
196 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

Minimizing Development Cost With Reliability Goal
for Automotive Functional Safety During

Design Phase
Guoqi Xie , Member, IEEE, Yuekun Chen, Yan Liu , Renfa Li , Senior Member, IEEE,

and Keqin Li , Fellow, IEEE

Abstract—ISO 26262 is a functional safety standard specifically
made for automotive systems, in which the automotive safety in-
tegrity level (ASIL) is the representation of the criticality level. Re-
cently, most studies have used ASIL decomposition to reduce the
development cost of automotive functions. However, these studies
have not paid special attention to the problem that the reliability
goal may not be satisfied when ASIL decomposition is performed.
In this study, we solve the problem of minimizing the develop-
ment cost of a distributed automotive function while satisfying its
reliability goal during the design phase by presenting two heuris-
tic algorithms, reliabilitycalculation of scheme (RCS) and mini-
mizing development cost with reliability goal (MDCRG). We first
use RCS to calculate the reliability value of each ASIL decom-
position scheme; then, the MDCRG is used to select the scheme
with the minimum development cost while satisfying the reliability
goal. Real-life benchmark and simulated functions based on real
parameter values are used in experiments, and results show the
effectiveness of the proposed algorithms.

Index Terms—Automotive functional safety, automotive safety
integrity level (ASIL) decomposition, development cost, ISO 26262,
reliability goal.

NOMENCLATURE

Acronyms and Abbreviations
ASIL Automotive safety integrity level.
DAG Directed acyclic graph.

Manuscript received November 13, 2016; revised July 8, 2017 and Octo-
ber 10, 2017; accepted November 24, 2017. Date of publication December
14, 2017; date of current version March 1, 2018. This work was supported
in part by the National Key Research and Development Plan of China un-
der Grant 2016YFB0200405, in part by the National Natural Science Foun-
dation of China under Grant 61702172, Grant 61672217, Grant 61173036,
Grant 61379115, Grant 61402170, Grant 61370097, Grant 61502162, and Grant
61502405, in part by the CCF-Venustech Open Research Fund under Grant CCF-
VenustechRP2017012, in part by the CERNET Innovation Project under Grant
NGII20161003, and in part by the China Postdoctoral Science Foundation under
Grant 2016M592422. Associate Editor: Y. Le Traon. (Corresponding author:
Yan Liu.)

G. Xie, Y. Chen, Y. Liu, and R. Li are with the Key Laboratory for Embedded
and Network Computing of Hunan Province, College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China (e-mail:
xgqman@hnu.edu.cn; chenyuekun@126.com; liuyan@hnu.edu.cn; lirenfa@
hnu.edu.cn).

K. Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York at New Paltz, New Paltz, NY
12561 USA (e-mail: lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2017.2778070

DAL Design assurance level.
ECU Electronic control unit.
MDCRG Minimizing development cost with reliabil-

ity goal.
RCS Reliability calculation of scheme.
WCET Worst case execution time.
WCRT Worst case response time.
NOTATIONS

|X| Size of the set X.
wi,k,h WCET of the task ni on the ECU uk and the

ASIL Lh.
ci,j WCRT time of the message mi,j.

pred(ni) Set of ni’s immediate predecessor tasks.
succ(ni) Set of ni’s immediate successor tasks.
λk Failure rate per time unit of the ECU uk .
R (ni, uk , Lh) Reliability value of the task ni on the ECU

uk and the ASIL Lh.
DC (ni, Lh) Reliability value of the task ni on the ASIL

Lh.
R (ni, schemeg) Reliability value of the task ni with the

scheme schemeg .
Rgoal(G) Reliability goal of the function G.
R(G) Reliability of the function G.
DC(G) Development cost of the function G.
upr(i) Allocated ECU of the task ni.
DCmin(ni) Minimum development cost (MDC) of the

task ni.
DCmax(ni) MDC of the task ni.
DCmin(G) MDC of the function G.
DCmax(G) Maximum development cost of the function

G.
Rmin(ni) Minimum reliability of the task ni.
Rmax(ni) Maximum reliability of the task ni.
Rmin(G) Minimum reliability of the function G.
Rmax(G) Maximum reliability of the function G.

I. INTRODUCTION

A. Background

S INCE the invention of the automobile, people have pur-
sued the goal of safe driving. The earliest safety belts, later

airbags, and other passive safety measures have saved millions

0018-9529 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 197

of lives. The later-developed antilock braking system and other
active safety functions greatly enhance the safety of automo-
biles. However, hazardous events, including systemic failures
and random hardware failures in automotive systems, caused
by malfunctioning behavior may lead to risks [1]. Risk means
the likelihood of injury or damage resulting from these fail-
ures and the severity of the consequences of injury or damage
[1]. Examples include acceleration, deceleration, and steering;
abnormal bounce of the airbag; and doors suddenly opening
in high-speed driving. Functional safety is proposed to deal
with the above-mentioned risks, and it refers to the absence of
unreasonable risk due to hazards caused by malfunctioning be-
havior of electrical and electronic (E/E) systems [1]. The road
vehicles functional safety standard ISO 26262 was officially re-
leased in 2011 to adapt to the functional safety of automotive
E/E part [1]. ISO 26262 identifies four criticality levels denoted
by automotive safety integrity levels (ASILs) (i.e., A, B, C,
and D). ASIL refers to a classification of inherent safety goals
used to ensure the accomplishment of the goals in the system.
ASIL A and ASIL D represent the lowest and highest criticality
levels, respectively. ISO 26262 requires designers to evaluate
all potential risks in advance and take appropriate measures to
maintain the risks in an acceptable scope to ensure the func-
tional safety, particularly active safety functions. Therefore, the
core task of modern automotive embedded system design is to
ensure the safety-critical function of automotive embedded sys-
tems, that is, to maintain normal operations under all kinds of
severe conditions and the functional safety of occupants and
pedestrians.

B. Motivation

ISO 26262 defines the exposure for random hardware failures.
Exposure means the relative expected frequency of the opera-
tional conditions, in which a hazardous event may happen and
cause hazard and injury [1]. Exposure thus illustrates the possi-
bility of the occurrence of harm and could affect the reliability
of systems. Exposure involves five levels, namely E0, E1, E2,
E3, and E4, where E0 represents the lowest level (i.e., incredibly
unlikely), and E4 represents the highest level (i.e., high prob-
ability, injury could happen under most operating conditions)
[1]. Reliability is defined as the probability that the execution is
successful [2]–[5]. That is, reliability is just the reverse expres-
sion of exposure. If a function satisfies its reliability goal, then
this function is considered to be reliable. However, reliability
goal is not explicitly defined in ISO 26262, but it can be derived
according to the probability values of exposures (please refer to
Section III for more details).

The development of safety-critical functions is a highly struc-
tured and systematic process dictated by ISO 26262, thereby de-
velopment cost is generated. Generally, development cost refers
to the labor used in the development life cycle of systems, and
it is different from resource cost and hardware cost. Increasing
development cost is not an option because the automotive indus-
try is a highly cost-sensitive industry for the mass market. ASIL
decomposition means that a high-ASIL task can be decomposed
into one or more redundant low-ASIL tasks [1], [6], [7]. ISO
26262, Part 9, Section V, provides the guide shown in Fig. 1 for

Fig. 1. ASIL decomposition schemes in ISO 26262 [1].

ASIL decomposition [1]. However, ASIL decomposition will
affect the reliability and development cost simultaneously.

On the one hand, decomposing a high-ASIL task into sev-
eral redundant low-ASIL tasks can enhance reliability due to
redundancy, such that the reliability goal is easy to be satisfied.

On the other hand, decomposing a high-ASIL task to a low
ASIL can reduce the development cost by 25%–100% because
of the low requirement for low level in the implementation
process [6], [7]. However, decomposition is implemented at the
expense of adding redundant tasks, such that the total devel-
opment cost of the redundant low-ASIL tasks is not necessarily
less than that of the original high-ASIL task in this situation.

C. Our Contributions

A development life cycle of a safety-critical function usu-
ally involves the analysis, design, implementation, and testing
phases. In this study, we aim to minimize the development cost
of a distributed automotive function with a reliability goal dur-
ing the design phase. The main contributions of this study are
listed as follows.

1) We present a heuristic algorithm called reliability calcula-
tion of scheme (RCS) to calculate the reliability value and
development cost of each ASIL decomposition scheme
for each task with a low time complexity.

2) We present a heuristic algorithm called minimizing de-
velopment cost with reliability goal (MDCRG) to select
the scheme with the minimum development cost (MDC)
while satisfying the reliability goal of the function.

3) We use a real-life benchmark and simulated functions
based on real parameter values in experiments and vali-
date the effectiveness of the proposed RCS and MDCRG
algorithms.

The rest of this paper is organized as follows. Section
II reviews related studies. Section III builds related models.
Section IV explains automotive functional safety. Section V
presents the RCS algorithm. Section VI presents the MDCRG
algorithm. Section VII validates the performance of the pre-
sented algorithms. Section VIII concludes this study.

198 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

II. RELATED WORK

The primary functional safety standards that are currently in
use are the DO178B standard for avionic systems [8], the IEC
61508 standard for all kinds of industrial systems [9], and the
ISO 26262 standard for automotive systems [1]. The criticality
levels are represented as design assurance level (DAL), safety
integrity level (SIL), and ASIL in avionic, industrial, and auto-
motive systems, respectively. Many studies involve these func-
tional safety standards, and the readers can be directed to [10]
for a comparison of these standards. In this study, we mainly
review related studies on development cost, criticality level de-
composition, and the reliability goal.

Software development cost estimation is a widely researched
topic. The reader is directed to [11] and [12] for reviews on
this topic. One of the most influential software cost models is
the constructive cost model [12]. Researchers have shown the
consideration of development costs during the design phase of
embedded systems [13]. The problem of deciding on the ASIL
of a function is typically a manual process performed after haz-
ard analysis and risk assessment. Researchers have started to
propose automatic approaches to this problem [14]. A broader
view is taken in [15], which proposes a method for the propa-
gation, transformation, and refinement of functional safety re-
quirements. Some studies on SIL decomposition [16], [17] and
DAL decomposition [18] are solved to reduce development cost.
For example, in [16] and [17], genetic and search-based meta-
heuristic algorithms for SIL decomposition are proposed; in
[18], a tool called DALculus for the automatic allocation of
DALs is presented, such that the smallest DAL may be allo-
cated to a function. The ASIL decomposition for distributed
functions was studied recently [6], [7].

As provided in ISO 26262, random hardware failures (also
called transient failures in most studies) occur unpredictably
during the life of a hardware element, but they follow a proba-
bility distribution [1]. A widely accepted reliability model was
presented by Shatz and Wang [19], in which the transient fail-
ure of each hardware is characterized by a constant failure rate
per time unit λ. The failure occurrence of a software task exe-
cuted on hardware follows a constant-parameter Poisson’s law
because the hardware failure probability is extended to overall
software [2]–[5], [20].

A function model for the description of distributed end-to-
end computations in automobiles is represented by a directed
acyclic graph (DAG) [6], [7], [21], [22]. Examples of active
safety functions are brake-by-wire and adaptive cruise control
[21], [23]. Scheduling tasks with quality of service (QoS) re-
quirement for optimality on multiprocessors is known to be an
NP-hard optimization problem [7], [24], [25]. In [26] and [27],
Benoit et al. proved that evaluating the reliability of a DAG-
based distributed function is an NP-complete problem. In the
early development phase, reliability growth becomes critical in
supporting decision-making for the overall development pro-
gram, and [28] proposed a multiobjective, multistage reliability
growth planning method. Reliability-aware design techniques
and algorithms usually aim to minimize certain objectives while
still satisfying the reliability goal. Higher reliability could result

in a longer schedule length (or larger energy consumption) of
a distributed function, and the problem of optimizing schedule
length (or energy consumption) and reliability is considered to
be a typical bicriteria optima or Pareto optima problem [29]–
[32]. Energy-efficient scheduling with a reliability goal for a
function with independent tasks has been studied extensively in
[2], [33], and [34]. In [4], a shared recovery-based frequency
allocation technique to minimize energy consumption with a
reliability goal for a distributed function on a uniprocessor is
proposed. All the aforementioned studies were only interested
in schedule length or energy consumption minimization with a
reliability goal. The recent investigation presented the MaxRe
[20] and the RR (i.e., least resources to meet the reliability re-
quirement) [5] algorithms to minimize resource consumption
while satisfying the reliability goal of a distributed function on
heterogeneous systems. In [35], the DAG_Heu algorithm is pre-
sented to minimize the resource cost for a distributed function
with a timing constraint and a reliability goal on heterogeneous
multiprocessors. However, MaxRe, RR, and DAG_Heu aim at
minimizing resource consumption cost, which refers to the re-
source usage of processors when tasks are running, whereas
development cost refers to the labor used in the development
life cycle of systems. Therefore, the resource consumption cost
and the development cost are two completely different concepts.
Generally, development cost is reduced by ASIL decomposition
in automotive systems [6], [7] and this is the research object of
this paper.

In summary, we know that search algorithms have been de-
veloped to solve the problem of development cost reduction.
This paper attempts to study this problem with another method.
We would like to provide a new design reference for system
designers and developers. We know that scheduling tasks with
QoS requirement for optimality on multiprocessors is known to
be an NP-hard optimization problem. Heuristic list scheduling
is a popular method to schedule a DAG-based function in most
works. To the best of our knowledge, no research work has em-
ployed heuristic list scheduling algorithms to study the problem
of development cost reduction with reliability goal for a DAG-
based function. In this study, we try to present a heuristic list
scheduling to study this problem.

III. AUTOMOTIVE FUNCTIONAL SAFETY

In this section, we introduce some preliminaries of automotive
functional safety that are related to ASIL decomposition and
reliability goal.

A. Functional Safety Attributes

ISO 26262 defines two important functional attributes,
namely severity and exposure. The standard also defines con-
trollability, which represents the current state of the drivers.
Severity, exposure, and controllability are mutually orthotropic.
Table I shows the classifications of severity, exposure, and con-
trollability in ISO 26262, where exposure is related to reliability.

The ASIL determination is based on these three attributes
(severity, exposure, and controllability). Table II shows the ASIL

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 199

TABLE I
CLASSIFICATIONS OF SEVERITY, EXPOSURE, AND CONTROLLABILITY IN ISO 26262 [1]

Severity Exposure Controllability

S0 No injuries E0 Incredibly unlikely C0 Controllable in general
S1 Light to moderate injuries E1 Very low probability C1 Simply controllable
S2 Severe to life-threatening injuries E2 Low probability C2 Normally controllable
S3 Life-threatening to fatal injuries E3 Medium probability C3 Difficult to control or uncontrollable

E4 High probability

TABLE II
ASIL DETERMINATION BASED ON SEVERITY, EXPOSURE, AND

CONTROLLABILITY IN ISO 26262 [1]

Severity Exposure Controllability

C1 C2 C3

S1 E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2 E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3 E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

determinations, where D is the highest level, and A is the lowest
level. QM is the quality management, and it means that develop-
ing a function according to QM is sufficient, without regard to
any safety-related design. Note that E0 and C0 do not constitute
ASIL because E0 stands for incredibly unlikely (0%), and C0
stands for controllable in general (100%). In general, severity
cannot be changed. The reason is that severity is associated with
the consequences of a function when risk occurs and has been
determined in hazard analysis and during the risk assessment
phase. Controllability can be changed because it is decided by
the current state of drivers; considering that this study focused
on the design phase, we assume that the function is uncontrol-
lable and it is denoted by C3 from a conservative perspective.
In this study, if we want to reduce the ASIL of a function, then
we need to reduce the exposure.

B. ASIL Decomposition

ISO 26262, Part 9, Section V provides the ASIL decomposi-
tion guide and scheme shown in Fig. 1 [1]. The decomposition
affects the total development cost and reliability (i.e., successful
probability) because a task has different worst case execution
times (WCETs) and development costs on different ASILs. We
consider a task ni with ASIL C. According to Fig. 1(c), we
can decompose ni into two redundant tasks, namely n1

i with
ASIL B and n2

i with ASIL A. n1
i can be further decomposed

into two ASIL A tasks according to Fig. 1(b). As all the WCETs
and development costs of tasks must be certified to the highest
criticality level ASIL D, we assume that all tasks of the function

Fig. 2. Five ASIL decomposition schemes of ASIL D.

are first executed on ASIL D, and then each task is replicated
to redundant tasks that can be executed in other ASILs through
ASIL decomposition. We can obtain all possible schemes of
ASIL D as follows.

1) ASIL D itself has three decomposition schemes,
ASIL C + ASIL A, ASIL B + ASIL B, and ASIL D,
as shown in Fig. 1(d).

2) ASIL C can be decomposed into ASIL B + ASIL A ac-
cording to Fig. 1(c), thus ASIL C + ASIL A can be further
decomposed to ASIL B + 2 × ASIL A, as shown with the
arrow from Fig. 2(a) to (d). Similarly, ASIL B + ASIL B
can also be further decomposed to ASIL B + 2 × ASIL A,
as shown with the arrow from Fig. 2(b) to (d). Therefore,
these two decompositions can only be considered as the
same result, as shown in Fig. 2(d).

3) ASIL B can be decomposed into ASIL A + ASIL A ac-
cording to Fig. 1(b), such that ASIL B + 2 × ASIL A can
be further decomposed to 4 × ASIL A, as shown with the
arrow from Fig. 2(d) to (e).

Finally, five ASIL decomposition schemes of ASIL D are
obtained as follows: ASIL C + ASIL A, ASIL B + ASIL B,
ASIL D, ASIL B + 2 × ASIL A, and 4 × ASIL A, as shown
with the arrows from Fig. 2(a) to (e).

Our objective is to choose the best scheme for each task.

200 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

TABLE III
CLASSES OF PROBABILITY OF EXPOSURE REGARDING DURATION/PROBABILITY

OF EXPOSURE IN ISO 26262 [1]

Exposure level Probability of exposure Reliability goal

E1 Very low probability Not specified At least exceeds 0.99
E2 Low probability <1% 0.99
E3 Medium probability [1%, 10%] > 0.9
E4 High probability >10% <=0.9

C. Exposure and Reliability Goal

ISO 26262 provides the duration/probability of exposure in
[1, Table B.2, Annex B of Part 3], as shown in Table III. For
example, the probability of exposure E4 is larger than 10% of
average operating time. Note that ISO 26262 does not define the
concept of reliability goal, but we can deduce the corresponding
reliability goals for given exposure levels as mentioned earlier.
For example, the probability of exposure E2 is less than 1%
of average operating time. That is, the lowest probability of a
occurrence hazardous event is close to 0.01; to ensure safety,
the actual reliability must be larger than or equal to 1–0.01 =
0.99, which is considered as the reliability goal in this case.
The reliability goals for other exposures can also be obtained
according to the above rule. Finally, the reliability goals for
exposures are shown in Table III.

IV. MODELS

A. System Architecture

Automotive E/E architecture has evolved into heterogeneous
distributed integrated architecture because of the size, weight,
and power consumption for cost and high-performance bene-
fits [21], [23], [36]. A high-end automotive system comprises
at least 70 heterogeneous electronic control units (ECUs) in-
terconnected by a central gateway, and the number of ECUs is
expected to increase further in future automotive systems [21],
[37].

Similar to [21], we consider a distributed integrated platform
as a controller area network (CAN) cluster (also called mul-
tidomain CAN systems), where more than four or five CAN
buses are integrated by a central gateway, and several ECUs
are mounted on each CAN bus. Each ECU contains a central
processing unit (CPU), random access memory and nonvolatile
memory, and a network interface card [7]. An ECU can execute
several tasks with different ASILs and a task can be executed on
different ECUs. A task executed completely in one ECU sends
messages to all its successor tasks, which may be located in
the same ECU or different ECUs of different buses. For exam-
ple, task n1 is executed on ECU u1 of CAN1 . It then sends a
message m1,2 to its successor task n2 located in u6 of CAN3
(see Fig. 3). The central gateway is a highly important node that
connects CAN clusters and allows messages to be passed from
one bus to another. U = {u1 , u2 , . . . , u|U |} represents a set of
heterogeneous ECUs, where |U | represents the size of set U .
Note that for any set X , this study uses |X| to denote its size.

Fig. 3. Integrated automotive architecture [21].

B. Function Model

Integrated architecture leads to an increase in distributed func-
tions with precedence-constrained tasks (e.g., brake-by-wires
and adaptive cruise control), which can be distributed over mul-
tiple ECUs [21], [23]. A distributed function is represented by a
DAG G = (N , W , M , C, V) [5], [20], [21], [37], [38]. The tasks,
messages, and development costs are described as follows.

1) N represents a set of tasks in G, and ni ∈ N represents the
ith task of G. pred(ni) represents the set of the immediate
predecessor tasks of ni , whereas succ(ni) represents the
set of the immediate successor tasks of ni . The task with
no predecessor task is denoted by nentry, whereas the task
with no successor task is denoted by nexit. If a DAG-based
function has multiple nentry or multiple nexit tasks, then a
dummy entry or exit task with zero-weight dependencies
is added to the graph. Each task ni ∈ N has different
WCETs on different ECUs even in the same ASIL. A task
with high ASIL has larger WCET than with low ASIL on
the same ECU. This is a key aspect of mixed-criticality
system because a higher level of assurance is required and
this property significantly modifies/undermines many of
the standard scheduling results [39].

2) W is a 4 × |N | × |U | cube, where wi,k,h denotes the
WCET of ni on the ECU uk and the ASIL Lh . All the
WCETs of the tasks are known through the analysis meth-
ods performed during the analysis phase [40]. All the
WCET values will be taken as input to optimize the de-
velopment cost during the design phase.

3) The communication between tasks mapped to different
ECUs is performed through message passing over the
bus. Hence, M is a set of communication edges, and each
edge mi,j ∈ M represents the communication message
from ni to nj .

4) Accordingly, ci,j ∈ C represents a worst case response
time (WCRT) of mi,j [37]. All the WCRTs of the mes-
sages are also known through the analysis methods per-
formed during the analysis phase [41].

5) V is a 4 × |N | matrix, where vi,h represents the develop-
ment cost of ni on the ASIL Lh . Each task has different
development costs under different criticality levels. A task
with high ASIL has larger development cost than that with
low ASIL [6], [7]. The reason is that a task developed at a
high ASIL will pay more effort to ensure functional safety

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 201

Fig. 4. Motivating example of a DAG-based distributed function.

than that at a low ASIL. Similar to [6], [7], we assume
that the development effort for each task on each ASIL
has been known because of the systematic nature of the
development processes dictated by the standards. In this
study, we consider nonpreemptive scheduling for ECUs
which can be supported by eCos operating system.

C. Motivating Example

Fig. 4 shows a motivating example of a DAG-based dis-
tributed function with six tasks. Weight 9 of the edge between
n1 and n2 in Fig. 4 represents the WCRT denoted by c1,2 = 9
if n1 and n2 are not allocated to the same ECU.

Table IV lists the WCETs of each task on four different ECUs
{u1 , u2 , u3 , u4} and four different ASILs {LA, LB, LC, LD}.
Weight 7 of n1 , u2 , and LA in Table IV represents the WCET
denoted by w1,2,A = 7. A task with high ASIL has larger WCET
than that with low ASIL on the same ECU as explained earlier.
A task with the same ASIL has different WCETs on different
ECUs because of the heterogeneity of the ECUs.

Table V lists the development costs of each task on four dif-
ferent ASILs {LA, LB, LC, LD}. Weight 5 of n1 , LA in Table V
represents the development cost denoted by v1,A = 5. A task
with high ASIL has larger development cost than that with low
ASIL as explained earlier.

D. Problem Description

We assume that a distributed function G is given with a known
reliability goal Rgoal(G) that would be executed on a heteroge-
neous multiple ECUs set U and ASIL set {LA, LB, LC, LD}.
Then, the problem to be addressed in this study is to allocate
an ECU and ASIL for each task replica while reducing the de-
velopment cost of G and satisfying its reliability goal Rgoal(G).
The formal description is finding the ECU and ASIL alloca-
tions of all the tasks to minimize the development cost of the

function G:

DC(G) =
∑

ni ∈N

DC (ni) (1)

subject to

R(G) =
∏

ni ∈N

R
(
ni, upr(i)

)
� Rgoal(G) (2)

where R(G) represents the actual reliability value and will be
explained in detail in Section V-A. DC(ni) represents the de-
velopment cost of ni .

V. RELIABILITY CALCULATION OF SCHEMES

As the decomposition of ASIL D has five fixed schemes
shown in Fig. 2, the work of this study is to select the scheme and
corresponding ECUs that minimizes the development cost while
satisfying the reliability goal of the function. Therefore, the first
problem of this study is how to calculate possible reliability
value of schemes.

A. Reliability and Task Replication

Generally, the occurrence of a transient failure for a task in
a distributed function follows a Poisson’s distribution [2]–[5],
[19], [20], [26]. The reliability of an event in unit time t is
denoted by

R (t) = e−λt

where λ is the constant failure rate per time unit for an ECU.
We use λk to represent the constant failure rate per time unit of
the ECU uk . The reliability of ni executed on uk and Lh in its
execution time is denoted by

R (ni, uk , Lh) = e−λk wi , k , h (3)

and the exposure for ni without using redundant replication is

E(ni, uk , Lh) = 1 − R (ni, uk , Lh) = 1 − e−λk wi , k , h . (4)

This study assumes that the function is implemented as soft-
ware tasks running on a distributed architecture. Because each
task has a certain number of replicas (i.e., redundancy) after
ASIL decomposition, and each scheme has a fixed number of
replicas, we define num(schemeg) as the number of replicas
of schemeg . As long as one replica of ni is successfully com-
pleted, ni is reliable. Therefore, the reliability value of ni with
allocated scheme schemeg is calculated by

R(ni, schemeg)

= 1 −
num (schemeg)∏

x=1

(
1 − R(nx

i , upr(nx
i) , Lcl(pr(nx

i)))
)

(5)

where nx
i represents the xth number of replicas of ni . upr(nx

i)
and Lcl(nx

i) represent the allocated ECU and ASIL of nx
i , re-

spectively. Then, the reliability of the distributed function is the
product of the reliability values of all tasks and is calculated by

R(G) =
∏

ni ∈N

R(ni) =
∏

ni ∈N

R(ni, schemesc(ni)) (6)

202 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

TABLE IV
WCETS (UNIT: MS) OF TASKS ON DIFFERENT ECUS AND ASILS

n1 n2 n3 n4 n5 n6

u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4

LA 4 7 5 8 10 9 4 7 5 8 13 6 14 11 10 6 14 12 16 8 1 6 3 8
LB 6 9 7 10 12 11 6 9 7 10 14 8 16 13 12 8 16 14 18 10 3 8 5 10
LC 8 11 9 12 14 13 8 11 9 12 16 10 18 15 14 10 18 16 20 12 5 10 7 12
LD 10 13 11 14 16 15 10 13 11 14 18 12 20 17 16 12 20 18 22 14 7 12 9 14

TABLE V
DEVELOPMENT COSTS (UNIT: EUROS IN THOUSANDS) OF

TASKS ON DIFFERENT ASILS

n1 n2 n3 n4 n5 n6

LA 5 7 5 4 5 8
LB 8 12 8 7 9 13
LC 12 17 11 11 14 18
LD 16 22 14 15 18 22

TABLE VI
FAILURE RATES OF ECUS {u1 , u2 , u3 , u4}

Parameter u1 u2 u3 u4

λk 0.01 0.02 0.03 0.04

where schemesc(ni) represents the allocated scheme of ni . Par-
ticularly, this study only involves the ECU failure and does
not include the communication failure in the problem (i.e., the
communication is assumed to be reliable in this study).

B. Reliability Calculation

In the previous analysis, to obtain the reliability value R(G)
of the function, we should first obtain the allocated scheme of
ni to calculate the reliability of each task (5). We first list an
example of calculating the reliability value of each task on a
given scheme. The failure rates of four ECUs are shown in
Table VI.

ASIL D is decomposed into one ASIL C and one ASIL A
in scheme1 [see Fig. 1(a)]. Thus, n1 with scheme1 may be
executed on the following ECUs and ASILs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(n1 , u1 , LC) = 0.92311635
R(n1 , u2 , LC) = 0.80251880
R(n1 , u3 , LC) = 0.76337949
R(n1 , u4 , LC) = 0.61878340
R(n1 , u1 , LA) = 0.96078944
R(n1 , u2 , LA) = 0.86935824
R(n1 , u3 , LA) = 0.86070798
R(n1 , u4 , LA) = 0.72614904.

(7)

Similarly a task has different WCETs on different ECUs or
different ASILs, and the failure rates vary in different ECUs.

Therefore, the reliability values are different in (7). As the num-
ber of replicas is two in scheme1 , we only need to select two
reliability values among eight candidates of (7). To obtain a high
reliability value for the scheme, we use the following steps to
select reliability values for n1 with scheme1 .

1) We select R(n1 , u1 , LA) = 0.96078944 because it has the
maximum reliability value among eight candidates.

2) We then select the second maximum reliability value for
LC , and R(n1 , u1 , LC) = 0.92311635 can be selected.
However, u1 has been occupied by Step 1). We should se-
lect the third maximum reliability value R(n1 , u2 , LC) =
0.80251880, where u2 has not been occupied, given the
parallel execution of the distributed function.

Finally, the reliability of n1 with scheme1 is calculated by
(5) as follows:

R(n1 , scheme1)

= 1 − (1 − R(n1 , u1 , LA)) (1 − R(n1 , u2 , LC))

= 1 − (1 − 0.96078944)(1 − 0.80251880) = 0.99225665.

C. RCS Algorithm

We presented a heuristic RCS algorithm, as shown in
Algorithm 1, to calculate the reliability of each scheme based
on the above-mentioned analysis.

The details of the RCS algorithm are explained as follows.
1) In Line 1, RCS obtains the decomposed ASIL

map map(schemeg) (< Lα, numα >, < Lβ , numβ >
, . . . , < Lγ , numγ >) of schemeg .

2) In Lines 2–6, RCS calculates R(ni, uk , Lh) using (4),
which is similar to the calculation of (7).

3) In Line 7, RCS sorts the reliability values in a list
descending reliability list by descending order of
R(ni, uk , Lh) values.

4) In Lines 8–22, RCS calculates R(ni, schemeg) based on
the heuristic idea explained in Section V-B to obtain a
high reliability value for the scheme as much as possible.

The time complexity of the RCS algorithm is analyzed as
follows.

1) The reliability of each task on each ECU and decomposed
ASIL should be calculated in O(|U |) time (Lines 2–6).

2) The descending reliability list should be sorted in
O(|N | × log |N |) time (Line 7).

3) Calculating R(ni, schemeg) should traverse all reliabil-
ity values and verify the occupied ECUs, which can be
performed in O(|U |× log |U |) time (Lines 8–21).

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 203

Algorithm 1: RCS Algorithm.

Input: U = {u1 , u2 , . . . , u|U |}, {LA, LB, LC, . . . , LD}, ni

and related values
Output: R(ni, schemeg) and related values

1: Obtain the decomposed ASIL map map(schemeg)
(<Lα, numα >,<Lβ , numβ >, . . . , <Lγ , numγ>) of
schemeg , where numα represents the number of Lα ;

2: for (each ASIL Lh ∈ map(schemeg) do
3: for (each ECU uk ∈ U) do
4: Calculate R(ni, uk , Lh) using (4);
5: end for
6: end for
7: Sort the reliability values in a list descending

reliability list by descending order of R(ni, uk , Lh)
values.

8: while (true) do
9: R(ni, uk , Lh) ← descending reliability list.

out();
10: if (uk has been occupied by any replica of ni) then
11: continue;
12: end if
13: if (the number of times to select Lh reaches numh)

then
14: continue;
15: end if
16: if (the number of times to select any Lh reaches

numh) then
17: break;
18: end if
19: upr(nx

i) ← uk ;
20: Lcl(nx

i) ← Lh ;
21: end while
22: Calculate R(ni, schemeg) using (5);

Considering Line 7 occupies the main time, the time com-
plexity of the RCS algorithm is O(|N | × log |N |).

VI. MINIMIZING DEVELOPMENT COST WITH

RELIABILITY GOAL

As the reliability value of each scheme for each task has been
obtained by using the RCS algorithm in the previous section,
we can solve the final problem of MDCRG on heterogeneous
automotive systems. However, scheduling tasks with QoS re-
quirement for optimality on multiprocessors is known to be an
NP-hard optimization problem. List scheduling is a well-known
heuristic method with low time complexity for a DAG-based
distributed function [21], [37], [38], and it includes two phases.
The first phase orders tasks based on the descending order of
priorities (task prioritization), whereas the second phase allo-
cates each task to the appropriate ECU (task allocation). Most
works use search algorithms to find the decomposition schemes
[6], [7], [16], [17]. The limitation of search algorithms is that
they are time-consuming. Considering that the automotive in-
dustry is cost-sensitive, shortening the function’s development

TABLE VII
UPWARD RANK VALUES OF THE TASKS OF THE DISTRIBUTED

FUNCTION IN FIG. 4 [38]

Task n1 n2 n3 n4 n5 n6

ranku (ni) 117 96 67 380 42 10

life cycle to reduce development cost is crucial. Therefore, us-
ing heuristic list scheduling method with low time complexity
to solve the problem is more suitable than search algorithms
from a development progress control perspective. In this study,
we also use the list scheduling to solve the subject problem by
task prioritization and task allocation. Task prioritization takes
the existing method explained in Section VI-A, whereas task
allocation is decomposed into two subproblems: satisfying the
reliability goal and minimizing the development cost, explained
in Sections VI-B and VI-C, respectively.

A. Task Prioritization

Similar to [38], [21], and [42], this study uses the upward
rank value (ranku) of a task given by (8) as the common task
priority standard. We use the highest level ASIL D to determine
the task priority according to the ISO 26262 standard because a
task has different WCETs on different ASILs. Therefore, all the
tasks are ordered according to the decreasing order of ranku :

ranku (ni) = wi,D + max
nj ∈succ(ni)

{ci,j + ranku (nj)} (8)

where ci,j represents the WCRT of the message ci,j as men-
tioned earlier. wi,D represents the average WCET of task ni on
ASIL D and is calculated by

wi,D =

⎛
⎝

|U |∑
k=1

wi,k,D

⎞
⎠ /|U |.

Table VII shows the upward rank values of all the tasks (see
Fig. 4). If all the predecessors of ni have been allocated to the
ECUs, then ni is prepared to be allocated. We assume that two
tasks ni and nj satisfy ranku (ni) > ranku (nj). If no prece-
dence constraint exists between ni and nj , then ni may not have
higher priority than nj . Finally, the task allocation order in G is
{n1 , n2 , n3 , n5 , n4 , n6}.

B. Satisfying Reliability Goal

The minimum and maximum reliability values can be ob-
tained by traversing all the schemes because the reliability of
each task on each scheme can be obtained through Algorithm 1.
Both values are calculated by

Rmin(ni) = min
g∈[1,5]

R(ni, schemeg) (9)

and

Rmax(ni) = max
g∈[1,5]

R(ni, schemeg) (10)

respectively.

204 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

The minimum and maximum reliability values of G are cal-
culated by

Rmin(G) =
∏

ni ∈N

Rmin (ni) (11)

and

Rmax(G) =
∏

ni ∈N

Rmax (ni) (12)

because the reliability of function G is the product of the relia-
bility values of all the tasks (6).

As mentioned earlier, the reliability goal Rgoal(G) should
be satisfied during ASIL decomposition. Note that Rgoal(G)
should be larger than or equal to Rmin(G); otherwise, Rgoal(G)
is always satisfied. Meanwhile, Rgoal(G) should be less than
or equal to Rmax(G); otherwise, Rgoal(G) cannot always be
satisfied. Hence, this study assumes that Rgoal(G) belongs to
the scope Rmin(G) and Rmax(G), namely

Rmin(G) � Rgoal(G) � Rmax(G). (13)

In this study, we can obtain the Rmin(G) = 0.43171052 and
Rmax(G) = 0.99452100 of the motivating distributed function.
We assume that the reliability goal is Rgoal(G) = 0.9.

The strategy of satisfying the reliability goal of the distributed
function G is shown as follows. We assume that the task to
be allocated is nseq(j) , where seq(j) represents the jth al-
located sequence. Therefore, {nseq(1) , nseq(2) , . . . , nseq(j−1)}
represents the set of tasks that have been allocated, and
{nseq(j+1) , nseq(j+2) , . . . , nseq(|N |)} represents the set of tasks
that have not been allocated. To ensure the reliability of the
function at each task allocation, we presuppose that each task in
{nseq(j+1) , nseq(j+2) , . . . , nseq(|N |)} is allocated to the scheme
with the maximum reliability value. Hence, when allocating
nseq(j) , the reliability of G is calculated by

R(G) =
j−1∏
x=1

R
(
nseq(x) , upr(seq(x))

)

× R
(
nseq(j)

) ×
|N |∏

y=j+1

Rmax
(
nseq(y)

)
.

Given that R(G) should be larger than or equal to Rgoal(G), we
have

R(G) =
j−1∏
x=1

R
(
nseq(x) , upr(seq(x))

)

× R
(
nseq(j)

) ×
|N |∏

y=j+1

Rmax
(
nseq(y)

) ≥ Rgoal(G)

namely

R(nseq(j)) ≥
Rgoal(G)∏j−1

x=1R(nseq(x)) ×
∏|N |

y=j+1Rmax(nseq(y))
.

(14)

Hence, we let the reliability goal of task nseq(y) be

Rgoal(nseq(j)) =
Rgoal(G)∏j−1

x=1R(nseq(x)) ×
∏|N |

y=j+1Rmax(nseq(y))
.

(15)
Given that the minimum reliability of nseq(j) is Rmin(nseq(j))
[calculated by (9)], Rgoal(nseq(j)) should be updated to

Rgoal(nseq(j)) = max{Rgoal(nseq(j)), Rmin(nseq(j))}. (16)

Given that the maximum reliability of nseq(j) is Rmax(nseq(j))
[calculated by (10)], Rgoal(nseq(j)) should be further updated to

Rgoal(nseq(j)) = min{Rgoal(nseq(j)), Rmax(nseq(j))}. (17)

Therefore, the reliability goal of the function can be transferred
to each task. In other words, we only let nseq(j) satisfy the
following constraint:

R(nseq(j)) � Rgoal(nseq(j)).

Hence, when allocating task nseq(j) , we can directly consider the
reliability goal Rgoal(nseq(j)) of nseq(j) and ignore the reliability
goal of function G. As a result, a low time complexity heuristic
algorithm can be achieved.

C. Minimizing Development Cost

We let DC(ni, schemeg) represent the development cost of
ni with scheme schemeg . We can obtain the development cost
of each scheme shown in Fig. 2, given that each scheme has
fixed ASILs, shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DC(ni, scheme1) = vi,C + vi,A

DC(ni, scheme2) = 2vi,B

DC(ni, scheme3) = vi,D

DC(ni, scheme4) = 2vi,A + vi,B

DC(ni, scheme5) = 4vi,A

(18)

where vi,h represents the development cost of ni on ASIL Lh

as mentioned earlier.
The minimum and maximum development costs of each

scheme can be obtained by traversing all the five schemes. Both
costs are calculated by

DCmin(ni) = min
g∈[1,5]

DC(ni, schemeg) (19)

and

DCmax(ni) = max
g∈[1,5]

DC(ni, schemeg) (20)

respectively.
We let schemesc(ni) represent the allocated scheme of ni .

Thus, the total development cost of the distributed function is

DC(G) =
∑

ni ∈N

DC(ni) =
∑

ni ∈N

DC(ni, schemesc(ni)).

(21)
The total development cost of function G is the sum of the

development costs of all the tasks. Thus, the minimum and

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 205

maximum development costs of G are calculated by

DCmin(G) =
∑

ni ∈N

DCmin (ni) (22)

and

DCmax(G) =
∑

ni ∈N

DCmax (ni). (23)

The obtained minimum development value is DCmin(G) =
106, and its corresponding reliability value is 0.65648591. How-
ever, 0.65648591 cannot satisfy the reliability value of 0.9,
which is the reliability goal of the motivating distributed func-
tion. Therefore, we should particularly consider that the relia-
bility goal must be satisfied in ASIL decomposition.

In this study, we can obtain the Rmin(G) = 0.43171052 and
Rmax(G) = 0.99452100 of the motivating distributed function.
We assume that the reliability goal is Rgoal(G) = 0.9.

In the following paragraphs, the algorithm called MDCRG
is presented to reduce the development cost of a distributed
function while satisfying its reliability goal, as shown in
Algorithm 2.

The core idea of MDCRG is that the reliability goal of
the function is transferred to each task. Each task only selects
the scheme with the MDC while satisfying its reliability goal.
The main details are explained as follows.

1) MDCRG obtains the reliability goal of each task before it
prepares the tasks to be allocated (Line 9).

2) MDCRG skips the schemes that do not satisfy the reliabil-
ity goal (Lines 12–14); that is, it does not need to calculate
the total reliability of the function and determine whether
it satisfies the given reliability goal in each task allocation
by traversing all the tasks.

3) MDCRG selects the scheme with the MDC for each
task while satisfying the condition R(ni, schemeg) <
Rgoal(ni) (Lines 15–19).

4) If two schemes have the same development cost, then the
scheme with the higher reliability value is selected (Lines
20–24).

The time complexity of the MDCRG algorithm is analyzed as
follows. Scheduling all tasks must involve traversing all tasks,
which can be done in O(|N |) time. The RCS algorithm is called
to calculate the reliability value of each scheme in O(|N | × log
|N |). Therefore, the time complexity of the MDCRG algorithm
is O(|N |2 × log |N |). Thus, MDCRG implements effective
development cost minimization without sacrificing time com-
plexity.

D. Example of the MDCRG Algorithm

The process and results of the motivating example using the
MDCRG algorithm are illustrated in this section. We assume
that the constant failure rates for four ECUs are still shown
in Table VI and that the reliability goal is still Rseq(G) = 0.9.
Table VIII lists scheme allocation of the motivating distributed
function using the MDCRG algorithm. Each row shows the
selected scheme (denoted by bold text) and the corresponding
reliability value and development cost. For example, MDCRG

Algorithm 2: The MDCRG Algorithm.

Input: U = {u1 , u2 , . . . , u|U |}, {LA, LB, LC, . . . , LD}, G,
Rgoal(G)
Output: R(G), DC(G) and related values

1: Sort the tasks in a list descending task list by
descending order of ranku (ni) values using (8);

2: while (there are tasks in descending task list) do
3: ni ← descending task list.out();
4: for (g ← 1; g ≤ 5; g++) do
5: Calculate R(ni, schemeg) using the RCS

algorithm;
6: Calculate DC(ni, schemeg) using (18)
7: end for
8: Calculate Rmin(ni) and Rmax(ni) using (9) and (10),

respectively;
9: Calculate Rgoal(ni) using (16); //1) calculate the

reliability goal of ni before it prepares to be allocated.
10: sc(ni) ← 0, DC(ni) ← ∞, R(ni) ← 0;
11: for (g ← 1; g ≤ 5; g++) do
12: if (R(ni, schemeg) < Rgoal(ni)) then
13: continue; //2) skip the schemes that do not

satisfy the reliability goal of ni .
14: end if
15: if (DC(ni, schemeg) < DC(ni)) then
16: sc(ni) ← g;
17: R(ni) ← R(ni, schemesc(ni

);
18: DC(ni) ← DC(ni, schemesc(ni

);
19: end if//3) select the scheme with the minimum

development cost DC(ni, schemesc(ni)).
20: if (DC(ni, schemeg) == DC(ni)&&

R(ni, schemeg) > R(ni)) then
21: sc(ni) ← g;
22: R(ni) ← R(ni, schemesc(ni

);
23: DC(ni) ← DC(ni, schemesc(ni

);
24: end if//4) if two schemes have the same

development cost, then select the scheme with
the higher reliability value R(ni, schemesc(ni)).

25: end for
26: end while
27: Calculate the actual reliability R(G) using (2);
28: Calculate the final development cost DC(G) using (1).

selects scheme scheme2 because it has the MDC of 16 in satis-
fying the reliability goal of 0.90483742. We note that scheme3
also has the MDC of 16, and its reliability value can also satisfy
its reliability goal. However, if two schemes have the same de-
velopment cost, then the scheme with the higher reliability value
is selected. The advantage of such strategy is that the reliability
goals of the remaining tasks can be reduced according to (15).
Therefore, the actual reliability value and the final development
cost of n1 are R(n1) = 0.99040688 and DC(n1) = 16. All the
remaining tasks use the same pattern with n1 . Finally, the actual
reliability value is R(G) = 0.918901856, and the final develop-
ment cost of function G is DC(G) = 115, which are calculated
by (2) and (1), respectively.

206 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

TABLE VIII
SCHEME ALLOCATION OF THE MOTIVATING DISTRIBUTED FUNCTION USING THE MDCRG ALGORITHM

ni Rgoal(ni) R(ni , scheme1)& R(ni , scheme2)& R(ni , scheme3)& R(ni , scheme4)& R(ni , scheme5)&
&DC(ni , scheme1) DC(ni , scheme2) DC(ni , scheme3) DC(ni , scheme4) DC(ni , scheme5)

n1 0.90483742 0.9922566517 0.9904068816 0.9048374216 0.9990297118 0.9998046020
n2 0.91314970 0.9796949624 0.9813724324 0.8521437922 0.9978749226 0.9995670928
n3 0.93161239 0.9895937216 0.9877450816 0.8958341414 0.9980252518 0.9995031120
n5 0.93866938 0.9642236319 0.9638911118 0.8187307518 0.9908100719 0.9970899120
n4 0.97244400 0.9661400315 0.9661485514 0.8187307515 0.9929348415 0.9985732416
n6 0.97933739 0.9981963426 0.995883326 0.9323938222 0.9998733829 0.9999734832

R(G) = 0.918901856, DC(G) = 115

Fig. 5. Task mapping of the motivating distributed function.

We observe that the final reliability is R(G) =
0.918901856 > Rgoal(G) = 0.9. Thus, the reliability goal of
the function has been satisfied. The MDC of the function is
DCmin(G) = €106 k [calculated by (22)] in Section VI-C,
which is €9 k less than that using MDCRG. However, the cor-
responding reliability value for DCmin(G) = €106 k is merely
R(G) = 0.65648591.

Fig. 5 also shows the task mapping of the motivating dis-
tributed function G using MDCRG. The tasks with different
colors mean that they are executed on corresponding ASILs,
where ASIL A, ASIL B, ASIL C, and ASIL D are denoted
by green, blue, yellow, and red, respectively. For example, n1
selects the scheme2 containing two ASIL B executed on two
ECU u1 and u2 . The reason is that scheme2 has the MDC of 16
while satisfying n1’s reliability goal of 0.90483742, shown in
Table VIII. Finally, the end-to-end response time is 108 ms. Note
that the arrows in Fig. 5 represent generated communications
between tasks.

VII. EXPERIMENTS

A. Experimental Metrics

Considering that this study aims to minimize the develop-
ment cost of a distributed automotive function with a reliability
goal, performance metrics selected for comparison should be
the actual reliability value and final development cost of the
function. Meanwhile, computation time (i.e., the time to find
a solution) should be included from a development life cycle
perspective. The final development cost DC(G) and the actual
reliability value R(G) are calculated by (1) and (2), respectively.
The computation time is measured from the start time to the end
time of an algorithm to find a solution.

Algorithms compared with the proposed MDCRG algorithms
are the MDC and genetic algorithm with reliability goal (GARG)
algorithms. MDC is obtained by (22) and is optimal because it

does not consider a reliability goal or timing constraint. GARG
is a genetic algorithm to search an enough optimal solution.
Genetic algorithm has been developed to solve the problem of
development cost reduction for DAG-based distributed func-
tions. Therefore, we believe that MDC and GARG are suitable
as compared algorithms in this study.

Considering that this study focuses on the design phase, the
function parameters used in this phase are known based on real
deployment. In other words, these values have been obtained in
the analysis phase. We use the parameter values of real auto-
motive systems as experimental data. The parameter values of
the function used in this study are as follows. The failure rate
of each task falls in the range of 10−5–10−4 in the time unit of
1 μs. The WCETs of the tasks and the WCRTs of the messages
fall under the range of 100–1600 μs. The development cost of
each task falls in the range of €0–€30 k. The aforementioned
values are generated with uniform distribution.

The distributed functions will be tested on a simulated system
based on the above real function parameter values to reflect a
real deployment. A main advantage of simulation is that it can
greatly reduce life cycle cost during the design phase and effec-
tively provide certain optimization guide to the implementation
phase. The simulated system is configured with 16 heteroge-
neous ECUs by creating 16 ECU objects based on the known
parameter values using Java on a standard desktop computer
with 2.6-GHz Intel CPU and 4-GB memory.

Note that the values of experimental results are obtained by
executing one run for one function. Many tests with the same
parameter values and scales are preformed and show the same
regular pattern and relatively stable results. In other words, ex-
periments are repeatable and do not affect the consistency of the
results. Considering that GARG is a genetic algorithm and is
a randomized method, the experiment needs to be run multiple
times and use statistical tests for the analysis of results. We did
several experiments using the GARG algorithm, we recorded
that GARG is also relatively stable to the results produced by
MDC and MDCRG. Therefore, GARG-generated values are
also obtained by executing one run for one function.

B. Real-Life Benchmark

We use the real-life benchmark of an automotive case study
shown in Fig. 6 adopted from [6]. This function consists of
six function blocks: engine controller with seven tasks (n1–
n7), automatic gear box with four tasks (n8–n11), antilocking
brake system with six tasks (n12–n17), wheel angle sensor with

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 207

Fig. 6. Benchmark of real-time automotive function from [6].

Fig. 7. Actual reliability values of the real-life function for varying reliability
goals.

two tasks (n18–n19), suspension controller with five tasks (n20–
n24), and body work with seven tasks (n25–n31).

Experiment 1: This experiment is conducted to compare the
actual reliability values and the final development costs of a
real-life function for varying reliability goals. The reliability
goal is changed from 0.9 to 0.99 with a 0.01 increment because
values of reliability goals fall in the range of exposure E3 and
E2 (see Table III). Meanwhile, the maximum reliability goal for
the function is set as 0.999999, which belongs to the reliability
goal in E1.

Fig. 8. Development costs (unit: Euros in thousands) of the real-life function
for varying reliability goals.

Fig. 7 shows the actual reliability values of the real-life func-
tion for varying reliability goals. The following observations are
found.

1) The minimum and maximum reliability values calculated
by (11) and (12) are 0.753075 and 0.999999999, respec-
tively.

2) In all the cases, the actual reliability values using the
MDCRG and GARG algorithm can always satisfy and
are very close to the corresponding reliability goals. The
maximum difference between actual reliability values and
reliability goals are merely 0.006 and 0.0001 for MDCRG
and GARG, respectively.

3) In all the cases, the actual reliability values using the
MDC algorithm are approximately 0.836166, which is
larger than the minimum reliability value of 0.753075,
but they cannot satisfy individual reliability goals.

The above-mentioned results validate that MDC is not de-
signed to satisfy the reliability goals of functions in practice. By
contrast, MDCRG and GARG can always satisfy the reliability
goals, and the actual reliability values are close to the reliability
goals without excessive waste.

Fig. 8 shows the development costs of the real-life function
for varying reliability goals, and the following observations are
made.

1) The minimum and maximum development costs calcu-
lated by (22) and (23) are €592 k and €901 k, respectively.
Thus, the development costs using MDC is €592 k.

2) The development costs obtained by MDCRG are not
increased linearly with increased reliability goal. The
minimum and maximum development costs are €641 k
(Rgoal = 0.9) and €724 k (Rgoal = 0.97), respectively.
The reason could be explained as follows: There are five
fixed ASIL decomposition schemes and these schemes
could add more redundant tasks for some reliability goals.
However, we can select the optimal reliability goal that has
MDC in a given interval. For example, some automakers
may expect a reliability goal of 0.97, but the actual se-
lected reliability goal will be 0.98 because it generates the

208 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

lowest development cost as long as the reliability goal is
not less than 0.97.

3) The development costs using MDCRG are higher than the
MDCs using MDC. The reason is that MDCRG needs to
satisfy its reliability goal and skip some schemes that can-
not satisfy the reliability goal of the functions in the task
allocation (see Lines 12–19 of Algorithm 2). However,
the development costs using MDCRG are still close to the
MDCs and are distant from the maximum development
costs.

4) The development costs using GARG are always between
those using MDC and MDCRG. The reason is that GARG
can find the exact MDCs while satisfying given reliability
goals, whereas MDCRG is a heuristic list scheduling al-
gorithm to obtain approximate MDCs. The results show
that GARG can save as much as 14.5% of development
cost than MDCRG.

5) Although development costs are increasing with reliabil-
ity goals overall, they do not increase linearly. For ex-
ample, we can easily observe that when the reliability
goal is 0.97, the second maximum development cost with
€724 k and €644 k increases for MDCRG and GARG,
respectively. Such results indicate that larger reliabil-
ity goals do not lead to lower development costs using
MDCRG.

6) Besides some interesting relations between development
cost and reliability goal are derived from the experiment
results, it would be to assess the efficiency of the MD-
CRG and GARG algorithms, namely how much time they
take to find the results. Our results show that MDCRG
merely needs less than 1 s to find the results in all cases.
However, GARG needs at least 19 h to find the devel-
opment cost in each case. As pointed out in Section II,
shortening the function’s development life cycle to reduce
development cost is crucial during the design phase be-
cause automotive industry is cost-sensitive. Therefore, us-
ing heuristic list scheduling method is more suitable than
genetic algorithm from a development progress control
perspective.

C. Simulated Functions With Real Parameter Values

To further validate the effectiveness of the proposed MDCRG
algorithm, we use additional simulated functions with the same
real parameter values of the real-life function to observe the
results.

Experiment 2: The increasing complexity of automotive sys-
tems will likely lead to future automotive functions to include
at least 50 tasks and may reach 100 tasks. This experiment
shows the development costs of functions for varying reliability
goals, which are changed from 0.9 to 0.98 with 0.01 incre-
ments, because exposure E3 is primarily used in actual system
design. The reliability goals can always be satisfied in all cases
in Experiment 1. Hence, the reliability values of the functions
are no longer provided. Considering that GARG is very time-
consuming and more tasks will take more running time, we no
longer provide the running time values using GARG.

Fig. 9. Development costs (unit: Euros in thousands) of simulated function
with 500 tasks for varying reliability goals.

Fig. 10. Development costs (unit: Euros in thousands) of simulated function
with 100 tasks for varying reliability goals.

Figs. 9 and 10 show the development costs of functions with
50 tasks and 100 tasks, respectively, for varying reliability goals.
The following observations are made.

1) The minimum and maximum development costs for the
function with 50 tasks are €968 k and €1499 k, respec-
tively (see Fig. 9), whereas those for the function with 100
tasks are €1898 k and €2921 k (see Fig. 10). Thus, more
tasks need more development costs, which are approxi-
mately linearly increased.

2) The development costs for the function with 50 tasks using
MDCRG fall under the range of €1080 k and €1281 k (see
Fig. 9), whereas those for the function with 100 tasks fall
under the range of €1898 k and €2921 k (see Fig. 10).
Such results further indicate that the development costs
are approximately linearly increased with the increment
of tasks.

3) Similar to Experiment 1, the development costs for func-
tions with 50 tasks and 100 tasks using MDCRG still

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 209

Fig. 11. Actual reliability values of the real-life function for varying numbers
of tasks.

Fig. 12. Development costs (unit: Euros in thousands) of the real-life function
for varying numbers of tasks.

do not increase linearly with the increment of reliability
goals. When the reliability goal is 0.95, both functions
need maximum reliability costs. The minimum reliability
cost occurs when the reliability goal is 0.9.

Experiment 3: We are interested in obtaining the results for
varying number of tasks of functions with a reliability goal fixed
at 0.9, given that MDCRG usually obtains minimum develop-
ments cost when the reliability goal is 0.9, which is the least
reliability goal of E3. In this experiment, the number of tasks is
changed from 20 to 100 with ten increments.

Figs. 11 and 12 show the actual reliability values and devel-
opment costs of functions for varying number of tasks.

1) Fig. 11 shows that the minimum reliability values and
the reliability values using MDC are reduced with the
increment of the numbers of tasks. The reason is that the
reliability of a function is the product of all its tasks.

2) We find that the reliability values using MDC cannot sat-
isfy the reliability goal of 0.9 in all the cases, whereas
those using MDCRG can still always satisfy and are very

close to the reliability goal in all the cases. The maximum
difference between the actual reliability values and the
reliability goals is merely 0.004.

3) All the algorithms would generate increased development
costs with the increment of the number of tasks, as shown
in Fig. 12, because more tasks could lead to higher devel-
opment costs. Fortunately, the development costs using
MDCRG are still close to the MDCs and are distant from
the maximum development costs in all cases, even when
the number of tasks is increased.

In summary, combined with the results of real-life and simu-
lated functions, the proposed MDCRG algorithm is effective in
minimizing development costs while still satisfying correspond-
ing reliability goals. We believe that MDCRG can effectively
explore a part of the design space of development cost during
the design phase in the development life cycle of a safety-critical
function. Programmers can implement the function according
to the ASIL decomposition scheme of each task generated by
MDCRG in the later implementation phase.

VIII. CONCLUSION

This study develops an effective development cost minimiza-
tion solution for a distributed automotive function with a re-
liability goal on heterogeneous automotive systems by using
ASIL decomposition during the design phase. This study pre-
sented two heuristic algorithms, RCS and MDCRG, to solve
the problem. RCS calculates the reliability value of each ASIL
decomposition scheme, and MDCRG transfers the reliability
goal of the function to each task and selects the ASIL decom-
position scheme with the MDC, while satisfying the reliability
goal of the task. MDCRG is validated with real-life and sim-
ulated distributed automotive functions in various situations.
Considering that the timing constraint is also an important func-
tional safety requirement in real-time embedded systems and
has been studied by the state-of-the-art studies in minimiz-
ing development cost, our future studies will simultaneously
consider the timing constraint and reliability goal to minimize
the development cost for distributed automotive functions on
heterogeneous architecture. It will be feasible to consider tim-
ing requirement and reliability goal one by one in the design
phase, or to consider them simultaneously to conduct biobjective
optimization.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the asso-
ciate editor and three anonymous reviewers for their construc-
tive comments, which have helped to improve the quality of this
paper.

REFERENCES

[1] Road Vehicles—Functional Safety—Part 1: Vocabulary, ISO Standard
26262–1, 2011.

[2] D. Zhu and H. Aydin, “Reliability-aware energy management for periodic
real-time tasks,” IEEE Trans. Comput., vol. 58, no. 10, pp. 1382–1397,
Oct. 2009.

210 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

[3] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-time
embedded applications under hard energy constraint,” IEEE Trans. Ind.
Informat., vol. 6, no. 3, pp. 316–328, Aug. 2010.

[4] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency
and reliability enhancements in real-time applications with precedence
constraints,” ACM Trans. Des. Autom. Electron. Syst., vol. 18, no. 2,
pp. 99–109, Mar. 2013.

[5] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling with less
resource redundancy,” Parallel Comput., vol. 39, no. 10, pp. 567–585,
Jul. 2013.

[6] J. Gan, P. Pop, and J. Madsen, “Tradeoff analysis for dependable real-time
embedded systems during the early design phases,” Ph.D. dissertation,
Dept. Inf. Math. Model., Tech. Univ. Denmark, Kongens Lyngby, Den-
mark, 2014.

[7] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time embedded systems,” ACM Trans. Embedded Comput. Syst.,
vol. 14, no. 3, May 2015, Art. no. 50.

[8] E. Denney and G. Pai, “Automating the assembly of aviation safety cases,”
IEEE Trans. Rel., vol. 63, no. 4, pp. 830–849, Dec. 2014.

[9] IEC, “IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems,” Int. Electrotech. Commission, Geneva,
Switzerland, 2010.

[10] J. Machrouh et al., “Cross domain comparison of system assurance,” in
Proc. Embedded Real Time Softw. Syst., Toulouse, France, 2012, pp. 1–3.

[11] M. Jorgensen and M. Shepperd, “A systematic review of software devel-
opment cost estimation studies,” IEEE Trans. Softw. Eng., vol. 33, no. 1,
pp. 33–53, Jan. 2007.

[12] B. Boehm, C. Abts, and S. Chulani, “Software development cost estima-
tion approaches–A survey,” Ann. Softw. Eng., vol. 10, nos. 1–4, pp. 177–
205, Nov. 2000.

[13] J. A. Debardelaben, V. K. Madisetti, and A. J. Gadient, “Incorporating cost
modeling in embedded-system design,” IEEE Des. Test Comput., vol. 14,
no. 3, pp. 24–35, Jul. 1997.

[14] Y. Papadopoulos et al., “Automatic allocation of safety integrity lev-
els,” in Proc. 1st Workshop Crit. Autom. Appl. Robustness Safety, 2010,
pp. 7–10.

[15] D. Sojer, C. Buckl, and A. Knoll, “Propagation, transformation and re-
finement of safety requirements,” in Proc. 3rd Workshop Non-Funct. Syst.
Properties Domain Specific Model. Lang., 2010, pp. 1–15.

[16] D. Parker, M. Walker, L. S. Azevedo, Y. Papadopoulos, and R. E. Araújo,
“Automatic decomposition and allocation of safety integrity levels using
a penalty-based genetic algorithm,” in Proc. Int. Conf. Ind. Eng. Other
Appl. Appl. Intell. Syst., 2013, pp. 449–459.

[17] L. S. Azevedo, D. Parker, M. Walker, Y. Papadopoulos, and R. E. Araujo,
“Automatic decomposition of safety integrity levels: Optimization by tabu
search,” in Proc. 2nd Workshop Crit. Autom. Appl. Robustness Safety 32nd
Int. Conf. Comput. Safety Rel. Security, 2013, pp. 1–6.

[18] P. Bieber, R. Delmas, and C. Seguin, “DALculus—Theory and tool for
development assurance level allocation,” in Proc. Int. Conf. Comput. Safety
Rel. Security. 2011, pp. 43–56.

[19] S. M. Shatz and J. P. Wang, “Models and algorithms for reliability-oriented
task-allocation in redundant distributed-computer systems,” IEEE Trans.
Rel., vol. 38, no. 1, pp. 16–27, Apr. 1989.

[20] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant scheduling with
dynamic number of replicas in heterogeneous systems,” in Proc. 12th IEEE
Int. Conf. High Performance Comput. Commun., 2010, pp. 434–441.

[21] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “High performance real-
time scheduling of multiple mixed-criticality functions in heteroge-
neous distributed embedded systems,” J. Syst. Archit., vol. 70, pp. 3–14,
Oct. 2016.

[22] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli,
“Stochastic analysis of can-based real-time automotive systems,” IEEE
Trans. Ind. Informat., vol. 5, no. 4, pp. 388–401, Nov. 2009.

[23] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from federated
to integrated architectures in automotive: The role of standards, methods
and tools,” Proc. IEEE, vol. 98, no. 4, pp. 603–620, Apr. 2010.

[24] J. D. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, Jun. 1975.

[25] S. K. Baruah, “Task partitioning upon heterogeneous multiprocessor plat-
forms,” in Proc. IEEE Real-Time Embedded Technol. Appl. Symp., 2004,
pp. 536–543.

[26] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert, “Reliability of
task graph schedules with transient and fail-stop failures: Complex-
ity and algorithms,” J. Scheduling, vol. 15, no. 5, pp. 615–627, Oct.
2012.

[27] A. Benoit, F. Dufossé, A. Girault, and Y. Robert, “Reliability and perfor-
mance optimization of pipelined real-time systems,” J. Parallel Distrib.
Comput., vol. 73, no. 6, pp. 851–865, 2013.

[28] Z. Li, M. Mobin, and T. Keyser, “Multi-objective and multi-stage relia-
bility growth planning in early product-development stage,” IEEE Trans.
Rel., vol. 65, no. 2, pp. 769–781, Jun. 2016.

[29] A. Dogan and F. Ozguner, “Matching and scheduling algorithms for min-
imizing execution time and failure probability of applications in hetero-
geneous computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
pp. 308–323, Mar. 2002.

[30] A. Doğan and F. Özgüner, “Biobjective scheduling algorithms for ex-
ecution time–reliability trade-off in heterogeneous computing systems,”
Comput. J., vol. 48, no. 3, pp. 300–314, Mar. 2005.

[31] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics providing
a guaranteed global system failure rate,” IEEE Trans. Depend. Secure
Comp., vol. 6, no. 4, pp. 241–254, Oct.–Dec. 2009.

[32] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective scheduling
algorithms for optimizing makespan and reliability on heterogeneous sys-
tems,” in Proc. 19th ACM Int. Symp. Parallel Algorithms Archit., 2007,
pp. 280–288.

[33] M. Lin, Y. Pan, L. T. Yang, M. Guo, and N. Zheng, “Scheduling co-design
for reliability and energy in cyber-physical systems,” IEEE Trans. Emerg.
Topics Comput., vol. 1, no. 2, pp. 353–365, Dec. 2013.

[34] Z. Li, L. Wang, S. Li, S. Ren, and G. Quan, “Reliability guaranteed energy-
aware frame-based task set execution strategy for hard real-time systems,”
J. Syst. Softw., vol. 86, no. 12, pp. 3060–3070, Dec. 2013.

[35] J. Yi, Q. Zhuge, J. Hu, S. Gu, M. Qin, and H. M. Sha, “Reliability-
guaranteed task assignment and scheduling for heterogeneous multipro-
cessors considering timing constraint,” J. Signal Process. Syst., vol. 81,
no. 3, pp. 1–17, Dec. 2015.

[36] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a feder-
ated to an integrated automotive architecture,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 28, no. 7, pp. 956–965, Jul. 2009.

[37] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on networked
embedded systems,” J. Parallel Distrib. Comput., vol. 83, pp. 1–12,
Sep. 2015.

[38] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Aug. 2002.

[39] A. D. Burns and R. Davis, “Mixed-criticality systems: A review (eighth
edition),” 2016. [Online]. Available: http://www-users.cs.york.ac.uk/
burns/review.pdf

[40] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time systems,” in Proc. 23rd IEEE Real-Time Syst. Symp., 2002,
pp. 279–288.

[41] G. Xie et al., “WCRT analysis of can messages in gateway-integrated in-
vehicle networks,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 9623–
9637, Nov. 2017.

[42] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “Mixed real-time scheduling
of multiple dags-based applications on heterogeneous multi-core proces-
sors,” Microprocess. Microsyst., vol. 47, pp. 93–103, Nov. 2016.

Guoqi Xie (M’15) received the Ph.D. degree in com-
puter science and engineering from Hunan Univer-
sity, Changsha, China, in 2014.

He is currently an Associate Professor of com-
puter science and engineering with Hunan Univer-
sity. He was a Postdoctoral Researcher with Nagoya
University, Nagoya, Japan, from 2014 to 2015, and
with Hunan University, from 2015 to 2017. His major
interests include embedded and cyber-physical sys-
tems, parallel and distributed systems, and software
engineering and methodology.

Dr. Xie is a member of ACM and CCF. He was the recipient of best paper
award at ISPA 2016.

XIE et al.: MINIMIZING DEVELOPMENT COST WITH RELIABILITY GOAL FOR AUTOMOTIVE FUNCTIONAL SAFETY DURING DESIGN PHASE 211

Yuekun Chen is currently working toward the Ph.D.
degree in computer science and engineering at Hunan
University, Changsha, China.

Her research interests include embedded comput-
ing, fault tolerance computing, and software engi-
neering.

Yan Liu received the Ph.D. degree in computer
science and engineering from Hunan University,
Changsha, China, in 2010.

He is currently an Assistant Professor with
the College of Computer Science and Electronic
Engineering, Hunan University. His major interests
include computer architectures and embedded com-
puting systems.

Dr. Liu is a member of CCF.

Renfa Li (M’05–SM’10) received the Ph.D. degree
in electronic engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2002.

He is currently a Professor of computer science
and electronic engineering with Hunan University,
Changsha, China. He is the Director with the Key
Laboratory for Embedded and Network Computing
of Hunan Province, Changsha, China. He is also an
expert committee member of the National Super-
computing Center in Changsha, China. His major
interests include computer architectures, embedded

computing systems, cyber-physical systems, and Internet of Things.
Prof. Li is a member of the Council of CCF and a Senior Member of ACM.

Keqin Li (M’90–SM’96–F’15) received the Ph.D.
degree in computer science from the University of
Houston, Houston, TX, USA, in 1990.

He is currently a SUNY Distinguished Professor
of computer science with the State University of New
York at New Paltz, New Paltz, NY, USA. He has au-
thored or coauthored more than 520 journal articles,
book chapters, and refereed conference papers. His
current research interests include parallel computing
and high-performance computing, distributed com-
puting, energy-efficient computing and communica-

tion, heterogeneous computing systems, cloud computing, big data computing,
CPU–GPU hybrid and cooperative computing, multicore computing, storage
and file systems, wireless communication networks, sensor networks, peer-to-
peer file sharing systems, mobile computing, service computing, Internet of
Things, and cyber-physical systems.

Prof. Li was the recipient of several best paper awards. He is currently serving
or has served on the editorial boards of IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSAC-
TIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON SERVICES COMPUTING,
and IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.

