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Abstract—Energy efficiency has become a key issue for cloud computing platforms and data centers. Minimizing the total energy

consumption of an application is one of the most important concerns of cloud providers, and satisfying the deadline constraint of an

application is one of the most important quality of service requirements. Previous methods tried to turn off as many processors as

possible by integrating tasks on fewer processors to minimize the energy consumption of a deadline constrained parallel application in

a heterogeneous cloud computing system. However, our analysis revealed that turning off as many processors as possible does not

necessarily lead to the minimization of total energy consumption. In this study, we propose an energy-aware processor merging (EPM)

algorithm to select the most effective processor to turn off from the energy saving perspective, and a quick EPM (QEPM) algorithm to

reduce the computation complexity of EPM. Experimental results on real and randomly generated parallel applications validate that the

proposed EPM and QEPM algorithms can reduce more energy than existing methods at different scales, parallelism, and

heterogeneity degrees.

Index Terms—Dynamic voltage and frequency scaling (DVFS), deadline constraint, energy-aware, heterogeneous cloud computing systems,

processor merging

Ç

1 INTRODUCTION

1.1 Background

HETEROGENEOUS cloud computing and data centers
consisting of diverse sets of processors or virtual

machines offer computing and data storage services and sol-
utions at a large scale. However, these solutions entail high
costs and environmental effects because of high energy con-
sumptions at various levels of computational and data stor-
age processes. For example, the Tianhe-2 system in the
National Supercomputer Center in Guangzhou (China), the
world’s fastest supercomputing system in November 2014
and 2015, contains 16,000 computer nodes and consumes
17,808 KWof power [1]. Energy consumption is amajor issue
that affects the development and use of computing systems
as well as the human environment. In heterogeneous cloud

computing systems, a parallel application with precedence-
constrained tasks is represented by a directed acyclic
graph (DAG), in which the nodes represent the tasks and the
edges represent the communication messages between tasks
[2], [3], [4], [5].

Resource providers and users are the two types of roles
with conflicting requirements in cloud computing systems.
For providers, minimizing the total energy consumption of
an application is one of the most important concerns. For
users, the deadline constraint (i.e., timing constraint,
response-time constraint, real-time constraint) of an applica-
tion is one of the most important quality of service (QoS)
requirements [6]. The problem of minimizing the energy
consumption of a deadline constrained application with
precedence constrained tasks on heterogeneous cloud com-
puting systems has been studied recently in a number of
studies by using dynamic voltage and frequency scaling
(DVFS) energy control technology to simultaneously scales
down the processor’s supply voltage and frequency while
tasks are running [4], [5]. In [4], the problem is solved by
reclaiming the slack time based on the latest finish time
(LFT); however, this strategy merely minimizes the
dynamic energy consumption and ignores the static energy
consumption. A processor still consumes some amount of
static energy even when it is idle. Furthermore, different
from embedded systems where static energy consumption
is only a small fraction of the total energy consumption, in
large-scale cloud computing systems, each processor still
needs to execute several system softwares and middlewares
when the application is not executed on it. Turning off pro-
cessors is an available way in some platforms [7]. In [5],
the authors presented the DVFS-enabled energy-efficient
workflow task scheduling (DEWTS) algorithm by processor
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merging to reduce static and dynamic energy consumption.
The DEWTS algorithm is implemented by turning off pro-
cessors with a small number of tasks (if two processors
have the same task number, then the processor with low
dynamic energy utilization defined in Definition 1 is turned
off) to implement processor merging while satisfying the
deadline. However, the DEWTS algorithm has the following
limitations.

(1) Turning off the processors with a small number of
tasks or processors with low dynamic energy utiliza-
tion is not always effective with respect to energy
consumption comparing with turning off any other
processor. Such a policy is not energy-aware; thus,
the achieved energy reduction is limited.

(2) Turning off as many processors as possible does not
necessarily lead to the minimization of total energy
consumption because the energy efficiency of each
processor could be different. Therefore, energy con-
sumption should be considered explicitly when turn-
ing off processors.

1.2 Our Contributions
This study aims to implement energy-aware processor
merging to minimize the total energy consumption of dead-
line constrained parallel applications in heterogeneous
cloud computing systems. The main contributions of this
study are as follows.

(1) Considering the fact that each processor may have
different energy efficiency, we propose an energy-
aware processor merging (EPM) algorithm to mini-
mize both dynamic and static energy consumption
while satisfying the deadline constraint of the appli-
cation. The algorithm is energy-aware because it
always chooses the most effective processor to turn
off in terms of saving energy.

(2) In order to overcome the high computation complex-
ity of the EPM algorithm, we propose a quick EPM
(QEPM) algorithm to deal with large-scale parallel
applications. The algorithm can achieve a good bal-
ance between significant energy saving and reason-
able computation time.

(3) Experiments on randomly generated and real paral-
lel applications including fast Fourier transform,
Diamond graph, and Gaussian elimination are con-
ducted extensively. Experimental results validate
that the proposed EPM and QEPM algorithms can
reduce more energy than the state-of-the-art algo-
rithm under different deadline constraints and scale
conditions.

The rest of this paper is organized as follows. Section 2
reviews related studies. Section 3 develops related models
and preliminaries. Section 4 presents the EPM and QEPM
algorithms. Section 5 evaluates the performance of the EPM
and QEPM algorithms. Section 6 concludes this study.

2 RELATED WORK

Energy-aware design and algorithms have been well stud-
ied in computing systems, such as embedded computing,
cloud computing, and cluster computing systems [8], [9],
[10], [11], [12], and networking systems, such as cognitive
radio networks, wireless networks, and vehicular delay-

tolerant networks [13], [14], [15], [16], [17], [18]. In this
study, we focus on energy optimization of computing sys-
tems, particularly on cloud computing systems.

Many studies have been conducted recently to minimize
energy consumption while satisfying deadline constraint
[19], [20], [21], [22]. However, these studies are restricted
to independent tasks. As heterogeneous systems continue
to be scaled up, DAG-based parallel applications with pre-
cedence constrained tasks, such as fast Fourier transform
and Gaussian elimination applications, increase in number
[2], [3], [4].

The problem of scheduling tasks on multiple processors
is NP-hard [23]. Numerous meta-heuristic algorithms, such
as tabu search [24], genetic algorithm (GA) [25], artificial
immunity [26], simulated annealing [27], ant colony algo-
rithm [28], and chemical reaction optimization (CRO) [29],
are widely used in DAG-based parallel application schedul-
ing. These algorithms usually generate better schedule qual-
ity than heuristic algorithms, but the computation time of
these algorithms is higher than heuristic algorithms due to
the poor search efficiency and frequent solution evaluation
[30]. Scheduling tasks on heterogeneous processors with the
objective of minimizing the schedule length of a DAG-based
parallel application is a well-known NP-hard optimization
problem, and heuristic list scheduling algorithms [2], [3],
[11], [12], [31] have been proposed to generate near-optimal
solutions of the multi-processors scheduling. A review of
recent related research on energy consumption optimization
for DAG-based parallel applications with precedence con-
strained tasks is provided in the following.

Zong et al. [32] considered energy-aware duplication
scheduling algorithms for a parallel application in a homoge-
neous system. Lee and Zomaya [33] presented energy-con-
scious scheduling to minimize the energy consumption and
schedule length of a parallel application simultaneously in a
heterogeneous cloud system. However, these studies do not
consider the deadline constraint of the application. The prob-
lem ofminimizing the energy consumption of a deadline con-
strained application with precedence constrained sequential
tasks [20] and precedence constrained parallel tasks (i.e., a
parallel application) [1] has been investigated in different
studies. However, these studies merely focused on homoge-
neous multiprocessors with shared memory. In [11], [12], the
problem of minimizing the schedule length of a energy con-
sumption constrained parallel application were studied by
presenting a heuristic solution that minimum energy values
are preassigned to unassigned tasks. Huang et al. [4] studied
the problemofminimizing the energy consumption of a dead-
line constrained parallel application in a heterogeneous cloud
system by using the enhanced energy-efficient scheduling
(EES) algorithm, which reclaims the slack time by extending
the finish time of each task to its LFT; however, this strategy
merely minimizes the dynamic energy consumption and
does not aim tominimize the static energy consumption.

Static energy consumption is an important part of total
energy consumption in cloud computing systems. Turning
off partial processors can reduce static energy consumption
significantly and can therefore minimize the total energy
consumption. In [34], the authors considered static power
consumption and presented leakage-aware scheduling heu-
ristics that determine the best trade-off among three techni-
ques: DFVS, turning off processor, and finding the optimal
number of processors. However, the scheduling heuristics
is limited to a homogeneous multi-processor system with
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shared memory. In [35], the authors presented energy-
aware task scheduling algorithms to sustain the schedule
length and energy consumption of a parallel application
simultaneously by identifying inefficient processors and
turning them off to reduce energy consumption. However,
these algorithms do not aim at deadline constrained parallel
applications and do not use DVFS technique. In [5], the
authors adopted the existing EES algorithm and presented
the DEWTS algorithm to reduce static and dynamic energy
consumption by turning off as many processors as possible.
As pointed out in the Section 1.2, the DEWTS is not energy-
aware and is inefficient to reduce energy.

3 MODELS AND PRELIMINARIES

Table 1 lists important notations and their definitions that
are used in this study.

3.1 Application Model
Let U ¼ fu1; u2; . . . ; ujU jg denote a set of heterogeneous pro-
cessors, where jUj represents the size of set U . For any set
X, jXj is used to denote its size. Similar to [5], we also
assume that communication can be overlapped with com-
putation, which means data can be transmitted from one
processor to another while a task is being executed on the
recipient processor. A parallel application running on pro-
cessors is represented by a DAG G ¼ ðN , M, C, WÞ [2], [3],
[4], [5], [11], [12].

(1) N represents a set of nodes in G, and each node
ni 2 N represents a task with different execution
time values on different processors. In addition, task
executions of a given application are assumed to be
non-preemptive which is possible in many systems
[5]. predðniÞ represents the set of the immediate pre-
decessor tasks of ni. succðniÞ represents the set of the
immediate successor tasks of ni. The task that has no
predecessor task is denoted as nentry; the task that
has no successor task is denoted as nexit. If an appli-
cation has multiple entry or multiple exit tasks, then
a dummy entry or exit task with zero-weight depen-
dencies is added to the graph.

(2) W is a jN j � jUj matrix, where wi;k denotes the exe-
cution time of ni running on uk with the maximum
frequency [8].

(3) M is a set of communication edges, and each edge
mi;j 2 M represents the communication message
from ni to nj. Accordingly, ci;j 2 C represents the
communication time of mi;j if ni and nj are not
assigned to the same processor. When tasks ni and
task nj are allocated to the same processor, ci;j
becomes zero because we assume that the intra-pro-
cessor communication cost can be ignored [5].

Let LBðGÞ represent the lower bound of the application,
and is the minimum schedule length of application G when
all tasks are executed on the processors with the maximum
frequencies by using a DAG-based scheduling algorithm
(e.g., HEFT [2], [4], [5]). DðGÞ represents the deadline of
application G and should be larger than or equal to LBðGÞ.
SLðGÞ represents the generated schedule length of G.

Fig. 1 shows a motivating example of a DAG-based par-
allel application. Table 2 shows a matrix of execution time
values in Fig. 1. The example shows 10 tasks executed on 3
processors fu1; u2; u3g. The weight 14 of n1 and u1 in Table 2
represents the execution time with the maximum frequency
denoted by w1;1 ¼ 14. The same task has different execution
time values on different processors because of the heteroge-
neity of the processors. The weight 18 of the edge between
n1 and n2 represents the communication time denoted as
c1;2 if n1 and n2 are not assigned to the same processor.

3.2 Power and Energy Model
Given that an almost linear relationship exists between volt-
age and frequency, DVFS scales down voltage and

TABLE 1
Important Notations Used in This Study

Notation Definition

ci;j Communication time between the tasks ni

and nj

wi;k Execution time of the task ni running on the
processor uk with the maximum frequency

DðGÞ Given deadline of the application G
LBðGÞ Lower bound of the application G
SLðGÞ Schedule length of the application G
EsðGÞ Static energy consumption of the

application G
EdðGÞ Dynamic energy consumption of the

application G
EtotalðGÞ Total energy consumption of the

application G
EST ðni; uk; fk;hÞ Earliest start time of the task ni on the

processor uk with the frequency fk;h
EFT ðni; uk; fk;hÞ Earliest finish time of the task ni on the

processor uk with the frequency fk;h
Edðni; uk; fk;hÞ Dynamic energy consumption of the task ni

on the processor uk with the frequency fk;h
AFT ðniÞ Actual finish time of the task ni

LFT ðni; ukÞ Latest finish time of the task ni on the
processor uk

TNðukÞ Assigned task number on the processor uk

DEUðukÞ Dynamic energy utilization on the
processor uk

SLkðGÞ Schedule length of the application Gwhen
the processor uk is turned-off

Ek;sðGÞ Static energy utilization of the application
Gwhen the processor uk is turned-off

Ek;dðGÞ Dynamic energy utilization of the applica-
tion Gwhen the processor uk is turned-off

Ek;totalðGÞ Total energy utilization of the application G
when the processor uk is turned-off

Fig. 1. Motivating example of a DAG-based parallel application with
10 tasks [2], [11], [12], [31].
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frequency simultaneously to save energy. Similar to [8], [9],
[10], we use the term “frequency change” to refer to chang-
ing voltage and frequency simultaneously. Considering a
DVFS-capable system, we also adopt the system-level
power model used in [8], [9], [10], [11], [12], where the
power consumption at frequency f is provided by

P ðfÞ ¼ Ps þ hðPind þ PdÞ ¼ Ps þ hðPind þ Ceff
mÞ:

Ps represents the static power and can be removed only by
powering off the processor. Pind represents frequency-inde-
pendent dynamic power and can be removed by putting
the system into the sleep state. Pd represents frequency-
dependent dynamic power and depends on frequencies. h
represents system states and indicates whether dynamic
powers are currently consumed in the system. When the
system is active, h = 1; otherwise, when system is in the
sleep mode, h = 0. Cef represents effective switching capaci-
tance. m represents the dynamic power exponent and is not
less than 2. Both Cef and m are processor-dependent
constants.

Excessive overhead is associated with turning on/off a
system. Ps is always consumed and not manageable unless
the processor is turned off [8], [9], [10], [11], [12]. Given that
static energy consumption accounts for an important part of
the total energy consumption in cloud computing systems,
this study simultaneously considers static and dynamic
powers [4], [5]. Note that we do not take the communication
energy consumption into consideration for simplicity
because we mainly focus on the task energy reduction in
this study.

Because of the Pind, less Pd does not result less energy
consumption. That is, a minimum energy-efficient fre-
quency fee exists [8], [9], [10], [11], [12] and it is denoted by

fee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pind

ðm� 1ÞCef

m

s
: (1)

Assuming that the frequency of a processor varies from
minimum available frequency fmin to maximum frequency
fmax, the lowest frequency to execute a task should be

flow ¼ maxðfmin; feeÞ: (2)

Hence, any actual effective frequency fh should belong to
the scope of flow4fh4fmax.

Given that the number of processors is jUj in the system
and these processors are completely heterogeneous, each
processor should have individual power parameters [11],

[12]. Here, we define the static power set as

fP1;s; P2;s; . . . ; PjU j;sg;
frequency-independent dynamic power set

fP1;ind; P2;ind; . . . ; PjUj;indg;
frequency-dependent dynamic power set

fP1;d; P2;d; . . . ; PjUj;dg;
effective switching capacitance set

fC1;ef ; C2;ef ; . . . ; CjUj;efg;
dynamic power exponent set

fm1;m2; . . . ;mjUjg;
minimum energy-efficient frequency set

ff1;ee; f2;ee; . . . ; fjUj;eeg;
and actual effective frequency set

ff1;low; f1;a; f1;b; . . . ; f1;maxg;
ff2;low; f2;a; f2;b; . . . ; f2;maxg;
. . . ;

ffjUj;low; fjU j;a; fjU j;b; . . . ; fjU j;maxg

8>>><
>>>:

9>>>=
>>>;
:

Let EsðGÞ represent the processor-generated static
energy consumption of application G. Considering that
turned-off processors do not consume energy, EsðGÞ must
be the sum of the static energy consumptions of all turned-
on processors. Therefore, EsðGÞ is calculated by

Es Gð Þ ¼
XjUj

k¼1;uk is on

Pk;s � SLðGÞ� �
: (3)

Let Pdðni; uk; fk;hÞ represent the dynamic power con-
sumption of task ni on processor uk with frequency
fk;h. Considering that Pdðni; uk; fk;hÞ contains frequency-
independent dynamic power Pind and frequency-dependent
dynamic power Pk;d, it is calculated by

Pd ni; uk; fk;h
� � ¼ Pk;ind þ Ck;ef � fk;h

mk
� �

: (4)

Let Edðni; uk; fk;hÞ represent the dynamic energy con-
sumption of task ni on processor uk with frequency fk;h,
which is calculated by

Ed ni; uk; fk;h
� � ¼ Pk;ind þ Ck;ef � fk;h

mk
� �� fk;max

fk;h
� wi;k; (5)

by substituting Eqs. (4) into (5).
Considering that the application’s dynamic energy con-

sumption EdðGÞ is sum of the dynamic energy consump-
tions of all tasks, EdðGÞ is calculated by

EdðGÞ ¼
XjN j

i¼1

Ed ni; uprðiÞ; fprðiÞ;hzðiÞ
� �

; (6)

where uprðiÞ and fprðiÞ;hzðiÞ represent the assigned processor
and frequency of ni, respectively.

TABLE 2
Execution Time Values of Tasks on Different

Processors with the Maximum Frequencies of the
Application in Fig. 1 [2], [11], [12], [31]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16
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Considering that the application’s total energy consump-
tion EtotalðGÞ is the sum of its static energy consumption
EsðGÞ and dynamic energy consumption EdðGÞ, EtotalðGÞ is
calculated by

EtotalðGÞ ¼ EsðGÞ þEdðGÞ: (7)

In this study, we ignore the overheads of the frequency
transitions due to the negligible amount of time (e.g., 10 ms-
150 ms [5], [33]).

3.3 Lower Bound Certification
Similar to state-of-the art studies [4], [5], this study also
employs the heterogeneous earliest finish time (HEFT) algo-
rithm to certify the lower bound of a parallel application.
The lower bound is calculated by

LBðGÞ ¼ min
uk2U

fEFT ðnexit; uk; fk;maxÞg: (8)

A relative deadline DðGÞ, which is larger than or equal to
lower bound LBðGÞ, is then provided for the application.
List scheduling includes two phases, namely, task prioriti-
zation and task allocation. The HEFT algorithm is one of the
most popular DAG-based scheduling algorithms for reduc-
ing the schedule length to a minimum while achieving low
complexity and high performance in heterogeneous systems
and has been employed in energy-efficient scheduling [4],
[5]. The two-phase HEFT algorithm has two important
functions.

1) Task Prioritization. HEFT utilizes the upward rank
value (ranku) of a task (Eq. (9)) as the task priority standard.
In this case, the tasks are ordered according to the descend-
ing order of ranku. Table 3 shows the ranku values of all
tasks of the motivating parallel application (Fig. 1) obtained
by using

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; (9)

where wi represents the average execution time of task ni

and is calculated by

wi ¼
XjUj

k¼1

wi;k

 !
=jUj:

2) Task Assignment. EST ðni; uk; fk;maxÞ and EFT ðni;
uk; fk;maxÞ represent the earliest start time (EST) and earliest
finish time (EFT), respectively, of task ni on processor uk

with maximum frequency fk;max. EFT ðni; uk; fk;maxÞ is con-
sidered as the task assignment criterion in HEFT because it
can satisfy the local optimal of each task. The aforemen-
tioned attributes are calculated by

EST ðnentry; uk; fk;maxÞ ¼ 0

EST ðni; uk; fk;maxÞ ¼ max avail½k�; max
nx2predðniÞ

fAFT ðnxÞ þ c
0
x;ig

� �
;

8<
:

(10)

and

EFT ðni; uk; fk;maxÞ ¼ EST ðni; uk; fk;maxÞ þ wi;k: (11)

avail½k� is the earliest available time that processor uk is ready
for task execution, and AFT ðnxÞ represents the actual finish
time (AFT) of task nx. c

0
x;i represents the actual communica-

tion time between nx and ni. If nx and ni are assigned to the
same processor, then c

0
x;i ¼ 0; otherwise, c

0
x;i ¼ cx;i. ni is

assigned to the processor with the minimum EFT by using
the insertion-based scheduling strategy. ni is inserted into
the slack with the minimum EFT. The difference between
EFT and AFT is that EFT is the value before task assignment,
whereas AFT is the value after task assignment.

We provide an example to show the results of the HEFT
algorithm. To evaluate energy consumption, the power
parameters for all the processors are shown in Table 4. The
minimum energy-efficient frequency fk;ee (considered fk;low
in this example) for each processor is obtained according to
Eq. (1). Meanwhile, similar to [8], [9], the maximum fre-
quency fk;max for each processor is assumed to be 1.0.

Example 1. Table 5 shows the task assignment of themotivat-
ing parallel application (Fig. 1) using the HEFT algorithm.
Each row represents a task assignment and its correspond-
ing values. The final static and dynamic energy consump-
tions are EsðGÞ ¼ 48 and EdðGÞ ¼ 122:52, respectively;
hence, the total energy consumption isEtotalðGÞ ¼ 170:52.

Fig. 2 shows the Gantt chart of parallel application G (Fig. 1)
using the HEFT algorithm. The lower bound is obtained as
LBðGÞ ¼ 80, and the deadline is set to DðGÞ ¼ 100. The
arrows in Fig. 2 represent the generated communication
time values between tasks.

3.4 Problem Statement
We assume that we have a parallel application G and a het-
erogeneous multi-processor set U with different frequency
levels. The problem to be addressed is to assign an available
processor with a proper frequency for each task while saving
energy consumption and ensuring that the obtained make-
span of the application does not exceed its deadline. The
objective is to determine the processor and frequency assign-
ments of all tasks to minimize the total energy consumption

EtotalðGÞ ¼ EsðGÞ þ EdðGÞ;
subject to the deadline constraint

SLðGÞ4DðGÞ;

TABLE 3
Upward Rank Values for Tasks of the Motivating

Parallel Application

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7

TABLE 4
Power Parameters of Processors (u1, u2, and u3)

uk Pk;s Pk;ind Ck;ef mk fk;ee(fk;low) fk;max

u1 0.3 0.06 0.8 2.9 0.33 1.0
u2 0.2 0.07 1.2 2.7 0.29 1.0
u3 0.1 0.07 1.0 2.4 0.29 1.0
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and the frequency selection constraint

fprðiÞ;low 4 fprðiÞ;hzðiÞ 4 fprðiÞ;max;

for 8i : 1 4 i 4 jNj; uprðiÞ 2 U .

4 ENERGY-AWARE PROCESSOR MERGING

4.1 Processor Merging
We list some important basic concepts as follows before
explaining the details in this section.

Let TNðukÞ represent the assigned task number on the
processor uk using a scheduling algorithm. Then the proces-
sor with theminimum assigned task number is calculated by

TNðuminÞ ¼ min
uk2U

fTNðukÞg: (12)

Definition 1 (Dynamic Energy Utilization). The dynamic
energy utilization is defined as the ratio of the dynamic energy
consumption on the processor to the total energy consumption
on the processor

DEUðukÞ ¼
PjNj

i¼1;uprðiÞ¼uk
Edðni; uk;fk;hzðiÞÞPjNj

i¼1;uprðiÞ¼uk
Edðni; uk;fk;hzðiÞÞ þ Pk;s � SLðGÞ

:

(13)

Then the processor with the minimum dynamic energy
utilization is calculated by

DEUðuminÞ ¼ min
uk2U

fDEUðukÞg: (14)

Definition 2 (Latest Finish Time (LFT)). The LFT of a task
is considered to be the task’s deadline and is calculated by

LFT ðnexitÞ ¼ DðGÞ
LFT ðniÞ ¼ min

n
min

ni2succðniÞ
fAST ðniÞ þ c0i;jg; AST ðndnðiÞÞ

o
;

8<
:

(15)

where ndnðiÞ represents the downward neighbor (DN) task of ni

on the same processor.

Considering that each processor entails static energy con-
sumption and it can be removed only by turning off the pro-
cessor, the state-of-the-art DEWTES algorithm is proposed
by turning off several processors to further minimize the
energy consumption while still satisfying the deadline

constraint of the application. The core objective of DEWTS
is to gradually turn off partial processors with low utiliza-
tion and reassign the tasks on these turned-off processors to
the turned-on processors until the schedule length exceeds
the deadline. We illustrate the motivating parallel applica-
tion to explain the entire process of the DEWTS algorithm.

(1) DEWTS first invokes the HEFT algorithm for all the
turned-on processors (u1, u2, and u3), and the result
is similar to that in Fig. 2. Obviously, we have
SLðGÞ ¼ 80, and the deadline of the parallel applica-
tion is satisfied.

(2) Given that processor u1 has the minimum task num-
ber calculated by Eq. (12) in Fig. 2, it should be
turned off in advance (if two processors have the
same task number, then the processor with low
dynamic energy utilization calculated by Eq. (13) is
turned off as pointed out earlier). Hence, DEWTS
continues to invoke the HEFT algorithm for all the
turned-on processors (u2 and u3), and we have
SLðGÞ ¼ 98, as shown in Fig. 3. In this case, as
SLðGÞ ¼ 98, the deadline of the parallel application
is still satisfied.

(3) DEWTS invokes the EES algorithm [4] for u2 and u3

to save energy while satisfying the deadline of the
parallel application, as shown in Fig. 4. The main
idea of the EES algorithm is that the AFT ðniÞ
obtained by the HEFT algorithm can be extended to
LFT ðniÞ defined in Definition 2 by using the EES
algorithm because slacks exist between two adjacent
tasks in the same processor. For example, as shown
in Fig. 2, we have ndnð2Þ ¼ n8 and ndnð9Þ ¼ n10. In
other words, the LFT extension of ni is restricted by
its downward neighbor. For example, as shown in
Fig. 2, the AFT of n10 can be extended to 100, and the
AFT of n9 can be extended to the AST of n10 while
satisfying the deadline constraint.

4) Given that processor u2 has a small task number, it
should be turned off. DEWTS continues to invoke
the HEFT algorithm for all the turned-on processors
(u3); however, the generated schedule length is
SLðGÞ ¼ 143 and cannot satisfy the deadline of the

TABLE 5
Task Assignment of the Motivating Parallel Application (Fig. 1)

Using the HEFT Algorithm

ni uk fk;max AST ðniÞ AFT ðniÞ Edðni; uk; fk;maxÞ
n1 u3 1.0 0 9 9.63
n3 u3 1.0 9 28 20.33
n4 u2 1.0 18 26 10.16
n2 u1 1.0 27 46 11.18
n5 u3 1.0 28 38 10.70
n6 u2 1.0 26 42 20.32
n9 u2 1.0 56 68 15.24
n7 u3 1.0 38 49 11.77
n8 u1 1.0 57 62 4.3
n10 u2 1.0 73 80 8.89

LBðGÞ ¼ 80 < DðGÞ ¼ 100, EtotalðGÞ ¼ 48þ 122:52 ¼ 170:52

Fig. 3. HEFT-generated scheduling of the motivating parallel application
on u2 and u3 when u1 is turned off.

Fig. 2. Scheduling Gantt chart of the motivating parallel application using
the HEFT algorithm.
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application. Then, the final result should be that in
Fig. 4. The final static and dynamic energy consump-
tions are EsðGÞ ¼ 30 and EdðGÞ ¼ 112:3936, respec-
tively; hence, the total energy consumption is
EtotalðGÞ ¼ 142:3936, which is less than the 160.6569
of the EES algorithm.

4.2 Energy-Aware Processor Merging
We list some important basic concepts as follows before
explaining the details in this section.

Let Ek;sðGÞ (calculated by Eq. (3)) and Ek;dðGÞ (calculated
by Eq. (6)) represent the static and dynamic energy con-
sumption of the application G, respectively, when the pro-
cessor uk is turned-off. Thus, the total energy consumption
Ek;totalðGÞ can be calculated by

Ek;totalðGÞ ¼ Ek;sðGÞ þ Ek;dðGÞ: (16)

Let SLkðGÞ represent the schedule length of the applica-
tion G by the HEFT algorithm when the processor uk is
turned-off. Then the processor umin that can lead to the mini-
mum total energy consumption among the remaining active
processors while guaranteeing that the schedule length is
less than or equal to the deadline can be found by

Emin;totalðGÞ ¼ min
uk2U;uk is off; SLkðGÞ4DðGÞ

fEk;totalðGÞg; (17)

As mentioned early, although the DEWTS algorithm can
satisfy the deadline constraint of the application, it merely
reduces the energy consumption through simple processor
merging, and its energy efficiency is limited. Consider the
same example in Fig. 4, if u2 or u3 is turned off instead of
the u1, then the results of Figs. 5 and 6 can be obtained.

Compared with Figs. 4, 5, and 6, turning off u3 can lead to
the minimum total energy consumption. The static energy
consumption of processormay be different because each pro-
cessor has its own static power Pk;s. Such results indicate that
turning off the processor with a small number of tasks does
not necessarily lead to the maximum reduction of energy in
heterogeneous systems, and more sophistical selection is
needed to further decrease the energy consumption.

Inspired by the aforementioned analysis, we present the
energy-aware processor merging algorithm called EPM
described in Algorithm 1 to further minimize the energy
consumption while satisfying the deadline constraint of the
parallel application.

Algorithm 1. The EPM Algorithm

Input: U ¼ fu1; u2; . . . ; ujU jg, G, andDðGÞ
Output: EtotalðGÞ
1: Invoke the HEFT algorithm on all the processors

to obtain the initial total energy consumption EtotalðGÞ;
2: Put all the processors in to the turned-on processor

set turned on processor set;
3: while (turned on processor set is not null) do
4: for (each turned-on processor

uk 2 turned on processor set) do
5: Let uk be a turned off state;
6: Invoke the HEFT algorithm on all turned-on process-

ors to obtain the schedule length SLkðGÞ if uk is
turned off;

7: if (SLkðGÞ <¼ DðGÞ) then
8: Invoke the EES algorithm on all turned-on process-

ors to obtain the dynamic energy consumption
Ek;dðGÞ;

9: Calculate the static energy consumption Ek;sðGÞ on
all turned-on processors using Eq. (3);

10: Calculate the total energy consumption Ek;totalðGÞ
Eq. (16);

11: end if
12: end for
13: if (no result satisfies SLkðGÞ <¼ DðGÞ) then
14: break;
15: else
16: Select the processor umin with the

minimum Emin;totalðGÞ, namely, could generate
the minimum energy consumption in the
remaining processors;

17: Turn off umin and remove it from
turned on processor set ;

18: Update the total energy consumption
EtotalðGÞ as Emin;totalðGÞ

19: end if
20: end while

The main idea of the EPM algorithm is that it executes
energy-aware processor merging by turning off the processor
without which can save the maximum energy consumption
while satisfying the deadline constraint of the application.
The details of EPM are explained as follows (Lines 3-20).

(1) In Lines 4-12, the algorithm tries to turn off each pro-
cessor. The energy consumption of the application

Fig. 4. EES-generated scheduling of the motivating parallel application
on u2 and u3 when u1 is turned off.

Fig. 5. EES-generated scheduling of the motivating parallel application
on u1 and u3 when u2 is turned off.

Fig. 6. EES-generated scheduling of the motivating parallel application
on u1 and u2 when u3 is turned off.
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on the remaining active processors is calculated by
using the HEFT and EES algorithm. Let Ek;totalðGÞ
and SLkðGÞ represent the total energy consumption
and schedule length of the application when the pro-
cessor uk is turned-off, respectively.

(2) In Lines 15-19, the processor that can lead to the min-
imum total energy consumption (Eq. (17)) among the
remaining active processors is actually turned off
while guaranteeing that the schedule length is less
than or equal to the deadline.

(3) In Lines 13-15, if turning off any processor cannot
satisfy the deadline constraint of the application,
then the algorithm is terminated.

Consider the motivating example that each processor is
attempted to be turned off. The scheduling Gantt charts are
shown in Figs. 4 (turning off u1), 5 (turning off u2), and 6
(turning off u3). Turning off any processor can satisfy the
deadline constraint of the application. Subsequently, u3 is
actually turned off because the minimum energy consump-
tion is generated. Hence, the final energy consumption
using the EPM algorithm is 129.6059 (Fig. 6), which is less
than that using the DEWTS algorithm (Fig. 4).

The time complexity of the EPM algorithm is analyzed.
Themaximumnumber of turned-off processors is O(jUj) time
(Line 3). Traversing all processors for selection can be done in
O(jUj) time (Line 4). Invoking the HEFT algorithm should be
done in O(jNj2 � jU j) time (Line 6). Therefore, the complexity
of the EPM is algorithm O(jN j2 � jU j3). However, the state-
of-the DEWTS algorithm entails O(jN j2 � jU j2); hence, EPM
is one exponent higher than the DEWTS algorithm.

4.3 Quick Energy-Aware Processor Merging
Although the EPM algorithm can minimize energy con-
sumption through energy-aware processor merging, it
requires large computation effort. To reduce the energy con-
sumption of a large-scale parallel application with an
acceptable amount of computation time, a quick energy-
aware processor merging (QEPM) algorithm is presented.
Similar to EPM, the QEPM can also reduce energy con-
sumption while satisfying the deadline constraint of the
application, but it has low computation complexity. The
detailed algorithm is described in Algorithm 2.

The main difference between QEPM and EPM is that the
operation of traversing all processors for selection in Lines
4-12 of Algorithm 1 is removed from the while loop, as
shown in Lines 2-10 of Algorithm 2. In other words, QEPM
no longer attempts to turn off each processor in each loop
but just directly selects the processor umin with the mini-
mum Emin;totalðGÞ from the turned-on processor set based
on previous ordering in Line 11. The main advantage
of QEPM is that its time complexity is reduced to
O(jNj2 � jU j2Þ, but such a simplification may result in larger
energy consumption than the EPM algorithm.

5 PERFORMANCE EVALUATION, EXPERIMENTAL

RESULTS, AND DISCUSSION

5.1 Performance Evaluation Metrics
The performance metrics selected for comparison are as
listed follows for a given application:

� Total energy consumption
� Computation time of task assignment
� Number of turned-on processors

Algorithm 2. The QEPM Algorithm

Input: U ¼ fu1; u2; . . . ; ujU jg, G, andDðGÞ
Output: EtotalðGÞ
1: Invoke the HEFT algorithm on all all the processors to

obtain the initial total energy consumption EtotalðGÞ;
2: for (each turned-on processor

uk 2 turned on processor set) do
3: Let uk be a turned off state;
4: Invoke the HEFT algorithm on all turned-on processors

to obtain the schedule length SLkðGÞ if uk is turned off;
5: if (SLkðGÞ <¼ DðGÞ) then
6: Invoke the EES algorithm on all turned-on processors

to obtain the dynamic energy consumption Ek;dðGÞ;
7: Calculate the static energy consumption Ek;sðGÞ on all

turned-on processors using Eq. (3);
8: Calculate the total energy consumption Ek;totalðGÞ

Eq. (16);
9: end if
10: end for
11: Put all the processors into the active processor set

turned on processor set according to an ascending
of Ek;totalðGÞ;

12: while (turned on processor set is not null) do
13: Select the processor umin with the minimum Emin;totalðGÞ

from turned on processor set;
14: Assume that umin is turned off;
15: Invoke the HEFT algorithm on all turned-on processors

to obtain the schedule length SLminðGÞ if umin is turned
off.

16: if (SLminðGÞ <¼ DðGÞ) then
17: Invoke the EES algorithm on all turned-on processors

to obtain the dynamic energy consumption EdðGÞ;
18: Calculate the static energy consumption EsðGÞ on all

turned-on processors using Eq. (3);
19: Calculate the total energy consumption EtotalðGÞ

Eq. (7);
20: Turn off umin and remove it from

turned on processor set;
21: end if
22: end while

We select the state-of-the-art algorithm i.e., the DEWTS
[5] for comparison in the experiments. We also present the
results of using the standard HEFT algorithm [2]. Consider-
ing that the obtained schedule lengths using the DEWTS,
EPM, and QEPM algorithms are equal to the given dead-
lines, we no longer provide the schedule lengths.

The values of the processor and application parameters
are as follows [36]: 10 h 4 wi;k 4 100 h, 10 h 4 ci;j 4 100
h, 0.1 4 Pk;s 4 0.5, 0.03 4 Pk;ind 4 0.07, 0.8 4 Ck;ef 4 1.2,
2.5 4 mk 4 3.0, and fk;max ¼ 1 GHz. All frequencies are
discrete, and the precision is 0.01 GHz. All frequencies
are discrete, with a precision of 0.01 GHz. All parallel
applications are executed on a simulated multiprocessor
system 64 heterogeneous processors by creating 64 pro-
cessor objects based on known parameter values using
Java on a standard desktop computer with 2.6 GHz Intel
CPU and 4 GB memory.

Real parallel applications with precedence constrained
tasks, such as fast Fourier transform, Diamond graph, and
Gaussian elimination applications, are widely used in high-
performance cloud computing systems [2], [4], [20]. To vali-
date the effectiveness and validity of the proposed
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algorithm, we use these real parallel applications to com-
pare the results of the four algorithms.

The structures of these applications are described as
follows:

(1) Fast Fourier transform application. A new parameter
r is used as the size of the fast Fourier transform par-
allel application, and the total number of tasks
should be jN j ¼ ð2� r� 1Þ þ r� log 2

r [2], [3],
where we assume that r ¼ 2y for some integer y.
Notably, r exit tasks exist in the fast Fourier trans-
form parallel application with the size of r.

(2) Diamond graph application. The new parameter r is
used as the size of the Diamond graph application,
and the total number of tasks is jN j ¼ r2 [20]. Fig. 7c
shows an example of the Diamond graph application
with r ¼ 4.

(3) Gaussian elimination application. A new parameter
r is used as the matrix size of the Gaussian elimina-
tion application and the total number of tasks should

be [2], [3] jNj ¼ r2þr�2
2 . Fig. 7b shows an example of

the Gaussian elimination application with r ¼ 5.
Fourier transform is a high-parallelism application,

whereas Diamond graph and Gaussian elimination are low-
parallelism applications because Fast Fourier transform can
generate much shorter schedule length than Diamond
graph and Gaussian elimination in an approximately equal
scale, as shown in Table 6. The readers can refer to [37] with
regard to the parallelism degree of a DAG-based parallel
application.

All the results in experiments are obtained by executing
one run of the algorithms for one application. Many applica-
tions with the same parameter values and scales are tested
and the relatively stable results in the same experiment are
shown. In other words, all experiments are repeatable and
do not affect the consistency of the results.

5.2 Fast Fourier Transform Application
Experiment 1. This experiment is conducted to compare the
energy consumption values, computation time, and turned-
on processor number of fast Fourier transform applications
for varying numbers of tasks. We limit DðGÞ to
DðGÞ ¼ LBðGÞ � 1:4. r is changed from 16 to 256, that is,
the numbers of tasks vary from 95 (small scale) to 2,559
(large scale).

Fig. 8a shows the energy consumption values of fast
Fourier transform applications for varying numbers of tasks
by using all the algorithms. HEFT is the standard algorithm
in all the experiments. Among the three processor merging
algorithms, the EPM algorithm generates the minimum
energy consumption values, followed by QEPM and
DEWTS at all scales. The average energy consumption
reduction per task for EPM and QEPM compared with
DEWTS in the small scale (jN j ¼ 96) is 16.98 and 8.26 GWh,
respectively, whereas that in the large scale (jN j ¼ 2;559) is
8.26 and 2.42 GWh, respectively. These results indicate that
the proposed energy-aware processor merging algorithms
can save more energy consumption than the sate-of-the
DEWTS algorithm at different task scales.

Fig. 8b shows the computation time of fast Fourier trans-
form applications for varying numbers of tasks using the
DEWTS, EPM, and QEPM algorithms. The values show that
the computation time using EPM is 30-70 times of that using
DEWTS. The computation time using QEPM is only 1-2.6
times that of using DEWTS. Specifically, the computation
time is large for EPM, whereas QEPM can reduce the com-
putation time to an acceptable and low value.

The results of Figs. 8a and 8b show that EPM and
QEPM algorithms can save more energy consumption
than the sate-of-the-art DEWTS algorithm. Specifically,
the EPM algorithm is more energy efficient than the
QEPM algorithm, but it is time consuming for large-scale
parallel applications.

Fig. 8c shows the number of turned-on processors of fast
Fourier transform applications for varying numbers of tasks
using the HEFT, DEWTS, EPM, and QEPM algorithms. The
standard HEFT algorithm has a total processor number of
64. Although the EPM algorithm generates the minimum
energy consumption values compared with the DEWTS and
QEPM algorithms (Fig. 8a), the turned-on processor number
is not the smallest. On the contrary, EPM has more turned-
on processors than DEWTS and QEPM. These results indi-
cate that (1) minimizing the turned-on processor number

Fig. 7. Example of real parallel applications.

TABLE 6
Average Schedule Lengths (Unit: h) of Applications Using HEFT

Application Task
number

Average schedule
lengths

Fast Fourier transform 2,559 1,198
Diamond graph 2,555 7,150
Gaussian elimination 2,601 7,458
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does not mean minimizing the total energy consumption
of the application and (2) turning off processors while
satisfying the deadline constraint of the application is
not an effective method; the most effective processors to
be turned off need to be determined so that a reasonable
tradeoff between DVFS and turned-on processor number
can be achieved.

Experiment 2. To observe the performance on different
deadlines, an experiment is conducted to compare the final
energy consumption values of the fast Fourier transform
application for varying deadline constraints. We limit the
size of the application to r ¼ 256 (i.e., jNj ¼ 2;559) and
change DðGÞ from LBðGÞ � 1:0 to LBðGÞ � 1:8 with
LBðGÞ � 0:2 increments, where LBðGÞ ¼ 1;252 is calculated
using the HEFT algorithm.

Fig. 9a shows the energy consumption of the fast Fourier
transform application with r ¼ 256 (i.e., jN j ¼ 2;559) for
varying deadlines by using all the algorithms. Among the
three processor merging algorithms, the EPM algorithm
generates the minimum energy consumption values, fol-
lowed by QEPM and DEWTS in all scales. Another impor-
tant result is that with the increase in deadline (except for
DðGÞ ¼ LBðGÞ), the energy consumption values increase
gradually using the DEWTS and QEPM algorithms,
whereas these values decrease using the EPM algorithm.
When DðGÞ ¼ LBðGÞ � 1:8, the average energy consump-
tion reduction per task for EPM and QEPM compared with
DEWTS is 5.295 and 1.467 GWh, respectively. That is, the
EPM and QEPM algorithms (especially EPM) are more
energy efficient for the fast Fourier transform application
than the DEWTS algorithm. These results indicate that turn-
ing off the processors with a small task number or low
energy utilization does not mean that energy consumption
could be reduced; both EPM and QEPM directly consider
the energy-aware purpose, so they are useful for energy-
efficient designs.

Fig. 9b shows the computation time of the fast Fourier
transform application with r ¼ 256 (i.e., jN j ¼ 2;559) for

varying deadlines by using the DEWTS, EPM, and QEPM
algorithms. An obvious result is that EPM is much more
time consuming than DEWTS and QEPM. With the increase
in deadline, the computation time for EPM also increases
gradually from 2,282 s to 4,271 s in general, whereas that for
DEWTS (about 8-100 s) and QEPM (about 128-250 s) is rela-
tively stable.

Fig. 9c shows the turned-on processor number of the
fast Fourier transform application with r ¼ 256 (i.e., jN j ¼
2;559) for varying deadlines by using all the algorithms.
Except for DðGÞ ¼ LBðGÞ, the EPM algorithm turns on
more processors (7-18) than both DEWTS and QEPM. These
results imply that turning off more processors may not ben-
efit more energy reduction. Thus, how to select processors
for turning off should be considered carefully.

5.3 Diamond Graph Application
Experiment 3. This experiment is conducted to compare the
final energy consumption values of the Diamond graph
application for varying deadline constraints. We limit the
size of the application to r ¼ 51 (i.e., jNj ¼ 2;601, which is
approximately equal to the number of tasks of the fast Four-
ier transform application in Experiment 2) and change DðGÞ
from LBðGÞ � 1:0 to LBðGÞ � 1:8 with LBðGÞ � 0:2 incre-
ments, where LBðGÞ ¼ 7;557 is calculated using the HEFT
algorithm.

Fig. 10a shows the energy consumption of the Diamond
graph application with r ¼ 51 (i.e., jNj ¼ 2;601) for varying
deadlines by using all the algorithms. Among the three pro-
cessor merging algorithms, the EPM algorithm generates the
minimum energy consumption values, followed by QEPM
and DEWTS at all scales. The main difference between Dia-
mond graph (Fig. 10a) and fast Fourier transform (Fig. 9a)
applications is that the reduced energy consumption for the
fast Fourier transform application in all cases is relatively
smooth, whereas that for the Diamond graph application in
DðGÞ ¼ LBðGÞ is small but large in other cases.

Fig. 8. Results of fast Fourier transform application with the deadline constraintDðGÞ ¼ LBðGÞ � 1:4 for varying numbers of tasks (Experiment 1).

Fig. 9. Results of fast Fourier transform application with r ¼ 256 (i.e., jNj ¼ 2;559) for varying deadlines (time unit: h) (Experiment 2).
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Fig. 10b shows the computation time of the Diamond
graph application with r ¼ 51 (i.e., jNj ¼ 2;601) for varying
deadlines by using the DEWTS, EPM, and QEPM algo-
rithms. As expected, the regular pattern of Fig. 10b is similar
to that of Fig. 9b. However, the Diamond graph application
needs more computation time (about 8,000 s) than the fast
Fourier transform application (nearly 4,000 s) to calculate
the energy consumption values, although they are on the
same scale in terms of number of tasks.

Fig. 10c shows the turned-on processor number of Dia-
mond graph application with r ¼ 51 (i.e., jN j ¼ 2;601) for
varying deadlines by using all the algorithms. The regular
pattern of Fig. 10c is similar to that of Fig. 9c, but the aver-
age turned-on processor number for the Diamond graph
application is about 12, whereas that for the fast Fourier
transform is about 40 when using the EPM algorithm. The
reason is that the Diamond graph application has lower par-
allelism than the fast Fourier transform application, such
that many processors are not sufficiently employed. That is,
the DEWTS algorithm may be suitable for such an applica-
tion, but it is still less energy efficient than EPM and QEPM
algorithms (Fig. 10a).

5.4 Gaussian Elimination Application
Experiment 4. This experiment is conducted to compare the
final energy consumption values of the Gaussian elimina-
tion application for varying deadline constraints. We limit
the size of the application to r ¼ 71 (i.e., jNj ¼ 2;555) and
change DðGÞ from LBðGÞ � 1:0 to LBðGÞ � 1:8 with
LBðGÞ � 0:2 increments, where LBðGÞ ¼ 7;481 is calculated
using the HEFT algorithm.

Fig. 11a shows the energy consumption of the Gaussian
elimination application with r ¼ 71 (i.e., jN j ¼ 2;555) for
varying deadlines by using all the algorithms. Among the
three processor merging algorithms, similar to the results in
Figs. 9a and 10a, the EPM algorithm generates the minimum
energy consumption values, followed by QEPM and

DEWTS at all scales. The main difference between Gaussian
elimination (Fig. 11a) and Diamond graph (Fig. 10a) appli-
cations is that when DðGÞ ¼ LBðGÞ, the reduced energy
consumption for the Gaussian elimination is large, whereas
that for the Diamond graph application is small when the
DEWTS and QEPM algorithms are used.

Fig. 11b shows the computation time of the Gaussian
elimination application with r ¼ 71 (i.e., jNj ¼ 2;555) for
varying deadlines by using the DEWTS, EPM, and QEPM
algorithms. The regular pattern of Fig. 11b is similar to that
of Figs. 9b and 10b. The Gaussian elimination and Diamond
graph applications need the same computation time under
the same conditions.

Fig. 11c shows the turned-on processor number of the
Gaussian elimination application with r ¼ 256 (i.e.,
jNj ¼ 2;560) for varying deadlines by using all the algo-
rithms. The regular pattern of Fig. 11c is similar to that of
Figs. 9c and 10c. Compared with Figs. 9c, 10c, and 11c, max-
imum processor numbers are turned-off for the Gaussian
elimination application (Fig. 11c), followed by Diamond
graph (Fig. 10c) and fast Fourier transform (Fig. 9c) applica-
tions. These results indicate that the Gaussian elimination
application has the lowest parallelism, followed by Dia-
mond graph and fast Fourier transform; many processors
are not sufficiently employed.

5.5 Randomly Generated Parallel Application
To extensively demonstrate the performance benefits of the
proposed algorithms, we consider randomly generated par-
allel applications using the task graph generator in [38]. As
the objective cloud computing platform consists of hetero-
geneous processors, heterogeneity degrees may also affect
the energy consumption of application. Heterogeneity
degree is easy to be implemented for the task graph genera-
tor by adjusting the heterogeneity factor values [39]. In this
study, randomly generated parallel applications are gener-
ated depending on the following parameters: Average

Fig. 10. Results of Diamond graph application with r ¼ 51 (i.e., jNj ¼ 2;601) for varying deadlines (time unit: h) (Experiment 3).

Fig. 11. Results of Gaussian elimination application with r ¼ 71 (i.e., jNj ¼ 2;555) for varying deadlines (time unit: h) (Experiment 4).
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computation time is 50 h, communication to computation
ratio (CCR) is 1, and shape parameter is 1. The heterogene-
ity degree (factor) values belong to the scope of (0,1] in the
task graph generator, where 0 and 1 represent the lowest
and highest heterogeneity factors, respectively [39]. Without
loss of generality, we use large-scale randomly generated
parallel application with 2,560 tasks, which are approxi-
mately equal to those of fast Fourier transform, Diamond
graph, and Gaussian elimination applications in Experi-
ments 2-4.

Experiment 5. This experiment compares the final energy
consumption values of a large-scale low-heterogeneity
(with the heterogeneity factor 0.1) randomly generated par-
allel application for varying deadline constraints. We limit
the size of the application to jN j ¼ 2;560 and change DðGÞ
from LBðGÞ � 1:0 to LBðGÞ � 1:8 with LBðGÞ � 0:2 incre-
ments, where LBðGÞ ¼ 1;942 is calculated using the HEFT
algorithm. The results are shown in Fig. 12.

Experiment 6. This experiment compares the final energy
consumption values of a large-scale high-heterogeneity
(with the heterogeneity factor 0.9) randomly generated par-
allel application for varying deadline constraints. We still
limit the size of the application to jN j ¼ 2;560 and change
DðGÞ from LBðGÞ � 1:0 to LBðGÞ � 1:8 with LBðGÞ � 0:2
increments, where LBðGÞ ¼ 803 is calculated using the
HEFT algorithm. The results are shown in Fig. 13.

The results of both low-heterogeneity application in
Experiment 5 and high-heterogeneity application in Experi-
ment 6 still show that EPM generates the minimum energy
consumptions, followed by QEPM and DEWTS among
them, whereas EPM is the most time-consuming among
them. The main differences between the results of low-het-
erogeneity and high-heterogeneity applications are follows:

(1) Low-heterogeneity application hasmore than 10 times
higher energy consumption than high-heterogeneity
applications when using the proposed algorithms. In

other words, the application with high heterogeneity
may have higher potential to save energy.

(2) The energy consumptions decrease with the incre-
ment of deadline for low-heterogeneity application
(Figs. 12a), whereas the opposite law occurs for
high-heterogeneity application using EPM and
QEPM algorithms (Figs. 13a).

(3) The energy consumptions increase with the incre-
ment of deadline for both low-heterogeneity and
high-heterogeneity applications using DETWS
(Figs. 12a and 13a). In addition, the energy consump-
tions generated by DETWS exceeds HEFT when
DðGÞ exceeds LBðGÞ � 1:2 for low-heterogeneity
application in Fig. 12a and LBðGÞ � 1:8 for high-het-
erogeneity application in Fig. 13a. That is, DETWS is
not energy-aware for both low-heterogeneity and
high-heterogeneity applications.

(4) QEPM and EPM are both energy-efficient as shown
in Figs. 12a and 13a. In addition, EPM has the most
turned-on processors in this case shown in Fig. 13c.
The results further indicate that turning off as many
processors as possible does not necessarily lead to
the minimum energy consumption.

5.6 Summary of Experiments
The following observations and conclusions for deadline
constrained parallel applications can be obtained based on
the experimental results.

(1) Turning off the processors with a small number of
tasks or processors with low energy utilization does
not necessarily lead to the minimization of energy
consumption. Both EPM and QEPM consider the
energy consumption explicitly when choosing pro-
cessors to turn off, which results in higher energy
efficiency.

Fig. 12. Results of large-scale low-heterogeneity randomly generated parallel application with jNj ¼ 2;560 for varying deadlines (time unit: h) (Experi-
ment 5).

Fig. 13. Results of large-scale high-heterogeneity randomly generated parallel application with jNj ¼ 2;560 for varying deadlines (time unit: h) (Exper-
iment 6).
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(2) Turning off as many processors as possible does not
necessarily lead to the minimization of total energy
consumption of the application. The most effective
processors to be turned off need to be determined by
the tradeoff between DVFS and the number of active
processors.

(3) According to the analysis of the number of active
processors, The low-parallelism Gaussian elimina-
tion and Diamond graph applications have lower
turned-on processors than the high-parallelism fast
Fourier Transform application. The lower the paral-
lelism of the application is, the more the turned-off
processors could be.

(4) The proposed energy-aware processor merging algo-
rithms, EPM and QEPM, can save more energy than
the state-of-the-art DEWTS algorithm at all scales,
parallelism, and heterogeneity degrees.

(5) If the computation time is not the concern, the EPM
can be utilized to minimize the energy consumption;
otherwise, the QEPM is an alternative to reduce
energy within reasonable computation time.

(6) For application with high heterogeneity, the EPM is
preferred to QEPM in terms of saving energy
consumption.

6 CONCLUSION

In this study, two energy-aware processor merging algo-
rithms EPM and QEPM were proposed for real-time paral-
lel applications in a heterogeneous cloud computing
system. The EPM algorithm tried to minimize the energy
consumption while satisfying the deadline constraint of
the application by turning off the most effective processor
from the energy saving perspective. To decrease the com-
putation complexity of EPM, a QEPM algorithm was also
introduced to deal with large-scale parallel applications in
an acceptable amount of time. Our intensive experiments
on several real parallel applications and randomly gener-
ated parallel applications validated that both EPM and
QEPM can save more energy than the state-of-the-art
DEWTS algorithm, and the QEPM algorithm can complete
computation within reasonable time. Moreover, an energy-
aware processor merging guide for deadline constrained
parallel applications was presented based on the experi-
mental results. We believe that the proposed algorithms
can effectively facilitate an energy-aware design for dead-
line constrained parallel applications in heterogeneous
cloud computing systems.

SUPPLEMENT MATERIAL

The web page http://esnl.hnu.edu.cn/index.php/tsusc/
publishes the experimental codes of the paper.
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