
IEE
E P

ro
of

1 Minimizing Redundancy to Satisfy Reliability
2 Requirement for a Parallel Application on
3 Heterogeneous Service-Oriented Systems
4 Guoqi Xie,Member, IEEE, Gang Zeng,Member, IEEE, Yuekun Chen, Yang Bai,

5 Zhili Zhou, Renfa Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE

6 Abstract—Reliability is widely identified as an increasingly relevant issue in heterogeneous service-oriented systems because

7 processor failure affects the quality of service to users. Replication-based fault-tolerance is a common approach to satisfy application’s

8 reliability requirement. This study solves the problem of minimizing redundancy to satisfy reliability requirement for a directed acyclic

9 graph (DAG)-based parallel application on heterogeneous service-oriented systems. We first propose the enough replication for

10 redundancy minimization (ERRM) algorithm to satisfy application’s reliability requirement, and then propose heuristic replication for

11 redundancy minimization (HRRM) to satisfy application’s reliability requirement with low time complexity. Experimental results on real

12 and randomly generated parallel applications at different scales, parallelism, and heterogeneity verify that ERRM can generate least

13 redundancy followed by HRRM, and the state-of-the-art MaxRe and RR algorithm. In addition, HRRM implements approximate

14 minimum redundancy with a short computation time.

15 Index Terms—Fault-tolerance, heterogeneous service-oriented systems, quality of service, reliability requirement, replication

Ç

16 1 INTRODUCTION

17 1.1 Background

18 CLOUD-BASED service is a new service-based resource
19 sharing paradigm [1], [2]. In X as a service (XaaS)
20 clouds, resources as services (e.g., infrastructure, platform
21 and software as a service) are sold to applications such as
22 scientific and big data analysis workflows [1], [3], [4], [5],
23 [6]. Meanwhile, cloud computing systems become more het-
24 erogeneous as old, slow machines are continuously
25 replaced with new, fast ones. Heterogeneous computing
26 systems consist of diverse sets of processors interconnected
27 with a high-speed network, and are applied in business-crit-
28 ical, mission-critical, and safety-critical scenarios to achieve
29 operational goals [7]. Applications in the system are increas-
30 ingly parallel and the tasks in an application have obvious
31 data dependencies and precedence constraints [1], [8], [9],
32 [10], [11]. Examples of parallel applications are Gaussian

33elimination and fast Fourier transform [9]. A parallel appli-
34cation with precedence constrained tasks at a high level is
35described by a directed acyclic graph (DAG) [1], [8], [9],
36[10], [11], where nodes represent tasks, and edges represent
37communication messages between tasks. Such application
38is usually called DAG-based parallel application [12].
39The current cloud-based service systems are actually
40heterogeneous service-oriented systems where resource
41management is a considerable challenge owing to the vari-
42ous configurations or capacities of the hardware or software
43[13]. The processing capacity of processors in heterogeneous
44service-oriented systems has been developed to provide
45powerful cloud-based services, whereas failures of process-
46ors will affect the reliability of systems and quality of
47service (QoS) for users [2]. Reliability is defined as the pro-
48bability of a schedule successfully completing its execution,
49and it has been widely identified as an increasingly relevant
50issue in service-oriented computing systems [2], [14], [15],
51[16], [17], [18].
52Fault-tolerance by primary-backup replication, which
53means that a primary task will have zero, one, or multiple
54backup tasks, is an important reliability enhancement mech-
55anism. In the primary-backup replication scheme, the pri-
56mary and all the backups are called replicas. Although
57replication-based fault-tolerance is an important reliability
58enhancement mechanism [14], [15], [19], [20], [21], any
59application cannot be 100 percent reliable in practice. There-
60fore, if an application can satisfy its specified reliability
61requirement (also named reliability goal or reliability assur-
62ance in some studies), then it is considered to be reliable.
63For example, assume that the application’s reliability
64requirement is 0.9, only if the application’s reliability
65exceeds 0.9, will the application be reliable. Specifically,

� G. Xie, Y. Chen, Y. Bai, and R. Li are with the College of Computer Science
and Electronic Engineering, Hunan University, Key Laboratory for Embed-
ded andNetwork Computing of Hunan Province, Hunan 410082, China.
E-mail: {xgqman, baiyang, lirenfa}@hnu.edu.cn, chenyuekun@126.com.

� G. Zeng is with the Graduate School of Engineering, Nagoya University,
Aichi 4648603, Japan. E-mail: sogo@ertl.jp.

� Z. Zhou is with the Nanjing University of Information Science and
Technology, Nanjing 210044, China. E-mail: zhou_zhili@163.com.

� K. Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Key Laboratory for Embedded and Network Comput-
ing of Hunan Province, Hunan 410082, China, and the Department of
Computer Science, State University of New York, New Paltz, NY 12561.
E-mail: lik@newpaltz.edu.

Manuscript received 14 Aug. 2016; revised 1 Jan. 2017; accepted 3 Feb. 2017.
Date of publication 0 . 0000; date of current version 0 . 0000.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2017.2665552

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017 1

1939-1374� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:

IEE
E P

ro
of66 reliability requirement has been defined in some reliability

67 related standards (e.g., IEC 61508 [22] and ISO 9000 [23]),
68 and it is one of the most important QoS in cloud and serv-
69 ices computing systems [14], [15]. Therefore, reliability
70 requirement must be satisfied from standards and QoS per-
71 spectives. However, as pointed out in [2], many cloud-based
72 services failed to fulfill their reliability requirements due to
73 processor failures in practice.

74 1.2 Motivation

75 Users and resource providers are the two types of roles with
76 different requirements for service-oriented systems [24]. For
77 users, satisfying application’s reliability requirement is one of
78 the most important QoS requirements, for which replication-
79 based fault-tolerance is a common approach. For resource
80 providers, minimizing resource redundancy caused by repli-
81 cation is one of the most important concerns [14], [15]. How-
82 ever, adding more replicas (including primary and backups)
83 could increase both reliability and redundancy for a parallel
84 application. Therefore, both criteria (low redundancy and
85 high reliability, short schedule length and high reliability) are
86 conflicting, and optimizing them is a bi-criteria optima prob-
87 lem [19]. In Fig. 1, each point x1-x7 represents a solution of a
88 bicriteria minimization problem [19]. The points x1, x2, x3, x4,
89 and x5 are Pareto optima [25]; the points x1 and x5 are weak
90 optima, whereas the points x2, x3, and x4 are strong optima.
91 The set of all Pareto optima is called the Pareto curve [19].
92 Many studies have dealt specifically with the bi-criteria
93 (i.e., minimizing schedule length and maximizing reliability)
94 problem to obtain such an approximate Pareto curve for a
95 DAG-based parallel application [19], [20], [21], [26], [27], [28].
96 In [26], [27], [28], the approaches increase reliability by effi-
97 cient task scheduling without using replication. In [19], [20],
98 [21], the approaches presented replicate tasks to increase
99 reliability.

100 However, for heterogeneous service-oriented systems,
101 resolving the above bi-criteria is not strictly required for the
102 following reasons:

103 (1) Clouds allow flexible and dynamic resource alloca-
104 tions based on a pay-as-you-go scheme [29], where
105 users pay only for the reliability requirement they
106 apply and will not pay additional fees for the reli-
107 ability that surpasses their reliability requirement.
108 (2) The application cannot be 100 percent reliable as
109 mentioned earlier. The most common component of
110 service-level agreement (SLA) between resource pro-
111 viders and the users is that the services (reliability

112requirement in this study) should be provided to the
113users as agreed upon in the contract [30]. Therefore,
114satisfying application’s reliability requirement is the
115service level objective.
116In summary, considering the actual demand, the theoret-
117ical bi-objective optimization problem could be degradated
118to a constrained single-objective optimization problem in
119most cases. In other words, reliability is not the higher the
120better, but as long as you can satisfy the reliability require-
121ment from a practical perspective. Therefore, the reliability
122problem of service-oriented systems is mainly to satisfy
123application’s reliability requirement while still reducing the
124resource as far as possible.
125The approaches related to our work are [14] and [15], in
126which the authors presented the MaxRe and RR algorithms
127to minimize redundancy of a parallel application to satisfy
128application’s reliability requirement on heterogeneous dis-
129tributed systems. The main procedures of the MaxRe and
130RR are follows:

131(1) The reliability requirement of the application is trans-
132ferred to the sub-reliability requirements of the tasks.
133In this way, as long as the sub-reliability requirement
134of each task can be satisfied, the application’s reliabil-
135ity requirement can be satisfied, such that a heuristic
136replication can be used in the following.
137(2) MaxRe and RR iteratively assign the replicas of each
138task to the processors with maximum reliability val-
139ues until the sub-reliability requirement of the task is
140satisfied.
141However, the essential limitation of MaxRe and RR is
142that the sub-reliability requirements of tasks are too high,
143thereby causing them need unnecessary redundancy to
144satisfy the sub-reliability requirements.

1451.3 Our Contributions

146Similar to the state-of-the-art MaxRe and RR, this study
147aims to implement redundancy minimization to satisfy
148application’s reliability requirement for a parallel applica-
149tion on heterogeneous service-oriented distributed systems.
150Our contributions comparing to the MaxRe and RR are sum-
151marized as follows:

152(1) We present the just enough replication for redun-
153dancy minimization (ERRM) algorithm to satisfy
154application’s reliability requirement by two-stage
155replications. The first stage involves obtaining the
156lower bound on redundancy (i.e., the minimum
157required number of replicas) for each task; the second
158stage is iteratively selecting the available replicas and
159corresponding processors with the maximum reli-
160ability values until application’s reliability require-
161ment is satisfied.
162(2) To overcome the high time complexity of ERRM
163algorithm, we propose the heuristic replication
164for redundancy minimization (HRRM) algorithm to
165deal with large-scale parallel applications. Similar to
166the MaxRe and RR algorithms, HRRM first transfers
167the reliability requirement of the application to the
168sub-reliability requirements of the tasks. Then,
169HRRM iteratively assign the replicas of each task to
170the processors with maximum reliability values until

Fig. 1. Pareto optima and pareto curve for a bicriteria minimization prob-
lem [19].

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of

171 the sub-reliability requirement of the task is satisfied.
172 The main improvement of HRRM over MaxRe and
173 RR is that it can obtain lower sub-reliability require-
174 ments for most tasks, such that HRRM generates less
175 redundancy than MaxRe and RR.
176 (3) Experimental results on real and randomly generated
177 parallel applications at different scales, parallelism
178 degrees, and heterogeneity degrees validate that
179 ERRM can generate the least redundancy followed by
180 HRRM, the state-of-the-art MaxRe and RR algorithm.
181 In addition, HRRM implements approximate mini-
182 mum redundancywith a short computation time.
183 The rest of this paper is organized as follows. Section 2
184 reviews related research. Section 3 presents the reliability
185 modeling and problem statement. Section 4 explains the
186 state-of-the-art MaxRe and RR algorithms. Sections 5 and 6
187 proposed the ERRM and HRRM algorithms, respectively.
188 Section 7 verifies the ERRM andHRRM algorithms. Section 8
189 concludes this study.

190 2 RELATED WORK

191 The widely-accepted reliability model was presented by
192 Shatz and Wang [31], where each hardware component
193 (processor) is characterized by a constant failure rate per
194 time unit � and the reliability during the interval of time t
195 is e��t. That is, the failure occurrence follows a constant
196 parameter Poisson law [31]. This law is also known as the
197 exponential distribution model [19]. This section mainly
198 reviews the related research on reliability and fault-
199 tolerance of DAG-based parallel applications.
200 Two main types of primary-backup replication app-
201 roaches exist in current: active replication [14], [15], [20], [21]
202 and passive replication [32], [33], [34], [35]. For the active rep-
203 lication scheme, each task is simultaneously replicated on
204 several processors, and the task will succeed if at least one
205 of them does not fail. For the passive scheme, whenever
206 a processor fails, the task will be rescheduled to proceed on a
207 backup processor. When a processor crashes, it is subse-
208 quently restarted to continue from the checkpoint just as if
209 no failure had occurred; such scheme is called checkpoint
210 and restart scheme, and can be considered as an improved
211 version of the passive scheme [14], [15]. Meanwhile, accord-
212 ing to the number of the backups, three types of primary-
213 backup replication approaches exist; single backup for each
214 primary, fixed " backups for each primary, and quantitative
215 backups for each primary.
216 The single backup for each primary approach is a simple
217 method. Main representative methods include efficient
218 fault-tolerant reliability cost driven (eFRCD) [33], efficient
219 fault-tolerant reliability driven (eFRD) [34], and minimum
220 completion time with less replication cost (MCT-LRC) [35]
221 et al. Regarding their limitations, first, these approaches
222 assume that no more than one failure happens at one
223 moment; they are too ideal to tolerate potential multiple fail-
224 ures. Second, although passive replication also supports
225 multiple backups for each primary [32], it is unsuitable
226 for service-oriented applications; the reason is that once a
227 processor failure is detected, the scheduler should resched-
228 ule the task located on the failed processor, and reassign it
229 to a new processor, such that the QoS for the application is
230 uncertain.

231The fixed " backups for each primary approach is an
232active replication approach, and is suitable for service-
233oriented systems because it can directly shield the failed
234tasks in performing, and the failure recovery time is almost
235close to zero [19], [20], [21]. In [19], the authors presented
236bicriteria scheduling heuristic (BSH) to minimize the sched-
237ule length of the application while taking the failure rate as
238a constraint; BSH can generate a Pareto curve of non-
239dominated solutions, among which the user can choose the
240compromise that fits his requirements best. However, the
241time complexity of BSH is as high as O(n� 2u), where n is
242the number of replicas and u is the number of processors. In
243[20], Benoit et al. presented the fault-tolerant scheduling
244algorithm (FTSA) for a parallel application on heteroge-
245neous systems to minimize the schedule length given a
246fixed number of failures supported in the system based on
247the active replication scheme. In [21], Benoit et al. further
248designed a new scheduling algorithm to minimize schedule
249length under both throughput and reliability constraints for
250a parallel application on heterogeneous systems based on
251the active replication scheme. The main problem in [20],
252[21] is that they need " backups for each task with high
253redundancy to satisfy application’s reliability requirement.
254Although application’s reliability requirement can be satis-
255fied by using active replication scheme, high redundancy
256causes high resource cost to resource providers.
257Considering that fixed " backups for each primary
258approach has high redundancy, recent studies begun to
259explore quantitative backups for each task approach to satisfy
260application’s reliability requirement [14], [15]. Quantitative
261backups means different primaries have different numbers
262of backups, and the quantitative approach has lower resource
263cost than the fixed " backups for each task based on active
264replication [14]. In [14] and [15], the authors proposed fault-
265tolerant scheduling algorithms MaxRe and RR; both MaxRe
266and RR incorporate reliability analysis into the active replica-
267tion and exploit a dynamic number of backups for different
268tasks by considering each task’s sub-reliability requirement.
269As discussed in Section 1.2, both MaxRe and RR have limita-
270tions in calculating the sub-reliability requirements of tasks.
271In [15], the authors also presented the DRR algorithm that
272extends RR by further considering the deadline requirement
273of a parallel application; however, we are only interested in
274satisfying reliability requirement in this study.

2753 RELIABILITY MODELING AND PROBLEM

276STATEMENT

277Table 1 gives the important notations and their definitions
278as used in this study.

2793.1 Application Model

280Let U ¼ fu1; u2; . . . ; ujUjg represent a set of heterogeneous
281processors, where jU j is the size of set U . In this study, for
282any set X, jXj is used to denote size. A development life
283cycle of a service-oriented system usually involves the anal-
284ysis, design, implementation, and testing phases. In this
285study, we focus on the design phase. Therefore, we assume
286that the processor and application parameter values are
287known in the design phase, because these values have been
288already calculated in the analysis phase.

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 3

IEE
E P

ro
of

289 As mentioned earlier, a parallel application running on
290 processors is represented by a DAG G=ðN , W , M, C) with
291 known values.

292 (1) N represents a set of nodes in G, and each node
293 ni 2 N is a task with different execution time values
294 on different processors. In addition, task executions
295 of a given application are assumed to be non-
296 preemptive which is possible in many systems [8],
297 [14]. predðniÞ is the set of immediate predecessor
298 tasks of ni, while succðniÞ is the set of immediate suc-
299 cessor tasks of ni. Tasks without predecessor tasks
300 are denoted by nentry; and tasks with no successor
301 tasks are denoted by nexit. If an application has multi-
302 ple entry or multiple exit tasks, then a dummy entry
303 or exit task with zero-weight dependencies is added
304 to the graph. W is an jN j � jUj matrix in which wi;k

305 denotes the execution time of ni running on uk.
306 (2) M is a set of communication edges, and each edge
307 mi;j 2M represents a communication from ni to nj.
308 Accordingly, ci;j 2 C represents the communication

309time of mi;j if ni and nj are assigned to different
310processors because two tasks with immediate pre-
311cedence constraints need to exchange messages.
312When both tasks ni to nj are allocated to the same
313processor, ci;j becomes zero because we assume
314that the intra-processor communication cost is neg-
315ligible [14], [15].
316Fig. 2 shows a motivating parallel application with tasks
317and messages [9], [10], [11], [12]. The example shows
31810 tasks executed on 3 processors fu1; u2; u3g. The weight
31918 of the edge between n1 and n2 represents communication
320time, denoted by c1;2 if n1 and n2 are not assigned to the
321same processor.
322Table 2 is the execution time matrix jNj � jU j of tasks on
323different processors of the motivating parallel application.
324For example, the weight 14 of n1 and u1 in Table 2 repre-
325sents execution time of n1 on u1, denoted by w1;1=14. We
326can see that the same task has different execution time val-
327ues on different processors due to the heterogeneity of the
328processors.
329Themotivating examplewill be used to explain theMaxRe,
330RR, and the proposed LBR, ERRM, and HRRM algorithms in
331the paper.

3323.2 Reliability Model

333There are two major types of failures: transient failure
334(also called random hardware failure) and permanent
335failure. Once a permanent failure occurs, the processor
336cannot be restored unless by replacement. The transient
337failure appears for a short time and disappear without
338damage to processors. Therefore, this paper mainly takes
339the transient failures into account for our research. In
340general, the occurrence of transient failure for a task in a
341DAG-based application follows the Poisson distribution
342[14], [15], [19], [31], [36]. The reliability of an event in unit
343time t is denoted by

R tð Þ ¼ e��t;
345345

346where � is the constant failure rate per time unit for a proces-
347sor. We use �k to represent the constant failure rate per time
348unit of the processor uk. The reliability of ni executed on uk

349in its execution time is denoted by

R ni; ukð Þ ¼ e��kwi;k ; (1)
351351

TABLE 1
Important Notations in this Study

Notation Definition

ci;j Communication time between the tasks ni and nj

wi;k Execution time of the task ni on the processor uk
wi Average execution time of the task ni

rankuðniÞ Upward rank value of the task ni

jXj Size of the setX

�k Constant failure rate per time unit of the processor uk
numi Number of replicas of the task ni

NRðGÞ Total number of the replicas of the applicationG

lbðniÞ Lower bound on number of replicas of the task ni

nx
i xth replica of the task ni

uprðnx
i
Þ Assigned processor of the replica nx

i

Rðni; ukÞ Reliability of the task ni on the processor uk
RðniÞ Reliability of the task ni

RðGÞ Reliability of the applicationG

RseqðGÞ Reliability requirement of the applicationG

RseqðniÞ Sub-reliability requirement of the task ni

Rup seqðniÞ Upper bound on reliability requirement of the task ni

TABLE 2
Execution Time Values of Tasks on Different Processors

of the Motivating Parallel Application [9], [10], [11]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

Fig. 2. Motivating example of a DAG-based parallel application with 10
tasks [9], [10], [11], [12].

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of

352 and the failure probability for ni without using the active
353 replication is

1�R ni; ukð Þ ¼ 1� e��kwi;k : (2)

355355

356 However, each task has a number of replicas with the active
357 replication. We define numi (numi4jU j) as the number of
358 replicas of ni. Hence, the replica set of ni is fn1

i ; n
2
i ; . . . ; n

numi
i g

359 where n1
i is the primary and others are backups. As long as

360 one replica of ni is successfully completed, then we can rec-
361 ognize that there is no occurrence of failure for ni, and the
362 reliability of ni is updated to

R nið Þ ¼ 1�
Ynumi

x¼1
1�R nx

i ; uprðnxi Þ
� �� �

; (3)

364364

365 where uprðnx
i
Þ represents the assigned processor of nx

i . The
366 difference between R ni; ukð Þ and R nið Þ is below: R ni; ukð Þ
367 is the value before task replication, whereas R nið Þ is the
368 value after task replication.
369 The reliability of the parallel application with prece-
370 dence-constrained tasks should be [14]

RðGÞ ¼
Y
ni2N

RðniÞ: (4)

372372

373374 In [15], both communication and computation failures
375 are considered; however, some communication networks
376 themselves provide fault-tolerance. For instance, routing
377 information protocol (RIP) and open shortest path first
378 (OSPF) are designed to reroute packets to ensure that they
379 reach their destination [37]. Therefore, similar to some
380 studies [14], [35], [38], this study only considers processor
381 failure and excludes communication failure (i.e., the com-
382 munication is assumed to be reliable in this study). In addi-
383 tion, we mainly focus on the redundancy minimization
384 of tasks, which is not directly related to communication.

385 3.3 Problem Statement

386 As discussed in Section 1, any application cannot be
387 100 percent reliable, but if the system can satisfy
388 application’s reliability requirement, then the application is
389 considered reliable. The problem addressed in this study
390 can be formally described as follows. Assume that we are
391 given a parallel application G and a heterogeneous proces-
392 sor set U . The problem is to assign replicas and correspond-
393 ing processors for each task, while minimizing the number
394 of replicas and ensuring that the obtained reliability of the
395 application RðGÞ satisfies the application’s reliability
396 requirement RseqðGÞ. The formal description is to find the
397 replicas and processor assignments of all tasks to minimize

NRðGÞ ¼
X
ni2N

numi; (5)
399399

400 subject to

RðGÞ ¼
Y
ni2N

R nið Þ5RreqðGÞ;
402402

403

404 for 8i : 14i4jN j.

4054 STATE-OF-THE-ART APPROACHES

4064.1 Task Prioritizing

407A fault-tolerant scheduling algorithm generally consists of
408three steps: 1) task prioritizing, 2) processor selection, and
4093) task execution. Therefore, we should first compute the
410task priority before processor selection. Similar to state-of-
411the-art studies [14], [15], this study uses the famous upward
412rank value (ranku) of a task (Eq. (6)) as the task priority stan-
413dard. In this case, the tasks are ordered by descending order
414of ranku, which are obtained by Eq. (6) [9], as follows:

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; (6)

416416

417in which wi represents the average execution time of task ni

418and is calculated as follows:

wi ¼
XjUj
k¼1

wi;k

 !,
jU j:

420420

421422Table 3 shows the upward rank values of all the tasks in
423Fig. 2. Note that only if all the predecessors of ni have been
424assigned, will ni prepare to be assigned. Assume that two
425tasks ni and nj satisfy rankuðniÞ > rankuðnjÞ; if no prece-
426dence constraint exists between ni and nj, ni does not neces-
427sarily take precedence for nj to be assigned. Therefore, the
428task assignment order in G is fn1; n3; n4; n2; n5; n6; n9; n7;
429n8; n10g.

4304.2 Existing MaxRe Algorithm

431As the application reliability is the product of all the
432task reliability values, such problem is usually solved by
433transferring application’s reliability requirement to the sub-
434reliability requirements of tasks [14], [15], [39]. In the MaxRe
435algorithm [14], the sub-reliability requirement for each task
436is calculated by

RreqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjNj

q
: (7)

438438

439If the sub-reliability requirement of each task can be satis-
440fied by active replication below

RðniÞ5RreqðniÞ;
442442

443then obviously the application’s reliability requirement can
444be satisfied. Therefore, the main idea of the MaxRe algo-
445rithm is to iteratively select the replica nx

i and processor
446uprðnx

i
Þ with the maximum Rðnx

i ; uprðnx
i
ÞÞ until the actual reli-

447ability value is larger than or equal to the sub-reliability
448requirement of the task, namely,

RðniÞ5RreqðniÞ:
450450

451452Moreover, this policy was also employed by the authors
453in [39].

TABLE 3
Upward Rank Values for Tasks of the Motivating

Parallel Application

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 5

IEE
E P

ro
of

454 Example 1. Assume that the constant failure rates for three
455 processors are �1 ¼ 0:0010, �2 ¼ 0:0015, and �3 ¼ 0:0018,
456 respectively.Moreover, assume that the reliability require-
457 ment of the parallel application in Fig. 2 is RseqðGÞ ¼ 0:94.
458 Note that the above values are not the representatives of
459 a real deployment, but are used to explain the example
460 clearly.

461 Table 4 shows the task assignment for each task of the
462 motivating parallel application using the MaxRe algorithm.
463 Each row shows the selected processors (denoted with bold
464 text) and corresponding reliability values. For example, the
465 sub-reliability requirement of n1 is Rreqðn1Þ ¼

ffiffiffiffiffiffiffiffiffi
0:9410
p ¼

466 0:99383156; to satisfy the sub-reliability requirement, MaxRe
467 selects the processors u1 and u3 with the maximum and sec-
468 ond maximum reliability values, respectively (i.e., num1 ¼
469 2). Then, the actual reliability value of n1 is 0.99977659, which
470 is calculated by Eq. (3). The remaining tasks use the same
471 pattern with n1. Finally, the number of replicas are 19 and
472 the actual reliability value of the applicationG is 0.99298048,
473 which are calculated by Eqs. (5) and (4), respectively.

474 4.3 Existing RR Algorithm

475 Obviously, the main limitation of the MaxRe algorithm is
476 that the sub-reliability requirements of all tasks are equal
477 and high, such that it needs more replicas with extra
478 redundancy to satisfy the sub-reliability requirement of
479 each task. To solve such problem, the authors presented
480 the RR algorithm to lower down the sub-reliability require-
481 ment of tasks while still satisfying the application’s reliabil-
482 ity requirement [15] as follows.
483 First, the sub-reliability requirement for the entry task is
484 still calculated by

Rreqðn1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
:

486486

487488 Second, for the rest of tasks (i.e., non-entry tasks), unlike
489 prior MaxRe algorithm [14], sub-reliability requirements in
490 the RR algorithm are calculated continuously based on the
491 actual reliability achieved by previous allocations

RreqðnseqðjÞÞ ¼
ffi

RreqðGÞQj�1
x¼1 RðnseqðxÞÞ

jN j�jþ1
s

; (8)

493493

494where nseqðjÞ represents the jth assigned task. Clearly, such
495single improvement can reduce the sub-reliability require-
496ments of non-entry tasks.

497Example 2. The same parameter values (�1 ¼ 0:0010,
498�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with Exam-
499ple 1 are used. Table 5 shows the task assignment for
500each task of the motivating parallel application using the
501RR algorithm. Each row shows the selected processors
502(denoted with bold text) and corresponding reliability
503values. The sub-reliability requirement and task assign-
504ment of n1 using the RR algorithm is similar to the MaxRe
505algorithm. However, the remaining tasks are different.
506For example, as the actual reliability value for n1 is
5070.99977659, then the sub-reliability requirement for n3

508should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:94
0:99977659

9
q

¼ 0:99317319. When assigning n7

509and n8, the sub-reliability requirements are reduced to
5100.98013824 and 0.97161077, respectively. That is, only one

511replica for each of n7 and n8 will be able to satisfy individ-

512ual sub-reliability requirements. Finally, the number of

513replicas and the actual reliability value of the application

514G are 17 and 0.97609982 (calculated by Eqs. (5) and (4)),

515respectively, which still satisfy application’s reliability

516requirement, but their values are less than those obtained

517with the MaxRe algorithm.

5185 ENOUGH REPLICATION FOR REDUNDANCY

519MINIMIZATION

520Although the RR algorithm can reduce the sub-reliability
521requirements of tasks, the reduction ranges of tasks near the
522entry task are much lower than those of the tasks near the exit
523task. That is, the actual sub-reliability requirements show
524unfairness among tasks, such that the RR algorithm still
525requires unnecessary redundancy to satisfy application’s
526reliability requirement. To further reduce redundancy, we
527first present good enough replication approach in this section,
528and then propose a heuristic replication approach in the next
529section.

5305.1 Lower Bound on Redundancy

531Considering that application reliability is the product of all
532task reliability values, the reliability value of each task should
533be higher than or equal to RreqðGÞ; otherwise, if one task has

TABLE 5
Task Assignment of the Motivating Parallel Application

Using the RR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99317319 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99234932 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99128298 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.98989744 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98793125 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98498801 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.98013824 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.97511487 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97161077 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 17, RðGÞ ¼ 0:97609982

TABLE 4
Task Assignment of the Motivating Parallel Application

Using the MaxRe Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.99383156 0.98906028 0.98068890 0.96637821 2 0.99978874
n4 0.99383156 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.99383156 0.98708414 0.97190229 0.96811926 2 0.99963709
n5 0.99383156 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.99383156 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.99383156 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99383156 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.99383156 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.99383156 0.97921896 0.98955493 0.97161077 2 0.99978294

NRðGÞ ¼ 19, RðGÞ ¼ 0:99298048

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of

534 RðniÞ < RreqðGÞ, then no matter how many replicas for any
535 other tasks, RreqðGÞ cannot be satisfied. Therefore, the lower
536 bound on reliability requirement of the task ni is

Rlb reqðniÞ ¼ RreqðGÞ: (9)
538538

539 In this way, there should be a lower bound on the number
540 of replicas for each task that satisfies

RðniÞ5Rlb reqðniÞ:
542542

543544 In other words, we can determine the lower bound on the
545 number of replicas lbðniÞ for task ni to satisfy

1�
YlbðniÞ
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ � Rlb reqðniÞ; (10)

547547

548 according to Eq. (3).
549 We use the following steps to select the replica and the
550 corresponding processor with the minimum number of
551 replicas.

552 (1) Calculate the R ni; ukð Þ of each task on all available
553 processors (if a replica of ni has been assigned to the
554 processor, then this processor is unavailable for ni;
555 otherwise, it is available for ni).
556 (2) To minimize the number of replicas, select the rep-
557 lica nx

i of the task ni and the corresponding processor
558 uprðnx

i
Þ with the maximum Rðnx

i ; uprðnxi ÞÞ.
559 (3) Repeat Steps (1) and (2) until Eq. (10) is satisfied.

560 5.2 The LBR Algorithm

561 On the basis of the above steps, we propose the lower
562 bound on redundancy (LBR) algorithm (Algorithm 1) to
563 generate the lower bound on the number of the replicas of
564 each task.

565 Algorithm 1. The LBR Algorithm

566 Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
567 Output: RðGÞ,NRðGÞ and its related values
568 1: for ði ¼ 1; i <¼ jN j; iþþÞ do
569 2: Rlb reqðniÞ RðGÞ;
570 3: numi ¼ 0;
571 4: RðniÞ ¼ 0; // initial value is 0
572 5: while (RðniÞ < Rlb reqðniÞ) do
573 6: Calculate R ni; ukð Þ for the task ni on all available pro-
574 cessors using Eq. (1);
575 7: Select replica nx

i and the processor uprðnx
i
Þ with the max-

576 imum reliability value Rðnx
i ; uprðnx

i
ÞÞ;

577 8: numi++;
578 9: Calculate RðniÞ using Eq. (3);
579 10: end while
580 11: CalculateNRðGÞ using Eq. (5);
581 12: Calculate RðGÞ using Eq. (4);
582 13: end for

583 The core idea of the LBR algorithm is that each task itera-
584 tively selects the replica and available processor with the
585 maximum reliability value Rðnx

i ; uprðnxi ÞÞ for each task until
586 the task’s lower bound on reliability requirement is satis-
587 fied. The details are explained as follows:

588(1) In Line 2, LBR has obtained the lower bound on reli-
589ability requirement of the current task before it pre-
590pares to be assigned.
591(2) In Lines 5-10, LBR iteratively selects the replica and
592available processor for each task with the maximum
593reliability value until the task’s lower bound on
594reliability requirement is satisfied. Specifically, the
595following details are made: 1) Line 5 compares the
596actual reliability value and lower bound on reliability
597requirement of the current task; 2) Lines 6-7 calculate
598and select the replica and available processor with the
599maximum reliability value for the current task; and
6003) Line 9 calculates the actual reliability value of the
601current task.
602(3) In Lines 11-12, LBR calculates the final number of
603replicas and the actual reliability value of the appli-
604cation, respectively.

6055.3 Time Complexity of the LBR Algorithm

606The time complexity of the LBR algorithm is analyzed as
607follows:

608(1) Calculating the reliability of the application must tra-
609verse all tasks, which can be done within O(jNj) time
610(Lines 1-13).
611(2) The total number of replicas for each task must be
612lower or equal to the number of processors, which
613can be done within O(jUj) time (Lines 5-10).
614(3) Selecting the replica and available processor with the
615maximum reliability value for the current task must
616traverse all processors, which can be done in
617O(logjU j) time (Line 7).
618Thus, the time complexity of the LBR algorithm is
619O(jNj � jU j � logjU j).

6205.4 Example of the LBR Algorithm

621Example 3. The same parameter values (�1 ¼ 0:0010, �2 ¼
6220:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
623tioned examples are used. Table 6 lists the replicas, selected
624processor, and reliability value of each task (denoted with
625bold text). We find that the reliability value of each task is
626higher than the application’s reliability requirement of
6270.94. However, the current obtained reliability value of the

TABLE 6
Task Assignment of the Motivating Parallel Application

Using the LBR Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.94 0.98609754 0.97628571 0.98393051 1 0.98609754
n3 0.94 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.94 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.94 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.94 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.94 0.98708414 0.97628571 0.98393051 1 0.98708414
n9 0.94 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.94 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.94 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.94 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 10, RðGÞ ¼ 0:89092057

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 7

IEE
E P

ro
of

628 parallel application is only RðGÞ ¼ 0:89092057 (calculated
629 by Eq. (4)), which is much lower than 0.94 (application’s
630 reliability requirement). Hence, application’s reliability
631 requirement is not satisfied by merely using the LBR
632 algorithm.

633 5.5 Enough Replication

634 Considering that all the tasks merely satisfy R nið Þ �
635 Rlb reqðniÞ by using the LBR algorithm (Algorithm 1), we
636 should addmore new replicas for tasks to satisfy application’s
637 reliability requirement. However, choosing the remaining
638 replicas is a complex work, because different replicas of dif-
639 ferent tasks may cause different reliability values on different
640 processors.
641 Given that the current number of replicas for ni is
642 h ¼ numi and the application reliability is RðGÞ, if a new
643 replica nhþ1

i is assigned to the processor uk ¼ u
prðnhþ1

i
Þ for

644 ni, then the number of replicas is changed to hþ 1 and the

645 new task reliability is changed to

RnewðniÞ ¼ 1�
Yhþ1
x¼1
ð1�Rðnx

i ; uprðnx
i
ÞÞÞ: (11)

647647

648 Then, the application reliability is enhanced because of the

649 reliability enhancement of ni and is changed to

RiðGÞ ¼ RnewðniÞ �
Y

nj2N;i 6¼j
RðnjÞ: (12)

651651

652653 To minimize the number of replicas for each task, we use
654 the following steps to obtain enough minimum redundancy
655 of the application.
656 (1) Each available task (if the replicas of a task have been
657 assigned to all the processors, then this task is unavailable;
658 otherwise, a task is available) is assumed to be replicated
659 once on an available processor with the maximum Rðni; ukÞ
660 (Eq. (1)), and the new task sub-reliability is changed to
661 RnewðniÞ (Eq. (11)).
662 (2) Calculate the application reliability RiðGÞ because of
663 the reliability enhancement of each task (Eq. (12)).
664 (3) Select the replica nx

i and corresponding processor
665 uprðnx

i
Þ that generate the maximum RiðGÞ from the generated

666 replicas in Step 2), namely,

RiðGÞ ¼ max R1ðGÞ; R2ðGÞ; . . . ; RjN jðGÞ
on
: (13)

668668

669

670 (4) Repeat Steps (1), (2), and (3) until application’s reli-
671 ability requirement (Eq. (4)) is satisfied.

672 5.6 The ERRM Algorithm

673 In this section, we propose the ERRM algorithm to minimize
674 redundancy to satisfy application’s reliability requirement,
675 and describe the steps in Algorithm 2.
676 The core idea of the ERRMalgorithm is that all the tasks are
677 first assumed to be replicated once on an available processor
678 with the maximum reliability values; then ERRM selects the
679 replica nx

s and corresponding processor uprðnxs Þ that generate
680 the maximum application reliability value RsðGÞ until
681 application’s reliability requirement is satisfied in the iterative
682 replication process. The details are explained as follows:

683(1) In Line 1, ERRM calls the LBR algorithm (Algorithm 1)
684to obtain the initial reliabilityRðGÞ and related values.
685(2) In Lines 2-11, ERRM iteratively selects the replica
686and available processor that generate the maximum
687application reliability value until application’s reli-
688ability requirement is satisfied. Specifically, the fol-
689lowing details are made: 1) Line 2 compares the
690actual reliability value and the reliability require-
691ment of the application; 2) Lines 3-7 pre-replicate all
692tasks once on an available processor with the maxi-
693mum reliability values; 3) Line 8 selects the replica
694and corresponding processor that generate the maxi-
695mum application reliability value; and 4) Line 10
696updates the application’s reliability value.
697(3) In Line 13, ERRM calculates the final number of rep-
698licas of the application.
699

700Algorithm 2. The ERRM Algorithm

701Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
702Output:RðGÞ, NRðGÞ and its related values
7031: Call the LBR algorithm (Algorithm 1) to obtain the initial
704reliability RðGÞ and related values;
7052: while (RðGÞ < RreqðGÞÞ do
7063: for ði ¼ 1; i <¼ jN j; iþþÞ do
7074: Pre-replicated the replica of ni on an available proces-
708sor with the maximum reliability value Rðni; ukÞ;
7095: Update the task’s sub-reliability value to RnewðniÞ
710(Eq. (11));
7116: Calculate the application reliability RiðGÞ after the reli-
712ability enhancement of ni (Eq. (12));
7137: end for
7148: Select the replica nx

s and corresponding processor uprðnxs Þ
715that generate the maximum application reliability value
716RsðGÞ (Eq. (13));
7179: numi þþ;
71810: RðniÞ RnewðniÞ;
71911: RðGÞ RiðGÞ;
72012: end while
72113: Calculate NRðGÞ using Eq. (5);

7225.7 Time Complexity of the ERRM Algorithm

723The time complexity of the ERRM algorithm is analyzed as
724follows:

725(1) The maximum number of iterative replication process
726is jN j � jUj, which can be done within O(jN j � jU j)
727time (Lines 2-12).
728(2) Each task must be assumed to be replicated once on
729an available processor, which can be done in O(jNj)
730time (Lines 3-7).
731(3) Selecting the replica and available processor with the
732maximum reliability value must traverse all process-
733ors, which can be done in O(logjU j) time (Line 4).
734(4) Updating the task’s new sub-reliability value can be
735done in O(jUj) time (Line 5).
736(5) Calculating the application’s new reliability value
737can be done in O(jN j) time (Line 6).
738(6) Obtaining the maximum application reliability value
739can be done in O(jN j) time (Line 8).
740Considering that (3), (4), and (5) are not nested in the
741algorithm, the time complexity of the ERRM algorithm is
742O(jN j2 � jU j2 þ jN j3 � jU j).

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of743 Considering that the time complexity of the LBR algo-

744 rithm (i.e., O(jNj � jUj � logjUj)) is less than that of the
745 ERRM algorithm, using the LBR algorithm in advance can
746 improve the efficiency of the replication compared with
747 only using the ERRM algorithm. The reason is that the LBR
748 algorithm can obtain an initial reliability value greater than
749 zero, such that the number of iterative process of the ERRM
750 algorithm can be reduced. Considering the motivating
751 example, the reliability value obtained is 0.89092057, shown
752 in Table 6, then the initial reliability value is not 0, but
753 0.89092057. Compared to starting from 0, 0.89092057 is close
754 to the actual reliability requirement of 0.93.

755 5.8 Example of the ERRM Algorithm

756 Example 4. The same parameter values (�1 ¼ 0:0010, �2 ¼
757 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with aforemen-
758 tioned examples are used. Table 7 lists the selected proces-
759 sor and reliability pairs of each task in each step by using
760 Algorithm 2, where the underlined values indicate those
761 that have the maximum RnewðniÞ (Eq. (11)) and RsðGÞ
762 (Eq. (13)), and the replica is selected to enhance the reli-
763 ability of the application in each step. For example, in Step
764 (1), n9 and u2 are selected, because they can generate the
765 maximum value of 0.9068. In Step (4), the reliability value
766 is larger than or equal to application’s reliability require-
767 ment 0.94. Hence, application’s reliability requirement is
768 satisfied, and the replication process successfully ends.
769 Table 8 lists the final replicas, selected processor, and
770 reliability value for each task of the parallel application in
771 Fig. 2. We find that the final reliability value of each task
772 is larger than or equal to 0.94. Moreover, the current reli-
773 ability value is RðGÞ ¼ 0:94307237 (calculated by Eq. (4)),
774 which is larger than 0.94. Hence, application’s reliability
775 requirement is satisfied, and the application proves

776reliable in this situation. Meanwhile, the final resource
777consumption isNRðGÞ ¼ 14 (Calculated by Eq. (5)).

7786 HEURISTIC REPLICATION FOR REDUNDANCY

779MINIMIZATION

780Although the ERRM algorithm can implement enough
781redundancy minimization, it has high time complexity and
782thereby it is time-consuming for a large-scale parallel appli-
783cation. To reduce the redundancy of a large-scale parallel
784application within an acceptable computation time, this sec-
785tion presents a heuristic algorithm.

7866.1 Upper Bound on Reliability Requirement

787Although the RR algorithm can achieve more redundancy
788reduction than theMaxRe algorithm by recalculating the sub-
789reliability requirement, the redundancy reduction ranges of
790the tasks near the entry task is much lower than those of the
791tasks near the exit task (see Table 5). The main reason for the
792discrepancy is that unfair sub-reliability requirements among
793tasks are generated. In fact, the tasks that are after nseqðxÞ’s
794allocations (i.e., unassigned tasks) can also be presupposed as
795assigned tasks with known reliability values.
796We find that all the sub-reliability requirements of tasks
797using the RR algorithm do not exceed 0.99383156 (see
798Table 5), which is the sub-reliability requirement of each
799task using the MaxRe algorithm (see Table 4). Thus, we let
800

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN jp be the upper bound on task’s reliability require-

801ment, namely,

Rup reqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
: (14) 803803

804

805Then, we have the following heuristic strategy: assume
806that the task to be assigned is nseqðjÞ (nseqðjÞ represents the jth
807assigned task as mentioned earlier), then fnseqð1Þ; nseqð2Þ; . . . ;
808nseqðj�1Þg represents the task set with assigned tasks, and
809fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjNjÞg represents the task set with
810unassigned tasks. To ensure that the reliability of the applica-
811tion is satisfied at each task assignment, we presuppose that
812each task in fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjN jÞg is assigned to the
813processor with reliability value on upper bound (Eq. (14)).
814Hence, when assigning nseqðjÞ, application’s reliability
815requirement is

RreqðGÞ ¼
Yj�1
x¼1

RðnseqðxÞÞ � RreqðnseqðjÞÞ �
YjN j

y¼jþ1
Rup reqðnseqðyÞÞ:

817817

818819Then, the sub-reliability requirement for the task nseqðjÞ
820should be

RreqðnseqðjÞÞ ¼ RreqðGÞQj�1
x¼1 RðnseqðxÞÞ �

QjN j
y¼jþ1 Rup reqðnseqðyÞÞ

: (15)
822822

823

TABLE 7
Selected Processor and Reliability Pairs (Denoted with Underline Text) of Each Task in Each Step of the Motivating

Parallel Application Using the ERRM Algorithm

Step n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

(1) (u3; 0:9033) (u2; 0:9023) (u2; 0:9006Þ (u1; 0:9015) (u3; 0:9015) (u3; 0:9024) (u3; 0:89714) (u2; 0:8953) (u2; 0:9068) (p1; 0:9001)
(2) (u3; 0:9194) (u2; 0:9183) (u2; 0:9166) (u1; 0:9176) (u3; 0:9176) (u3; 0:9185) (u2; 0:9131) (u2; 0:9113) (u3; 0:9071) (u1; 0:9162)
(3) (u2; 0:9196) (u2; 0:9311) (u2; 0:9294) (u1; 0:9303) (u3; 0:9303) (u3; 0:9312) (u3; 0:9257) (u2; 0:9239) (u3; 0:9197) (u1; 0:9289)
(4) (u2; 0:9314) (u2; 0:9431) (u2; 0:9413) (u1; 0:9423) (u3; 0:9423) (u2; 0:9314) (u3; 0:9376) (u2; 0:9358) (u3; 0:9315) (u1; 0:9409)

TABLE 8
Task Assignment of the Application in Fig. 2 Using

the ERRM Algorithm

ni Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.98708414 0.98807171 0.96986344 1 0.98807171
n2 0.98708414 0.97190229 0.99963709 2 0.98708414
n5 0.98807171 0.98068890 0.98216103 1 0.98807171
n6 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98216103 0.98216103 0.96464029 2 0.99968177
n7 0.99302444 0.97775124 0.98039473 1 0.99302444
n8 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 14, RðGÞ ¼ 0:94307237

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 9

IEE
E P

ro
of

824 6.2 The HRRM Algorithm

825 On the basis of the aforementioned new sub-reliability
826 requirement calculation for each task (Eq. (15)), we present
827 the heuristic algorithm HRRM described in Algorithm 3 to
828 minimize redundancy and satisfy application’s reliability
829 requirement.

830 Algorithm 3. The HRRM Algorithm

831 Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
832 Output:RðGÞ, NRðGÞ and its related values
833 1: Order tasks according to a descending order of rankuðni; ukÞ
834 using Eq. (6);
835 2: for ðj ¼ 1; j <¼ jNj; jþþÞ do
836 3: Calculate RðnseqðjÞÞ using Eq. (3);
837 4: numseqðjÞ ¼ 0;
838 5: RðnseqðjÞÞ ¼ 0; // initial value is 0
839 6: Calculate RreqðnseqðjÞÞ using Eq. (15);
840 7: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
841 8: Calculate RðnseqðjÞ; ukÞ for the task nseqðjÞ on all each
842 available processor using Eq. (1);
843 9: Select replica nx

seqðjÞ and the processor uprðnx
seqðjÞÞ with the

844 maximum Rðnx
seqðjÞ; uprðnx

seqðjÞÞÞ;
845 10: numseqðjÞ++;
846 11: Calculate RðnseqðjÞÞ using Eq. (3);
847 12: end while
848 13: end for
849 14: CalculateNRðGÞ using Eq. (5);
850 15: Calculate RðGÞ using Eq. (4);

851 The core idea of HRRM is that the reliability requirement
852 of the application is transferred to the sub-reliability
853 requirement of each task. Each task just iteratively selects
854 the replica and available processor with the maximum reli-
855 ability value until its sub-reliability requirement is satisfied.
856 The details are explained as follows:

857 (1) In Line 6, HRRM has obtained the reliability require-
858 ment of the current task before it prepares to be
859 assigned.
860 (2) In Lines 7-12, HRRM iteratively selects the replica
861 and available processor with the maximum reli-
862 ability value for the current task until its sub-
863 reliability requirement is satisfied. Specifically, the
864 following details are made: 1) Line 7 compares
865 the actual reliability value and sub-reliability
866 requirement of the current task; 2) Lines 8-9 calcu-
867 late and select the replica and available processor
868 with the maximum reliability value for the current
869 task; and 3) Line 11 calculates the actual reliability
870 value of the current task.
871 (3) In Lines 14-15, HRRM calculates the final number of
872 replicas and the actual reliability value of the appli-
873 cation, respectively.
874 Compared with MaxRe and RR algorithms, the main
875 improvement of the presented HRRM is that it recalculates
876 the sub-reliability requirement of each task based not only on
877 its previous assignments (fnseqð1Þ; nseqð2Þ; . . . ; nseqðj�1Þg), but
878 also on succeeding pre-assignments fnseqðjþ1Þ; nseqðjþ2Þ; . . . ;
879 nseqðjN jÞg, whereas MaxRe algorithm has a fixed and equal
880 sub-reliability requirements for all tasks and RR algorithm is
881 merely based on previous assignments.

8826.3 Time Complexity of the HRRM Algorithm

883The time complexity of the HRRM algorithm is analyzed as
884follows:

885(1) Calculating the reliability of the application must
886traverse all tasks, which can be done within O(jNj)
887time (Lines 2-13).
888(2) Calculating the sub-reliability requirement of the
889current task must traverse all tasks, which can be
890done within O(jNj) time (Line 6).
891(3) The number of replicas must be lower or equal to the
892number of processors, which can be done within
893O(jU j) time (Lines 7-12).
894(4) Calculating the reliability value of the current task
895must traverse all assigned processors, which can be
896done in O(jUj) time (Line 11)
897Considering that (2) and (3) are not nested in the
898algorithm, the time complexity of the HRRM algorithm is
899O(jN j2 þ jN j � jUj2), which is similar to those of MaxRe and
900RR algorithms. Thus, HRRM implements efficient fault-
901tolerance without increasing time complexity.

9026.4 Example of the HRRM Algorithm

903Example 5. The same parameter values (�1 ¼ 0:0010,
904�2 ¼ 0:0015, �3 ¼ 0:0018, and RseqðGÞ ¼ 0:94) with afore-
905mentioned examples are used. Table 9 shows the task
906assignment for each task of the motivating parallel appli-
907cation using HRRM algorithm. Each row shows the
908selected processors (in red) and corresponding reliability
909values. The sub-reliability requirement and task assign-
910ment of n1 using HRRM algorithm is similar to those
911using MaxRe and RR algorithms. However, the remain-
912ing tasks are different. For example, when assigning n3,
913the actual reliability value for n1 is 0.99977659, and suc-
914ceeding pre-assignments with reliability requirements are
915

ffiffiffiffiffiffiffiffiffi
0:9410
p ¼ 0:99383156, then the sub-reliability requirement

916for n3 should be 0:94
0:99977659�0:993831568 ¼ 0:98792188. Com-

917pared with the RR algorithm, an obvious improvement

918for the HRRM algorithm is that it shows relative fair reli-

919ability requirements among tasks; furthermore, most sub-
920reliability requirements of tasks using HRRM are less

921than those using the RR algorithm. Finally, the number of

922replicas and the actual reliability value of the application

TABLE 9
Task Assignment of the Motivating Parallel Application

Using the HRRM Algorithm

ni RreqðniÞ Rðni; u1Þ Rðni; u2Þ Rðni; u3Þ numi RðniÞ
n1 0.99383156 0.98609754 0.97628571 0.98393051 2 0.99977659
n3 0.98792188 0.98906028 0.98068890 0.96637821 1 0.98906028
n4 0.99268768 0.98708414 0.98807171 0.96986344 2 0.99984594
n2 0.98671636 0.98708414 0.97190229 0.96811926 1 0.98708414
n5 0.99346128 0.98807171 0.98068890 0.98216103 2 0.99978721
n6 0.98754331 0.98708414 0.97628571 0.98393051 2 0.99979245
n9 0.98165546 0.98216103 0.98216103 0.96464029 1 0.98216103
n7 0.99331998 0.99302444 0.97775124 0.98039473 2 0.99986324
n8 0.98732777 0.99501248 0.98363538 0.97511487 1 0.99501248
n10 0.98615598 0.97921896 0.98955493 0.97161077 1 0.98955493

NRðGÞ ¼ 15, RðGÞ ¼ 0:94323987

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of923 G are 15 and 0.94323987 (calculated by Eqs. (5) and (4)),

924 respectively, which are lower than those with MaxRe and

925 RR algorithms.

926 7 EXPERIMENTS

927 7.1 Experimental Metrics and Parameter Values

928 Considering that this study aims to implement redundancy
929 minimization with replication to satisfy application’s reliabil-
930 ity requirement, performance metrics selected for compari-
931 son should be the actual reliability value and total number of
932 replicas of the application. Meanwhile, computation time
933 should be included from a time complexity perspective. The
934 computation time is measured from the start time to the end
935 time of an algorithm to schedule an application.
936 Algorithms compared with the proposed ERRM and
937 HRRM algorithms are the state-of-the-art MaxRe [14] and
938 RR [15] algorithms. MaxRe and RR algorithms address the
939 same problem of minimizing resource redundancy of a par-
940 allel application to satisfy application’s reliability require-
941 ment on heterogeneous distributed systems.
942 Considering that this study focuses on the design phase,
943 the processor and application parameters used in this
944 phase are known. In other words, these values have been
945 obtained in the analysis phase and are as follows [15]:
946 10,000 s 4wi;k4 100,000 s, 10,000 s 4ci;j4 100,000 s, and
947 0:0000014�k40:000009. The aforementioned values are
948 generated with uniform distribution.
949 The parallel applications will be tested on a simulated het-
950 erogeneous system based on the above real processor and
951 application parameter values to reflect a real deployment. A
952 main advantage of simulation is that it can greatly reduce
953 development cost during the design phase and effectively
954 provide certain optimization guide to the implementation
955 phase. The simulated multiprocessor system is configured 64
956 heterogeneous processors by creating 64 processor objects
957 based known parameter values using Java on a standard
958 desktop computerwith 2.6 GHz Intel CPU and 4GBmemory.
959 Meanwhile, real parallel applications with precedence
960 constrained tasks, such as fast Fourier transform and Gauss-
961 ian elimination applications, are widely used in distributed
962 systems [9], [15]. The Fourier transform and Gaussian elimi-
963 nation application are two typical parallel applications with
964 high and low parallelism, respectively. To verify the effec-
965 tiveness and validity of the proposed algorithms, we use
966 the two types of real parallel applications to compare the
967 results of all the algorithms.
968 A new parameter r is used as the size of the fast Fourier
969 transform application. The total number of tasks is

970jNj ¼ ð2� r� 1Þ þ r� log 2
r, where r ¼ 2y for some integer

971y [9]. Fig. 3a shows an example of the fast Fourier transform
972application with r=4. Notably, r exit tasks exist in the fast
973Fourier transform application with the size of r. To adopt
974the application model of this study, we add a virtual exit
975task, and the last r tasks are set as the immediate predeces-
976sor tasks of the virtual exit task. A new parameter r is used
977as the matrix size of the Gaussian elimination application,
978and the total number of tasks is jNj ¼ r2þr�2

2 [9]. Fig. 3b
979shows an example of the Gaussian elimination parallel
980application with r=5.

9817.2 Fast Fourier Transform Application

982Experiment 1. This experiment compares the actual reli-
983ability values and the total number of replicas of a small-
984scale fast Fourier transform application with r ¼ 32 (i.e.,
985jNj ¼ 223) for varying reliability requirements. RseqðGÞ is
986changed from 0.9 to 0.99 with 0.01 increments. Note that
987computation time values of all the algorithms are within
988one second for the small-scale application and we no lon-
989ger list such values in this experiment.

990Note that the plotted values in Figs. 4a and 4b are obtained
991by executing one run of the algorithms for one application.
992Many applications with the same parameter values and
993scales are tested and show the same regular pattern and rel-
994atively stable results as Figs. 4a and 4b. In other words,
995experiments are repeatable and do not affect the consistency
996of the results. Therefore, the plotted values are the actual
997values rather than the average values during the runs.
998Fig. 4a shows the actual reliability values of the small-
999scale fast Fourier transform application on different reliabil-
1000ity requirements. We can see that all the algorithms can
1001satisfy the given reliability requirements in all cases. Specifi-
1002cally, MaxRe generates the maximum reliability values
1003followed by RR, HRRM, and ERRM. The overrunning reli-
1004ability values (i.e., RseqðGÞ-RðGÞ) reach 0.0613 and 0.0246
1005for MaxRe and RR, respectively. On the contrary, the over-
1006running reliability values are very small for HRRM (0.0001-
10070.0008) and ERRM (0.0001-0.0006) in all cases. Considering
1008no additional fees will be paid for the overrunning reliabil-
1009ity values, more resources are wasted for resource providers
1010in using MaxRe and RR.
1011Fig. 4b shows the total number of replicas of the small-
1012scale fast Fourier transform application on different reliabil-
1013ity requirements. As expected, MaxRe generates the maxi-
1014mum numbers of replicas followed by RR, HRRM, and
1015ERRM in all cases. The reason is thatMaxRe has obtained the
1016maximum actual reliability values followed by RR, HRRM,
1017and ERRM in Fig. 4a, whereas optimizing reliability and

Fig. 3. Example of real parallel applications.

Fig. 4. Results of the small-scale fast Fourier transform application on
different reliability requirements (Experiment 1).

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 11

IEE
E P

ro
of

1018 redundancy is a bi-criteria optima problem as discussed in
1019 Section 1.2.
1020 The same regular pattern for the actual reliability values
1021 is shown in Fig. 4a. As evident from Fig. 4b, the numbers of
1022 replicas using HRRM and ERRM are very similar and are
1023 much lower than those using MaxRe and RR, especially on
1024 relatively low reliability requirements. For example, when
1025 RseqðGÞ40:94, both ERRM and HRRM outperform MaxRe
1026 and RR by about 18 and 7 percent, respectively.

1027 Experiment 2. This experiment compares the actual reli-
1028 ability values, the total number of replicas, and the com-
1029 putation time of a large-scale fast Fourier transform
1030 application with r ¼ 128 (i.e., jNj ¼ 1151) for varying reli-
1031 ability requirements. RseqðGÞ is also changed from 0.9 to
1032 0.99 with 0.01 increments.

1033 Fig. 5a shows the actual reliability values of the large-
1034 scale fast Fourier transform application on different reli-
1035 ability requirements. All the algorithms can satisfy the
1036 given reliability requirements in all cases. Similar to the
1037 results of the small-scale application in Fig. 4a, MaxRe still
1038 generates the maximum reliability values followed by RR,
1039 HRRM, and ERRM. Maximum differences between actual
1040 reliability and given reliability requirement are 0.0747
1041 (RseqðGÞ ¼ 0:9) and 0.0184 (RseqðGÞ ¼ 0:90) for MaxRe and
1042 RR, respectively. On the contrary, in all cases the differen-
1043 ces remain the minimum and close to application’s reliabil-
1044 ity requirements using HRRM (0.0001-0.0003) and ERRM
1045 (0.0001-0.0002).
1046 Fig. 5b shows the total number of replicas of the large-
1047 scale fast Fourier transform application on different reliabil-
1048 ity requirements. Similar to Fig. 4b in small-scale, MaxRe
1049 still generates the maximum numbers of replicas followed
1050 by RR, HRRM, and ERRM in all cases. The numbers of repli-
1051 cas using HRRM and ERRM are still very close and are
1052 much lower than those using MaxRe and RR in most cases.
1053 Fig. 5c shows the computation time values of the large-
1054 scale fast Fourier transform application for reliability
1055 requirements. The values show that computation time is
1056 within 2.1 second using MaxRe, RR, and HRRM, whereas
1057 those using ERRM are 80-120 times longer. Such results indi-
1058 cate that ERRM is time-consuming for large-scale applica-
1059 tions, as analyzed earlier.

1060An interesting phenomenon is that the computation time
1061values using ERRM for large scale applications are not
1062increased but reduced as the application’s reliability require-
1063ments increase in most cases, shown in Fig. 5c. The reason is
1064that when using ERRM, it first calls the LBR algorithm
1065(Algorithm 1) to obtain the initial reliability values of the
1066application. A higher reliability requirement of the applica-
1067tion may lead to higher initial reliability values with very
1068short time by using LBR in these cases, such that the total
1069computation time is not increased, but reduced with the
1070application’s reliability requirements increase.
1071The results of Figs. 4a, and 5c show that ERRM and
1072HRRM algorithms generate less redundancy than the state-
1073of-the-art MaxRe and RR algorithms. Specifically, results
1074of HRRM algorithm are very similar to those of ERRM algo-
1075rithm indicating that HRRM implements approximate opti-
1076mal redundancy with minimum time, whereas the enough
1077optimal ERRM algorithm is time-consuming for large-scale
1078parallel applications.

10797.3 Gaussian Elimination Application

1080Experiment 3. This experiment compares the actual reli-
1081ability values and the total number of replicas of in a
1082small-scale Gaussian elimination application with r ¼ 21
1083(i.e., jN j=230). The total number of task for the Gaussian
1084elimination is similar to that of the fast Fourier transform
1085application for varying reliability requirements. RseqðGÞ
1086is also changed from 0.9 to 0.99 with 0.01 increments.
1087Similar to small-scale fast Fourier transform in Experi-
1088ment 1, the computation time values using all the algo-
1089rithms are also within one second for the small-scale
1090Gaussian elimination. Therefore, we also no longer list
1091such values in this experiment.

1092Figs. 6a and 6b show the actual reliability values and total
1093number of replicas of the small-scale Gaussian elimination
1094application on different reliability requirements. In general,
1095Experiment 3 shows similar pattern and values as Experi-
1096ment 1 for the total number of replicas for all the algorithms.
1097The results of Experiments 1 and 3 indicate that different
1098parallelism degrees of applications in the same small-scale
1099will generate similar actual reliability values and total num-
1100ber of replicas. In other words, parallelism degrees do not
1101affect the scopes of actual reliability values and total num-
1102ber of replicas. The reason is that the reliability value of the
1103application is the product of that of each task according to
1104Eq. (4); considering that the number of tasks, the reliability
1105requirement, and computation time are approximate equal,
1106the actual reliability values and total number of replicas are
1107also approximate equal.

Fig. 5. Results of the large-scale fast Fourier transform application on
different reliability requirements (Experiment 2).

Fig. 6. Results of the small-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 3).

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

IEE
E P

ro
of

1108 Experiment 4. This experiment compares the actual reli-
1109 ability values, the total number of replicas, and the com-
1110 putation time of a large-scale Gaussian elimination
1111 application with r ¼ 47 (i.e., jN j ¼ 1; 127) for varying reli-
1112 ability requirements. RseqðGÞ is also changed from 0.9 to
1113 0.99 with 0.01 increments.

1114 Figs. 7a, 7b, and 7c show the actual reliability values,
1115 total number of replicas, and computation time of the large-
1116 scale Gaussian elimination application on different reliabil-
1117 ity requirements. Experiment 4 shows similar pattern and
1118 values as Experiment 2 in actual reliability values and total
1119 number of replicas for all the algorithms. The results of
1120 Experiments 2 and 4 further indicate that parallelism
1121 degrees do not affect the scopes of actual reliability values
1122 and total number of replicas.

1123 7.4 Randomly Generated Parallel Application

1124 To extensively demonstrate the benefits of the proposed
1125 algorithms, we consider randomly generated parallel appli-
1126 cations by the task graph generator [40]. Considering that
1127 the objective platform is heterogeneous processors, hetero-
1128 geneity degrees may also affect the redundancy of applica-
1129 tion. Heterogeneity degree is easy to be implemented for
1130 randomly generated parallel applications as long as adjust
1131 the heterogeneity factor values. Randomly generated paral-
1132 lel applications are generated depending on the following
1133 parameters: average computation time is 50,000 ms, com-
1134 munication to computation ratio (CCR) is 1, and shape
1135 parameter is 1. The heterogeneity degree (factor) values
1136 belong to the scope of (0,1] in the task graph generator,
1137 where 0 and 1 represent the lowest and highest heterogene-
1138 ity factors, respectively. Without loss of generality, we use
1139 large-scale randomly generated parallel application with
1140 1,140 tasks, which are approximate equal to those of fast
1141 Fourier transform and Gaussian elimination applications in
1142 Experiments 2 and 4.

1143 Experiment 5. This experiment compares the actual reli-
1144 ability values and the total number of replicas of a large-
1145 scale low-heterogeneity (with the heterogeneity factor
1146 0.1) randomly generated parallel application with
1147 jNj ¼ 1; 140 for varying reliability requirements. RseqðGÞ
1148 is also changed from 0.9 to 0.99 with 0.01 increments.

1149Figs. 8a and 8b show the actual reliability values and total
1150numbers of replicas the large-scale low-heterogeneity ran-
1151domly generated parallel application on different reliability
1152requirements. It is easy to see that Experiment 5 shows simi-
1153lar pattern and values as Experiments 2 and 4 using all the
1154algorithms. The main differences are as follows:

1155(1) The actual reliability values and total numbers of rep-
1156licas obtained byMaxRe in Experiment 5 are relatively
1157stable for different reliability requirements. The rea-
1158son is that the execution time values are relative stable
1159on the same processor for a low-heterogeneity parallel
1160application and the reliability requirement using
1161MaxRe is the same for all tasks, such that the values
1162for the application do not changedmuch.
1163(2) The actual reliability values and total numbers of
1164replicas obtained by RR, ERRM, and HRRM are rela-
1165tively close in the same reliability requirement. The
1166reason is still that the execution time values are rela-
1167tive stable on the same processor for a low-heteroge-
1168neity parallel application.

1169Experiment 6. This experiment compares the actual reli-
1170ability values and the total number of replicas of a large-
1171scale high-heterogeneity (with the heterogeneity factor 1)
1172randomly generated parallel application with jN j ¼ 1140
1173for varying reliability requirements. RseqðGÞ is also
1174changed from 0.9 to 0.99 with 0.01 increments.

1175Figs. 9a and 9b show the actual reliability values and total
1176numbers of replicas the large-scale high-heterogeneity ran-
1177domly generated parallel application on different reliability
1178requirements. It is easy to see that Experiment 6 shows simi-
1179lar pattern and values as Experiment 5 using all the algo-
1180rithms. The main difference is that the high-heterogeneity
1181application needs fewer replicas than the low-heterogeneity
1182application. The total numbers of replicas for the former is
1183only 60 percent of those for the latter using all the algorithms.
1184The reason is that the actual reliability values for a task on dif-
1185ferent processors change much in a high-heterogeneity appli-
1186cation, and these algorithms tend to choose the processor

Fig. 7. Results of the large-scale Gaussian elimination application on dif-
ferent reliability requirements (Experiment 4).

Fig. 8. Results of the large-scale low-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 5).

Fig. 9. Results of the large-scale high-heterogeneity randomly generated
parallel application on different reliability requirements (Experiment 6).

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 13

IEE
E P

ro
of

1187 with the maximum reliability value for each task replication.
1188 Moreover, different from the low-heterogeneity application
1189 where the total numbers of replicas obtained by RR, ERRM,
1190 and HRRM are relatively close, ERRM and HRRM generate
1191 much less replicas than RR for the high-heterogeneity appli-
1192 cation. The reason is still that the actual reliability values for a
1193 task on different processors changemuch.

1194 7.5 Summary of Experiments

1195 Based on the above experimental results, summarizations
1196 are as follows.

1197 (1) The proposed redundancy minimization algorithms,
1198 ERRM and HRRM, can generate less redundancy
1199 than the state-of-the-art MaxRe and RR algorithm at
1200 different scales, parallelism degrees, and heterogene-
1201 ity degrees.
1202 (2) Results of the HRRM algorithm are very similar to
1203 those of the ERRM algorithm. HRRM implements
1204 approximate optimal redundancy with minimum
1205 computation time, whereas the enough optimal
1206 ERRM algorithm is time-consuming for large-scale
1207 parallel applications.
1208 (3) According to the analysis of the number of active pro-
1209 cessors, parallelism degrees do not affect the scopes
1210 of reliability values and total number of replicas for
1211 different types of applications in the same-scale.
1212 (4) If the parallel application is small, then ERRM can be
1213 utilized to minimize redundancy; otherwise HRRM
1214 is the preferred alternative for reducing redundancy
1215 with minimum computation time.
1216 (5) RR, ERRM, and HRRM obtain relatively close num-
1217 bers of replicas for a low-heterogeneity application,
1218 whereas ERRM and HRRM obtain much less replicas
1219 than RR for the high-heterogeneity application. In
1220 other words, ERRM and HRRM are better suitable
1221 for high-heterogeneity applications than for low-
1222 heterogeneity applications.

1223 8 CONCLUSION

1224 We developed enough and heuristic replication algorithms
1225 ERRM and HRRM to minimize the redundancy for a paral-
1226 lel application in heterogeneous service-oriented systems.
1227 The ERRM algorithm can enough minimize redundancy by
1228 presenting two-stage replications. To decrease the time
1229 complexity of the time-consuming ERRM algorithm, the
1230 HRRM algorithm was also presented to deal with large-
1231 scale parallel applications within a short time. The main
1232 advantage for HRRM is its capability to obtain lower sub-
1233 reliability requirements for most tasks compared with
1234 MaxRe and RR, such that HRRM can generate less redun-
1235 dancy than MaxRe and RR. Results of our experiments on
1236 real and random generaed parallel applications at different
1237 scales, parallelism degrees, and heterogeneity degrees vali-
1238 date that both ERRM and HRRM generate less redundancy
1239 than the state-of-the-art MaxRe and RR algorithms. Experi-
1240 ment results also show that the HRRM implements approxi-
1241 mate optimal redundancy with a short computation time.
1242 We believe that the proposed algorithms can effectively
1243 facilitate a reliability-aware design for parallel applications
1244 in heterogeneous service-oriented systems.

1245Resource usage and shortest schedule length are also
1246important concern in high-performance computing sys-
1247tems. In fact, minimum redundancy does not mean mini-
1248mum resource usage and shortest schedule length for a
1249parallel application on heterogeneous systems because
1250the same task has different execution time values on dif-
1251ferent processors. In our future work, we will consider
1252the resource usage and schedule length minimization in
1253such environment.

1254ACKNOWLEDGMENTS

1255The authors would like to express their gratitude to the anon-
1256ymous reviewers for their constructive comments which
1257have helped to improve the quality of the paper. This work
1258was partially supported by the National Key Research
1259and Development Plan of China under Grant Nos.
12602016YFB0200405 and 2012AA01A301-01, the Natural Science
1261Foundation of China under Grant Nos. 61672217, 61173036,
126261432005, 61370095, 61300037, 61502405, 61300039, 61402170,
1263and 61502162, the China Postdoctoral Science Foundation
1264under Grant No. 2016M592422.

1265SUPPLEMENT MATERIAL

1266The web page http://esnl.hnu.edu.cn/index.php/tsc/ pub-
1267lishes the experimental codes of the paper.

1268REFERENCES

1269[1] Z. Cai, X. Li, and J. N. D. Gupta, “Heuristics for provisioning serv-
1270ices to workflows in XaaS clouds,” IEEE Trans. Services Comput.,
1271vol. 9, no. 2, pp. 250–263, Mar./Apr. 2016.
1272[2] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Chang, M. Lyu,
1273and R. Buyya, “Cloud service reliability enhancement via virtual
1274machine placement optimization,” IEEE Trans. Services Comput.,
1275vol. PP, no. 99, p. 1, Jan. 2016, doi: 10.1109/TSC.2016.2519898.
1276[3] Z. Fu, F. Huang, X. Sun, A. Vasilakos, and C.-N. Yang, “Enabling
1277semantic search based on conceptual graphs over encrypted out-
1278sourced data,” IEEE Trans. Services Comput., vol. PP, no. 99, p. 1,
1279Oct. 2016, doi: 10.1109/TSC.2016.2622697.
1280[4] Z. Xia, X.Wang,X. Sun, andQ.Wang, “A secure anddynamicmulti-
1281keyword ranked search scheme over encrypted cloud data,” IEEE
1282Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Feb. 2016.
1283[5] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based
1284method for task allocation in open and dynamic cloud environ-
1285ments,” Knowl.-Based Syst., vol. 115, pp. 123–132, Jan. 2017.
1286[6] F. Zhangjie, S. Xingming, L. Qi, Z. Lu, and S. Jiangang, “Achieving
1287efficient cloud search services: Multi-keyword ranked search over
1288encrypted cloud data supporting parallel computing,” IEICE
1289Trans. Commun., vol. 98, no. 1, pp. 190–200, Jan. 2015.
1290[7] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, and N. Linge, “A speculative
1291approach to spatial-temporal efficiency with multi-objective opti-
1292mization in a heterogeneous cloud environment,” Secur. Commun.
1293Netw., vol. 9, no. 17, pp. 4002–4012, Nov. 2016.
1294[8] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An
1295energy-efficient task scheduling algorithm in DVFS-enabled
1296cloud environment,” J. Grid Comput., vol. 14, no. 1, pp. 55–74,
1297Mar. 2016.
1298[9] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
1299and low-complexity task scheduling for heterogeneous
1300computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
1301pp. 260–274, Aug. 2002.
1302[10] M. A. Khan, “Scheduling for heterogeneous systems using con-
1303strained critical paths,” Parallel Comput., vol. 38, no. 4, pp. 175–
1304193, Apr. 2012.
1305[11] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end
1306synchronized scheduling for precedence constrained tasks and
1307messages on networked embedded systems,” J. Parallel Distrib.
1308Comput., vol. 83, pp. 1–12, May. 2015.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

http://esnl.hnu.edu.cn/index.php/tsc/

IEE
E P

ro
of

1309 [12] G. Xie, X. Xiao, R. Li, and K. Li, “Schedule length minimization of
1310 parallel applications with energy consumption constraints using
1311 heuristics on heterogeneous distributed systems,” Concurrency Com-
1312 put.-Parctice Experience, pp. 1–10, Nov. 2016, doi: 10.1002/cpe.4024.
1313 [13] J.-S. Leu, C.-F. Chen, and K.-C. Hsu, “Improving heterogeneous
1314 SOA-Based iot message stability by shortest processing time
1315 scheduling,” IEEE Trans. Services Comput., vol. 7, no. 4, pp. 575–
1316 585, Oct.-Dec. 2014.
1317 [14] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant schedul-
1318 ing with dynamic number of replicas in heterogeneous systems,”
1319 in Proc. 12th IEEE Int. Conf. High Perform. Comput. Commun., 2010,
1320 pp. 434–441.
1321 [15] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling
1322 with less resource redundancy,” Parallel Comput., vol. 39, no. 10,
1323 pp. 567–585, Jul. 2013.
1324 [16] Z. Zheng, T. C. Zhou, M. Lyu, and I. King, “Component ranking
1325 for fault-tolerant cloud applications,” IEEE Trans. Services Com-
1326 put., vol. 5, no. 4, pp. 540–550, Oct.-Dec. 2012.
1327 [17] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. R. Lyu, “Reliability-
1328 based design optimization for cloud migration,” IEEE Trans.
1329 Services Comput., vol. 7, no. 2, pp. 223–236, Apr.-Jun. 2014.
1330 [18] M. Silic, G. Delac, and S. Srbljic, “Prediction of atomic web
1331 services reliability for QoS-Aware recommendation,” IEEE Trans.
1332 Services Comput., vol. 8, no. 3, pp. 425–438, May/Jun. 2015.
1333 [19] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics
1334 providing a guaranteed global system failure rate,” IEEE Trans.
1335 Dependable Secure Comput., vol. 6, no. 4, pp. 241–254, Oct.-Dec. 2009.
1336 [20] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of
1337 precedence task graphs on heterogeneous platforms,” in Proc.
1338 22th IEEE Int. Parallel Distrib. Process., 2008, pp. 1–8.
1339 [21] A. Benoit and M. Hakem, “Optimizing the latency of streaming
1340 applications under throughput and reliability constraints,” in
1341 Proc. 45th Int. Conf. Parallel Process., 2009, pp. 325–332.
1342 [22] [Online]. Available: https://en.wikipedia.org/wiki/IEC_61508
1343 [23] [Online]. Available: https://en.wikipedia.org/wiki/ISO_9000
1344 [24] G. Xie, L. Liu, L. Yang, and R. Li, “Scheduling trade-off of
1345 dynamic multiple parallel workflows on heterogeneous distrib-
1346 uted computing systems,” Concurrency Comput.-Parctice Experi-
1347 ence, vol. 29, no. 2, pp. 1–18, Jan. 2017, doi: 10.1002/cpe.3782.
1348 [25] V. T’kindt and J.-C. Billaut, Multicriteria Scheduling: Theory, Models
1349 and Algorithms. Berlin, Germany: Springer, Mar. 2006.
1350 [26] A. Do�gan and F. €Ozg€uner, “Biobjective scheduling algorithms for
1351 execution time–reliability trade-off in heterogeneous computing
1352 systems,” Comput. J., vol. 48, no. 3, pp. 300–314, Mar. 2005.
1353 [27] M. Hakem and F. Butelle, “A bi-objective algorithm for scheduling
1354 parallel applications on heterogeneous systems subject to
1355 failures,” in Proc. RenPar2006, 2006, pp. 25–35.
1356 [28] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective sched-
1357 uling algorithms for optimizing makespan and reliability on het-
1358 erogeneous systems,” in Proc. 19th ACM Int. Symp. Parallel
1359 Algorithms Architectures, 2007, pp. 280–288.
1360 [29] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids
1361 and utility computing: The state-of-the-art and future directions,”
1362 J. Grid Comput., vol. 6, no. 3, pp. 255–276, Sep. 2008.
1363 [30] [Online]. Available: https://en.wikipedia.org/wiki/Service-level_
1364 agreement
1365 [31] S. M. Shatz and J. P. Wang, “Models and algorithms for reliability-
1366 oriented task-allocation in redundant distributed-computer sys-
1367 tems,” IEEE Trans. Rel., vol. 38, no. 1, pp. 16–27, Apr. 1989.
1368 [32] J. Mei, K. Li, X. Zhou, and K. Li, “Fault-tolerant dynamic resched-
1369 uling for heterogeneous computing systems,” J. Grid Comput.,
1370 vol. 13, no. 4, pp. 507–525, Dec. 2015.
1371 [33] X. Qin, H. Jiang, and D. R. Swanson, “An efficient fault-tolerant
1372 scheduling algorithm for real-time tasks with precedence con-
1373 straints in heterogeneous systems,” in Proc. 31th Int. Conf. Parallel
1374 Process., 2002, pp. 360–368.
1375 [34] X. Qin and H. Jiang, “A novel fault-tolerant scheduling algorithm
1376 for precedence constrained tasks in real-time heterogeneous
1377 systems,” Parallel Comput., vol. 32, no. 5, pp. 331–356, Jun. 2006.
1378 [35] Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the design of fault-
1379 tolerant scheduling strategies using primary-backup approach for
1380 computational grids with low replication costs,” IEEE Trans. Com-
1381 put., vol. 58, no. 3, pp. 380–393, Mar. 2009.
1382 [36] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert, “Reliability of task
1383 graph schedules with transient and fail-stop failures: Complexity
1384 and algorithms,” J. Scheduling, vol. 15, no. 5, pp. 615–627, Oct. 2012.

1385[37] A. Verma and N. Bhardwaj, “A review on routing information
1386protocol (RIP) and open shortest path first (OSPF) routing proto-
1387col,” Int. J. Future Generation Commun. Netw., vol. 9, no. 4, pp. 161–
1388170, Apr. 2016.
1389[38] Q. Zheng and B. Veeravalli, “On the design of communication-
1390aware fault-tolerant scheduling algorithms for precedence
1391constrained tasks in grid computing systems with dedicated com-
1392munication devices,” J. Parallel Distrib. Comput., vol. 69, no. 3,
1393pp. 282–294, 2009.
1394[39] L. Zhao, Y. Ren, and K. Sakurai, “A resource minimizing schedul-
1395ing algorithm with ensuring the deadline and reliability in hetero-
1396geneous systems,” in Proc. 25th IEEE Int. Conf. Adv. Inf. Netw.
1397Appl., 2011, pp. 275–282.
1398[40] [Online]. Available: https://sourceforge.net/projects/
1399taskgraphgen/

1400Guoqi Xie received the PhD degree in computer
1401science and engineering from Hunan University,
1402China, in 2014. He was a postdoctoral researcher
1403with Nagoya University, Japan, from 2014 to
14042015. Since 2015, he is working as a postdoctoral
1405researcher with Hunan University, China. He has
1406received the best paper award from ISPA 2016.
1407His major interests include embedded and real-
1408time systems, parallel and distributed systems,
1409software engineering and methodology. He is a
1410member of the IEEE, the ACM, and the CCF.

1411Gang Zeng received the PhD degree in informa-
1412tion science from Chiba University, in 2006. He is
1413an associate professor in the Graduate School of
1414Engineering, Nagoya University. From 2006 to
14152010, he was a researcher, and then assistant
1416professor in the Center for Embedded Computing
1417Systems (NCES), Graduate School of Informa-
1418tion Science, Nagoya University. His research
1419interests mainly include power-aware computing
1420and real-time embedded system design. He is a
1421member of the IEEE and the IPSJ.

1422Yuekun Chen is currently working toward the
1423PhD degree at Hunan University. Her research
1424interests include services and cloud comput-
1425ing, fault-tolerance computing, and software
1426engineering.

1427Yang Bai is currently working toward the PhD
1428degree at Hunan Province, Hunan University.
1429Her research interests include service computing,
1430embedded systems, and cyber-physical systems.

1431Zhili Zhou is an assistant professor with Nanjing
1432University of Information Science and Technol-
1433ogy. His research interests include cloud comput-
1434ing, information forensics and security, pattern
1435recognition.

XIE ET AL.: MINIMIZING REDUNDANCY TO SATISFY RELIABILITY REQUIREMENT FOR A PARALLEL APPLICATION ON... 15

IEE
E P

ro
of

1436 Renfa Li is a professor of computer science and
1437 electronic engineering, and the dean of the Col-
1438 lege of Computer Science and Electronic Engi-
1439 neering, Hunan University, China. He is the
1440 director of the Key Laboratory for Embedded and
1441 Network Computing of Hunan Province, China.
1442 His major interests include computer architec-
1443 tures, embedded computing systems, cyber-
1444 physical systems, and Internet of things. He is a
1445 member of the council of CCF, a senior member
1446 of the IEEE, and a senior member of the ACM.

1447Keqin Li is a SUNY distinguished professor of
1448computer science. His current research interests
1449include parallel computing and high-performance
1450computing, distributed computing, energy-efficient
1451computing and communication, heterogeneous
1452computing systems, cloud computing, big data
1453computing, CPU-GPU hybrid and cooperative
1454computing, multicore computing, storage and file
1455systems, wireless communication networks, sen-
1456sor networks, peer-to-peer file sharing systems,
1457mobile computing, service computing, Internet of
1458things, and cyber-physical systems. He has published more than 460 jour-
1459nal articles, book chapters, and refereed conference papers, and has
1460received several best paper awards. He is currently or has served on the
1461editorial boards of the IEEE Transactions on Parallel and Distributed Sys-
1462tems, the IEEE Transactions on Computers, the IEEE Transactions on
1463Cloud Computing, the IEEE Transactions on Services Computing, and the
1464IEEETransactions on Sustainable Computing. He is a fellow of the IEEE.

16 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. X, XXXXX 2017

