
6676 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

Adaptive Dynamic Scheduling on Multifunctional
Mixed-Criticality Automotive

Cyber-Physical Systems
Guoqi Xie, Member, IEEE, Gang Zeng, Member, IEEE, Zhetao Li, Renfa Li, Senior Member, IEEE,

and Keqin Li, Fellow, IEEE

Abstract—A function model for the description of distributed
end-to-end computations is called a task graph. Multiple functions
with different criticality levels are supported by one electronic
control unit (ECU), and one function is distributed over multiple
ECUs in integrated automotive architecture. Considering the
inherent heterogeneity, interaction, and diverse nature of such
an architecture, automotive embedded systems have evolved
to automotive cyber-physical systems (ACPS), which consist of
multiple distributed automotive functions with different criticality
levels. Efficient scheduling strategies can fully utilize ECUs in
ACPS for high performance. However, ACPS should deal with
joint challenges of heterogeneity, dynamics, parallelism, safety,
and criticality, and these challenges are the key issues that will be
solved in the next generation automotive open system architecture
adaptive platform. This study first proposes a fairness-based
dynamic scheduling algorithm FDS_MIMF to minimize the indi-
vidual makespans (i.e., schedule lengths) of functions from a high
performance perspective. FDS_MIMF can respond autonomously
to the joint challenges of heterogeneity, dynamics, and parallelism
of ACPS. To further respond autonomously to the joint challenges
of heterogeneity, dynamics, parallelism, safety, and criticality of
ACPS, we present an adaptive dynamic scheduling algorithm
ADS_MIMF to achieve low deadline miss ratios (DMRs) of
safety-critical functions from a timing constraint perspective
while maintaining the acceptable overall makespan of ACPS from
a high performance perspective. ADS_MIMF is implemented by

Manuscript received August 4, 2016; revised November 17, 2016, December
29, 2016, and February 8, 2017; accepted February 22, 2017. Date of pub-
lication February 23, 2017; date of current version August 11, 2017. This
work was supported in part by the National Key Research and Development
Plan of China under Grant 2016YFB0200405 and Grant 2012AA01A301-
01, in part by the National Natural Science Foundation of China un-
der Grant 61672217, Grant 61173036, Grant 61432005, Grant 61300037,
Grant 61300039, Grant 61379115, Grant 61402170, Grant 61370097, Grant
61502162, and Grant 61502405, in part by the CERNET Innovation Project
under Grant NGII20161003, and in part by the China Postdoctoral Science
Foundation under Grant 2016M592422. The review of this paper was coordi-
nated by Prof. W. Song. (Corresponding author: Zhetao Li.)

G. Xie, Z. Li, and R. Li are with the Key Laboratory for Embedded and
Network Computing of Hunan Province, College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China (e-mail:
xgqman@hnu.edu.cn; liztchina@hotmail.com; liztchina@hotmail.com).

G. Zeng is with the Graduate School of Engineering, Nagoya University,
Nagoya 4648603, Japan (e-mail: sogo@ertl.jp).

K. Li is with the Key Laboratory for Embedded and Network Computing
of Hunan Province, College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, and also with the Department
of Computer Science, State University of New York, New Paltz, NY 12561
USA (e-mail: lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2017.2674302

changing up and down the criticality level of ACPS to adjust the
execution of different functions on different criticality levels with-
out increasing the time complexity. Experimental results indicate
that FDS_MIMF can obtain short overall makespan, whereas
ADS_MIMF can reduce the DMR values of high-criticality
functions while still keeping satisfactory performance of ACPS.

Index Terms—AUTOSAR adaptive platform, automotive cyber-
physical systems (ACPS), functional safety, mixed-criticality, task
graph.

I. INTRODUCTION

A. Background

COST pressure, flexibility, and extensibility, as well as the
need to cope with high complexity of functions, are chang-

ing the fundamental paradigms of automotive architecture to the
integrated architecture, in which software components supplied
by multiple sources are integrated in the same hardware plat-
form [1]. Automotive architecture is a type of heterogeneous
disturbed architecture, which consists of up to 100 heteroge-
neous electronic control units (ECUs), sensors, and actuators
that communicate over a network of buses [2].

A heterogeneous distributed integrated architecture leads to
multi-functional automotive embedded systems, where multiple
functions can be supported by one ECU and one function can
be distributed over multiple ECUs [1]. Premium cars have up to
70 ECUs, connected to five system busses, realizing over 800
functions [3]. Various functions are realized by a number of
distributed tasks which communicate by exchanging messages
over the shared buses [2]. A function model for the description
of distributed end-to-end computations in automobiles is called
a task graph [4], [5]. Given that a distributed automotive func-
tion is released by receiving collected data from the sensor and
is completed by sending the performing action to the actuator
in automotive embedded systems, the task graph is restricted to
be directed and acyclic and is called a directed acyclic graph
(DAG) [4], [5] where the nodes represent tasks and the edges
represent the communication messages between tasks. Exam-
ples of active safety functions are brake-by-wire and adaptive
cruise control [1]. Furthermore, multiple distributed functions
represent multiple DAGs in heterogeneous distributed systems
[6]–[8].

Different functions are developed using different design ap-
proaches by various levels of auto part suppliers and are

0018-9545 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6677

deployed together in automotive systems. Distributed automo-
tive functions are classified into three types: active safety, pas-
sive safety, and non-safety functions. As a result, the mixed-
criticality concept, where certain functions are more significant
(critical) than others, has been introduced as a core foundational
idea [9]. Criticality is represented by the automotive safety in-
tegrity level (ASIL) in automobiles and is defined in the ISO
26262 (Road vehicles - Functional safety), which was formally
issued in November 2011 [10].

In automotive embedded systems, the implementation of
multiple distributed functions depends on the interaction,
feedback, and coordination of multiple ECUs through networks
[2]. Moreover, such systems support dynamically released
(activated) distributed functions with end-to-end computations
that collect and transfer physical world data from 360◦ sensors
to the actuators. Examples of such functions are active cruise
control, lane departure warning, and collision avoidance [1],
[11]. The inherent heterogeneity, interaction, and diverse nature
of integrated automotive architecture require the joint and tight
interaction between the cyber (networked computational) and
physical worlds [2], [12]. Thus, automotive embedded systems
are also typical cyber-physical systems (CPS), and are called
automotive cyber-physical systems (ACPS) [2], [13], [14].

B. Motivation

Efficient scheduling strategies are required to fully utilize the
numerous ECUs and to achieve substantially high performance
improvements. However, scheduling in ACPS faces several new
challenges.

First, we know that automotive embedded systems rely on
safety checking units and watchdogs to find out whether safety-
critical functions are providing correct service or are failed [15],
such that these safety-critical functions (e.g., control engine and
gearbox) are strictly and periodically released and scheduled.
Such periodic activation model is also supported by the au-
tomotive open system architecture (AUTOSAR) standard [4].
However, automobiles are required to support an ever increasing
number of complex functions to meet higher safety requirement.
These functions are distributed, interdependent, and dynamic re-
leased by event arrivals [1], [12]. Consider for example, active
safety functions X-by-wires (e.g, steering-by-wire and brake-
by-wire) use sensors (radars, camera, and ultrasound) to scan
the environment surrounding the car. If they detect objects or
situations that may endanger the passengers or the pedestri-
ans, then the steering or brake actions should be performed
[1]. When a fierce collision happens in the car, the passive
safety function airbag will automatically pop up. That is, more
safety-critical functions should interact with dynamic physi-
cal world and exhibit dynamic behavior. Hence, ACPS integrate
both periodically and dynamically released safe-criticality func-
tions together in a common platform. Usual static scheduling
for periodic functions should be improved to be applied to dy-
namic released functions. Furthermore, as emphasized in the
preface of [16], the design of CPS requires understanding the
joint dynamics of computers, software, networks, and physi-
cal processes. Measuring and controlling the dynamics of these

processes are the main tasks of CPS. In CPS, many things occur
at once; physical processes are compositions of many parallel
processes; parallelism (concurrence) is intrinsic in CPS. In addi-
tion to dealing with temporal dynamics, CPS designs invariably
face challenging parallel issues [16]. In particular, dynamics
and parallelism are also the inherent properties of ACPS, which
should address these two properties at runtime in response to
changes in environments or within themselves [17].

Second, as mentioned in the introduction of ISO 26262 [10]:
“safety is one of the key issues of future automobile develop-
ment. New functions are not only in the area of driver assistance
but also in vehicle dynamics control and active and passive
safety systems.” Safety analysis is important when designing
and developing cyber-physical systems (CPS) [18]. Given that
automotive embedded systems provide safety-relevant func-
tions, such systems must preserve the predefined requirements
to guarantee the correct behavior at all times [17]. Hard deadline
constraints are the core predefined timing constraints of auto-
motive functions, but ACPS cannot meet the deadlines of all
functions, particularly in large-scale ACPS. A high-criticality
function (i.e., a function with high criticality level) has a consid-
erably important and strict timing constraint for a given deadline.
Missing the deadlines of high-criticality functions would result
in fatal injuries to people. Therefore, the safety of these high-
criticality functions must be guaranteed, that is, their potential
safety risk should be controlled within an acceptable range.

To support dynamic scheduling and communication in auto-
motive systems, the next generation AUTOSAR standard called
AUTOSAR adaptive platform will be formally released in 2017
[19], [20]. The AUTOSAR spokesperson Simon Fürst pointed
out that AUTOSAR adaptive platform will support “planned dy-
namics”, which includes dynamic deployment of software com-
ponents, planning of dynamic scheduling and communication.
Meanwhile, the previous AUTOSAR standard has been renamed
as the AUTOSAR classic platform. Currently, the AUTOSAR
classic platform 1.1 is being accepted testing. Moreover, the
AUTOSAR adaptive platform will also be an integrated hetero-
geneous platform that integrates parallel computing, real-time
requirements, safety, criticality, and existing functions into a het-
erogeneous architecture [21], [22]. Therefore, the AUTOSAR
adaptive platform actually reflects the current challenges of
heterogeneity, dynamics, parallelism, safety, and criticality of
ACPS and theses challenges should be addressed with an adap-
tive approach. Adaptive scheduling approach should be realized
by adapting the architecture of ACPS at runtime to respond au-
tonomously to changes in environments or within themselves.

C. Our Contributions

The main contributions of this study are as follows.
1) We use the task graph of DAG to represent distributed au-

tomotive functions and construct ACPS model from dynamics,
parallelism, safety, and criticality perspectives according to the
characteristics of ACPS.

2) We present the fairness-based dynamic scheduling al-
gorithm FDS_MIMF on multiple-functional mixed-criticality
ACPS. FDS_MIM aims to minimize individual makespans

6678 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

(schedule lengths) of functions with short overall makespan
of ACPS from a high performance perspective, and thereby can
respond autonomously to the joint challenges of heterogeneity,
dynamics, and parallelism of ACPS.

3) We present the adaptive dynamic scheduling algorithm
ADS_MIMF on multiple-functional mixed-criticality ACPS.
ADS_MIMF aims to achieve the low deadline miss ratios
(DMRs) [23] of functions from a timing constraint perspec-
tive, whereas obtain a satisfactory overall makespan of ACPS
from a high performance perspective, and thereby further re-
spond autonomously to the joint challenges of heterogeneity,
dynamics, parallelism, safety, and criticality of ACPS.

The rest of this study is organized as follows. Section II re-
views the related literature. Section III constructs related mod-
els for ACPS. Section IV proposes the fairness-based dynamic
scheduling approach. Section V proposes the adaptive dynamic
scheduling approach. Section VI verifies the performance of all
our proposed algorithms. Section VII concludes this study.

II. RELATED WORK

Adaptive behavior is common in ACPS (e.g., engine control
functions). Analysis, design, and scheduling based on the
adaptive variable-rate (AVR) task model with variable WCETs,
period, and deadlines, were studied recently in [24]–[26]. The
mixed-criticality scheduling problem was first identified and
formalized by Vestal [27], whose work has been extended
and has inspired substantial investigations of mixed-criticality
cyber-physical systems [28], [29]. The models of these
studies are based on task model. In other words, these studies
considered mixed-criticality from a “task level” perspective.
The mixed-criticality scheduling for DAG-based tasks byusing
federated scheduling was studied recently [30], [31]. The
federated scheduling approach means assigning dedicated
processors to high-utilization tasks and schedule them using
a work-conserving scheduler. The main difference between
[30], [31] and this study is that the former is about static
single DAG-based mixed-criticality scheduling, whereas this
study is about dynamic multiple DAGs-based mixed-criticality
scheduling. Considering that this study is to investigate the
dynamic multiple-functional scheduling where functions
with individual criticality levels, we mainly review static
multiple-functional (i.e., multiple DAGs-based) scheduling,
and then review dynamic multiple-functional scheduling.

Static single-functional scheduling provides a research ba-
sis for multi-functional scheduling. The problem of schedul-
ing tasks on multiprocessors is known to be NP-hard [32],
and scheduling tasks for minimum makespan of a DAG-based
function in heterogeneous parallel and distributed systems is
a well-known NP-hard optimization problem [33]–[36]. Many
heuristic list scheduling algorithms have been proposed to gener-
ate near-optimal solutions of single-functional scheduling [33]–
[36]. The core idea of single-functional list scheduling includes
two phases: the first phase involves ordering all tasks of the func-
tion in a list, and the second phase assigns each task to a proper
processor (i.e., an ECU in this study) [33]. Multi-functional
static scheduling means that multiple functions arrive at the

same time instant. A composition approach to merge multi-
ple distributed functions into one function for scheduling first
proposed in [37]. Zhao and Sakellariou [38] first indicated the
fairness issue in multi-functional scheduling; they proposed a
fairness scheduling algorithm called Fairness with a slowdown-
driven strategy by ensuring the fairness of different functions. In
distributed embedded systems, some works [39], [40] studied
the real-time scheduling of distributed functions. They com-
monly assume that a distributed function is periodic in terms
of released time and deadlines. Hu et al. [41] and [42] investi-
gated the scheduling of multiple periodic distributed functions
for safety-critical time-triggered avionic and automotive sys-
tems, respectively. Tamas et al. [43], [44] proposed a series
of investigations about multi-functional mixed-criticality de-
sign and optimization. In [45], we studied the high performance
scheduling of multiple simultaneously released functions with
different criticality levels on automotive embedded systems.
The main limitations of the above works are that all distributed
functions are released periodically and cannot be applied to dy-
namic ACPS, where any function can arrive at any time instant.
Dynamics is an inherent property of ACPS and should be dealt
with as mentioned in Introduction [16].

The aforementioned multi-functional static scheduling cannot
deal with the dynamics of ACPS, where multiple functions may
operate at different time instants. Similar to multi-functional
static scheduling, achieving high fairness is still an effective ap-
proach to minimize the overall makespan of the system in multi-
functional dynamic scheduling. The first-come first-served and
serve-on-time strategies cannot achieve effective fairness. Yu
et al. [6] proposed a multi-functional dynamic scheduling algo-
rithm by using a planner-guided strategy. Hsu et al. [7] proposed
a multi-functional dynamic scheduling called online function
management (OWM). The main contribution of OWM is that it
considers whether the selected processor is free. If the selected
processor is free at that time, the OWM algorithm assigns the
selected task to that processor; otherwise, the algorithm keeps
the selected task in the common ready list to be scheduled
later. Arabnejad et al. [8] proposed a new multi-functional dy-
namic scheduling algorithm called fairness dynamic workflow
scheduling (FDWS). If the selected processor is not free at that
time, FDWS employs a waiting queue for each processor and
places the selected task into the waiting queue for scheduling
when the processor is not idle. Therefore, FDWS is different
from OWM, which keeps the selected task in the common ready
list.

The main problems of the preceding investigations are that
they merely minimize the overall makespan of the system [7] or
individual makespans of functions [8] from a high performance
perspective but ignore the safety and criticality from a timing
constraint perspective. Safety is one of the key issues and each
function has different criticality levels in ACPS. In this study,
we first present the improved high performance scheduling ap-
proach and then present an adaptive scheduling algorithm to
solve the above joint challenges of dynamics, parallelism, safety,
and criticality. We aim to achieve satisfactory performance of the
system and significantly reduce the DMRs for high-criticality
functions by using the adaptive scheduling algorithm.

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6679

TABLE I
IMPORTANT NOTATIONS AND THEIR DEFINITIONS USED IN THIS STUDY

Notation Definition

|X | Size of the set X

Fm .ni Task ni of the function Gm

Fm .ci , j WCRT between the tasks Fm .ni and Fm .nj

Fm .wi , k WCET of the task Fm .ni on the processor uk

ranku(Fm .ni) Upward rank value of the task ni

M S.criticality Criticality level of ACPS M S

M S.makespan Overall makespan of ACPS M S

Fm .Fm .arrivaltime Arrival time of the function Fm

Fm .criticality Criticality level of the function Fm

Fm .lowerbound Lower bound of the function Fm

Fm .deadline Relative deadline of the function Fm

Fm .abs deadline Absolute deadline of the function Fm

Fm .makespan Makespan of the function Fm

abs deadline(Fm .ni) Absolute deadline of the task Fm .ni

EF T (Fm .ni , pk) Earliest finish time the task Fm .ni on pk

DM R(Sx) DMR of the function with criticality level Sx

Fm .task priority queue Task priority queue of the function Fm

M S.common ready queue Common ready queue of ACPS M S

pk .task allocation queue Task allocation queue of the processor pk

Table I lists important notations and their definitions used in
this study.

III. MODELS

A. Architecture

In automotive embedded systems, the scheduling strategies
can also be time-triggered (e.g., the static segment of FlexRay)
or event-triggered (e.g., the dynamic segment of FlexRay, or
controller area network (CAN)) [46]–[48]. Currently, CAN is
the most widespread networking standard in automotive indus-
tries. CAN is ideally suited for dynamic real-time distributed
systems because of its event-triggered, non-destructive, and
strictly deterministic medium arbitration [49]. In this study, we
consider an integrated automotive electrical and electronic (E/E)
architecture as a CAN cluster (also called multi-domain CAN
systems) where more than four or five CAN buses are inte-
grated by a central gateway and several ECUs are mounted on
each CAN bus [50]–[52]. Considering that physical processes
are compositions of many parallel processes, we use the same
configuration as [17] that some ECUs connect to several sensors
and other ECUs connect to several actuators, as shown in Fig. 1.
Such similar automotive E/E architecture can also be found in
some ACPS design [2], [12] and is basically similar to the hard-
ware requirement (i.e., sensor and actuators are redundant or
accessible via network) of 1oo2D (1 out of 2 Diagnosis) solu-
tion using dynamic reconfiguration by Elektrobit [53]. In this
situation, partial ECU can release the function by receiving the
collected data from the sensor, and other partial can complete the
function by sending the performing action to the actuator. That
is, the entry task of a function can only be executed by specified
ECUs that connect sensors, and the exit task of the function can
only be executed by specified ECUs that connecting actuators.

We use P = {p1, p2, ..., p|P |} to represent a set of heteroge-
neous ECUs; in this equation, |P | represents the size of set P .
Notably, for any set X , this study uses |X| to denote its size.

Fig. 1. Architecture of a CAN cluster with four buses interconnected by a
central gateway.

When a task is executed completely in one ECU, the task sends
messages to all of its successor tasks that may be located in
the different ECUs of different buses. For example, in Fig. 1,
task n1 is executed on ECU1 of CAN1. When this task is exe-
cuted completely, it then sends a message m1,2 to its successor
task n2 located in the ECU6 of CAN3. The central gateway is a
highly important node that connects the CAN cluster and allows
messages to be passed from one bus to another.

B. Criticality Level

ISO 26262 identifies four criticality levels denoted by ASIL
(i.e., A, B, C, and D) of automotive functions [10]. ASIL is es-
tablished by analyzing the severity, exposure, and controllability
of a vehicle under a hazard scenario [10]. Severity means the in-
jury degree caused by accidents, such as missing the deadlines
of functions with different severity levels will cause different
injuries, and is usually evaluated by DMR. Exposure means
the relative expected probability caused by random hardware
failures in which the injury may happen and is evaluated by reli-
ability [10]. In addition, as pointed out in ISO 26262, reliability
(or exposure) is only related with random hardware failures,
which occur unpredictably during the life time of a hardware,
but follows a probability distribution [10]. Controllability de-
pends on the states of drivers when running.

The safety requirement of an automotive function is actually
the combination of the real-time requirement, the reliability re-
quirement of the function, and the controllability requirements
of drivers. Similar to [44], [45], we ignore the issue of reli-
ability (which is orthogonal to our problem) and assume that
the designer has developed functions that provide the required
level of reliability. Controllability is related to drivers rather
than systems and is a computer-human interaction problem;
all developed functions are assumed to be uncontrollable by
drivers. In other words, this study focuses on severity, which
is one of the parts of ASIL. Severity also involves four levels,
namely, S0, S1, S2, and S3, which represent no injuries, light to
moderate injuries, severe to life-threatening injuries, and life-
threatening to fatal injuries, respectively. Obviously, S0 and S3
represent the lowest criticality level and the highest criticality

6680 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

level, respectively, among these criticality levels [10]. Hence,
S = {S0, S1, S2, S3} is employed to represent a set of the sever-
ity levels in ACPS.

C. Mixed-Criticality Function Model

A distributed function is represented by a task graph DAG
Fm = (N , W , M , C) [33]–[36], where Fm represents the mth
function in systems. The tasks, messages, and other attributes
are described as follows:

(1) N represents a set of nodes in Fm , and each node ni ∈
N represents a task with different worst-case execution times
(WCETs) on different ECUs. In general, a task has different
WCET values in different criticality levels on mixed-criticality
systems and the WCET in high-criticality level is larger than
or equal to that in low-criticality level. Similar to [44], we also
assume that each task has the same WCET value regardless of
the criticality level for simplicity in this study. This assumption
is a special case of the general case with varying WCETs and
the proposed approaches can also be applied to the general
case, as long as the deadlines of functions are certificated in
the highest criticality level. pred(ni) represents the set of the
immediate predecessor tasks of ni . succ(ni) represents the set
of the immediate successor tasks of ni . The task which has no
predecessor task is denoted as nentry; and the task which has no
successor task is denoted as nexit. If a DAG-based function has
multiple nentry or multiple nexit tasks, then a dummy entry or
exit task with zero-weight dependencies is added to the graph.
W is an |N | × |P | matrix where wi,k denotes the WCET of ni

runs on pk .
(2) Communication between tasks mapped to different ECUs

is performed by message passing over the bus; hence, M is a set
of communication edges, and each edge mi,j ∈M represents
the communication message from ni to nj . Accordingly, C
represents end-to-end worst case response time (WCRT) sets of
messages. ci,j ∈ C represents the end-to-end WCRT of mi,j ,
and it includes the gateway processing time of mi,j [45], [52],
[54].

(3) The aforementioned parameters are the basic proper-
ties of the distributed functions in heterogeneous distributed
systems and are used by several algorithms (e.g., heteroge-
neous earliest finish time (HEFT) [33] and heterogeneous
selection value (HSV) [36]). For a distributed function in
mixed-criticality ACPS, the remaining attributes (arrivaltime,
criticality, lowerbound, deadline, and makespan) need to
be used. arrivaltime represents the arrival time (i.e., released
time) of the function. criticality ∈ S represents the criticality
level of Fm . lowerbound indicates the minimum makespan of a
function when all ECUs are monopolized by the function using
a standard DAG-based single-functional scheduling algorithm
(e.g., HEFT [33]). deadline means the relative deadline of the
function and should be larger than or equal to lowerbound. No-
tably, the start time instant of the relative deadline is the arrival
time of the function. criticality, lowerbound, and deadline
must be certificated by a certification authority (CA) (refer to
Section IV-A for concrete certification). makespan represents
the actual makespan of Fm in multi-functional scheduling. Note

that if a distributed function is periodically released, then we
treat each instance of this function as a new dynamic function.
In this way, all periodically released functions can also be con-
sidered special cases of dynamic functions. That is, the models
and scheduling approaches presented in this study can also be
applied to periodically released functions.

D. Mixed-Criticality System Model

A mixed-criticality ACPS comprises of multiple distributed
functions with different criticality levels and is denoted as MS
= {F1, F2, ..., F|M S |}. Let MS.criticality indicate the cur-
rent criticality level of ACPS. In distinguishing the ambigui-
ties, we use MS.criticality to express the criticality of MS
and use Fm .criticality to express the criticality of the func-
tion Fm . Other attributes use the same expression. In mixed-
criticality systems, MS.criticality can be changed to high-
criticality levels and back to low-criticality levels. A change
in MS.criticality indicates a switch in system mode. Fm can
only be executed on the modes in which Fm .criticality is higher
than or equal to MS.criticality [9]. Note that the number of
functions in MS is dynamically increased with time.

According to the AUTOSAR standard, the scheduling of dis-
tributed functions in automobiles depends on the operating sys-
tem (OS) running on ECUs, in which common automotive OSs
can be either preemptive (e.g., OSEKTime) or non-preemptive
(e.g., eCos) [17]. In this study, we consider non-preemptive
scheduling for ECUs.

To implement the requirement of assigning tasks to different
ECUs in a dynamic fashion, we emphasize the following con-
ditions: 1) source code for each task needs to be presented on
each ECU; 2) the data for the task needs to be available on the
ECU which requires dynamic sending of data via messages; 3)
all ECUs have to be certified to the highest criticality level; and
4) a TIER 1 supplier of one ECU has to allow the execution of a
task possible designed by another TIER 1 supplier which raises
questions regarding liability. Note that if all software develop-
ers and products comply with the AUTOSAR standard, then
the last implication does not need to be considered, because the
AUTOSAR standard allows the functions to run on different
hardwares to improve development efficiency by AUTOSAR
runtime environment (RTE). That is, AUTOSAR introduces the
RTE to shield the details that are related to hardwares, such that
the code portability in different hardwares is easy. The above re-
quirement is basically similar to the software requirement (i.e.,
functions can be dynamically relocated) of 1oo2D salutation
using dynamic reconfiguration by Elektrobit [53].

E. Motivating Example

Fig. 2 shows a motivating example of mixed-criticality
ACPS with three functions, namely, F1, F2, and
F3, with F1.criticality = S1, F2.criticality = S2, and
F3.criticality = S3. Table II shows the WCETs of tasks for
F1, F2, and F3 in Fig. 2. The example shows six tasks for F1,
five tasks for F2, and six tasks for F3. Three ECUs exists for
ACPS in this motivating example. Although the example is sim-
ple, three ECUs, three functions, and three criticality levels are

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6681

Fig. 2. Motivating example of ACPS containing three distributed functions
with different criticality levels (F1.criticality = S1, F2.criticality = S2,
and F3.criticality = S3).

involved. This example can reflect the characteristics of multi-
ple ECUs, multiple functions, and multiple criticality levels in
ACPS. The weight 8 of the edge between task F1.n1 and task
F1.n2 represents the WCRT of F1.m1,2 if F1.n1 and F1.n2 are
not assigned in the same ECU. The weight 12 of F1.n1 and p1 in
Table II(a) represents the WCET and is denoted as F1.w1,1 = 12.
We can see that the same task has different WCETs on differ-
ent ECUs due to the heterogeneity of ACPS. To explain our
scheduling algorithms clearly and intuitively, all ECUs can ex-
ecute the entry and exit tasks of all functions in this example.

F. Problem Description

Given multiple functions MS = {F1, F2, ..., F|M S |} that
would be executed on a heterogeneous multiple ECU set P =
{p1, p2, ..., p|P |} and criticality level set S = {S0, S1, S2, S3} in
ACPS, the formal description is to simultaneously reduce the
overall makespan of ACPS:

MS.makespan = max(F1.makespan,

F2.makespan, ..., F|M S |.makespan), (1)

and the DMRs of high-criticality functions:

DMR(Sx) =
|MSmiss(Sx)|
|MS(Sx)| , (2)

with a reasonable tradeoff. |MSmiss(Sx)| represents the number
of the functions with criticality level Sx missing their abso-
lute deadlines, and |MS(Sx)| represents the number of all the
functions with criticality level Sx . Obviously, the problem is an
NP-hard optimization problem.

IV. FAIRNESS-BASED DYNAMIC SCHEDULING

This section presents fairness-based dynamic scheduling on
multi-functional mixed-criticality ACPS from a high perfor-
mance perspective.

A. Lower Bound and Deadline

ISO 26262 requires designers to assess and eliminate all po-
tential risks of automotive functions in advance and as soon

TABLE II
COMPUTATION TIME MATRIXES OF THE EXAMPLE IN FIG. 2

(a) Computation Time Matrix of F1

Tasks F1.n1 F1.n2 F1.n3 F1.n4 F1.n5 F1.n6

p1 12 9 7 13 18 15
p2 8 15 12 15 10 10
p3 9 11 16 18 20 8
ranku 77 58 55 34 33 11

(b) Computation Time Matrix of F2

Tasks F2.n1 F2.n2 F2.n3 F2.n4 F2.n5

p1 14 9 18 21 7
p2 5 10 17 15 6
p3 6 11 16 19 15
ranku 64 34 45 39 10

(c) Computation Time Matrix of F3

Tasks F3.n1 F3.n2 F3.n3 F3.n4 F3.n5 F3.n6

p1 8 14 9 18 18 5
p2 11 13 12 15 16 10
p3 19 8 16 14 20 7
ranku 110 91 63 31 39 8

as possible. Accordingly, the goals of safety-related automotive
functions, particularly safety-related functions, can be achieved.
The HEFT algorithm is the most popular DAG-based single-
functional scheduling algorithm for reducing makespan to a
minimum while achieving low complexity and high perfor-
mance in heterogeneous distributed systems [33]. The two-
phase HEFT algorithm has the following important steps.

First, the HEFT algorithm uses the upward rank value (ranku)
of a task (Eq. (3)) as the task priority standard. In this case, the
tasks are ordered according to the descending order of ranku.
Table II shows the upward rank values of all tasks (Fig. 2), which
are obtained by using Eq. (3):

ranku(Fm .ni) =

Fm .wi + max
Fm .nj ∈succ(Fm .ni)

{Fm .ci,j + ranku(Fm .nj)}, (3)

where Fm .wi represents the average WCET of task Fm .ni .
Second, the attributes EST (Fm .nj , pk) and

EFT (Fm .nj , pk) represent the earliest start time (EST)
and earliest finish time (EFT), respectively, of task Fm .nj on
ECU pk . EFT (Fm .nj , pk) is considered the task allocation
criterion because it can meet the local optimal of each task. The
aforementioned attributes are calculated as given by (4), shown
at the bottom of the next page, and

EFT (Fm .nj , pk) = EST (Fm .nj , pk) + Fm .wj,k . (5)

avail[k] is the earliest available time when ECU pk is ready for
task execution. AFT (Fm .ni) is the actual finish time (AFT) of
task Fm .ni . Fm .c

′
i,j represents the WCRT between Fm .ni and

Fm .nj . If Fm .ni and Fm .nj are allocated to the same ECU, then
Fm .c

′
i,j = 0; otherwise, Fm .c

′
i,j = Fm .ci,j . Fm .nj is allocated

to the ECU with the minimum EFT by using the insertion-based
scheduling strategy, where Fm .nj can be inserted into the slack
with the minimum EFT.

6682 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

TABLE III
LOWER BOUND COMPUTATION OF F1

Task EF T (F1.n i , p1) EF T (F1.n i , p2) EF T (F1.n i , p3)

F1.n1 12 8 9
F1.n2 25 23 27
F1.n3 27 35 36
F1.n4 48 38 53
F1.n5 45 48 57
F1.n6 60 61 59

Fig. 3. Task scheduling for lower bound calculation.

Similar to [45], HEFT is employed by CAs to assess the
lower bound of a distributed function. The lower bound refers
to the minimum makespan of a function when all ECUs are mo-
nopolized by the function by using the standard DAG-based
single-functional scheduling algorithm and is calculated as
follows:

Fm .lowerbound = AFT (Fm .nexit), (6)

where Fm .nexit represents the exit task of Fm .
Table II(a) shows the upward rank values of all the tasks

in Fig. 2(a). Note that only if all the predecessors of Fm .ni

have been assigned to the processors, will Fm .ni prepare to
be assigned. Assume that two tasks Fm .ni and Fm .nj satisfy
ranku(Fm .ni) > ranku(Fm .nj), if no precedence constraint
exists between Fm .ni and Fm .nj , then Fm .ni may not have
higher priority than Fm .nj . Finally, the task priorities in G is
{F1.n1, F1.n2, F1.n3, F1.n4, F1.n5, F1.n6}.

As the task priorities have been obtained, we then explain
the lower bound computation of F1 using HEFT shown in
Table III. First, F1.n1 is assigned to p2 (denoted with red
color) because it has the minimum WCET of 8. Then, F1.n2

is assigned to p2 (denoted with red color) because it has the
minimum EFT (EFT (F1.n2, p1) = 25, EFT (F1.n2, p2) = 23,
EFT (F1.n2, p3) = 27 calculated by Eq. (5)). F1.n3, F1.n4,
F1.n5, and F1.n6 use the same pattern as F1.n2 to obtain the
minimum EFT shown in Table III. Finally, lower bound of func-

TABLE IV
PROPERTIES OF FUNCTIONS IN FIG. 2

F1 F2 F3

Task priority F1.n1, F1.n2,
F1.n3, F1.n4,
F1.n5, F1.n6

F2.n1, F2.n3,
F2.n4, F2.n2,

F2.n5

F3.n1, F3.n2,
F3.n3, F3.n5,
F3.n4, F3.n6

arrivaltime 0 10 20
criticality S1 S2 S3

lowerbound 59 52 54
deadline 69 62 64
abs deadline 69 72 84

tion F1 is 59, which is the AFT of the exit task F1.n6. Fig. 3
shows the task scheduling for lower bound calculation of F1.

A known relative deadline (i.e., Fm .deadline) is provided by
CAs for each function on the basis of the actual physical time
requirement after hazard analysis and risk assessment (Fig. 3).
Considering the dynamics of ACPS, we should obtain the abso-
lute deadline (the start time instant of Fm is 0) of each function,
which is calculated as follows:

Fm .abs deadline = Fm .deadline + Fm .arrivaltime. (7)

Table IV lists related properties of each function of the moti-
vating example.

B. Dynamic Scheduling Framework

We propose a scheduling framework of dynamic multi-
functional ACPS (Fig. 4). The framework has two main com-
ponents: multi-functional pool, and heterogeneous distributed
integrated architecture.

1) The multi-functional pool stores new dynamically arrived
functions. Each function is submitted into the pool at any time
instant.

2) The heterogeneous distributed integrated architecture con-
tains different ECUs where allocated tasks can be executed.

The objective is to make all functions in the multi-functional
pool be executed on the ECUs of the heterogeneous distributed
integrated architecture. The scheduling framework introduces
three types of priority queues: task priority, common ready, and
task allocation queues.

1) The task priority queue (Fm .task priority queue) of each
function and the tasks in Fm .task priority queue are ordered
according to descending ranku(Fm .ni).

2) The common ready queue (MS.common ready queue)
of ACPS for storing ready tasks and the tasks in
MS.common ready queue are also ordered according to de-
scending ranku(Fm .ni) as well.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

EST (Fm .n entry,pk)=0;

EST (Fm .ni ,pk)=max

⎧
⎪⎪⎨

⎪⎪⎩

avail[k],

max
Fm .ni ∈pred(Fm .nj)

{AFT (Fm .ni) + Fm .c
′
i,j}

⎫
⎪⎪⎬

⎪⎪⎭

;

(4)

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6683

Fig. 4. Scheduling framework of dynamic multi-functional ACPS.

Fig. 5. Example of dynamic arrival, and the current time instant is 10 when
F2 arrives.

3) The task allocation queue (pk .task allocation queue) of
each ECU is for storing allocated tasks.

C. Fairness-Based Dynamic Scheduling Algorithm

Different functions may come at different time instants. As
shown in Fig. 5, at time instant 0, the tasks of F1 are assigned
to the task allocation queues of ECUs. At time instant 10, F2

arrives. The tasks in F1 could then be divided into three task
groups: (1) the group where tasks are executed (F1.n1); (2) the
group where tasks are being executed (F1.n2); (3) the group
where tasks are assigned to task allocation queues of ECUs

but have not been started for execution in ECUs (F1.n3, F1.n4,
F1.n5, and F1.n6).

Given that we use the non-preemptive scheduling strategy,
F1.n2 cannot be interrupted by high-criticality functions. Con-
sidering that tasks F1.n3, F1.n4, F1.n5, and F1.n6 have not been
started for execution in ECUs, their allocation can be canceled.
On the basis of the above analysis, we optimize the objective
of fairness from a high performance perspective. The fairness-
based strategy of steps in this study is shown in Fig. 4. The steps
are described as follows:

Step 1): Task priority: Place all the tasks of each function into
corresponding task priority queue Fm .task priority queue ac-
cording to the descending order of ranku(Fm .ni).

Step 2): Task readiness: Select the ready tasks with the
maximum ranku(Fm .ni) from each function, and place them
into the common ready queue MS.common ready queue ac-
cording to the descending order of ranku(Fm .ni), namely,
ranku is also used to determine the priorities of the tasks in
MS.common ready queue. We know that multiple functions
can be merged into a new function by adding a common virtual
entry task and an exit task. The ranku value for each task in the
merged function is the same as in the original single function,
so the ranku value can be used to determine the priority across
multiple functions.

Step 3): Task allocation: Select a task with maximum
ranku(Fm .ni) from the MS.commom ready queue,
and place it into the task allocation queue
pk .task allocation queue of an ECU with minimum
EFT (Fm .ni, pk) using the insertion-based strategy and mark
its actual start time (AST) and AFT in the task allocation queue,
where AFT (Fm .ni) is equal to the minimum EFT (Fm .ni, pk)
and AST (Fm .ni) = AFT (Fm .ni)− Fm .wi,k .

Note that each task is first allocated to the task alloca-
tion queue rather than ECU itself. Only when the ST of
the task is equal to the current time instant, is the task as-
signed to the ECU and executed. Repeat Step (3) until the
MS.common reday queue is empty. Repeat Step (2) until no
ready task can be selected.

Step 4): Task scheduling: Schedule all the tasks according to
the assignment in task allocation queues.

Step 5): Arrival of a new function: If a new function Fnew

arrives (implemented by interrupt service routine (ISR)), then
add it to MS and calculate ranku(Fnew.ni) for all the tasks of
Fnew, and place them into the Fnew.task priority queue; cancel
all the tasks that are waiting to be scheduled in the task allocation
queues of all ECUs and place them into the corresponding task
priority queues.

Compared with the latest typical multi-functional dy-
namic scheduling algorithm that aims to minimize individual
makespans of functions (i.e., FDWS [8]), our scheduling strat-
egy has the following improvements:

1) Each task is first allocated to the task allocation queue of
the ECU regardless of whether the ECU is idle when using our
strategy (Step (4)), whereas FWDS needs to determine whether
the ECU is idle and the task should wait for scheduling when
the ECU is not idle.

6684 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

Algorithm 1: The FDS_MIMF Algorithm.

Input: P = {p1, p2, ..., p|P |}, S = {S0, S1, S2, S3}, and
MS = {F1, F2, ..., F|M S |}

Output: Schedule results
1: for (m← 1;m � |MS|;m + +) do
2: Fm .task priority queue(Fm).add(Fm .ni);
3: end for//Step (1)
4: while (functions to be scheduled in MS exist) do
5: for (m← 1;m � |MS|;m + +) do
6: ni ← Fm .task priority queue.out();
7: MS.common ready queue.put(ni);
8: end for//Step (2)
9: while (!common redaly queue.empty()) do

10: ni ←MS.common ready queue.out();
11: Assign ni to the task allocation queue(pk) of

the ECU pk with the EFT using the
insertion-based strategy; //Step (3)

12: end while
13: Schedule all tasks according to the assignment in

task allocation queues; //Step (4)
14: if (a new function Fnew arrives) then
15: MS.add(Fnew);
16: task priority queue(Fnew).add(Fnew.ni);
17: Get unexecuted tasks unexecuted tasks of

other functions;
18: unexecuted tasks

back−−→
task priority queues;

19: end if//Step (5)
20: end while

2) If a new function arrives, our strategy can cancel all tasks
that have not been started for execution (Step (5)) and these
tasks can be fairly rescheduled with the tasks of new functions,
whereas FDWS blocks tasks and leads to delays in waiting for
the completion of other tasks.

On the basis of the above analysis, we propose round-
robin fairness-based dynamic scheduling with the ob-
jective of minimizing individual makespans of functions
(FDS_MIMF) for ACPS. The steps of FDS_MIMF are
described in Algorithm 1. The time complexity of the
FDS_MHEFT algorithm is O(|MS| ×N 2

max × |P |), where
Nmax = max(|F1.N |, |F2.N |, ..., |F|M S |.N |), which is the same
as that of FDWS.

D. Example of the FDS_MIMF Algorithm

Figs. 3 and 5–8 show the Gantt charts of the scheduling, and
Table V shows the corresponding steps of task operations of the
motivating example using the FDS_MIMF algorithm. Notably,
the actual execution time of each task should be less than or equal
to its WCET in dynamic scheduling. To explain our proposed
scheduling algorithm clearly, all tasks can be executed with their
WCETs, and this assumption will not influence the effectiveness
of the algorithm in the actual situation.

1) The current time instant of ACPS is 0 when F1 arrives,
and F1 is scheduled using the HEFT algorithm (Fig. 3 of

Fig. 6. In the current time instant 10, the tasks (F1.n3, F1.n4, F1.n5, F1.n6)
of F1 that have not been started for execution and all the tasks of F2 are fairly
scheduled.

Fig. 7. Current time instant is changed to 20 when F3 arrives; the tasks (F1.n3,
F1.n4, F1.n5, F1.n6) have not been started for execution of F1 and the tasks
(F2.n2, F2.n4, F2.n5) have not been started for execution of F2 are canceled.

Fig. 8. In the current time instant 20, the tasks (F1.n3, F1.n4, F1.n5, F1.n6)
of F1 that have not been started for execution, the tasks (F2.n2, F2.n4, F2.n5)
of F2 that have not been started for execution, and all the tasks of F3 are fairly
scheduled.

Section IV-A). As only one function in time instant 0, the
results of HEFT are equivalent to that of FDS_MIMF.

2) The current time instant is changed to 10 when F2 arrives
(Fig. 5 of Section IV-C). To achieve fairness between F1

and F2, the tasks (F1.n3, F1.n4, F1.n5, F1.n6) of F1 that
have not been started for execution are canceled (denoted
as shadowgraphs in Fig. 5).

3) In the current time instant 10, the tasks (F1.n3, F1.n4,
F1.n5, F1.n6) of F1 that have not been started for execution
and all the tasks of F2 are fairly scheduled (Fig. 6). Both
F1 and F2 meet their absolute deadlines.

4) The current time instant is changed to 20 when F3 arrives
(Fig. 7). To achieve fairness among F1, F2, and F3, the
tasks of F1 and F2 that have not been started for execution
are canceled (denoted as shadowgraphs in Fig. 7).

5) In the current time instant 20, the tasks of F1 and
F2 that have not been started for execution and
all the tasks of F3 are fairly scheduled (Fig. 8).

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6685

TABLE V
TASK ALLOCATION STEPS OF THE MOTIVATING EXAMPLE USING THE FDS_MIMF ALGORITHM

Step Figure Current instant System’s criticality Operation Operated tasks and orders

1 Fig. 3 0 S0 Allocation F1.n1, F1.n2, F1.n3, F1.n4, F1.n5, F1.n6

2 Fig. 5 10 S0 Cancel F1.n3, F1.n4, F1.n5, F1.n6

3 Fig. 6 10 S0 Allocation F2.n1, F1.n3, F2.n3, F1.n4, F2.n4, F1.n5, F2.n2, F1.n6, F2.n5

4 Fig. 7 20 S0 Cancel F1.n3, F1.n4, F1.n5, F1.n6, F2.n2, F2.n4, F2.n5

5 Fig. 8 20 S0 Allocation F3.n1, F1.n3, F2.n4, F3.n2, F1.n4, F2.n2, F3.n3, F1.n5, F2.n5, F3.n5, F1.n6, F3.n4, F3.n6

Finally, the obtained makespans of functions are as
follows: F1.makespan = 70, F2.makespan = 74,
and F3.makespan = 97. However, all functions miss
their absolute deadlines because F1.makespan > F1.
abs deadline = 69, F2.makespan > F2.abs deadline
= 72, and F3.makespan > F3.abs deadline = 84. In
other words, the results show high performance with short
overall makespan of ACPS, but shows high DMR value
of 1 that all functions miss their absolute deadlines.

V. ADAPTIVE DYNAMIC SCHEDULING

In mixed-criticality ACPS, an important concept is that a
function can be scheduled only when its criticality is higher
than or equal to the system criticality as mentioned earlier. We
can use the FDS_MIMF algorithm (Algorithm 1) to schedule all
functions with different criticality levels and to achieve a short
overall makespan of ACPS; however, the absolute deadlines of
several high-criticality functions may be missed. To meet the
absolute deadlines of high-criticality functions and to reduce
their DMRs, a novel solution is proposed and discussed in this
section.

A. Deadline-Slack

Definition 1(Deadline-slack): The deadline-slack of a func-
tion represents the slack between the relative deadline and the
lower bound of the function, that is,

Fm .deadlineslack = Fm .deadline− Fm .lowerbound .
(8)

Considering that we have used the HEFT algorithm to calcu-
late the Fm .lowerbound, Fm .deadlineslack is actually deter-
mined by Fm .deadline. As the precedence constraints between
tasks in the function Fm , each task should also have an indi-
vidual absolute deadline. In fact, the absolute deadline of Fm is
the absolute deadline of the exit task Fm .nexit. Thereafter, the
absolute deadline of task ni (ni ∈ Fm) can be generated. Thus,

cabs deadline(Fm .ni) = Fm .arrivaltime

+ lowerbound(Fm .ni) + Fm .deadlineslack, (9)

where lowerbound(Fm .ni) = AFT (Fm .ni) represents the
lower bound of Fm .ni . That is, all tasks have individual
lower bounds and absolute deadlines. The deadline-slacks of all
functions are obtained using Eq. (8) (F1.deadlineslack = 10,
F2.deadlineslack = 10, and F3.deadlineslack = 10) of the
motivating example. The absolute deadlines of all tasks are
calculated using Eq. (9). Table VI shows all the absolute

TABLE VI
ABSOLUTE DEADLINES OF TASKS OF THE MOTIVATING EXAMPLE IN FIG. 2

(a) Deadlines of Tasks of F1

Task F1.n1 F1.n2 F1.n3 F1.n4 F1.n5 F1.n6

Absolute deadline 18 33 37 48 55 69

(b) Deadlines of Tasks of F2

Task F2.n1 F2.n2 F2.n3 F2.n4 F2.n5

Absolute deadline 25 49 42 56 72

(c) Deadlines of Tasks of F3

Task F3.n1 F3.n2 F3.n3 F3.n4 F3.n5 F3.n6

Absolute deadline 38 52 61 66 79 84

deadlines of tasks in the motivating example. Note that Table IV
in Section IV-A shows the related values of functions.

B. The ADS_MIMF Algorithm

As observed in Table V, the system criticality using the
FDS_MIMF algorithm always stays at S0, which is the low-
est criticality. Thus, all functions can be scheduled fairly for
high performance but the criticality levels of functions are com-
pletely ignored. To meet the absolute deadlines of more high-
criticality functions and maintain the satisfactory performance
of ACPS, we propose an adaptive dynamic scheduling strat-
egy that is driven by the change in the system criticality. The
proposed algorithm is called the adaptive dynamic scheduling
on the basis of minimizing individual makespans of functions
(ADS_MIMF), and the steps are described in Algorithm 2.

The main idea of ADS_MIMF is that when the fairness-based
strategy cannot meet the absolute deadline of a task belonging to
a high-criticality function Fm , the system criticality is changed
up to the criticality of the function Fm . Thereafter, only the tasks
of functions whose criticality levels are equal to or larger than
the system criticality are scheduled fairly. After all the tasks of
the function Fm are scheduled, the system criticality is changed
down to S0. Finally, the remaining tasks of functions are fairly
scheduled. The concrete steps are explained as follows:

1) Initialize the criticality of ACPS as S0 (i.e.,
MS.criticality ← S0) (Line 4 of Algorithm 2), and
prepare to schedule all functions fairly in the mode of
MS.criticality = S0.

2) If ni ∈ Fm meets makespan(Fm .ni) > abs deadline
(Fm .ni) and Fm .criticality > MS.criticality (Line 16
of Algorithm 2), conduct the following works: a) can-
cel the allocation of tasks of the current and previous

6686 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

Algorithm 2: The ADS_MIMF Algorithm.

Input: P = {p1, p2, ..., p|P |}, S = {S0, S1, S2, S3}, and
MS = {F1, F2, ..., F|M S |}

Output: Schedule results
1: for (m← 1;m � |MS|;m + +) do
2: Fm .task priority queue(Fm).add(Fm .ni);
3: end for
4: MS.criticality ← S0;
5: while (there are tasks to be allocated) do
6: for (m← 1;m � |MS|;m + +) do
7: if (Fm .criticality < MS.criticality) then
8: continue;
9: end if

10: ni ← task priority queue(Fm).out();
11: common ready queue.put(ni);
12: end for
13: while (!common ready queue.empty()) do
14: Fm .ni ← common ready queue.out();
15: Assign Fm .ni to task allocation queue(pk)

with the minimum EFT using the insertion-based
scheduling strategy;

16: if (makespan(Fm .ni)>abs deadline(Fm .ni)
&& Fm .criticality>MS.criticality) then

17: Cancel the task allocations canceled tasks
of current and previous rounds of unscheduled
completed functions;

18: canceled tasks
back−−→ task priority queues;

19: cleared tasks←
common ready queue.clear();

20: cleared tasks
back−−→ task priority queues;

21: MS.criticality ← Fm .criticality;
22: end if
23: if (Fm , which is the function causing the system

criticality to be changed up, is scheduled
completed) then

24: cleared tasks←
common ready queue.clear();

25: cleared tasks
back−−→ task priority queues;

26: MS.criticality ← S0;
27: end if
28: end while
29: if (a new function Fnew arrives) then
30: MS.add(Fnew);
31: task priority queue(Fnew).add(Fnew.ni);
32: Get unexecuted tasks unexecuted tasks of

other functions;
33: unexecuted tasks

back−−→
task priority queues;

34: end if
35: end while

rounds except for the tasks in scheduled completed func-
tions (one round means the allocation that the tasks placed
into the common ready queue together; given that the

Fig. 9. Current time instant is 20; the makespan of F2.n2 is 56, which is
larger than the absolute deadline 49 of F2.n2; then, the tasks of the current
round {F3.n2, F1.n4, F2.n2} and the previous round {F3.n1, F1.n3, F2.n4}
should be canceled.

Fig. 10. Change the system criticality up to S2; the tasks of F2 and F3 that
have not been started for execution are then fairly scheduled until all the tasks
of F2 are allocated.

current round is not completed, the next round would still
be the current round allocation if the current round alloca-
tion is merely canceled. In this case, the two rounds need
to be canceled); b) clear the tasks in the common ready
queue and place them back to individual task priority
queues; c) change the system criticality to the criticality
of Fm , namely, MS.criticality ← Fm .criticality;

3) Fairly schedule the functions whose criticality level is
larger than or equal to MS.criticality until all tasks of
Fm is scheduled completely.

4) If Fm is the function causing the system criticality to
be changed up and Fm is scheduled completed, change
the system criticality to S0, namely, MS.criticality = S0

(Lines 23-27 of Algorithm 2);
5) If a new function arrives, cancel all tasks that have not

been started for execution (implemented by ISR). These
tasks can be fairly scheduled with the tasks of the new
functions (Lines 29-34 of Algorithm 2).

Last, an important advantage is that ADS_MIMF achieves
lower DMRs of safety-critical functions while maintain-
ing the satisfactory overall makespan of ACPS with-
out increasing the time complexity. The time complex-
ity of the ADS_MIMF algorithm should be O(|MS| ×
N 2

max × |P |), which is equal to that of the FDS_MIMF
algorithm. That is, changing the system criticality to imple-
ment adaptive dynamic scheduling does not increase the time
complexity.

C. Example of the ADS_MIMF Algorithm

Figs. 9–13 show the Gantt charts and Table VII shows the cor-
responding steps of task operations of the motivating example
using the ADS_MIMF algorithm. Note that the first four steps

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6687

Fig. 11. Change the system criticality down to S0; the makespan of F3.n4 is
75, which is larger than the absolute deadline 66 of F3.n4; then, the tasks of the
current round {F1.n4, F3.n4} and the previous round {F1.n3, F3.n5} should
be canceled.

Fig. 12. Change the system criticality up to S3; the tasks of F3 that have
not been started for execution are then scheduled until all the tasks of F3 are
allocated.

Fig. 13. The system criticality is changed down to S0; the tasks of F1 that
have not been started for execution are to be scheduled.

(Figs. 3 and 5–7) are the same as those of the FDS_MIMF al-
gorithm because no task ni ∈ Fm meets makespan(Fm .ni) >
abs deadline(Fm .ni) in MS.criticality = S0 until F3 arrives
at time instant 20.

1) In current time instant 20, the tasks of F1, F2 that have not
been started for execution and all the tasks of F3 are to be
fairly scheduled until allocating F2.n2 (Fig. 9). In the cur-
rent round of allocating F2.n2, the tasks required to be al-
located are {F3.n2, F1.n4, F2.n2}. The makespan of F2.n2

is 56, which is larger than the absolute deadline of F2.n2 of
49, that is, AFT (F2.n2) > abs deadline(F2.n2) (Fig. 9).
Then, the tasks of the current round {F3.n2, F1.n4, F2.n2}
and the previous round {F3.n1, F1.n3, F2.n4} should be
canceled (denoted as shadowgraphs Fig. 9).

2) Change the system criticality up to S2 (Fig. 10), which
is the criticality of F2. The tasks of F2 and F3 that have
not been started for execution are then fairly scheduled
because F2.criticality = S2 and F3.criticality = S3. In
this process, no task ni ∈ Fm meets AFT (Fm .ni) >
abs deadline(Fm .ni) in MS.criticality = S2 until all
the tasks of F2 are allocated.

3) Considering that all the tasks of F2 are allocated, then
change the system criticality down to S0, and the tasks of
F1 and F3 that have not been started for execution are to be
fairly scheduled until allocating F3.n4 (Fig. 11). In the cur-
rent round of allocating F3.n4, the tasks required to be al-
located are {F1.n4, F3.n4}. The makespan of F3.n4 is 75,
which is larger than the absolute deadline of 66 of F3.n4,
that is, AFT (F3.n4) > abs deadline(F3.n4) (Fig. 11).
Then, the tasks of the current round {F1.n4, F3.n4} and
the previous round {F1.n3, F3.n5} should be canceled
(denoted as shadowgraphs Fig. 11).

4) Change the system criticality up to S3 (Fig. 12),
which is the criticality of F3. The tasks F3 that have
not been started for execution are then scheduled be-
cause F3.criticality = S3. In this process, no task
ni ∈ Fm meets AFT (Fm .ni) > abs deadline(Fm .ni)
in MS.criticality = S3 until all the tasks of F3 are
allocated.

5) Considering that all the tasks of F3 are allocated, the
system criticality is changed down to S0 (Fig. 13), and
the tasks of F1 that have not been started for execu-
tion are to be scheduled. Finally, F1.makespan = 87,
which is larger than F1.abs deadline = 69. Hence, F1

misses its absolute deadline. However, F2.makespan =
63 and F3.makespan = 74, which are less than
F2.abs deadline = 72 and F3.abs deadline = 84, re-
spectively. Therefore, high-criticality functions F2 and
F3 meet their individual absolute deadlines. Although F1

misses its absolute deadline, it is a low-criticality function
and will not cause fatal injuries in this situation.

We then summarize the following observations on the
FDS_MIMF and ADS_MIMF algorithms.

1) The FDS_MIMF algorithm aims to minimize the indi-
vidual makespans of functions with satisfactory overall
makespan of ACPS from a high performance perspec-
tive and ignores the real-time properties of all functions.
FDS_MIMF can respond autonomously to the joint chal-
lenges of heterogeneity, dynamics, and parallelism of
ACPS.

2) The ADS_MIMF algorithm aims to meet the absolute
deadlines of more high-criticality functions while still
keeping satisfactory overall makespan of ACPS. That is,
the ADS_MIMF algorithm achieves low DMR and satis-
factory system performance by changing the system criti-
cality. ADS_MIMF can respond autonomously to the joint
challenges of heterogeneity, dynamics, parallelism, safety,
and criticality of ACPS.

VI. EXPERIMENTS

A. Experimental Metrics

The performance metrics selected for comparison are the
overall makespan of ACPS (Eq. (1)) and the DMR of the
functions (Eq. (2)). We implemented a simulated heteroge-
neous CAN cluster with five buses by using Java on a stan-
dard desktop computer. This platform can generate a variety of
function samples (including active safety, passive-safety, and

6688 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

TABLE VII
TASK ALLOCATION STEPS OF THE MOTIVATING EXAMPLE USING THE ADS_MIMF ALGORITHM

Step Figure Current instant System’s criticality Operation Operated tasks and orders

1 Fig. 3 0 S0 Allocation F1.n1, F1.n2, F1.n3, F1.n4, F1.n5, F1.n6

2 Fig. 5 10 S0 Cancel F1.n3, F1.n4, F1.n5, F1.n6

3 Fig. 6 10 S0 Allocation F2.n1, F1.n3, F2.n3, F1.n4, F2.n4, F1.n5, F2.n2, F1.n6, F2.n5

4 Fig. 7 20 S0 Cancel F1.n3, F1.n4, F1.n5, F1.n6, F2.n2, F2.n4, F2.n5

5 Fig. 9 20 S0 Allocation F3.n1, F1.n3, F2.n4, F3.n2, F1.n4, F2.n2

6 Fig. 9 20 S0 Cancel F3.n1, F1.n3, F2.n4, F3.n2, F1.n4, F2.n2

7 Fig. 10 20 S2 Allocation F3.n1, F2.n4, F3.n2, F2.n2, F3.n3, F2.n5

8 Fig. 11 20 S0 Allocation F1.n3, F3.n5, F1.n4, F3.n4

9 Fig. 11 20 S0 Cancel F1.n3, F3.n5, F1.n4, F3.n4

9 Fig. 12 20 S3 Allocation F3.n5, F3.n4, F3.n6

10 Fig. 13 20 S0 Allocation F1.n4, F1.n5, F1.n6

TABLE VIII
OVERALL MAKESPANS (µS) FOR VARYING NUMBER OF FUNCTIONS

Algorithm FDWS FDS_MIMF ADS_MIMF

|M S | = 100 23067 22545 22918
|M S | = 200 24040 23361 25870
|M S | = 300 23865 21843 24066
|M S | = 400 31541 26078 33320
|M S | = 500 33391 26689 34725
|M S | = 600 40529 31105 40977
|M S | = 700 43405 33154 42208
|M S | = 800 47755 34255 45111

non-safety functions). Function samples are generated depend-
ing on the following realistic parameters: 100 µs � wi,k �
400 µs, 100 µs � ci,j � 400 µs, 8 � |N | � 23. To meet the
increasing complexity and requirement of ACPS, these exper-
iments consider a maximum number of 800 functions running
on 100 ECUs distributed on the CAN cluster.

B. Experimental Analysis

Experiment 1: This experiment is conducted to compare
the overall makespan and DMRs on different scale function
sets. Function samples are selected from the sample space.
We limit the interval between the first and the last arrival
functions to 10000 µs of each function set. The number of
functions is changed from 100 to 800 to reflect the work-
load of ACPS. The criticality subscript of a function is cal-
culated by m%4, where m represents the mth function of
ACPS. The deadline-slack of each function Fm is calculated as
Fm .deadlineslack = Fm .lowerbound/40. Three algorithms
(i.e., FDWS [8], FDS_MIMF, and ADS_MIMF) are used for
the experiment and are then compared for verification. The
FDWS algorithm is chosen because it is the latest typical multi-
functional dynamic scheduling algorithms with the objective of
minimizing individual makespans of functions for short over
makespan of ACPS.

Table VIII shows the overall makespans for varying numbers
of functions using the FDWS, FDS_MIMF, and ADS_MIMF
algorithms. The FDS_MIMF algorithm exhibits a shorter
makespan than the FDWS and ADS_MIMF algorithms in
all cases. With the increase in the number of functions, the

advantage of FDS_MIMF is apparent. For example, when
|MS| = 100, the difference of the makespan between FDWS
and FDS_MIMF is 1062 µs; however, when |MS| = 800, the
difference reaches 13500 µs. Such results indicate that our pro-
posed FDS_MIMF is effective in generating overall makespan
from a high performance perspective.

Table IX shows the DMRs grouped by criticality levels (i.e.,
S0, S1, S2, and S3) for varying numbers of functions using
the three algorithms. In general, FDS_MIMF generates con-
siderably higher DMRs than FDWS and ADS_MIMF in all
cases. When the number of functions reaches or exceeds 400
(i.e., |MS| � 400), the DMRs of all different criticality levels
generated by FDS_MIMF are always 1. Although FDS_MIMF
implements a low overall makespan for ACPS, this algorithm
has the highest DMR. These results indicate that a short overall
makespan of ACPS does not mean low DMRs; on the contrary,
a high DMR exists in such a situation. In general, FDWS has
lower DMRs than ADS_MIMF with criticality levels of S0, S1,
and S2 when the number of functions reaches or exceeds 400.
However, ADS_MIMF has lower DMR than FDWS with the
high-criticality level of S3. Considering that missing the abso-
lute deadlines of a function with criticality level S3 would cause
fatal injuries to people, the objective of ADS_MIMF is to reduce
the DMR of high-criticality functions by scarifying the safety
of partial low-criticality functions.

Meanwhile, as shown in Tables VIII, ADS_MIMF shows
satisfactory performance compared with FDWS, especially on
large-scale function sets (i.e., MS = 700 and MS = 800).
According to the results of Tables VIII and IX, ADS_MIMF
can significantly reduce the DMR of the functions with high-
criticality level while maintaining satisfactory performance.

Experiment 2: Given that missing the deadlines of func-
tions with S3 will cause severity of life-threatening to fatal
injuries and ACPS cannot meet the absolute deadlines of all
functions with S3 in Experiment 1, the number of such func-
tions must be reduced. In this experiment, the total number
of functions is fixed to 200. These functions are first evenly
distributed to four criticality levels (S0, S1, S2, and S3), and
then partial functions with criticality level S3 are changed to
S0. The deadline-slack of each function Fm is still fixed as
Fm .deadlineslack = Fm .lowerbound/40.

Table X shows the overall makespans for varying numbers
of functions whose criticality levels are S0 and S3. The overall

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6689

TABLE IX
DMRS FOR VARYING NUMBERS OF FUNCTIONS

Algorithm FDWS FDS_MIMF ADS_MIMF

Criticality S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

|M S | = 100 0.48 0.24 0.6 0.56 0.44 0.6 0.64 0.52 0.52 0.64 0.56 0.24
|M S | = 200 0.64 0.74 0.58 0.74 0.8 0.78 0.96 0.82 1.0 0.84 0.7 0.42
|M S | = 300 0.84 0.82 0.81 0.77 1.0 0.98 0.98 1.0 1.0 0.81 0.57 0.42
|M S | = 400 0.91 0.9 0.87 0.85 1.0 1.0 1.0 1.0 1.0 1.0 0.96 0.57
|M S | = 500 0.88 0.86 0.94 0.95 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.60
|M S | = 600 0.94 0.96 0.88 0.90 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.72
|M S | = 700 0.93 0.96 0.96 0.93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.72
|M S | = 800 0.96 0.95 0.95 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.88

TABLE X
OVERALL MAKESPANS (µS) FOR VARYING NUMBERS OF FUNCTIONS WHOSE CRITICALITY LEVELS ARE S0 AND S3

Algorithms FDWS FDS_MIMF ADS_MIMF

|M S (S0)| = 50, |M S (S1)| = 50, |M S (S2) = |50, |M S (S3)| = 50 21850 21332 21199
|M S (S0)| = 60, |M S (S1)| = 50, |M S (S2) = |50, |M S (S3)| = 40 21850 21332 21320
|M S (S0)| = 70, |M S (S1)| = 50, |M S (S2) = |50, |M S (S3)| = 30 21850 21332 21741
|M S (S0)| = 80, |M S (S1)| = 50, |M S (S2) = |50, |M S (S3)| = 20 21850 21332 20853
|M S (S0)| = 90, |M S (S1)| = 50, |M S (S2) = |50, |M S (S3)| = 10 21850 21332 21641

TABLE XI
DMRS FOR VARYING NUMBERS OF FUNCTIONS WITH S0 AND S3

Algorithm FDWS FDS_MIMF ADS_MIMF

Criticality S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

|M S (S0)| = 50, |M S (S1)| = 50, |M S (S2)| = 50, |M S (S3)| = 50 0.82 0.72 0.68 0.76 0.86 0.78 0.8 0.78 1.0 0.9 0.52 0.44
|M S (S0)| = 60, |M S (S1)| = 50, |M S (S2)| = 50, |M S (S3)| = 40 0.83 0.72 0.68 0.72 0.85 0.78 0.8 0.77 0.91 0.8 0.52 0.325
|M S (S0)| = 70, |M S (S1)| = 50, |M S (S2)| = 50, |M S (S3)| = 30 0.82 0.72 0.68 0.70 0.82 0.78 0.8 0.8 0.95 0.8 0.52 0.36
|M S (S0)| = 80, |M S (S1)| = 50, |M S (S2)| = 50, |M S (S3)| = 20 0.8 0.72 0.68 0.75 0.82 0.78 0.8 0.8 0.93 0.78 0.4 0.3
|M S (S0)| = 90, |M S (S1)| = 50, |M S (S2)| = 50, |M S (S3)| = 10 0.8 0.72 0.68 0.7 0.82 0.78 0.8 0.8 0.94 0.76 0.4 0.0

makespans generated by FDWS and FDS_MIMF are always
fixed to 21850 and 21332 µs, respectively. The reason is that the
total number of functions is not changed and the fairness-based
strategy ignores the criticality levels. The overall makespans
generated by ADS_MIMF are changed in the scope of 20853
µs and 21741 µs, and the differences are relatively stable.

Table XI shows the DMRs for varying numbers of functions
with S0 and S3 using the three algorithms. The DMRs are high
for FDWS and FDS_MIMF even when we reduce the num-
ber of the highest functions (S3). Such results further indicate
that FDWS and FDS_MIMF are not sensitive to the quantity
of the highest functions if the total number of all functions is
not changed. However, the DMR of functions with S3 using
ADS_MIMF is gradually reduced when we reduce the num-
ber of the highest functions. Particularly, when the number is
reduced to 10, the DMR of functions with S3 is 0. The DMR
of functions with S2 using ADS_MIMF are also reduced from
0.52 to 0.4. By this treatment, we implement the objective that
ACPS meet the absolute deadlines of all the functions with S3.

Experiment 3: Considering that scheduling tasks for mini-
mum makespan is a well-known NP-hard optimization problem
in dynamic multi-functional scheduling, it would be much more

TABLE XII
OVERALL MAKESPANS (µS) OF THE SMALL FUNCTION SET

Algorithm FDS_MIMF ADS_MIMF exact FDS_MIMF

|M S | = 4 2479.0 2213 2045

interesting to understand the quality of the generated schedules.
In particular, it would be interesting to see a comparison to
exact schedule results by exhausting all ECUs of each task to
minimize the overall makespan of a small function set. In this
study, we name the exact approach as the “exact FDS_MIMF”
for FDS_MIMF. We limit the number of function set is fixed
with 4, and the interval between the first and the last arrival func-
tions to 1000 µs of the function set. The deadline-slack of each
function Fm is still Fm .deadlineslack = Fm .lowerbound/40.
The number of the tasks for each function is equal to 8. The
CAN cluster contains 4 ECUs. We can derive that the num-
ber of the combination for the exact FDS_MIMF algorithm is
(4× 8)4 = 1, 048, 576.

Tables XII and XIII show overall makespans and DMRs of
the small function set using different algorithms. We can see

6690 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

TABLE XIII
DMRS OF THE SMALL FUNCTION SET

Algorithm FDS_MIMF ADS_MIMF exact FDS_MIMF

Criticality S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

|M S | = 4 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0

from Table XII that the overall makespan of ACPS using the
exact FDS_MIMF algorithm is about 82.5% and 92.4% of the
overall makespan using the FDS_MIMF and ADS_MIMF al-
gorithms, respectively. As shown in Table XIII, the total DMRs
using the exact FDS_MIMF algorithm is similar to that using
ADS_MIMF. However, ADS_MIMF satisfies the deadlines of
two high-criticality (S2 and S3) functions, whereas the exact
FDS_MIMF algorithm just satisfies the deadlines of functions
with criticality levels of S0 and S2. FDS_MIMF merely satisfies
the deadline of the lowest criticality (S0) function. Such results
demonstrate that the exact FDS_MIMF algorithm only reduce
the overall makespan of ACPS and cannot ensure the reduction
the DMRs of high-criticality functions.

Another approach to meet the absolute deadlines of all high-
criticality (S3) functions is to modify the deadline-slack or ar-
rival interval. However, deadline-slack is determined by the rel-
ative deadline and the arrival interval between two functions is
actually determined by the physical world. Therefore, both rel-
ative deadline and arrival interval cannot be changed in actual
situation. Adding more ECUs in ACPS in the design phase is
feasible but would be costly.

VII. CONCLUSIONS

We develop fairness-based and adaptive dynamic scheduling
algorithms FDS_MIMF and ADS_MIMF on multi-functional
mixed-criticality ACPS, respectively. Each distributed func-
tions is described as a task graph with representation of a
DAG. The FDS_MIMF algorithm aims to minimize individual
makespans of functions with short overall makespan of ACPS
from a high performance perspective. FDS_MIMF can respond
autonomously to the joint challenges of heterogeneity, dynam-
ics, and parallelism of ACPS. The ADS_MIMF algorithm aims
to meet the absolute deadlines of more high-criticality func-
tions whereas still keep satisfactory overall makespan of ACPS.
ADS_MIMF can respond autonomously to the joint challenges
of heterogeneity, dynamics, parallelism, safety, and criticality of
ACPS. Experimental results indicate that both FDS_MIMF and
ADS_MIMF are effective in individual objectives. We believe
that the ADS_MIMF algorithm in this paper could provide a
valuable reference design for adaptive scheduling in the next
generation AUTOSAR adaptive platform. We will implement
the proposed algorithms in the upcoming AUTOSAR adaptive
platform and consider the evaluation of the real implementation
as our future work.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the anony-
mous reviewers whose constructive comments have helped to
improve the manuscript.

REFERENCES

[1] M. D. Natale and A. Sangiovanni-Vincentelli, “Moving from federated to
integrated architectures in automotive: The role of standards, methods and
tools,” Proc. IEEE, vol. 98, no. 4, pp. 603–620, Mar. 2010.

[2] D. Goswami et al., “Challenges in automotive cyber-physical sys-
tems design,” in Proc. IEEE Int. Conf. Embedded Comput. Syst., 2012,
pp. 346–354.

[3] S. Fürst, “Challenges in the design of automotive software,” in Proc. Conf.
Des., Autom. Test Eur., 2010, pp. 256–258.

[4] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli ,
“Stochastic analysis of CAN-based real-time automotive systems,” IEEE
Trans. Ind. Informat., vol. 5, no. 4, pp. 388–401, Sep. 2009.

[5] H. Zeng, M. D. Natale, A. Ghosal, and A. Sangiovanni-Vincentelli ,
“Schedule optimization of time-triggered systems communicating over
the FlexRay static segment,” IEEE Trans. Ind. Informat., vol. 7, no. 1,
pp. 1–17, Feb. 2011.

[6] Z. Yu and W. Shi, “A planner-guided scheduling strategy for multi-
ple workflow applications,” in Proc. IEEE Int. Conf. Parallel Process.
Workshops, 2008, pp. 1–8.

[7] C.-C. Hsu, K.-C. Huang, and F.-J. Wang, “Online scheduling of workflow
applications in grid environments,” Future Gener. Comp. Syst., vol. 27,
no. 6, pp. 860–870, Jun. 2011.

[8] H. Arabnejad and J. Barbosa, “Fairness resource sharing for dynamic
workflow scheduling on heterogeneous systems,” in Proc. IEEE 10th Int.
Symp. Parallel Distrib. Process. Appl., 2012, pp. 633–639.

[9] A. Burns and R. Davis, “Mixed criticality systems—A review,” Dept.
Comput. Sci., Univ. York, York, U.K., Tech. Rep., pp. 1–64, 2016. [On-
line]. Available: http://www-users.cs.york.ac.uk/burns/review.pdf

[10] Road Vehicles-Functional Safety, ISO 26262, 2011.
[11] J. Nilsson, A. C. Ödblom, and J. Fredriksson, “Worst-case analysis of au-

tomotive collision avoidance systems,” IEEE Trans. Veh. Technol., vol. 65,
no. 4, pp. 1899–1911, Apr. 2016.

[12] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka,
and L. Thiele, “A hybrid approach to cyber-physical systems verifica-
tion,” in Proc. 49th ACM/EDAC/IEEE Des. Autom. Conf., 2012, pp. 688–
696.

[13] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of attacks
in automotive cyber-physical systems,” in Proc. 51st ACM/EDAC/IEEE
Des. Autom. Conf., 2014, pp. 1–6.

[14] S. Chakraborty, M. A. A. Faruque, W. Chang, and D. Goswami, “Auto-
motive cyber-physical systems: A tutorial introduction,” IEEE Des. Test,
vol. 33, no. 4, pp. 92–108, May 2016.

[15] X. Chen, J. Feng, M. Hiller, and V. Lauer, “Application of software watch-
dog as a dependability software service for automotive safety relevant sys-
tems,” in Proc. 37th IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2007,
pp. 618–624.

[16] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A
Cyber-Physical Systems Approach, 2nd ed. Cambridge, MA, USA: MIT,
2011.

[17] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr, “Towards self-
adaptation in real-time, networked systems: Efficient solving of system
constraints for automotive embedded systems,” in Proc. 15th IEEE Int.
Conf. Self-Adapt. Self-Organizing Syst., 2011, pp. 79–88.

[18] S. Dai and X. Koutsoukos, “Safety analysis of automotive control systems
using multi-modal port-hamiltonian systems,” in Proc. 19th Int. Conf.
Hybrid Syst., Comput. Control, 2016, pp. 105–114.

[19] S. Fürst, “AUTOSAR the next generation—The adaptive plat-
form,” in Proc. Conf., CARS@EDCC, Paris, 8 Sep. 2015,
2015. [Online]. Available: http://conf.laas.fr/cars2015/CARS/CARS@
EDCC2015_files/AUTOSAR_CARS@EDCC%202015.pdf

[20] S. Fürst, “AUTOSAR adaptive platform for connected and autonomous
vehicles,” in Proc. conf., 8th Vector Congress, Alte Stuttgarter Rei-
thalle, Stuttgart, Germany, 29 Nov. 2016, 2016. [Online]. Available:
https://vector.com/congress/files/presentations/VeCo16_06_29Nov_
Reithalle_Fuerst_BMW.pdf

XIE et al.: ADAPTIVE DYNAMIC SCHEDULING ON MULTIFUNCTIONAL MIXED-CRITICALITY AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 6691

[21] S. Fürst and M. Bechter, “AUTOSAR for connected and autonomous vehi-
cles: The AUTOSAR adaptive platform,” in Proc. 46th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. Workshop, 2016, pp. 215–217.

[22] M. Bechter and M. Wille, “Future of AUTOSAR integrating heteroge-
neous platforms,” 2015.

[23] S. Manolache, P. Eles, and Z. Peng, “Task mapping and priority assignment
for soft real-time applications under deadline miss ratio constraints,” ACM
Trans. Embedded Comput. Syst., vol. 7, no. 2, pp. 421–434, Feb. 2008.

[24] A. Biondi, M. Di Natale, and G. Buttazzo, “Response-time analysis for
real-time tasks in engine control applications,” in Proc. ACM/IEEE 6th
Int. Conf. Cyber-Phys. Syst., 2015, pp. 120–129.

[25] A. Biondi, M. Di Natale, and G. Buttazzo, “Performance-driven design
of engine control tasks,” in Proc. ACM/IEEE 7th Int. Conf. Cyber-Phys.
Syst., 2016, pp. 1–10.

[26] Z. Guo and S. K. Baruah, “Uniprocessor EDF scheduling of AVR task
systems,” in Proc. ACM/IEEE 6th Int. Conf. Cyber-Phys. Syst., 2015,
pp. 159–168.

[27] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Proc. 28th IEEE Int. Real-Time
Syst. Symp., 2007, pp. 239–243.

[28] K. Lakshmanan, D. De Niz, R. Rajkumar, and G. Moreno, “Overload
provisioning in mixed-criticality cyber-physical systems,” ACM Trans.
Embedded Comput. Syst., vol. 11, no. 4, pp. 1–24, Dec. 2012.

[29] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty,
“Multi-layered scheduling of mixed-criticality cyber-physical systems,”
J. Syst. Archit., vol. 59, no. 10, pp. 1215–1230, Nov. 2013.

[30] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, “Mixed-criticality
federated scheduling for parallel real-time tasks,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., 2016, pp. 1–12.

[31] S. Baruah, “The federated scheduling of systems of mixed-criticality spo-
radic DAG tasks,” in Proc. IEEE Real-Time Syst. Symp., 2016, pp. 1–10.

[32] J. D. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, Jun. 1975.

[33] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Aug. 2002.

[34] M. A. Khan, “Scheduling for heterogeneous systems using constrained
critical paths,” Parallel Comput., vol. 38, no. 4, pp. 175–193, Apr. 2012.

[35] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heteroge-
neous systems by an optimistic cost table,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[36] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on networked
embedded systems,” J. Parallel Distrib. Comput., vol. 83, pp. 1–12,
Sep. 2015.

[37] U. Hönig and W. Schiffmann, “A meta-algorithm for scheduling multiple
dags in homogeneous system environments,” in Proc. 8th IASTED Int.
Conf. Parallel Distrib. Comput. Syst., 2006, pp. 147–152.

[38] H. Zhao and R. Sakellariou, “Scheduling multiple dags onto heterogeneous
systems,” in Proc. IEEE 20th Int. Parallel Distrib. Process. Symp., 2006,
pp. 159–172.

[39] T. F. Abdelzaher and K. G. Shin, “Combined task and message schedul-
ing in distributed real-time systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 10, no. 11, pp. 1179–1191, Aug. 1999.

[40] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 92–104,
Aug. 2002.

[41] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, “Scheduling periodic task
graphs for safety-critical time-triggered avionic systems,” IEEE Trans.
Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2294–2304, Sep. 2015.

[42] M. Hu, J. Luo, Y. Wang, M. Lukasiewycz, and Z. Zeng, “Holistic schedul-
ing of real-time applications in time-triggered in-vehicle networks,” IEEE
Trans. Ind. Informat., vol. 10, no. 3, pp. 1817–1828, May 2014.

[43] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design optimization of
TTEthernet-based distributed real-time systems,” Real-Time Syst., vol. 51,
no. 1, pp. 1–35, 2015.

[44] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time embedded systems,” ACM Trans. Embedded Comput. Syst.,
vol. 14, no. 3, pp. 1–29, May 2015.

[45] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “High performance real-time
scheduling of multiple mixed-criticality functions in heterogeneous dis-
tributed embedded systems,” J. Syst. Archit., vol. 70, pp. 3–14, Oct. 2016.

[46] S. W. Kim, E. Lee, M. Choi, H. Jeong, and S. W. Seo, “Design optimization
of vehicle control networks,” IEEE Trans. Veh. Technol., vol. 60, no. 7,
pp. 3002–3016, Jul. 2011.

[47] S. Shreejith and S. A. Fahmy, “Extensible FlexRay communication con-
troller for FPGA-based automotive systems,” IEEE Trans. Veh. Technol.,
vol. 64, no. 2, pp. 453–465, Feb. 2015.

[48] J. H. Kim, S. Seo, N. T. Hai, and B. M. Cheon, “Gateway framework for
in-vehicle networks based on CAN, FlexRay, and Ethernet,” IEEE Trans.
Veh. Technol., vol. 64, no. 10, pp. 4472–4486, Nov. 2015.

[49] M. Sojka, P. Pı́sa, O. Spinka, and Z. Hanzálek, “Measurement automation
and result processing in timing analysis of a Linux-based CAN-to-CAN
gateway,” in Proc. IEEE 6th Int. Conf. Intell. Data Acquisition Adv. Com-
put. Syst., 2011, vol. 2, pp. 963–968.

[50] F. C. Braescu, L. Ferariu, and A. Nacu, “OSEK-based gateway algorithm
for multi-domain can systems,” in Proc. IEEE Int. Conf. Intell. Comput.
Commun. Process., 2011, pp. 423–428.

[51] N. Navet, S. Louvart, J. Villanueva, S. Campoy-Martinez, and J. Migge,
“Timing verification of automotive communication architectures using
quantile estimation,” in Proc. Eur. Congr. Embedded Real-Time Softw.
Syst., 2014, pp. 1–10.

[52] G. Xie, G. Zeng, R. Kurachi, H. Takada, and R. Li, “Gateway modeling and
response time analysis on CAN clusters of automobiles,” in Proc. IEEE
17th Int. Conf. High Perform. Comput. Commun., 2015, pp. 1147–1153.

[53] R. Leibinger, “Software architectures for advanced driver assistance
systems (ADAS),” Agenda: Short overview of Elektrobit automotive,
2015.

[54] Y. Xie, G. Zeng, Y. Chen, R. Kurachi, H. Takada, and R. Li, “Worst
case response time analysis for messages in controller area network
with gateway,” IEICE Trans. Inf. Syst., vol. 96, no. 7, pp. 1467–1477,
2013.

Guoqi Xie (M’15) received the Ph.D. degree in com-
puter science and engineering from Hunan Univer-
sity, Changsha, China, in 2014.

From 2014 to 2015, he was a Postdoctoral Re-
searcher with Nagoya University, Nagoya, Japan.
Since 2015, he has been a Postdoctoral Researcher
with Hunan University. His research interests in-
clude automotive systems, embedded and real-time
systems, parallel and distributed systems, software
engineering, and methodology.

Dr. Xie is a member of ACM and CCF. He re-
ceived the Best Paper Award from ISPA 2016.

Gang Zeng (M’03) received the Ph.D. degree in
information science from Chiba University, Chiba,
Japan, in 2006.

He is an Associate Professor with the Graduate
School of Engineering, Nagoya University, Nagoya,
Japan. From 2006 to 2010, he was a Researcher and
then Assistant Professor with the Center for Embed-
ded Computing Systems (NCES), Graduate School
of Information Science, Nagoya University. His re-
search interests include power-aware computing and
real-time embedded system design.

Dr. Zeng is a member of IPSJ.

Zhetao Li received the Ph.D. degree in computer
science from Hunan University, Changsha, China, in
2010.

He is an Associate Professor with Hunan Univer-
sity and Xiangtan University, Xiangtan, China. His
research interests include Internet of Things, com-
pressive sensing, and social computing.

6692 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

Renfa Li (M’05–SM’10) received the Ph.D. degree
in electronic engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2003.
He is a Professor of computer science and electronic
engineering and the Dean of College of Computer
Science and Electronic Engineering, Hunan Univer-
sity, Changsha, China. He is the Director of the Key
Laboratory for Embedded and Network Computing
of Hunan Province, Changsha, China. His research
interests include computer architectures, embedded
computing systems, cyber-physical systems, and In-

ternet of Things.
Prof. Li is a member of the council of CCF and a senior member of ACM.

Keqin Li (M’90–SM’96–F’15) received the Ph.D.
degree in computer science from the University of
Houston, Houston, TX, USA, in 1990. He is a SUNY
Distinguished Professor of computer science. His
research interests include parallel computing and
high-performance computing, distributed computing,
energy-efficient computing and communication, het-
erogeneous computing systems, cloud computing,
big data computing, CPU–GPU hybrid and cooper-
ative computing, multicore computing, storage and
file systems, wireless communication networks, sen-

sor networks, peer-to-peer file sharing systems, mobile computing, service com-
puting, Internet of Things, and cyber-physical systems. He has published more
than 460 journal articles, book chapters, and refereed conference papers, and
has received several best paper awards.

Prof. Li is currently or has served on the editorial boards of the IEEE TRANS-
ACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, theIEEE TRANSACTIONS

ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

