25] O. Sinnen, L. Sousa, List scheduling: extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures, Parallel
Comput. 30 (1) (2004) 81–101.

[26] O. Sinnen, L. Sousa, Experimental evaluation of task scheduling accuracy:
Implications for the scheduling model, IEICE Trans. Inform. Syst. 86 (9) (2003)
1620–1627.

[27] O. Sinnen, L.A. Sousa, F.E. Sandnes, Toward a realistic task scheduling model,
IEEE Trans. Parallel Distrib. Syst. 17 (3) (2006) 263–275.

[28] O. Sinnen, A. To, M. Kaur, Contention-aware scheduling with task duplication,
J. Parallel Distrib. Comput. 71 (1) (2011) 77–86.

[29] J.A. Stankovic, Strategic directions in real-time and embedded systems, ACM
Comput. Surv. 28 (4) (1996) 751–763.

[30] T. Steinbach, F. Korf, T.C. Schmidt, Comparing time-triggered ethernet with
flexray: An evaluation of competing approaches to real-time for in-vehicle
networks, in: Factory Communication Systems (WFCS), 2010 8th IEEE
International Workshop on, IEEE, 2010, pp. 199–202.

[31] X. Tang, K. Li, G. Liao, K. Fang, F. Wu, A stochastic scheduling algorithm for
precedence constrained tasks on grid, Future Gener. Comput. Syst. 27 (8)
(2011) 1083–1091.

[32] X. Tang, K. Li, G. Liao, R. Li, List scheduling with duplication for heterogeneous
computing systems, J. Parallel Distrib. Comput. 70 (4) (2010) 323–329.

[33] X. Tang, K. Li, R. Li, B. Veeravalli, Reliability-aware scheduling strategy for
heterogeneous distributed computing systems, J. Parallel Distrib. Comput. 70
(9) (2010) 941–952.

[34] X. Tang, K. Li, D. Padua, Communication contention in apn list scheduling
algorithm, Science China Ser. F Inform. Sci. 52 (1) (2009) 59–69.

http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref1
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref2
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref3
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref4
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref5
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref6
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref7
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref8
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref9
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref10
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref11
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref12
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref13
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref14
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref15
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref16
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref17
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref18
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref19
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref20
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref21
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref22
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref23
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref24
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref25
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref26
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref27
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref28
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref29
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref30
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref31
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref32
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref33
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref34

12 G. Xie et al. / J. Parallel Distrib. Comput. 83 (2015) 1–12
[35] H. Topcuoglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274.

[36] X. Yong, Z. Gang, C. Yang, R. Kurachi, H. Takada, L. Renfa, Worst case response
time analysis for messages in controller area network with gateway, IEICE
Trans. Inform. Syst. 96 (7) (2013) 1467–1477.

[37] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, R. Knorr, Towards self-adaptation
in real-time, networked systems: Efficient solving of system constraints for
automotive embedded systems, in: Self-Adaptive and Self-Organizing Systems
(SASO), 2011 Fifth IEEE International Conference on, IEEE, 2011, pp. 79–88.

[38] Q. Zhu, H. Zeng, W. Zheng, M.D. Natale, A. Sangiovanni-Vincentelli, Optimiza-
tion of task allocation and priority assignment in hard real-time distributed
systems, ACM Trans. Embed. Comput. Syst. (TECS) 11 (4) (2012) 85.

Guoqi Xie received his Ph.D. degree in computer science
from Hunan University, China, in 2014. He is an assistant
professor of Hunan University, China, and a postdoctoral
researcher of Nagoya University, Japan. Hismajor research
includes parallel and distributed computing, embedded
and network computing, and software engineering and
methodology.
Renfa Li is a full professor of computer science and
electronic engineering, and the dean of College of Com-
puter Science and Electronic Engineering, Hunan Univer-
sity, China. He is the director of the Key Laboratory for
Embedded and Network Computing of Hunan Province,
China. He is also an expert committee member of Na-
tional Supercomputing Center in Changsha, China. Hisma-
jor research includes parallel and distributed computing,
embedded and network computing, and cyber physical
systems. He is a seniormember of IEEE, and a seniormem-
ber of ACM.

Keqin Li is a SUNY distinguished professor of computer
science and an Intellectual Ventures endowed visiting
chair professor at Tsinghua University, China. His research
interests are mainly in design and analysis of algorithms,
parallel and distributed computing, and computer net-
working. He has nearly 300 research publications. Cur-
rently, he is on the editorial board of IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on
Computers, Journal of Parallel and Distributed Computing,
International Journal of Parallel, Emergent and Distributed
Systems, International Journal of High Performance Com-

puting and Networking, and Optimization Letters. He is an IEEE Fellow.

http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref35
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref36
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref37
http://refhub.elsevier.com/S0743-7315(15)00068-4/sbref38

	Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems
	Introduction
	Motivation
	Our contributions

	Related work
	Task scheduling
	Application model
	Task prioritizing
	Processor selection
	The HSV algorithm

	Synchronized scheduling
	Heterogeneous networks
	Task prioritizing in communication contention
	Synchronization for processor selection
	The HSV_CC algorithm

	Experimental evaluation
	Experimental metrics
	Experiments on task scheduling
	Experiments on synchronized scheduling
	Automobile electronic systems environments

	Conclusions
	Acknowledgments
	Appendix
	References

