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Abstract—Reliability is widely identified as an increasingly relevant issue in heterogeneous service-oriented systems because

processor failure affects the quality of service to users. Replication-based fault-tolerance is a common approach to satisfy application’s

reliability requirement. This study solves the problem of minimizing redundancy to satisfy reliability requirement for a directed acyclic

graph (DAG)-based parallel application on heterogeneous service-oriented systems. We first propose the enough replication for

redundancy minimization (ERRM) algorithm to satisfy application’s reliability requirement, and then propose heuristic replication for

redundancy minimization (HRRM) to satisfy application’s reliability requirement with low time complexity. Experimental results on real

and randomly generated parallel applications at different scales, parallelism, and heterogeneity verify that ERRM can generate least

redundancy followed by HRRM, and the state-of-the-art MaxRe and RR algorithm. In addition, HRRM implements approximate

minimum redundancy with a short computation time.

Index Terms—Fault-tolerance, heterogeneous service-oriented systems, quality of service, reliability requirement, replication

Ç

1 INTRODUCTION

1.1 Background

CLOUD-BASED service is a new service-based resource
sharing paradigm [1], [2]. In X as a service (XaaS) clouds,

resources as services (e.g., infrastructure, platform and soft-
ware as a service) are sold to applications such as scientific
and big data analysis workflows [1], [3], [4], [5], [6]. Mean-
while, cloud computing systems becomemore heterogeneous
as old, slow machines are continuously replaced with new,
fast ones. Heterogeneous computing systems consist of
diverse sets of processors interconnected with a high-speed
network, and are applied in business-critical, mission-critical,
and safety-critical scenarios to achieve operational goals [7].
Applications in the system are increasingly parallel and the
tasks in an application have obvious data dependencies and
precedence constraints [1], [8], [9], [10], [11]. Examples of par-
allel applications are Gaussian elimination and fast Fourier

transform [9]. A parallel application with precedence con-
strained tasks at a high level is described by a directed acyclic
graph (DAG) [1], [8], [9], [10], [11], where nodes represent
tasks, and edges represent communicationmessages between
tasks. Such application is usually called DAG-based parallel
application [12].

The current cloud-based service systems are actually
heterogeneous service-oriented systemswhere resourceman-
agement is a considerable challenge owing to the various con-
figurations or capacities of the hardware or software [13]. The
processing capacity of processors in heterogeneous service-
oriented systems has been developed to provide powerful
cloud-based services, whereas failures of processors will
affect the reliability of systems and quality of service (QoS) for
users [2]. Reliability is defined as the probability of a schedule
successfully completing its execution, and it has been widely
identified as an increasingly relevant issue in service-oriented
computing systems [2], [14], [15], [16], [17], [18].

Fault-tolerance by primary-backup replication, which
means that a primary task will have zero, one, or multiple
backup tasks, is an important reliability enhancement mech-
anism. In the primary-backup replication scheme, the pri-
mary and all the backups are called replicas. Although
replication-based fault-tolerance is an important reliability
enhancement mechanism [14], [15], [19], [20], [21], any
application cannot be 100 percent reliable in practice. There-
fore, if an application can satisfy its specified reliability
requirement (also named reliability goal or reliability assur-
ance in some studies), then it is considered to be reliable.
For example, assume that the application’s reliability
requirement is 0.9, only if the application’s reliability
exceeds 0.9, will the application be reliable. Specifically,
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reliability requirement has been defined in some reliability
related standards (e.g., IEC 61508 [22] and ISO 9000 [23]),
and it is one of the most important QoS in cloud and serv-
ices computing systems [14], [15]. Therefore, reliability
requirement must be satisfied from standards and QoS per-
spectives. However, as pointed out in [2], many cloud-based
services failed to fulfill their reliability requirements due to
processor failures in practice.

1.2 Motivation

Users and resource providers are the two types of roles with
different requirements for service-oriented systems [24]. For
users, satisfying application’s reliability requirement is one of
the most important QoS requirements, for which replication-
based fault-tolerance is a common approach. For resource
providers, minimizing resource redundancy caused by repli-
cation is one of the most important concerns [14], [15]. How-
ever, adding more replicas (including primary and backups)
could increase both reliability and redundancy for a parallel
application. Therefore, both criteria (low redundancy and
high reliability, short schedule length and high reliability) are
conflicting, and optimizing them is a bi-criteria optima prob-
lem [19]. In Fig. 1, each point x1-x7 represents a solution of a
bicriteria minimization problem [19]. The points x1, x2, x3, x4,
and x5 are Pareto optima [25]; the points x1 and x5 are weak
optima, whereas the points x2, x3, and x4 are strong optima.
The set of all Pareto optima is called the Pareto curve [19].
Many studies have dealt specifically with the bi-criteria
(i.e., minimizing schedule length and maximizing reliability)
problem to obtain such an approximate Pareto curve for a
DAG-based parallel application [19], [20], [21], [26], [27], [28].
In [26], [27], [28], the approaches increase reliability by effi-
cient task scheduling without using replication. In [19], [20],
[21], the approaches presented replicate tasks to increase
reliability.

However, for heterogeneous service-oriented systems,
resolving the above bi-criteria is not strictly required for the
following reasons:

(1) Clouds allow flexible and dynamic resource alloca-
tions based on a pay-as-you-go scheme [29], where
users pay only for the reliability requirement they
apply and will not pay additional fees for the reli-
ability that surpasses their reliability requirement.

(2) The application cannot be 100 percent reliable as
mentioned earlier. The most common component of
service-level agreement (SLA) between resource pro-
viders and the users is that the services (reliability

requirement in this study) should be provided to the
users as agreed upon in the contract [30]. Therefore,
satisfying application’s reliability requirement is the
service level objective.

In summary, considering the actual demand, the theoret-
ical bi-objective optimization problem could be degradated
to a constrained single-objective optimization problem in
most cases. In other words, reliability is not the higher the
better, but as long as you can satisfy the reliability require-
ment from a practical perspective. Therefore, the reliability
problem of service-oriented systems is mainly to satisfy
application’s reliability requirement while still reducing the
resource as far as possible.

The approaches related to our work are [14] and [15], in
which the authors presented the MaxRe and RR algorithms
to minimize redundancy of a parallel application to satisfy
application’s reliability requirement on heterogeneous dis-
tributed systems. The main procedures of the MaxRe and
RR are follows:

(1) The reliability requirement of the application is trans-
ferred to the sub-reliability requirements of the tasks.
In this way, as long as the sub-reliability requirement
of each task can be satisfied, the application’s reliabil-
ity requirement can be satisfied, such that a heuristic
replication can be used in the following.

(2) MaxRe and RR iteratively assign the replicas of each
task to the processors with maximum reliability val-
ues until the sub-reliability requirement of the task is
satisfied.

However, the essential limitation of MaxRe and RR is
that the sub-reliability requirements of tasks are too high,
thereby causing them need unnecessary redundancy to
satisfy the sub-reliability requirements.

1.3 Our Contributions

Similar to the state-of-the-art MaxRe and RR, this study
aims to implement redundancy minimization to satisfy
application’s reliability requirement for a parallel applica-
tion on heterogeneous service-oriented distributed systems.
Our contributions comparing to the MaxRe and RR are sum-
marized as follows:

(1) We present the just enough replication for redun-
dancy minimization (ERRM) algorithm to satisfy
application’s reliability requirement by two-stage
replications. The first stage involves obtaining the
lower bound on redundancy (i.e., the minimum
required number of replicas) for each task; the second
stage is iteratively selecting the available replicas and
corresponding processors with the maximum reli-
ability values until application’s reliability require-
ment is satisfied.

(2) To overcome the high time complexity of ERRM
algorithm, we propose the heuristic replication
for redundancy minimization (HRRM) algorithm to
deal with large-scale parallel applications. Similar to
the MaxRe and RR algorithms, HRRM first transfers
the reliability requirement of the application to the
sub-reliability requirements of the tasks. Then,
HRRM iteratively assign the replicas of each task to
the processors with maximum reliability values until

Fig. 1. Pareto optima and pareto curve for a bicriteria minimization prob-
lem [19].
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the sub-reliability requirement of the task is satisfied.
The main improvement of HRRM over MaxRe and
RR is that it can obtain lower sub-reliability require-
ments for most tasks, such that HRRM generates less
redundancy than MaxRe and RR.

(3) Experimental results on real and randomly generated
parallel applications at different scales, parallelism
degrees, and heterogeneity degrees validate that
ERRM can generate the least redundancy followed by
HRRM, the state-of-the-art MaxRe and RR algorithm.
In addition, HRRM implements approximate mini-
mum redundancywith a short computation time.

The rest of this paper is organized as follows. Section 2
reviews related research. Section 3 presents the reliability
modeling and problem statement. Section 4 explains the
state-of-the-art MaxRe and RR algorithms. Sections 5 and 6
proposed the ERRM and HRRM algorithms, respectively.
Section 7 verifies the ERRM andHRRM algorithms. Section 8
concludes this study.

2 RELATED WORK

The widely-accepted reliability model was presented by
Shatz and Wang [31], where each hardware component
(processor) is characterized by a constant failure rate per
time unit � and the reliability during the interval of time t
is e��t. That is, the failure occurrence follows a constant
parameter Poisson law [31]. This law is also known as the
exponential distribution model [19]. This section mainly
reviews the related research on reliability and fault-
tolerance of DAG-based parallel applications.

Two main types of primary-backup replication app-
roaches exist in current: active replication [14], [15], [20], [21]
and passive replication [32], [33], [34], [35]. For the active rep-
lication scheme, each task is simultaneously replicated on
several processors, and the task will succeed if at least one
of them does not fail. For the passive scheme, whenever
a processor fails, the task will be rescheduled to proceed on a
backup processor. When a processor crashes, it is subse-
quently restarted to continue from the checkpoint just as if
no failure had occurred; such scheme is called checkpoint
and restart scheme, and can be considered as an improved
version of the passive scheme [14], [15]. Meanwhile, accord-
ing to the number of the backups, three types of primary-
backup replication approaches exist; single backup for each
primary, fixed " backups for each primary, and quantitative
backups for each primary.

The single backup for each primary approach is a simple
method. Main representative methods include efficient
fault-tolerant reliability cost driven (eFRCD) [33], efficient
fault-tolerant reliability driven (eFRD) [34], and minimum
completion time with less replication cost (MCT-LRC) [35]
et al. Regarding their limitations, first, these approaches
assume that no more than one failure happens at one
moment; they are too ideal to tolerate potential multiple fail-
ures. Second, although passive replication also supports
multiple backups for each primary [32], it is unsuitable
for service-oriented applications; the reason is that once a
processor failure is detected, the scheduler should resched-
ule the task located on the failed processor, and reassign it
to a new processor, such that the QoS for the application is
uncertain.

The fixed " backups for each primary approach is an
active replication approach, and is suitable for service-
oriented systems because it can directly shield the failed
tasks in performing, and the failure recovery time is almost
close to zero [19], [20], [21]. In [19], the authors presented
bicriteria scheduling heuristic (BSH) to minimize the sched-
ule length of the application while taking the failure rate as
a constraint; BSH can generate a Pareto curve of non-
dominated solutions, among which the user can choose the
compromise that fits his requirements best. However, the
time complexity of BSH is as high as O(n� 2u), where n is
the number of replicas and u is the number of processors. In
[20], Benoit et al. presented the fault-tolerant scheduling
algorithm (FTSA) for a parallel application on heteroge-
neous systems to minimize the schedule length given a
fixed number of failures supported in the system based on
the active replication scheme. In [21], Benoit et al. further
designed a new scheduling algorithm to minimize schedule
length under both throughput and reliability constraints for
a parallel application on heterogeneous systems based on
the active replication scheme. The main problem in [20],
[21] is that they need " backups for each task with high
redundancy to satisfy application’s reliability requirement.
Although application’s reliability requirement can be satis-
fied by using active replication scheme, high redundancy
causes high resource cost to resource providers.

Considering that fixed " backups for each primary
approach has high redundancy, recent studies begun to
explore quantitative backups for each task approach to satisfy
application’s reliability requirement [14], [15]. Quantitative
backups means different primaries have different numbers
of backups, and the quantitative approach has lower resource
cost than the fixed " backups for each task based on active
replication [14]. In [14] and [15], the authors proposed fault-
tolerant scheduling algorithms MaxRe and RR; both MaxRe
and RR incorporate reliability analysis into the active replica-
tion and exploit a dynamic number of backups for different
tasks by considering each task’s sub-reliability requirement.
As discussed in Section 1.2, both MaxRe and RR have limita-
tions in calculating the sub-reliability requirements of tasks.
In [15], the authors also presented the DRR algorithm that
extends RR by further considering the deadline requirement
of a parallel application; however, we are only interested in
satisfying reliability requirement in this study.

3 RELIABILITY MODELING AND PROBLEM

STATEMENT

Table 1 gives the important notations and their definitions
as used in this study.

3.1 Application Model

Let U ¼ fu1; u2; . . . ; ujUjg represent a set of heterogeneous
processors, where jU j is the size of set U . In this study, for
any set X, jXj is used to denote size. A development life
cycle of a service-oriented system usually involves the anal-
ysis, design, implementation, and testing phases. In this
study, we focus on the design phase. Therefore, we assume
that the processor and application parameter values are
known in the design phase, because these values have been
already calculated in the analysis phase.
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As mentioned earlier, a parallel application running on
processors is represented by a DAG G=ðN , W , M, C) with
known values.

(1) N represents a set of nodes in G, and each node
ni 2 N is a task with different execution time values
on different processors. In addition, task executions
of a given application are assumed to be non-
preemptive which is possible in many systems [8],
[14]. predðniÞ is the set of immediate predecessor
tasks of ni, while succðniÞ is the set of immediate suc-
cessor tasks of ni. Tasks without predecessor tasks
are denoted by nentry; and tasks with no successor
tasks are denoted by nexit. If an application has multi-
ple entry or multiple exit tasks, then a dummy entry
or exit task with zero-weight dependencies is added
to the graph. W is an jN j � jUj matrix in which wi;k

denotes the execution time of ni running on uk.
(2) M is a set of communication edges, and each edge

mi;j 2M represents a communication from ni to nj.
Accordingly, ci;j 2 C represents the communication

time of mi;j if ni and nj are assigned to different
processors because two tasks with immediate pre-
cedence constraints need to exchange messages.
When both tasks ni to nj are allocated to the same
processor, ci;j becomes zero because we assume
that the intra-processor communication cost is neg-
ligible [14], [15].

Fig. 2 shows a motivating parallel application with tasks
and messages [9], [10], [11], [12]. The example shows
10 tasks executed on 3 processors fu1; u2; u3g. The weight
18 of the edge between n1 and n2 represents communication
time, denoted by c1;2 if n1 and n2 are not assigned to the
same processor.

Table 2 is the execution time matrix jNj � jU j of tasks on
different processors of the motivating parallel application.
For example, the weight 14 of n1 and u1 in Table 2 repre-
sents execution time of n1 on u1, denoted by w1;1=14. We
can see that the same task has different execution time val-
ues on different processors due to the heterogeneity of the
processors.

Themotivating examplewill be used to explain theMaxRe,
RR, and the proposed LBR, ERRM, and HRRM algorithms in
the paper.

3.2 Reliability Model

There are two major types of failures: transient failure
(also called random hardware failure) and permanent
failure. Once a permanent failure occurs, the processor
cannot be restored unless by replacement. The transient
failure appears for a short time and disappear without
damage to processors. Therefore, this paper mainly takes
the transient failures into account for our research. In
general, the occurrence of transient failure for a task in a
DAG-based application follows the Poisson distribution
[14], [15], [19], [31], [36]. The reliability of an event in unit
time t is denoted by

R tð Þ ¼ e��t;

where � is the constant failure rate per time unit for a proces-
sor. We use �k to represent the constant failure rate per time
unit of the processor uk. The reliability of ni executed on uk

in its execution time is denoted by

R ni; ukð Þ ¼ e��kwi;k ; (1)

TABLE 1
Important Notations in this Study

Notation Definition

ci;j Communication time between the tasks ni and nj

wi;k Execution time of the task ni on the processor uk
wi Average execution time of the task ni

rankuðniÞ Upward rank value of the task ni

jXj Size of the setX

�k Constant failure rate per time unit of the processor uk
numi Number of replicas of the task ni

NRðGÞ Total number of the replicas of the applicationG

lbðniÞ Lower bound on number of replicas of the task ni

nx
i xth replica of the task ni

uprðnx
i
Þ Assigned processor of the replica nx

i

Rðni; ukÞ Reliability of the task ni on the processor uk
RðniÞ Reliability of the task ni

RðGÞ Reliability of the applicationG

RseqðGÞ Reliability requirement of the applicationG

RseqðniÞ Sub-reliability requirement of the task ni

Rup seqðniÞ Upper bound on reliability requirement of the task ni

TABLE 2
Execution Time Values of Tasks on Different Processors

of the Motivating Parallel Application [9], [10], [11]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

Fig. 2. Motivating example of a DAG-based parallel application with 10
tasks [9], [10], [11], [12].
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and the failure probability for ni without using the active
replication is

1�R ni; ukð Þ ¼ 1� e��kwi;k : (2)

However, each task has a number of replicas with the active
replication. We define numi (numi4jU j) as the number of
replicas of ni. Hence, the replica set of ni is fn1

i ; n
2
i ; . . . ; n

numi
i g

where n1
i is the primary and others are backups. As long as

one replica of ni is successfully completed, then we can rec-
ognize that there is no occurrence of failure for ni, and the
reliability of ni is updated to

R nið Þ ¼ 1�
Ynumi

x¼1
1�R nx

i ; uprðnxi Þ
� �� �

; (3)

where uprðnx
i
Þ represents the assigned processor of nx

i . The
difference between R ni; ukð Þ and R nið Þ is below: R ni; ukð Þ
is the value before task replication, whereas R nið Þ is the
value after task replication.

The reliability of the parallel application with prece-
dence-constrained tasks should be [14]

RðGÞ ¼
Y
ni2N

RðniÞ: (4)

In [15], both communication and computation failures
are considered; however, some communication networks
themselves provide fault-tolerance. For instance, routing
information protocol (RIP) and open shortest path first
(OSPF) are designed to reroute packets to ensure that they
reach their destination [37]. Therefore, similar to some
studies [14], [35], [38], this study only considers processor
failure and excludes communication failure (i.e., the com-
munication is assumed to be reliable in this study). In addi-
tion, we mainly focus on the redundancy minimization
of tasks, which is not directly related to communication.

3.3 Problem Statement

As discussed in Section 1, any application cannot be
100 percent reliable, but if the system can satisfy
application’s reliability requirement, then the application is
considered reliable. The problem addressed in this study
can be formally described as follows. Assume that we are
given a parallel application G and a heterogeneous proces-
sor set U . The problem is to assign replicas and correspond-
ing processors for each task, while minimizing the number
of replicas and ensuring that the obtained reliability of the
application RðGÞ satisfies the application’s reliability
requirement RseqðGÞ. The formal description is to find the
replicas and processor assignments of all tasks to minimize

NRðGÞ ¼
X
ni2N

numi; (5)

subject to

RðGÞ ¼
Y
ni2N

R nið Þ5RreqðGÞ;

for 8i : 14i4jN j.

4 STATE-OF-THE-ART APPROACHES

4.1 Task Prioritizing

A fault-tolerant scheduling algorithm generally consists of
three steps: 1) task prioritizing, 2) processor selection, and
3) task execution. Therefore, we should first compute the
task priority before processor selection. Similar to state-of-
the-art studies [14], [15], this study uses the famous upward
rank value (ranku) of a task (Eq. (6)) as the task priority stan-
dard. In this case, the tasks are ordered by descending order
of ranku, which are obtained by Eq. (6) [9], as follows:

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; (6)

in which wi represents the average execution time of task ni

and is calculated as follows:

wi ¼
XjUj
k¼1

wi;k

 !,
jU j:

Table 3 shows the upward rank values of all the tasks in
Fig. 2. Note that only if all the predecessors of ni have been
assigned, will ni prepare to be assigned. Assume that two
tasks ni and nj satisfy rankuðniÞ > rankuðnjÞ; if no prece-
dence constraint exists between ni and nj, ni does not neces-
sarily take precedence for nj to be assigned. Therefore, the
task assignment order in G is fn1; n3; n4; n2; n5; n6; n9; n7;
n8; n10g.

4.2 Existing MaxRe Algorithm

As the application reliability is the product of all the
task reliability values, such problem is usually solved by
transferring application’s reliability requirement to the sub-
reliability requirements of tasks [14], [15], [39]. In the MaxRe
algorithm [14], the sub-reliability requirement for each task
is calculated by

RreqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjNj

q
: (7)

If the sub-reliability requirement of each task can be satis-
fied by active replication below

RðniÞ5RreqðniÞ;
then obviously the application’s reliability requirement can
be satisfied. Therefore, the main idea of the MaxRe algo-
rithm is to iteratively select the replica nx

i and processor
uprðnx

i
Þ with the maximum Rðnx

i ; uprðnx
i
ÞÞ until the actual reli-

ability value is larger than or equal to the sub-reliability
requirement of the task, namely,

RðniÞ5RreqðniÞ:

Moreover, this policy was also employed by the authors
in [39].

TABLE 3
Upward Rank Values for Tasks of the Motivating

Parallel Application

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7
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Example 1. Assume that the constant failure rates for three
processors are �1 ¼ 0:0010, �2 ¼ 0:0015, and �3 ¼ 0:0018,
respectively.Moreover, assume that the reliability require-
ment of the parallel application in Fig. 2 is RseqðGÞ ¼ 0:94.
Note that the above values are not the representatives of
a real deployment, but are used to explain the example
clearly.

Table 4 shows the task assignment for each task of the
motivating parallel application using the MaxRe algorithm.
Each row shows the selected processors (denoted with bold
text) and corresponding reliability values. For example, the
sub-reliability requirement of n1 is Rreqðn1Þ ¼

ffiffiffiffiffiffiffiffiffi
0:9410
p ¼

0:99383156; to satisfy the sub-reliability requirement, MaxRe
selects the processors u1 and u3 with the maximum and sec-
ond maximum reliability values, respectively (i.e., num1 ¼
2). Then, the actual reliability value of n1 is 0.99977659, which
is calculated by Eq. (3). The remaining tasks use the same
pattern with n1. Finally, the number of replicas are 19 and
the actual reliability value of the applicationG is 0.99298048,
which are calculated by Eqs. (5) and (4), respectively.

4.3 Existing RR Algorithm

Obviously, the main limitation of the MaxRe algorithm is
that the sub-reliability requirements of all tasks are equal
and high, such that it needs more replicas with extra
redundancy to satisfy the sub-reliability requirement of
each task. To solve such problem, the authors presented
the RR algorithm to lower down the sub-reliability require-
ment of tasks while still satisfying the application’s reliabil-
ity requirement [15] as follows.

First, the sub-reliability requirement for the entry task is
still calculated by

Rreqðn1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
:

Second, for the rest of tasks (i.e., non-entry tasks), unlike
prior MaxRe algorithm [14], sub-reliability requirements in
the RR algorithm are calculated continuously based on the
actual reliability achieved by previous allocations

RreqðnseqðjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RreqðGÞQj�1
x¼1 RðnseqðxÞÞ

jN j�jþ1
s

; (8)

where nseqðjÞ represents the jth assigned task. Clearly, such
single improvement can reduce the sub-reliability require-
ments of non-entry tasks.

Example 2. The same parameter values (�1 ¼ 0:0010,
�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with Exam-
ple 1 are used. Table 5 shows the task assignment for
each task of the motivating parallel application using the
RR algorithm. Each row shows the selected processors
(denoted with bold text) and corresponding reliability
values. The sub-reliability requirement and task assign-
ment of n1 using the RR algorithm is similar to the MaxRe
algorithm. However, the remaining tasks are different.
For example, as the actual reliability value for n1 is
0.99977659, then the sub-reliability requirement for n3

should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:94
0:99977659

9
q

¼ 0:99317319. When assigning n7

and n8, the sub-reliability requirements are reduced to
0.98013824 and 0.97161077, respectively. That is, only one

replica for each of n7 and n8 will be able to satisfy individ-

ual sub-reliability requirements. Finally, the number of

replicas and the actual reliability value of the application

G are 17 and 0.97609982 (calculated by Eqs. (5) and (4)),

respectively, which still satisfy application’s reliability

requirement, but their values are less than those obtained

with the MaxRe algorithm.

5 ENOUGH REPLICATION FOR REDUNDANCY

MINIMIZATION

Although the RR algorithm can reduce the sub-reliability
requirements of tasks, the reduction ranges of tasks near the
entry task are much lower than those of the tasks near the exit
task. That is, the actual sub-reliability requirements show
unfairness among tasks, such that the RR algorithm still
requires unnecessary redundancy to satisfy application’s
reliability requirement. To further reduce redundancy, we
first present good enough replication approach in this section,
and then propose a heuristic replication approach in the next
section.

5.1 Lower Bound on Redundancy

Considering that application reliability is the product of all
task reliability values, the reliability value of each task should
be higher than or equal to RreqðGÞ; otherwise, if one task has

TABLE 5
Task Assignment of the Motivating Parallel Application

Using the RR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99317319 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99234932 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99128298 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.98989744 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98793125 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98498801 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.98013824 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.97511487 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97161077 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 17, RðGÞ ¼ 0:97609982

TABLE 4
Task Assignment of the Motivating Parallel Application

Using the MaxRe Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99383156 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99383156 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99383156 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.99383156 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.99383156 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.99383156 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99383156 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.99383156 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.99383156 0.97921896 0.98955493 0.97161077 2 0.99978294

NRðGÞ ¼ 19, RðGÞ ¼ 0:99298048
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RðniÞ < RreqðGÞ, then no matter how many replicas for any
other tasks, RreqðGÞ cannot be satisfied. Therefore, the lower
bound on reliability requirement of the task ni is

Rlb reqðniÞ ¼ RreqðGÞ: (9)

In this way, there should be a lower bound on the number
of replicas for each task that satisfies

RðniÞ5Rlb reqðniÞ:

In other words, we can determine the lower bound on the
number of replicas lbðniÞ for task ni to satisfy

1�
YlbðniÞ
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ � Rlb reqðniÞ; (10)

according to Eq. (3).
We use the following steps to select the replica and the

corresponding processor with the minimum number of
replicas.

(1) Calculate the R ni; ukð Þ of each task on all available
processors (if a replica of ni has been assigned to the
processor, then this processor is unavailable for ni;
otherwise, it is available for ni).

(2) To minimize the number of replicas, select the rep-
lica nx

i of the task ni and the corresponding processor
uprðnx

i
Þ with the maximum Rðnx

i ; uprðnxi ÞÞ.
(3) Repeat Steps (1) and (2) until Eq. (10) is satisfied.

5.2 The LBR Algorithm

On the basis of the above steps, we propose the lower
bound on redundancy (LBR) algorithm (Algorithm 1) to
generate the lower bound on the number of the replicas of
each task.

Algorithm 1. The LBR Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output: RðGÞ,NRðGÞ and its related values
1: for ði ¼ 1; i <¼ jN j; iþþÞ do
2: Rlb reqðniÞ  RðGÞ;
3: numi ¼ 0;
4: RðniÞ ¼ 0; // initial value is 0
5: while (RðniÞ < Rlb reqðniÞ) do
6: Calculate R ni; ukð Þ for the task ni on all available pro-

cessors using Eq. (1);
7: Select replica nx

i and the processor uprðnx
i
Þ with the max-

imum reliability value Rðnx
i ; uprðnx

i
ÞÞ;

8: numi++;
9: Calculate RðniÞ using Eq. (3);
10: end while
11: CalculateNRðGÞ using Eq. (5);
12: Calculate RðGÞ using Eq. (4);
13: end for

The core idea of the LBR algorithm is that each task itera-
tively selects the replica and available processor with the
maximum reliability value Rðnx

i ; uprðnxi ÞÞ for each task until
the task’s lower bound on reliability requirement is satis-
fied. The details are explained as follows:

(1) In Line 2, LBR has obtained the lower bound on reli-
ability requirement of the current task before it pre-
pares to be assigned.

(2) In Lines 5-10, LBR iteratively selects the replica and
available processor for each task with the maximum
reliability value until the task’s lower bound on
reliability requirement is satisfied. Specifically, the
following details are made: 1) Line 5 compares the
actual reliability value and lower bound on reliability
requirement of the current task; 2) Lines 6-7 calculate
and select the replica and available processor with the
maximum reliability value for the current task; and
3) Line 9 calculates the actual reliability value of the
current task.

(3) In Lines 11-12, LBR calculates the final number of
replicas and the actual reliability value of the appli-
cation, respectively.

5.3 Time Complexity of the LBR Algorithm

The time complexity of the LBR algorithm is analyzed as
follows:

(1) Calculating the reliability of the application must tra-
verse all tasks, which can be done within O(jNj) time
(Lines 1-13).

(2) The total number of replicas for each task must be
lower or equal to the number of processors, which
can be done within O(jUj) time (Lines 5-10).

(3) Selecting the replica and available processor with the
maximum reliability value for the current task must
traverse all processors, which can be done in
O(logjU j) time (Line 7).

Thus, the time complexity of the LBR algorithm is
O(jNj � jU j � logjU j).

5.4 Example of the LBR Algorithm

Example 3. The same parameter values (�1 ¼ 0:0010, �2 ¼
0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
tioned examples are used. Table 6 lists the replicas, selected
processor, and reliability value of each task (denoted with
bold text). We find that the reliability value of each task is
higher than the application’s reliability requirement of
0.94. However, the current obtained reliability value of the

TABLE 6
Task Assignment of the Motivating Parallel Application

Using the LBR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.94 0.98609754 0.97628571 0.98393051 1 0.98609754
n3 0.94 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.94 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.94 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.94 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.94 0.98708414 0.97628571 0.98393051 1 0.98708414
n9 0.94 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.94 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.94 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.94 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 10, RðGÞ ¼ 0:89092057
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parallel application is only RðGÞ ¼ 0:89092057 (calculated
by Eq. (4)), which is much lower than 0.94 (application’s
reliability requirement). Hence, application’s reliability
requirement is not satisfied by merely using the LBR
algorithm.

5.5 Enough Replication

Considering that all the tasks merely satisfy R nið Þ �
Rlb reqðniÞ by using the LBR algorithm (Algorithm 1), we
should addmore new replicas for tasks to satisfy application’s
reliability requirement. However, choosing the remaining
replicas is a complex work, because different replicas of dif-
ferent tasks may cause different reliability values on different
processors.

Given that the current number of replicas for ni is
h ¼ numi and the application reliability is RðGÞ, if a new
replica nhþ1

i is assigned to the processor uk ¼ u
prðnhþ1

i
Þ for

ni, then the number of replicas is changed to hþ 1 and the

new task reliability is changed to

RnewðniÞ ¼ 1�
Yhþ1
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ: (11)

Then, the application reliability is enhanced because of the

reliability enhancement of ni and is changed to

RiðGÞ ¼ RnewðniÞ �
Y

nj2N;i 6¼j
RðnjÞ: (12)

To minimize the number of replicas for each task, we use
the following steps to obtain enough minimum redundancy
of the application.

(1) Each available task (if the replicas of a task have been
assigned to all the processors, then this task is unavailable;
otherwise, a task is available) is assumed to be replicated
once on an available processor with the maximum Rðni; ukÞ
(Eq. (1)), and the new task sub-reliability is changed to
RnewðniÞ (Eq. (11)).

(2) Calculate the application reliability RiðGÞ because of
the reliability enhancement of each task (Eq. (12)).

(3) Select the replica nx
i and corresponding processor

uprðnx
i
Þ that generate the maximum RiðGÞ from the generated

replicas in Step 2), namely,

RiðGÞ ¼ max R1ðGÞ; R2ðGÞ; . . . ; RjN jðGÞ
on
: (13)

(4) Repeat Steps (1), (2), and (3) until application’s reli-
ability requirement (Eq. (4)) is satisfied.

5.6 The ERRM Algorithm

In this section, we propose the ERRM algorithm to minimize
redundancy to satisfy application’s reliability requirement,
and describe the steps in Algorithm 2.

The core idea of the ERRMalgorithm is that all the tasks are
first assumed to be replicated once on an available processor
with the maximum reliability values; then ERRM selects the
replica nx

s and corresponding processor uprðnxs Þ that generate
the maximum application reliability value RsðGÞ until
application’s reliability requirement is satisfied in the iterative
replication process. The details are explained as follows:

(1) In Line 1, ERRM calls the LBR algorithm (Algorithm 1)
to obtain the initial reliabilityRðGÞ and related values.

(2) In Lines 2-11, ERRM iteratively selects the replica
and available processor that generate the maximum
application reliability value until application’s reli-
ability requirement is satisfied. Specifically, the fol-
lowing details are made: 1) Line 2 compares the
actual reliability value and the reliability require-
ment of the application; 2) Lines 3-7 pre-replicate all
tasks once on an available processor with the maxi-
mum reliability values; 3) Line 8 selects the replica
and corresponding processor that generate the maxi-
mum application reliability value; and 4) Line 10
updates the application’s reliability value.

(3) In Line 13, ERRM calculates the final number of rep-
licas of the application.

Algorithm 2. The ERRM Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output:RðGÞ, NRðGÞ and its related values
1: Call the LBR algorithm (Algorithm 1) to obtain the initial

reliability RðGÞ and related values;
2: while (RðGÞ < RreqðGÞÞ do
3: for ði ¼ 1; i <¼ jN j; iþþÞ do
4: Pre-replicated the replica of ni on an available proces-

sor with the maximum reliability value Rðni; ukÞ;
5: Update the task’s sub-reliability value to RnewðniÞ

(Eq. (11));
6: Calculate the application reliability RiðGÞ after the reli-

ability enhancement of ni (Eq. (12));
7: end for
8: Select the replica nx

s and corresponding processor uprðnxs Þ
that generate the maximum application reliability value
RsðGÞ (Eq. (13));

9: numi þþ;
10: RðniÞ  RnewðniÞ;
11: RðGÞ  RiðGÞ;
12: end while
13: Calculate NRðGÞ using Eq. (5);

5.7 Time Complexity of the ERRM Algorithm

The time complexity of the ERRM algorithm is analyzed as
follows:

(1) The maximum number of iterative replication process
is jN j � jUj, which can be done within O(jN j � jU j)
time (Lines 2-12).

(2) Each task must be assumed to be replicated once on
an available processor, which can be done in O(jNj)
time (Lines 3-7).

(3) Selecting the replica and available processor with the
maximum reliability value must traverse all process-
ors, which can be done in O(logjU j) time (Line 4).

(4) Updating the task’s new sub-reliability value can be
done in O(jUj) time (Line 5).

(5) Calculating the application’s new reliability value
can be done in O(jN j) time (Line 6).

(6) Obtaining the maximum application reliability value
can be done in O(jN j) time (Line 8).

Considering that (3), (4), and (5) are not nested in the
algorithm, the time complexity of the ERRM algorithm is
O(jN j2 � jU j2 þ jN j3 � jU j).
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Considering that the time complexity of the LBR algo-
rithm (i.e., O(jNj � jUj � logjUj)) is less than that of the
ERRM algorithm, using the LBR algorithm in advance can
improve the efficiency of the replication compared with
only using the ERRM algorithm. The reason is that the LBR
algorithm can obtain an initial reliability value greater than
zero, such that the number of iterative process of the ERRM
algorithm can be reduced. Considering the motivating
example, the reliability value obtained is 0.89092057, shown
in Table 6, then the initial reliability value is not 0, but
0.89092057. Compared to starting from 0, 0.89092057 is close
to the actual reliability requirement of 0.93.

5.8 Example of the ERRM Algorithm

Example 4. The same parameter values (�1 ¼ 0:0010, �2 ¼
0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
tioned examples are used. Table 7 lists the selected proces-
sor and reliability pairs of each task in each step by using
Algorithm 2, where the underlined values indicate those
that have the maximum RnewðniÞ (Eq. (11)) and RsðGÞ
(Eq. (13)), and the replica is selected to enhance the reli-
ability of the application in each step. For example, in Step
(1), n9 and u2 are selected, because they can generate the
maximum value of 0.9068. In Step (4), the reliability value
is larger than or equal to application’s reliability require-
ment 0.94. Hence, application’s reliability requirement is
satisfied, and the replication process successfully ends.

Table 8 lists the final replicas, selected processor, and
reliability value for each task of the parallel application in
Fig. 2. We find that the final reliability value of each task
is larger than or equal to 0.94. Moreover, the current reli-
ability value is RðGÞ ¼ 0:94307237 (calculated by Eq. (4)),
which is larger than 0.94. Hence, application’s reliability
requirement is satisfied, and the application proves

reliable in this situation. Meanwhile, the final resource
consumption isNRðGÞ ¼ 14 (Calculated by Eq. (5)).

6 HEURISTIC REPLICATION FOR REDUNDANCY

MINIMIZATION

Although the ERRM algorithm can implement enough
redundancy minimization, it has high time complexity and
thereby it is time-consuming for a large-scale parallel appli-
cation. To reduce the redundancy of a large-scale parallel
application within an acceptable computation time, this sec-
tion presents a heuristic algorithm.

6.1 Upper Bound on Reliability Requirement

Although the RR algorithm can achieve more redundancy
reduction than theMaxRe algorithm by recalculating the sub-
reliability requirement, the redundancy reduction ranges of
the tasks near the entry task is much lower than those of the
tasks near the exit task (see Table 5). The main reason for the
discrepancy is that unfair sub-reliability requirements among
tasks are generated. In fact, the tasks that are after nseqðxÞ’s
allocations (i.e., unassigned tasks) can also be presupposed as
assigned tasks with known reliability values.

We find that all the sub-reliability requirements of tasks
using the RR algorithm do not exceed 0.99383156 (see
Table 5), which is the sub-reliability requirement of each
task using the MaxRe algorithm (see Table 4). Thus, we letffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RreqðGÞjN jp be the upper bound on task’s reliability require-
ment, namely,

Rup reqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
: (14)

Then, we have the following heuristic strategy: assume
that the task to be assigned is nseqðjÞ (nseqðjÞ represents the jth
assigned task as mentioned earlier), then fnseqð1Þ; nseqð2Þ; . . . ;
nseqðj�1Þg represents the task set with assigned tasks, and
fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjNjÞg represents the task set with
unassigned tasks. To ensure that the reliability of the applica-
tion is satisfied at each task assignment, we presuppose that
each task in fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjN jÞg is assigned to the
processor with reliability value on upper bound (Eq. (14)).
Hence, when assigning nseqðjÞ, application’s reliability
requirement is

RreqðGÞ ¼
Yj�1
x¼1

RðnseqðxÞÞ � RreqðnseqðjÞÞ �
YjNj

y¼jþ1
Rup reqðnseqðyÞÞ:

Then, the sub-reliability requirement for the task nseqðjÞ
should be

RreqðnseqðjÞÞ ¼ RreqðGÞQj�1
x¼1 RðnseqðxÞÞ �

QjN j
y¼jþ1 Rup reqðnseqðyÞÞ

: (15)

TABLE 7
Selected Processor and Reliability Pairs (Denoted with Underline Text) of Each Task in Each Step of the Motivating

Parallel Application Using the ERRM Algorithm

Step n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

(1) (u3; 0:9033) (u2; 0:9023) (u2; 0:9006Þ (u1; 0:9015) (u3; 0:9015) (u3; 0:9024) (u3; 0:89714) (u2; 0:8953) (u2; 0:9068) (p1; 0:9001)
(2) (u3; 0:9194) (u2; 0:9183) (u2; 0:9166) (u1; 0:9176) (u3; 0:9176) (u3; 0:9185) (u2; 0:9131) (u2; 0:9113) (u3; 0:9071) (u1; 0:9162)
(3) (u2; 0:9196) (u2; 0:9311) (u2; 0:9294) (u1; 0:9303) (u3; 0:9303) (u3; 0:9312) (u3; 0:9257) (u2; 0:9239) (u3; 0:9197) (u1; 0:9289)
(4) (u2; 0:9314) (u2; 0:9431) (u2; 0:9413) (u1; 0:9423) (u3; 0:9423) (u2; 0:9314) (u3; 0:9376) (u2; 0:9358) (u3; 0:9315) (u1; 0:9409)

TABLE 8
Task Assignment of the Application in Fig. 2 Using

the ERRM Algorithm

ni Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.98708414 0.97190229 0.99963709 2 0.98708414
n5 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 14, RðGÞ ¼ 0:94307237

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 879



6.2 The HRRM Algorithm

On the basis of the aforementioned new sub-reliability
requirement calculation for each task (Eq. (15)), we present
the heuristic algorithm HRRM described in Algorithm 3 to
minimize redundancy and satisfy application’s reliability
requirement.

Algorithm 3. The HRRM Algorithm

Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
Output:RðGÞ, NRðGÞ and its related values
1: Order tasks according to a descending order of rankuðni; ukÞ

using Eq. (6);
2: for ðj ¼ 1; j <¼ jNj; jþþÞ do
3: Calculate RðnseqðjÞÞ using Eq. (3);
4: numseqðjÞ ¼ 0;
5: RðnseqðjÞÞ ¼ 0; // initial value is 0
6: Calculate RreqðnseqðjÞÞ using Eq. (15);
7: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
8: Calculate RðnseqðjÞ; ukÞ for the task nseqðjÞ on all each

available processor using Eq. (1);
9: Select replica nx

seqðjÞ and the processor uprðnx
seqðjÞÞ with the

maximum Rðnx
seqðjÞ; uprðnx

seqðjÞÞÞ;
10: numseqðjÞ++;
11: Calculate RðnseqðjÞÞ using Eq. (3);
12: end while
13: end for
14: CalculateNRðGÞ using Eq. (5);
15: Calculate RðGÞ using Eq. (4);

The core idea of HRRM is that the reliability requirement
of the application is transferred to the sub-reliability
requirement of each task. Each task just iteratively selects
the replica and available processor with the maximum reli-
ability value until its sub-reliability requirement is satisfied.
The details are explained as follows:

(1) In Line 6, HRRM has obtained the reliability require-
ment of the current task before it prepares to be
assigned.

(2) In Lines 7-12, HRRM iteratively selects the replica
and available processor with the maximum reli-
ability value for the current task until its sub-
reliability requirement is satisfied. Specifically, the
following details are made: 1) Line 7 compares
the actual reliability value and sub-reliability
requirement of the current task; 2) Lines 8-9 calcu-
late and select the replica and available processor
with the maximum reliability value for the current
task; and 3) Line 11 calculates the actual reliability
value of the current task.

(3) In Lines 14-15, HRRM calculates the final number of
replicas and the actual reliability value of the appli-
cation, respectively.

Compared with MaxRe and RR algorithms, the main
improvement of the presented HRRM is that it recalculates
the sub-reliability requirement of each task based not only on
its previous assignments (fnseqð1Þ; nseqð2Þ; . . . ; nseqðj�1Þg), but
also on succeeding pre-assignments fnseqðjþ1Þ; nseqðjþ2Þ; . . . ;
nseqðjN jÞg, whereas MaxRe algorithm has a fixed and equal
sub-reliability requirements for all tasks and RR algorithm is
merely based on previous assignments.

6.3 Time Complexity of the HRRM Algorithm

The time complexity of the HRRM algorithm is analyzed as
follows:

(1) Calculating the reliability of the application must
traverse all tasks, which can be done within O(jNj)
time (Lines 2-13).

(2) Calculating the sub-reliability requirement of the
current task must traverse all tasks, which can be
done within O(jNj) time (Line 6).

(3) The number of replicas must be lower or equal to the
number of processors, which can be done within
O(jU j) time (Lines 7-12).

(4) Calculating the reliability value of the current task
must traverse all assigned processors, which can be
done in O(jUj) time (Line 11)

Considering that (2) and (3) are not nested in the
algorithm, the time complexity of the HRRM algorithm is
O(jN j2 þ jN j � jUj2), which is similar to those of MaxRe and
RR algorithms. Thus, HRRM implements efficient fault-
tolerance without increasing time complexity.

6.4 Example of the HRRM Algorithm

Example 5. The same parameter values (�1 ¼ 0:0010,
�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with afore-
mentioned examples are used. Table 9 shows the task
assignment for each task of the motivating parallel appli-
cation using HRRM algorithm. Each row shows the
selected processors (in red) and corresponding reliability
values. The sub-reliability requirement and task assign-
ment of n1 using HRRM algorithm is similar to those
using MaxRe and RR algorithms. However, the remain-
ing tasks are different. For example, when assigning n3,
the actual reliability value for n1 is 0.99977659, and suc-
ceeding pre-assignments with reliability requirements areffiffiffiffiffiffiffiffiffi

0:9410
p ¼ 0:99383156, then the sub-reliability requirement
for n3 should be 0:94

0:99977659�0:993831568 ¼ 0:98792188. Com-

pared with the RR algorithm, an obvious improvement

for the HRRM algorithm is that it shows relative fair reli-

ability requirements among tasks; furthermore, most sub-
reliability requirements of tasks using HRRM are less

than those using the RR algorithm. Finally, the number of

replicas and the actual reliability value of the application

TABLE 9
Task Assignment of the Motivating Parallel Application

Using the HRRM Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98792188 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.99268768 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.98671636 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.99346128 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98754331 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98165546 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.99331998 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.98732777 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.98615598 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 15, RðGÞ ¼ 0:94323987
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G are 15 and 0.94323987 (calculated by Eqs. (5) and (4)),
respectively, which are lower than those with MaxRe and

RR algorithms.

7 EXPERIMENTS

7.1 Experimental Metrics and Parameter Values

Considering that this study aims to implement redundancy
minimization with replication to satisfy application’s reliabil-
ity requirement, performance metrics selected for compari-
son should be the actual reliability value and total number of
replicas of the application. Meanwhile, computation time
should be included from a time complexity perspective. The
computation time is measured from the start time to the end
time of an algorithm to schedule an application.

Algorithms compared with the proposed ERRM and
HRRM algorithms are the state-of-the-art MaxRe [14] and
RR [15] algorithms. MaxRe and RR algorithms address the
same problem of minimizing resource redundancy of a par-
allel application to satisfy application’s reliability require-
ment on heterogeneous distributed systems.

Considering that this study focuses on the design phase,
the processor and application parameters used in this
phase are known. In other words, these values have been
obtained in the analysis phase and are as follows [15]:
10,000 s 4wi;k4 100,000 s, 10,000 s 4ci;j4 100,000 s, and
0:0000014�k40:000009. The aforementioned values are
generated with uniform distribution.

The parallel applications will be tested on a simulated het-
erogeneous system based on the above real processor and
application parameter values to reflect a real deployment. A
main advantage of simulation is that it can greatly reduce
development cost during the design phase and effectively
provide certain optimization guide to the implementation
phase. The simulated multiprocessor system is configured 64
heterogeneous processors by creating 64 processor objects
based known parameter values using Java on a standard
desktop computerwith 2.6 GHz Intel CPU and 4GBmemory.

Meanwhile, real parallel applications with precedence
constrained tasks, such as fast Fourier transform and Gauss-
ian elimination applications, are widely used in distributed
systems [9], [15]. The Fourier transform and Gaussian elimi-
nation application are two typical parallel applications with
high and low parallelism, respectively. To verify the effec-
tiveness and validity of the proposed algorithms, we use
the two types of real parallel applications to compare the
results of all the algorithms.

A new parameter r is used as the size of the fast Fourier
transform application. The total number of tasks is

jNj ¼ ð2� r� 1Þ þ r� log 2
r, where r ¼ 2y for some integer

y [9]. Fig. 3a shows an example of the fast Fourier transform
application with r=4. Notably, r exit tasks exist in the fast
Fourier transform application with the size of r. To adopt
the application model of this study, we add a virtual exit
task, and the last r tasks are set as the immediate predeces-
sor tasks of the virtual exit task. A new parameter r is used
as the matrix size of the Gaussian elimination application,
and the total number of tasks is jNj ¼ r2þr�2

2 [9]. Fig. 3b
shows an example of the Gaussian elimination parallel
application with r=5.

7.2 Fast Fourier Transform Application

Experiment 1. This experiment compares the actual reli-
ability values and the total number of replicas of a small-
scale fast Fourier transform application with r ¼ 32 (i.e.,
jNj ¼ 223) for varying reliability requirements. RseqðGÞ is
changed from 0.9 to 0.99 with 0.01 increments. Note that
computation time values of all the algorithms are within
one second for the small-scale application and we no lon-
ger list such values in this experiment.

Note that the plotted values in Figs. 4a and 4b are obtained
by executing one run of the algorithms for one application.
Many applications with the same parameter values and
scales are tested and show the same regular pattern and rel-
atively stable results as Figs. 4a and 4b. In other words,
experiments are repeatable and do not affect the consistency
of the results. Therefore, the plotted values are the actual
values rather than the average values during the runs.

Fig. 4a shows the actual reliability values of the small-
scale fast Fourier transform application on different reliabil-
ity requirements. We can see that all the algorithms can
satisfy the given reliability requirements in all cases. Specifi-
cally, MaxRe generates the maximum reliability values
followed by RR, HRRM, and ERRM. The overrunning reli-
ability values (i.e., RseqðGÞ-RðGÞ) reach 0.0613 and 0.0246
for MaxRe and RR, respectively. On the contrary, the over-
running reliability values are very small for HRRM (0.0001-
0.0008) and ERRM (0.0001-0.0006) in all cases. Considering
no additional fees will be paid for the overrunning reliabil-
ity values, more resources are wasted for resource providers
in using MaxRe and RR.

Fig. 4b shows the total number of replicas of the small-
scale fast Fourier transform application on different reliabil-
ity requirements. As expected, MaxRe generates the maxi-
mum numbers of replicas followed by RR, HRRM, and
ERRM in all cases. The reason is thatMaxRe has obtained the
maximum actual reliability values followed by RR, HRRM,
and ERRM in Fig. 4a, whereas optimizing reliability and

Fig. 3. Example of real parallel applications.

Fig. 4. Results of the small-scale fast Fourier transform application on
different reliability requirements (Experiment 1).
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redundancy is a bi-criteria optima problem as discussed in
Section 1.2.

The same regular pattern for the actual reliability values
is shown in Fig. 4a. As evident from Fig. 4b, the numbers of
replicas using HRRM and ERRM are very similar and are
much lower than those using MaxRe and RR, especially on
relatively low reliability requirements. For example, when
RseqðGÞ40:94, both ERRM and HRRM outperform MaxRe
and RR by about 18 and 7 percent, respectively.

Experiment 2. This experiment compares the actual reli-
ability values, the total number of replicas, and the com-
putation time of a large-scale fast Fourier transform
application with r ¼ 128 (i.e., jNj ¼ 1151) for varying reli-
ability requirements. RseqðGÞ is also changed from 0.9 to
0.99 with 0.01 increments.

Fig. 5a shows the actual reliability values of the large-
scale fast Fourier transform application on different reli-
ability requirements. All the algorithms can satisfy the
given reliability requirements in all cases. Similar to the
results of the small-scale application in Fig. 4a, MaxRe still
generates the maximum reliability values followed by RR,
HRRM, and ERRM. Maximum differences between actual
reliability and given reliability requirement are 0.0747
(RseqðGÞ ¼ 0:9) and 0.0184 (RseqðGÞ ¼ 0:90) for MaxRe and
RR, respectively. On the contrary, in all cases the differen-
ces remain the minimum and close to application’s reliabil-
ity requirements using HRRM (0.0001-0.0003) and ERRM
(0.0001-0.0002).

Fig. 5b shows the total number of replicas of the large-
scale fast Fourier transform application on different reliabil-
ity requirements. Similar to Fig. 4b in small-scale, MaxRe
still generates the maximum numbers of replicas followed
by RR, HRRM, and ERRM in all cases. The numbers of repli-
cas using HRRM and ERRM are still very close and are
much lower than those using MaxRe and RR in most cases.

Fig. 5c shows the computation time values of the large-
scale fast Fourier transform application for reliability
requirements. The values show that computation time is
within 2.1 second using MaxRe, RR, and HRRM, whereas
those using ERRM are 80-120 times longer. Such results indi-
cate that ERRM is time-consuming for large-scale applica-
tions, as analyzed earlier.

An interesting phenomenon is that the computation time
values using ERRM for large scale applications are not
increased but reduced as the application’s reliability require-
ments increase in most cases, shown in Fig. 5c. The reason is
that when using ERRM, it first calls the LBR algorithm
(Algorithm 1) to obtain the initial reliability values of the
application. A higher reliability requirement of the applica-
tion may lead to higher initial reliability values with very
short time by using LBR in these cases, such that the total
computation time is not increased, but reduced with the
application’s reliability requirements increase.

The results of Figs. 4a, and 5c show that ERRM and
HRRM algorithms generate less redundancy than the state-
of-the-art MaxRe and RR algorithms. Specifically, results
of HRRM algorithm are very similar to those of ERRM algo-
rithm indicating that HRRM implements approximate opti-
mal redundancy with minimum time, whereas the enough
optimal ERRM algorithm is time-consuming for large-scale
parallel applications.

7.3 Gaussian Elimination Application

Experiment 3. This experiment compares the actual reli-
ability values and the total number of replicas of in a
small-scale Gaussian elimination application with r ¼ 21
(i.e., jN j=230). The total number of task for the Gaussian
elimination is similar to that of the fast Fourier transform
application for varying reliability requirements. RseqðGÞ
is also changed from 0.9 to 0.99 with 0.01 increments.
Similar to small-scale fast Fourier transform in Experi-
ment 1, the computation time values using all the algo-
rithms are also within one second for the small-scale
Gaussian elimination. Therefore, we also no longer list
such values in this experiment.

Figs. 6a and 6b show the actual reliability values and total
number of replicas of the small-scale Gaussian elimination
application on different reliability requirements. In general,
Experiment 3 shows similar pattern and values as Experi-
ment 1 for the total number of replicas for all the algorithms.

The results of Experiments 1 and 3 indicate that different
parallelism degrees of applications in the same small-scale
will generate similar actual reliability values and total num-
ber of replicas. In other words, parallelism degrees do not
affect the scopes of actual reliability values and total num-
ber of replicas. The reason is that the reliability value of the
application is the product of that of each task according to
Eq. (4); considering that the number of tasks, the reliability
requirement, and computation time are approximate equal,
the actual reliability values and total number of replicas are
also approximate equal.

Fig. 5. Results of the large-scale fast Fourier transform application on
different reliability requirements (Experiment 2).

Fig. 6. Results of the small-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 3).
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Experiment 4. This experiment compares the actual reli-
ability values, the total number of replicas, and the com-
putation time of a large-scale Gaussian elimination
application with r ¼ 47 (i.e., jN j ¼ 1; 127) for varying reli-
ability requirements. RseqðGÞ is also changed from 0.9 to
0.99 with 0.01 increments.

Figs. 7a, 7b, and 7c show the actual reliability values,
total number of replicas, and computation time of the large-
scale Gaussian elimination application on different reliabil-
ity requirements. Experiment 4 shows similar pattern and
values as Experiment 2 in actual reliability values and total
number of replicas for all the algorithms. The results of
Experiments 2 and 4 further indicate that parallelism
degrees do not affect the scopes of actual reliability values
and total number of replicas.

7.4 Randomly Generated Parallel Application

To extensively demonstrate the benefits of the proposed
algorithms, we consider randomly generated parallel appli-
cations by the task graph generator [40]. Considering that
the objective platform is heterogeneous processors, hetero-
geneity degrees may also affect the redundancy of applica-
tion. Heterogeneity degree is easy to be implemented for
randomly generated parallel applications as long as adjust
the heterogeneity factor values. Randomly generated paral-
lel applications are generated depending on the following
parameters: average computation time is 50,000 ms, com-
munication to computation ratio (CCR) is 1, and shape
parameter is 1. The heterogeneity degree (factor) values
belong to the scope of (0,1] in the task graph generator,
where 0 and 1 represent the lowest and highest heterogene-
ity factors, respectively. Without loss of generality, we use
large-scale randomly generated parallel application with
1,140 tasks, which are approximate equal to those of fast
Fourier transform and Gaussian elimination applications in
Experiments 2 and 4.

Experiment 5. This experiment compares the actual reli-
ability values and the total number of replicas of a large-
scale low-heterogeneity (with the heterogeneity factor
0.1) randomly generated parallel application with
jNj ¼ 1; 140 for varying reliability requirements. RseqðGÞ
is also changed from 0.9 to 0.99 with 0.01 increments.

Figs. 8a and 8b show the actual reliability values and total
numbers of replicas the large-scale low-heterogeneity ran-
domly generated parallel application on different reliability
requirements. It is easy to see that Experiment 5 shows simi-
lar pattern and values as Experiments 2 and 4 using all the
algorithms. The main differences are as follows:

(1) The actual reliability values and total numbers of rep-
licas obtained byMaxRe in Experiment 5 are relatively
stable for different reliability requirements. The rea-
son is that the execution time values are relative stable
on the same processor for a low-heterogeneity parallel
application and the reliability requirement using
MaxRe is the same for all tasks, such that the values
for the application do not changedmuch.

(2) The actual reliability values and total numbers of
replicas obtained by RR, ERRM, and HRRM are rela-
tively close in the same reliability requirement. The
reason is still that the execution time values are rela-
tive stable on the same processor for a low-heteroge-
neity parallel application.

Experiment 6. This experiment compares the actual reli-
ability values and the total number of replicas of a large-
scale high-heterogeneity (with the heterogeneity factor 1)
randomly generated parallel application with jN j ¼ 1140
for varying reliability requirements. RseqðGÞ is also
changed from 0.9 to 0.99 with 0.01 increments.

Figs. 9a and 9b show the actual reliability values and total
numbers of replicas the large-scale high-heterogeneity ran-
domly generated parallel application on different reliability
requirements. It is easy to see that Experiment 6 shows simi-
lar pattern and values as Experiment 5 using all the algo-
rithms. The main difference is that the high-heterogeneity
application needs fewer replicas than the low-heterogeneity
application. The total numbers of replicas for the former is
only 60 percent of those for the latter using all the algorithms.
The reason is that the actual reliability values for a task on dif-
ferent processors change much in a high-heterogeneity appli-
cation, and these algorithms tend to choose the processor

Fig. 7. Results of the large-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 4).

Fig. 8. Results of the large-scale low-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 5).

Fig. 9. Results of the large-scale high-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 6).
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with the maximum reliability value for each task replication.
Moreover, different from the low-heterogeneity application
where the total numbers of replicas obtained by RR, ERRM,
and HRRM are relatively close, ERRM and HRRM generate
much less replicas than RR for the high-heterogeneity appli-
cation. The reason is still that the actual reliability values for a
task on different processors changemuch.

7.5 Summary of Experiments

Based on the above experimental results, summarizations
are as follows.

(1) The proposed redundancy minimization algorithms,
ERRM and HRRM, can generate less redundancy
than the state-of-the-art MaxRe and RR algorithm at
different scales, parallelism degrees, and heterogene-
ity degrees.

(2) Results of the HRRM algorithm are very similar to
those of the ERRM algorithm. HRRM implements
approximate optimal redundancy with minimum
computation time, whereas the enough optimal
ERRM algorithm is time-consuming for large-scale
parallel applications.

(3) According to the analysis of the number of active pro-
cessors, parallelism degrees do not affect the scopes
of reliability values and total number of replicas for
different types of applications in the same-scale.

(4) If the parallel application is small, then ERRM can be
utilized to minimize redundancy; otherwise HRRM
is the preferred alternative for reducing redundancy
with minimum computation time.

(5) RR, ERRM, and HRRM obtain relatively close num-
bers of replicas for a low-heterogeneity application,
whereas ERRM and HRRM obtain much less replicas
than RR for the high-heterogeneity application. In
other words, ERRM and HRRM are better suitable
for high-heterogeneity applications than for low-
heterogeneity applications.

8 CONCLUSION

We developed enough and heuristic replication algorithms
ERRM and HRRM to minimize the redundancy for a paral-
lel application in heterogeneous service-oriented systems.
The ERRM algorithm can enough minimize redundancy by
presenting two-stage replications. To decrease the time
complexity of the time-consuming ERRM algorithm, the
HRRM algorithm was also presented to deal with large-
scale parallel applications within a short time. The main
advantage for HRRM is its capability to obtain lower sub-
reliability requirements for most tasks compared with
MaxRe and RR, such that HRRM can generate less redun-
dancy than MaxRe and RR. Results of our experiments on
real and random generaed parallel applications at different
scales, parallelism degrees, and heterogeneity degrees vali-
date that both ERRM and HRRM generate less redundancy
than the state-of-the-art MaxRe and RR algorithms. Experi-
ment results also show that the HRRM implements approxi-
mate optimal redundancy with a short computation time.
We believe that the proposed algorithms can effectively
facilitate a reliability-aware design for parallel applications
in heterogeneous service-oriented systems.

Resource usage and shortest schedule length are also
important concern in high-performance computing sys-
tems. In fact, minimum redundancy does not mean mini-
mum resource usage and shortest schedule length for a
parallel application on heterogeneous systems because
the same task has different execution time values on dif-
ferent processors. In our future work, we will consider
the resource usage and schedule length minimization in
such environment.
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