
Minimizing Schedule Length of Energy
Consumption Constrained Parallel Applications on

Heterogeneous Distributed Systems

Xiongren Xiao1,2, Guoqi Xie1,2,∗, Renfa Li1,2, and Keqin Li1,3
1College of Computer Science and Electronic Engineering, Hunan University, China
2Key Laboratory for Embedded and Network Computing of Hunan Province, China

3Department of Computer Science, State University of New York, USA

{xxr@hnu.edu.cn, xgqman@hnu.edu.cn, lirenfa@hnu.edu.cn, lik@newpaltz.edu}
∗Corresponding author

Abstract—Energy consumption is one of the primary design
constraints in heterogeneous parallel and distributed systems
ranging from small embedded devices to large-scale data cen-
ters. The problem of minimizing schedule length of an energy
consumption constrained parallel application has been studied
recently in homogeneous systems with shared memory. To adapt
the heterogeneity and distribution of high-performance comput-
ing systems, this study solves the problem of minimizing schedule
length of an energy consumption constrained parallel application
on heterogeneous distributed systems based on dynamic voltage
and frequency scaling (DVFS) energy-efficient design technique.
Such problem is decomposed into two sub-problems in this study,
namely, satisfying energy consumption constraint and minimizing
schedule length. The first sub-problem is solved by transferring
the energy consumption constraint of the application to that of
each task, and the second sub-problem is solved by heuristically
scheduling each task with low time complexity. Experiments
with Fast Fourier transform parallel applications show that not
only the actual energy consumptions always do not exceed and
are close to given energy consumption constraints, but also the
minimum schedule lengths are generated by using the proposed
algorithm.

Keywords—energy consumption, heterogeneous systems, paral-
lel applications, schedule length

I. INTRODUCTION

A. Background

Recent trends in the microprocessor industry have impor-
tant for the design of high-performance computing systems.
By increasing number of heterogeneous processors and cores,
it is possible to improve the performance while keeping the
energy consumption at the bay. This trend has reached the
deployment stage in heterogeneous parallel and distributed
systems ranging from small embedded devices to large-scale
data centers. It is expected that the number of heterogeneous
processor and cores in these systems increases dramatically
in the near future. For such systems, energy consumption is
one of the primary design constraints. The popular energy
consumption optimization technique dynamic voltage and fre-
quency scaling (DVFS) achieves energy-efficient optimization
by simultaneously scaling down processor’s supply voltage
and frequency while tasks are running to explore the tradeoff
between energy consumption and execution time [1].

B. Related works

DVFS-based energy-efficient design technique was first
introduced in [2]. In [3], the authors studied the energy-
aware task scheduling of independent sequential tasks on
homogeneous multi-processors as combinatorial optimization
problems. In [4], the authors simultaneously addressed three
constraints (i.e., energy, deadline, and reward) for both ho-
mogeneous and heterogeneous systems. In [5], the authors
studied the problem of scheduling a collection of independent
tasks with deadlines and energy consumption constraints on
heterogeneous systems.

The limitation of the aforementioned works is quite re-
stricted to independent tasks. However, parallel applications
(e.g., Fast Fourier transform applications [6]) with precedence
constrained tasks are widely used in high-performance het-
erogeneous distributed computing systems, In [7], the authors
considered energy-aware duplication scheduling algorithms for
a parallel application on homogeneous systems, and in [8],
the authors presented energy-conscious scheduling (ECS) to
implement joint minimization of energy consumption and
schedule length of a parallel application on heterogeneous
distributed systems. The problem of minimizing schedule
length of an energy consumption constrained application with
precedence constrained sequential tasks [1] and precedence
constrained parallel tasks (i.e., a parallel application) [9] were
solved, respectively. These two works were merely interested
in homogeneous systems with shared memory and it cannot be
applied to heterogeneous distributed systems with communica-
tion time between any two tasks. This study aims to implement
the objective of minimizing schedule length of an energy
consumption constrained parallel application on heterogeneous
distributed systems.

II. MODELS

A. Application model

Let U = {u1, u2, ..., u|U |} represent a set of heterogeneous
processors, where |U | represents the size of set U . Note that
for any set X , this study uses |X| to denote its size. A
parallel application running on processors is represented by
a directed acyclic graph (DAG) G=(N , M , C, W) [6], [8],

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.228

1472

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.228

1472

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.228

1472

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.228

1472

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.228

1471

[10]. N represents a set of nodes in G, and each node ni ∈ N
represents a task with different execution times on different
processors. M is a set of communication edges, and each edge
mi,j ∈ M represents the communication message from ni

to nj . Accordingly, ci,j ∈ C represents communication time
of mi,j if ni and nj are not assigned to the same processor.
pred(ni) represents the set of the immediate predecessor tasks
of ni. succ(ni) represents the set of the immediate successor
tasks of ni. The task which has no predecessor task is denoted
as nentry; and the task which has no successor task is denoted as
nexit. W is a |N |×|U | matrix where wi,k denotes the execution
time of ni runs on uk with the maximum frequency.

��

������
�� ��

��
�	 �

���

�	
��

��

��

��

�
 ��

��
�� ��

��
��

��

��

Fig. 1: A motivating example of a DAG-based parallel application with ten tasks.

Fig. 1 shows a motivating example of a DAG-based parallel
application. Table 1 is a matrix of execution times with the
maximum frequency in Fig. 1. The example shows ten tasks
executed on three processors {u1, u2, u3}. The weight 14 of
n1 and u1 in Table 1 represents the execution time denoted by
w1,1=14. We can see that the same task has different execution
times on different processors due to the heterogeneity of the
processors. The weight 18 of edge (Fig. 1) between n1 and n2

represents the communication time denoted as c1,2 if n1 and
n2 are not assigned to the same processor.

TABLE 1: Execution time of tasks on different processors with the maximum frequency
of the parallel application in Fig. 1.

Task u1 u2 u3 ranku

n1 14 16 9 108.000
n2 13 19 18 77.000
n3 11 13 19 80.000
n4 13 8 17 80.000
n5 12 13 10 69.000
n6 13 16 9 63.333
n7 7 15 11 42.667
n8 5 11 14 35.667
n9 18 12 20 44.333
n10 21 7 16 14.667

B. Power and energy model

As the almost linear relationship between the voltage
and frequency, DVFS scales down the voltage alongside the
frequency to save energy. Similar to [11], [12], we use the
term frequency change to stand for changing the voltage
and frequency simultaneously. Considering a DVFS-capable
system, we also adopt the system-level power model widely
used in [11], [12], where the power consumption at frequency

f is given by

P (f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff
m).

Ps represents the static power and can be removed only by
powering off the whole system. Pind represents frequency-
independent dynamic power and can be removed by putting the
system into the sleep state. Pd represents frequency-dependent
dynamic power, and depends on frequencies. h represents
system states and indicates whether dynamic powers are cur-
rently consumed in the system. When the system is active,
h = 1; otherwise, h = 0. Cef represents effective switching
capacitance and m represents the dynamic power exponent and
is no smaller than 2. Both Cef and m are processor-dependent
constants.

Note that there exists an excessive overhead associated
with turning on/off a system, Ps is always consumed and not
manageable [11], [12]. Similar to the above works, this study
concentrates on managing the dynamic power (i.e., Pind and
Pd). Because of the Pind, less Pd does not result less energy
consumption. That is, a minimum energy-efficient frequency
fee exists [11], [12] and it is denoted as

fee =
m

√
Pind

(m− 1)Cef

. (1)

Assuming the frequency of a processor varies from a min-
imum available frequency fmin to the maximum frequen-
cy fmax, the lowest frequency to execute a task should be
flow = max(fmin, fee). Hence, any actual effective frequency
fh should belong the scope of flow � fh � fmax.

As the number of processors is |U | in the sys-
tem and these processors are completely heterogeneous,
each processor should has individual power parameter-
s; Here, we define frequency-independent dynamic power
set {P1,ind, P2,ind, ..., P|U |,ind}, frequency-dependent dynamic
power set {P1,d, P2,d, ..., P|U |,d}, effective switching capaci-
tance set {C1,ef, C2,ef, ..., C|U |,ef}, dynamic power exponent
set {m1,m2, ...,m|U |}, minimum energy-efficient frequency
set {f1,ee, f2,ee, ..., f|U |,ee}, and actual effective frequency set

⎧⎪⎪⎨
⎪⎪⎩
{f1,low, f1,α, f1,β , ..., f1,max},
{f2,low, f2,α, f2,β , ..., f2,max},
...,

{f|U |,low, f|U |,α, f|U |,β , ..., f|U |,max}

⎫⎪⎪⎬
⎪⎪⎭ .

Then, let E(ni, uk, fk,h) represent the processor energy con-
sumption of the task ni on the processor uk with frequency
fk,h and is calculated as

E(ni, uk, fk,h) = Pk,h × wi,k × fk,max

fk,h
, (2)

where

Pk,h = (Pk,ind + Ck,ef × (fk,h)
mk) (3)

represents the dynamic power of the processor uk with fre-
quency fk,h.

14731473147314731472

III. PRELIMINARIES

A. Energy consumption constraint

As the execution time of each task on each processor
is known, we can get the minimum and maximum energy
consumption denoted by Emin(ni) and Emax(ni), respectively,
by traversing all the processors. Emin(ni) and Emax(ni) are
obtained by executing the task with the maximum and min-
imum frequencies, respectively. Both of them are calculated
by

Emin(ni) = min
uk∈U

E(ni, uk, fk,max), (4)

and

Emax(ni) = max
uk∈U

E(ni, uk, fk,ee), (5)

respectively.

As the energy consumption of the application G is the
sum of that of each task, we can obtain that the minimum and
maximum energy consumption of G are

Emin(G) =

|N |∑
i=1

Emin(ni), (6)

and

Emax(G) =

|N |∑
i=1

Emax(ni), (7)

respectively.

Assume that the given energy consumption constraint of
G is Egiven(G), then it should be larger than or equal to
Emin(G); otherwise, Egiven(G) is always satisfied. Meanwhile,
Egiven(G) should be less than or equal to Emax(G); otherwise,
Egiven(G) is always not satisfied. Hence, this study assumes
that Egiven(G) belongs to the scope Emin(G) and Emax(G),
namely,

Emin(G) � Egiven(G) � Emax(G). (8)

B. Problem description

The problem to be addressed in this study is to assign
an available processor with a proper frequency for each task,
while minimizing the schedule length of the application and
ensuring that the consumed energy of the application does
not exceeding the energy consumption constraint. The formal
description is finding the processor and frequency assignments
of all tasks to minimize the schedule length of the application:

SL(G) = AFT (nexit),

where AFT (nexit) represents the actual finish time (AFT) of
the exit task nexit, subject to its energy consumption constraint:

E(G) =

|N |∑
i=1

E(ni, upr(i), fpr(i),hz(i)) � Egiven(G), (9)

where upr(i) and fpr(i),hz(i) represent the assigned pro-
cessor and frequency of ni, respectively, and fpr(i),low �
fpr(i),hz(i) � fpr(i),max, for ∀i : 1 � i � |N |, upr(i) ∈ U .

C. Task prioritizing

We first need to determine the task assignment order before
assigning tasks to processors. Similar to [6], [8], we employ
the upward rank value (ranku) of a task given by Eq. (10) as
the common task priority standard. All the tasks are ordered
according to the decreasing order of ranku.

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)}, (10)

where wi represents the average execution time of task ni and

calculated as wi = (
|U |∑
k=1

wi,k)/|U |. Table 1 also shows the

upward rank values of all the tasks (Fig. 1).

IV. SCHEDULING POLICY

The problem that minimizing the schedule length of an
energy consumption constrained parallel application on het-
erogeneous distributed systems is decomposed to two sub-
problems, namely, satisfying energy consumption constraint
and minimizing schedule length. We first solve these two
sub-problems separately, and then present the algorithm by
integrating the two sub-problems.

A. Satisfying energy consumption constraint

Assume that the task to be assigned is nseq(j),
where seq(j) represents the jth assigned task (sequence
number), then {nseq(1), nseq(2), ..., nseq(j−1)} represents
the task set where the tasks have been assigned, and
{nseq(j+1), nseq(j+2), ..., nseq(|N |)} represents the task set
where the tasks have not been assigned. To ensure that
the energy consumption constraint of the application is
satisfied at each task assignment, we presuppose that each
task in {nseq(j+1), nseq(j+2), ..., nseq(|N |)} is assigned to
the processor and frequency with the minimum energy
consumption. Hence, when assigning nseq(j), the energy
consumption of G has the following constraint:

Eseq(j)(G) =

j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+E(nseq(j), uk, fk,h) +

|N |∑
y=j+1

Emin(nseq(y)) � Egiven(G).

(11)

B. Minimizing schedule length

HEFT is the well-known precedence-constrained task
scheduling based on the DAG model to reduce schedule
length to a minimum combined with low complexity and
high performance in heterogeneous systems [6]. Besides the
task prioritizing based on upward rank value, task assignment
based on earliest finish time (EFT) was also presented. As the
original EFT does not consider the frequency adjustment, new
EFT should be represented.

Let EST (ni, uk, fk,h) and EFT (ni, uk, fk,h) represent
the earliest start time (EST) and EFT, respectively, of the

14741474147414741473

task ni on the processor uk with the frequency fk,h. The
aforementioned attributes are calculated as{

EST (nentry,uk,fk,h)=0

EST (ni,uk,fk,h)=max(avail[k], max
nx∈pred(ni)

{AFT (nx)+c
′
x,i}

,

(12)
and

EFT (ni, uk, fk,h) = EST (ni, uk, fk,h) + wi,k × fk,max

fk,h
.

(13)
avail[k] is the earliest available time when processor uk is
ready for task execution, and AFT (nx) is the AFT of nx

as mentioned earlier. c
′
x,i represents the actual communication

time between nx and ni. If nx and ni are assigned to the
same processor, then c

′
x,i = 0; otherwise, c

′
x,i = cx,i. ni is

assigned to the processor with the minimum EFT by using the
insertion-based scheduling strategy, where ni can be inserted
into the slack with the minimum EFT.

C. Scheduling algorithm

We first give the energy consumption constraint of each
task before we propose the algorithm. According to Eq. (11),
we have

E(nseq(j), uk, fk,h) � Egiven(G)

−
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

−
|N |∑

y=j+1

Emin(nseq(y))

.

Hence, let the energy consumption constraint of the task
nseq(y) be

Egiven(nseq(j)) = Egiven(G)

−
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

−
|N |∑

y=j+1

Emin(nseq(y)),

(14)

then, we can transfer the energy consumption constraint of the
application to that of each task. That is, we just let nseq(j)

satisfy the following constraint:

E(nseq(j), uk, fk,h) � Egiven(nseq(j)).

Hence, when assigning the task nseq(j), we can directly
consider the energy consumption constraint Egiven(nseq(j)) of
nseq(j) and do not have to be concerned about the energy
consumption constraint of the application G. In this way,
a low time complexity heuristic algorithm can be achieved.
As the maximum energy consumption constraint of nseq(j)

is Emax(ni), Egiven(nseq(j)) should be required to satisfy the
following constraint:

E(nseq(j), uk, fk,h) � min{Egiven(ni), Emax(ni)}. (15)

Inspired by the above analysis, we propose the algorithm
called minimum schedule length with energy consumption
constraint (MSLECC) to minimize the schedule length while

still satisfying the energy consumption constraint of the ap-
plication. The steps of MSLECC is described in Algorithm 1.

Algorithm 1 The MSLECC Algorithm

1: Sort the tasks in a list downward task list by descending order of ranku

values.
2: while (there are tasks in downward task list) do
3: ni = downward task list.out();
4: Calculate Emin(ni) and Emax(ni) using Eqs. (4) and (5), respectively;
5: Calculate Egiven(ni) using Eq. (14);
6: var pr(i) = NULL, fpr(i),hz(i) = NULL, AFT (ni) = ∞,

E(ni, upr(i), fpr(i),hz(i)) = 0;
7: for (each processor uk ∈ U) do
8: for (each frequency fk,h in the scope of [fk,low,fk,max]) do
9: Calculate E(ni, uk, fk,h) using Eq. (2);

10: if (E(ni, uk, fk,h) > min{Egiven(ni), Emax(ni)}) then
11: continue; // skip the processor and frequency that do not satisfy the

energy consumption constraint of ni

12: end if
13: Calculate EFT (ni, uk, fk,h) using Eq. (13);
14: if (EFT (ni, uk, fk,h) < AFT (ni)) then
15: pr(i) = k;
16: fpr(i),hz(i) = fk,h;
17: E(ni, upr(i), fpr(i),hz(i)) = E(ni, uk, fk,h);
18: AFT (ni) = EFT (ni, uk, fk,h); // select the processor and

frequency with the minimum EFT
19: end if
20: end for
21: end for
22: end while
23: Calculate the actual energy consumption E(G) using Eq. (9);
24: Calculate SL(G) = AFT (nexit);

The main idea of MSLECC is that the energy consumption
constraint of the application is transferred to that of each
task. Each task just selects the processor and frequency with
the minimum EFT under satisfying its energy consumption
constraint. The core details are explained as follows.

1) In Line 6, we initialize AFT (ni) = ∞ and
E(ni, upr(i), fpr(i),hz(i)) = 0.

2) In Lines 7-21, we traverse all processors and frequen-
cies and select the processor with the minimum EFT for
each task under satisfying the condition of E(ni, uk, fk,h) �
min{Egiven(ni), Emax(ni)}.

3) In Lines 23 and 24, calculate the actual energy consump-
tion E(G) and final schedule length SL(G), respectively.

4) As MSLECC is a heuristic algorithm, it has a low
time complexity of O(|N |2 × |U | × |F |), where F repre-
sents the maximum number of discrete frequencies from the
lowest to the maximum actual effective frequencies. In other
words, MSLECC implements low time complexity and high-
performance scheduling for energy consumption constrained
parallel applications.

D. Example of the MSLECC algorithm

We assume that the power parameters for all processors are
known and shown in Table 2, where the maximum frequency
fk,max for each processor is 1 and the frequency precision
is set as 0.01. We can obtain the minimum energy-efficient
frequency fk,ee (considered as the fk,low in this example) for
each processor and dynamic power of pk,h according to Eqs.
(1) and (3), respectively.

We can calculate that the minimum and maximum relia-
bility values are Emin(G) = 20.31 and Emax(G) = 161.99

14751475147514751474

TABLE 2: Power parameters of processors (u1, u2, and u3).

uk Pk,ind Ck,ef mk fk,ee(fk,low) fk,max

u1 0.03 0.8 2.9 0.26 1.0
u2 0.04 0.8 2.5 0.26 1.0
u3 0.07 1.0 2.5 0.29 1.0

according to Eqs. (6) and (7), respectively. We set the energy
consumption constraint of G as Egiven(G) = 0.5×Emax(G) =
80.995. Table 3 shows the task assignment of the parallel appli-
cation in Fig. 1 using MSLECC, where each row represents a
task assignment and all the tasks satisfy their individual energy
consumption constraints. Finally, the actual consumed energy
of the application is E(G) = 80.9939, which is less than
and close to Emax(G) = 80.995. The final schedule length
is SL(G)=129.3660. This example also verifies that using
MSLECC can ensure that the actual consumed energy does
not exceed the given energy consumption constraint, namely,
E(G) � Egiven(G).

TABLE 3: Task assignment of the application in Fig. 1 using MSLECC.

ni Egiven(ni)upr(i)fpr(i),hz(i)E(ni, pr(i), fpr(i),hz(i))AST (ni)AFT (ni)
n1 13.44 u3 1.0 9.63 0 12

n3 20.33 u3 1.0 20.33 9 28

n4 18.19 u2 1.0 6.72 18 26

n2 19.26 u1 1.0 10.79 27 40

n5 10.92 u3 1.0 10.7 28 38

n6 13.44 u2 1.0 13.44 26 42

n9 5.4385 u2 0.61 5.3606 56 75.67

n7 1.3188 u1 0.33 1.3177 51 72.2121

n8 0.8874 u1 0.26 0.8863 72.2121 91.4429

n10 1.8204 u2 0.26 1.8193 102.4429 129.3660

E(G) = 80.98 � Egiven(G) = 80.9939, SL(G) = AFT (n10)=129.3660

Fig. 2 also shows the scheduling of the parallel application
G in Fig. 1 using MSLECC, where the schedule length is
121.84. Note that the arrows in Fig. 2 represent generated
communication times between tasks.

�� �� ��

��

��

��

�� ���� �� 	��

�� ��

��

��

��

�� �

�� �	

���

�

�������
����

��� ��� ��� ���

Fig. 2: Scheduling of the application in Fig. 1 using MSLECC.

V. EXPERIMENTS

The performance metrics selected for comparison are the
actual energy consumption E(G) (Eq. (9)) and the final sched-
ule length SL(G) of application. The compared algorithms
with our proposed MSLECC are HEFT [6] and ECS [8]
because all of them have the same application model. Processor
and application parameters are below: 10 ms � wi,k � 100
ms, 10 ms � ci,j � 100 ms, 0.03 � Pk,ind � 0.07,
0.8 � Ck,ef � 1.2, 2.5 � mk � 3.0, and fk,max = 1
GHz. All frequencies are discrete, and the precision is 0.01
GHz. All parallel applications will be executed in a simulated
heterogeneous multi-processors platform with 64 processors.

To verify the effectiveness and reality, we use Fast Fourier
transform applications to observe the results.

A new parameter ρ is used as the size of the Fast Fourier
transform application, and the total number of tasks is [6]
|N | = (2×ρ−1)+ρ×log 2

ρ, where ρ = 2y for some integer y.
Fig. 3 shows an example of the Fast Fourier transform parallel
application with ρ=8. Note that ρ exit tasks exist in the Fast
Fourier transform application with the size ρ. To adapt the
application model of this study, we just add a virtual exit task
and the last ρ tasks are set as the immediate predecessor tasks
of the virtual task.

Fig. 3: Example of the Fast Fourier transform parallel application with ρ=8.

Experiment 1. This experiment is conducted to compare
the actual energy consumptions and final schedule length of
Fast Fourier transform parallel applications for varying energy
consumption constraints. We limit the size of the application
as ρ = 32 (i.e., |N | = 233). Egiven(G) is changed from
(Emin(G) + Emax(G))/10 to (Emin(G) + Emax(G))/6.

TABLE 4: Actual energy consumptions (kWs) and final schedule length (ms) of Fast
Fourier transform parallel applications with ρ = 32 for varying energy consumption
constraints.

Emin(G) Emax(G) Egiven(G)
HEFT [6] ECS [8] MSLECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
654.63 26328.44 2698.30 8809.7 811 5913.40 1055.38 2698.30 1386.57

618.91 26304.68 2991.51 8392.5 893 5928.01 927.12 2991.50 1082.6

622.91 25829.49 3306.55 8057.6 797 5856.44 894.25 3306.53 1051.56

649.26 26372.31 3860.22 8949.7 916 6091.70 1092.67 3860.21 1311.72

629.15 26289.34 4486.41 8852.2 847 6049.71 867.21 4486.41 887.76

We can see from Table 4 that the actual energy consump-
tions of applications using both HEFT and ECS cannot satisfy
individual energy consumption constraints in all cases. Such
results verify that ECS is not designed for satisfying the energy
consumption constraints of applications in practice. On the
contrary, MSLECC always can satisfy the energy consumption
constraints and the actual energy consumptions are increasing-
ly close to the energy consumption constraints. For example,
when Egiven(G) = 4486.41, the energy consumptions using
HEFT and ECS are 8852.2 and 6049.71 kWs, respectively,
whereas that using MSLECC is 4486.41 kWs, which is much
close to 4486.41 kWs. We can also see that the schedule
lengths using MSLECC have been effectively controlled in
acceptable scopes under satisfying the energy consumption
constraints although the schedule lengths using MSLECC are

14761476147614761475

slightly longer than that using MSLECC and ECS in this
experiment.

Experiment 2. To observe the performance in different
scales of applications, this experiment is conducted to compare
the actual energy consumptions and final schedule lengths of
Fast Fourier transform parallel applications for varying number
of tasks. We limit Egiven(G) as Egiven(G) = (Emin(G) +
Emax(G))/6. ρ is changed from 8 to 128, namely, the number
of tasks are changed from 33 (small scale) to 1151 (large
scale).

TABLE 5: Actual energy consumptions (kWs) and final schedule length (ms) of Fast
Fourier transform parallel applications with for varying number of tasks.

ρ |N | Emin(G)Emax(G)Egiven(G)
HEFT [6] ECS [8] MSLECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
8 39 112.62 4647.52 793.353 1425.52 459.9 943.11 537.79 793.33 553.84

16 95 264.21 11324.02 1931.37 3591.45 611.47 2413.73 708.71 1931.36 750.92

32 233 630.03 26226.91 4476.15 8463.99 859.7 5975.67 925.11 4476.14 979.77

64 511 1442.85 59923.89 10227.79 18685.90 1450.6 14241.24 1187.3 10213.941162.65

1281151 3091.14 132705.98 22632.85 38737.37 1950.8 29517.43 1546.5 22598.84 1329.0

We can see from Table 5 that the energy consumption
constraints and actual energy consumptions are increased grad-
ually with the increase of the number of tasks. However, the
actual energy consumptions of applications using HEFT and
ECS still cannot satisfy their energy consumption constraints
in different scales. With the increasing number of tasks, the
differences between Egiven(G) and E(G) increase greatly. On
the contrary, MSLECC always can satisfy the energy con-
sumption constraints and the actual energy consumptions are
still close to the energy consumption constraints. For example,
when |N | = 1151, the energy consumption constraint is
Egiven(G) =22632.85 kWs, but the actual energy consumptions
using HEFT and ECS are 38737.3 and 29517.43 kWs, re-
spectively, which obviously exceed given energy consumption
constraint. Fortunately, the actual energy consumptions using
MSLECC is 22598.84 kWs, which is close to the given energy
consumption constraint, and the difference is merely 34.01
kWs.

In addition to satisfying the energy consumption con-
straints, an exciting phenomenon is that MSLECC can also
generate shorter schedule lengths than HEFT and ECS in large-
scale parallel applications (e.g., |N | = 511 and |N | = 1151).
For example, when |N | = 1151, the schedule length using
MSLECC is 1329 kWs, which is much less than 1950 and
1546.5 kWs that using HEFT and ECS. Such results indicate
that: 1) MSLECC is very suitable for minimizing schedule
length of energy consumption constrained parallel applications
and 2) energy consumption optimization is extremely desirable
and useful for large-scale parallel applications.

VI. CONCLUSIONS

We have developed an effective and low time complex-
ity schedule length minimization algorithm MSLECC for an
energy consumption constrained parallel application on hetero-
geneous distributed systems based on DVFS energy-efficient
design technique. First, our algorithm can always satisfy the
energy consumption constraint, and its correctness is verified
using proof and experiments. Second, our MSLECC algorithm
implements effective and low time complexity task scheduling

to minimize the schedule length. We believe that our MSLECC
algorithm could effectively improve a part of energy-aware
design for parallel applications in heterogeneous distributed
environments during the design phases.

ACKNOWLEDGMENT

This work was partially supported by the National High-
Tech Research and Development Plan of China under Grant
No. 2012AA01A301-01, the Key Program of National Natural
Science Foundation of China under Grant No. 61432005,
and the National Natural Science Foundation of China under
Grant Nos. 61173036,61370095, 61502162, and 61370097,
and the China Postdoctoral Science Foundation under Grant
No. 2016M592422.

REFERENCES

[1] K. Li, “Scheduling precedence constrained tasks with reduced processor
energy on multiprocessor computers,” Computers, IEEE Transactions
on, vol. 61, no. 12, pp. 1668–1681, 2012.

[2] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Mobile Computing. Springer, 1996, pp. 449–
471.

[3] K. Li, “Performance analysis of power-aware task scheduling algorithms
on multiprocessor computers with dynamic voltage and speed,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 19, no. 11, pp.
1484–1497, 2008.

[4] C. Rusu, R. Melhem, and D. Mossé, “Maximizing rewards for real-time
applications with energy constraints,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 2, no. 4, pp. 537–559, 2003.

[5] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 25, no. 11, pp. 2867–2876, 2014.

[6] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260–274,
2002.

[7] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “Ead and pebd: two
energy-aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters,” Computers, IEEE Transactions on, vol. 60,
no. 3, pp. 360–374, 2011.

[8] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for
distributed computing systems under different operating conditions,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 8,
pp. 1374–1381, 2011.

[9] K. Li, “Power and performance management for parallel computations
in clouds and data centers,” Journal of Computer and System Sciences,
vol. 82, no. 2, pp. 174–190, 2016.

[10] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchro-
nized scheduling for precedence constrained tasks and messages on
networked embedded systems,” Journal of Parallel and Distributed
Computing, vol. 83, pp. 1–12, 2015.

[11] D. Zhu and H. Aydin, “Reliability-aware energy management for
periodic real-time tasks,” Computers, IEEE Transactions on, vol. 58,
no. 10, pp. 1382–1397, 2009.

[12] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency
and reliability enhancements in real-time applications with precedence
constraints,” Acm Transactions on Design Automation of Electronic
Systems, vol. 18, no. 2, pp. 99–109, 2013.

14771477147714771476

