
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017 1629

Resource Consumption Cost Minimization of
Reliable Parallel Applications on Heterogeneous

Embedded Systems
Guoqi Xie, Member, IEEE, Yuekun Chen, Yan Liu, Yehua Wei, Renfa Li, Senior Member, IEEE,

and Keqin Li, Fellow, IEEE

Abstract—Heterogeneous processors are increasingly
being used in embedded systems where parallel applica-
tions with precedence-constrained tasks widely exist. Re-
liability is an important functional safety requirement and
reliability goal should be satisfied for safety-critical parallel
applications; meanwhile, resource is limited in embedded
systems and it should be minimized. This study solves the
problem of resource consumption cost minimization of a
reliable parallel application on heterogeneous embedded
systems without using fault tolerance. The problem is de-
composed into two subproblems, namely, satisfying relia-
bility goal and minimizing resource consumption cost. The
first subproblem is solved by transferring the reliability goal
of the application to that of each task, and the second sub-
problem is solved by heuristically assigning each task to the
processor with the minimum resource consumption cost
while satisfying its reliability goal. Experiments with real
parallel applications verify that the proposed algorithm ob-
tains minimum resource consumption costs compared with
the state-of-the-art algorithms.

Index Terms—Heterogeneous embedded systems, paral-
lel applications, reliability goal, resource consumption cost.

Manuscript received July 25, 2016; revised November 5, 2016 and
December 4, 2016; accepted December 15, 2016. Date of publication
December 21, 2016; date of current version August 1, 2017. This work
was supported in part by the National Key Research and Development
Plan of China under Grant 2016YFB0200405 and Grant 2012AA01A301-
01, in part by the Natural Science Foundation of China under Grant
61672217, Grant 61173036, Grant 61432005, Grant 61370095, Grant
61300037, Grant 61370097, Grant 61502405, Grant 61402170, and
Grant 61502162, and in part by the China Postdoctoral Science Foun-
dation under Grant 2016M592422. Paper no. TII-16-0750.R2. (Corre-
sponding author: Renfa Li.)

G. Xie, Y. Chen, Y. Liu, and R. Li are with the Key Laboratory for Em-
bedded and Network Computing of Hunan Province, College of Com-
puter Science and Electronic Engineering, Hunan University, Changsha
410082, China (e-mail: xgqman@hnu.edu.cn; chenyuekun@126.com;
liuyan@hun.edu.cn; lirenfa@hnu.edu.cn).

Y. Wei is with the College of Physics and Information Science, Hu-
nan Normal University, Changsha 410082, China (e-mail: yehuahn@
163.com).

K. Li is with the Key Laboratory for Embedded and Network Computing
of Hunan Province, College of Computer Science and Electronic Engi-
neering, Hunan University, Changsha 410082, China, and also with the
Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2016.2641473

I. INTRODUCTION

A. Background

Multiprocessors are increasingly used in the implementation
of high-performance embedded systems, such as image recogni-
tion, automotive control, and human body interaction plus ges-
ture control. To satisfy the higher functional and nonfunctional
requirements, heterogeneous embedded systems have emerged
[1]–[3]. Although the increasing processing capacity of proces-
sors has been developed to achieve high performance, the fre-
quency of transient failures has increased dramatically, caused
by electromagnetic interference, radiations, high temperature,
etc. [4]. Reliability is defined as the probability the schedule
is successful (i.e., succeeds to complete its execution) for an
application [5]–[7]. Any application cannot be 100% reliable in
practice. If an application satisfies its certificated reliability goal,
then it is considered to be reliable in safety-critical embedded
systems. Reliability goal has been used in some industrial func-
tional safety standards, such as the ISO 26262 standard for au-
tomotive software systems, the DO-178C standard for avionics
software, and the IEC 61508 standard for all kinds of industrial
software systems [8]. If the reliability goal of the application
cannot be satisfied, then disastrous consequences could happen.
Therefore, reliability is an important functional safety property
and reliability goal should be satisfied for a safety-critical em-
bedded application.

B. Motivation

As multiprocessors continue to scale, increasingly distributed
and parallel applications with precedence-constrained tasks
widely exist in embedded systems [1], [9]. A parallel application
with precedence-constrained tasks is represented by a directed
acyclic graph (DAG), where the nodes represent the tasks and
the edges represent the communication messages between the
tasks [1], [9]. Scheduling tasks of a DAG-based parallel applica-
tion for fastest execution is a well-known NP-hard optimization
problem, and many heuristic list scheduling algorithms have
been proposed to generate near-optimal solutions to the problem
in heterogeneous systems [10]–[12]. In general, fault-tolerant
techniques are the effective approaches to satisfy the reliabil-
ity goal of a parallel application, and replication approaches

1551-3203 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1630 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

are important software fault-tolerant techniques. Considering
the limited resources of embedded systems, fault-tolerant tech-
niques may be not suitable [13]–[15]. Therefore, an effective
task assignment strategy to satisfy the reliability goal without
using replication should be presented.

Resource is often limited in embedded systems, and should
be optimized during the design phase [16], [17]. Resource con-
sumption cost minimization, modeling, analysis, and verifica-
tion have been widely studied from embedded systems [16], [17]
to cluster systems [7], [18]. Intuitively, larger reliability could
cause a longer schedule length and consume more resources
for a parallel application [13]–[15]. In safety-critical embed-
ded systems, if the reliability goal of an application can be
satisfied, then this application is reliable according to the afore-
mentioned functional safety standards. The recent investigation
presented the MaxRe [6] and the RR (i.e., least resources to meet
the reliability requirement) [7] algorithms to minimize resource
consumption while satisfying the reliability goal of a parallel
application on heterogeneous cluster systems, respectively. Al-
though the MaxRe and RR algorithms can be compatible in a
nonfault-tolerant manner, they can be further improved in cal-
culating reliability goal of each task and assigning each task to
the processor (refer to Section IV-D for more details).

C. Main Contributions

This study aims to solve the problem of minimizing the re-
source consumption cost of reliable parallel applications on
heterogeneous embedded systems without using fault tolerance,
and the problem is decomposed into two subproblems, namely,
satisfying reliability goal and minimizing resource consumption
cost. The main contributions are summarized as follows.

1) The first subproblem is solved by presupposing that the
unassigned tasks are assigned to the processor with the
minimum reliability value, thereby transferring the relia-
bility goal of the application to the reliability goal of each
task.

2) The second subproblem is solved by heuristically
scheduling each task with low time complexity, thereby
assigning the task to the processor with the minimum
resource consumption cost.

3) Experiments with real parallel applications verify that the
proposed algorithm obtains minimum resource consump-
tion costs compared with the state-of-the-art algorithms.

The rest of this paper is organized as follows. Section II
reviews related studies. Section III builds related models.
Section IV presents related preliminaries. Section V solves the
presented problem. Section VI verifies the performance of the
proposed algorithm. Section VII concludes this study.

II. RELATED WORK

Considering that this study focuses on resource consumption
cost and reliability of a DAG-based parallel application, this
study mainly reviews the related research on cost and reliability
of DAG-based parallel applications.

Resource optimization is one of the important topics in em-
bedded systems. Qiu and Sha [16] solved the cost minimization

TABLE I
IMPORTANT NOTATION IN THIS PAPER

Notation Definition

ci,j WCTT between the tasks ni and nj

wi,k WCET of the task ni on the processor uk

wi Average execution time of the task ni

ranku (ni) Upward rank value of the task ni

|X | Size of the set X
λk Constant failure rate per time unit of the processor uk

γk Resource consumption cost rate per time unit of the processor uk

γcomm communication cost rate γcomm per time unit
R(ni , uk) Reliability of the task ni on the processor uk

R(G) Reliability of the application G
cost(ni , uk) Resource consumption cost of the task ni on the processor uk

cost(G) Resource consumption cost of the application G
uproc(i) Assigned processor of the task ni

Rmin(G) Minimum reliability of the application G
Rmax(G) Maximum reliability of the application G
Rgoal(G) Reliability goal of the application G
Rgoal(ni) Reliability goal of the task ni

while satisfying hard or soft timing constraints for heteroge-
neous embedded systems. Ovatman et al. [17] built the resource
consumption cost model and analyzed and verified the resource
consumption cost scenarios for embedded systems using priced
timed automata. The widely accepted reliability model for an
operation was presented in [19], where the failure rate of each
hardware is characterized by a constant λ. Generally, the relia-
bility of a parallel application is represented as the product of the
reliability values of all the tasks [6], [7], [20], [21]. In general,
fault-tolerant techniques are the effective ways to satisfy the reli-
ability goal of a parallel application, and replication approaches
are important software fault-tolerant techniques. Considering
the limited resource of embedded systems, fault tolerance may
not be suitable as pointed out earlier.

Intuitively, larger reliability could cause longer schedule
length of a parallel application and the problem of optimiz-
ing schedule length and reliability is considered as a typical
bicriteria optima or Pareto optima problem [13]–[15]. Doğan
and Özgüner [13] investigated the bicriteria optima problem be-
tween reliability and scheduled length by merging the bicriteria
of scheduled length and reliability into a single objective func-
tion for joint optimization of them. The method in [13] has better
reliability but longer scheduled length than that in [14]. Don-
garra et al. [15] implemented the bio-objective optimization of
maximizing reliability and minimizing scheduled length. Tang
et al. [22], [23] considered the reliability goal for a parallel appli-
cation on heterogeneous systems without using fault tolerance;
however, these studies do not aim to satisfy the reliability goal of
the application. Zhao et al. [6], [7] presented the MaxRe and RR
algorithms to minimize the resource consumption while satisfy-
ing the reliability goal of a parallel application in heterogeneous
cluster systems by using fault tolerance. The main limitations
of [6] and [7] have been summarized in Section I-B.

III. MODELS

Table I lists important notations and their definitions used in
this study.

XIE et al.: RESOURCE CONSUMPTION COST MINIMIZATION OF RELIABLE PARALLEL APPLICATIONS ON HETEROGENEOUS EMBEDDED SYSTEMS 1631

Fig. 1. Motivating example of a DAG-based parallel application [10]–
[12].

A. Application Model

This study considers a system platform with heterogeneous
multiprocessors. As controller area network (CAN) networks
themselves provide redundant links for high fault tolerance,
similar to most studies [6], [14], [21], this study only considers
the processor failure, and does not include the communication
failure into the problem (i.e., the communication is assumed to
be reliable in this study), but the communication time between
processors should be considered because of the distributed char-
acteristic of parallel applications and the system [1], [9].

Let U = {u1, u2, . . . , u|U |} represent a set of heterogeneous
processors, where |U | represents the size of set U . Note that
for any set X , this study uses |X| to denote its size. A parallel
application is represented by a DAG G = (N , M , C, W) [9]–
[12]. N represents a set of tasks in G, and each task ni ∈ N
has different worst case execution times (WCETs) on different
processors. M is a set of communication edges, and each edge
mi,j ∈ M represents the communication message from ni to
nj . Accordingly, ci,j ∈ C represents a worst case transmission
time (WCTT) of mi,j , if ni and nj are not assigned to the same
processor [12]. pred(ni) represents the set of the immediate
predecessor tasks of ni . succ(ni) represents the set of the im-
mediate successor tasks of ni . The task that has no predecessor
task is denoted by nentry, and the task that has no successor task
is denoted by nexit. W is an |N | × |U | matrix, where wi,k de-
notes the WCET of ni running on uk . All tasks are scheduled
with the global nonpreemptive policy.

Fig. 1 shows a motivating example of a DAG-based parallel
application with tasks and messages. Table II is a matrix of
WCETs in Fig. 1. The example shows ten tasks executed on
three processors {u1, u2, u3}. Weight 14 of n1 and u1 in Table II
represents the WCET, denoted by w1,1 = 14. As can be seen
that the same task has different WCETs on different processors
due to the heterogeneity of the processors. Weight 18 of edge
between n1 and n2 represents the communication time, denoted
by c1,2 if n1 and n2 are not assigned to the same processor.

B. Reliability Model

There are two major temporal type of failures, namely,
the transient failure (i.e., random hardware failures) and the

TABLE II
WCETS OF TASKS ON DIFFERENT PROCESSORS OF THE

MOTIVATING PARALLEL APPLICATION [10]–[12]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

TABLE III
CLASSES OF PROBABILITY OF EXPOSURE REGARDING

DURATION/PROBABILITY OF EXPOSURE IN ISO 26262 [24]

Exposure level Probability of exposure Reliability goal

E1 Very low probability Not specified At least exceeds 0.99
E2 Low probability <1% 0.99
E3 Medium probability [1%, 10%] >0.9
E4 High probability >10% <=0.99

permanent failure. This study only considers the transient fail-
ure of processors because some functional safety standards (e.g.,
ISO 26262) only combine the random hardware failures and
reliability together [24]. ISO 26262 defines the conception of
exposure for random hardware failures. Exposure means the rel-
ative expected frequency of the operational conditions in which
the injury may happen [24]. ISO 26262 also gives the dura-
tion/probability of exposure in [24, Table B.2, Annex B of Part
3]. According to ISO 26262, for a given exposure level, the
corresponding reliability goal can be found in Table III. The
relationships in Table III show that when the exposure is high,
the corresponding reliability goal is low, which means that the
risk of occurrence is high.

As pointed out in ISO 26262, random hardware failures occur
unpredictably during the life time of a hardware but follow
a probability distribution [24]. In general, the occurrence of
transient fault for a task in a DAG-based application follows the
Poisson distribution [6], [7], [14], [19]–[21]. The reliability of
an event in unit time t is denoted by R (t) = e−λt , where λ is
the constant failure rate per time unit for a processor. Let λk

represent the constant failure rate per time unit of the processor
uk , and the reliability of ni executed on uk in its execution time
is donated by

R (ni, uk) = e−λk wi , k . (1)

A development life cycle of safety-critical systems usually con-
tains analysis, design, implementation, and testing phases. In
this study, we aim to minimize the resource consumption cost
of a parallel application with reliability goal during the de-
sign phase. Similar to WCTT of messages and WCET of tasks,
we assume that the failure rates have been known and ob-
tained in the analysis phase. Similar to [6], [20], and [21], the

1632 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

reliability of the parallel application with precedence-
constrained tasks should be

R(G) =
∏

ni ∈N

R(ni, uproc(ni)) (2)

where uproc(ni) represents the assigned processor of ni .
As some communication networks themselves provide redun-

dant links for high fault tolerance in embedded systems (e.g.,
FlexRay), similar to most studies [6], [14], [21], this study only
involves the processor failure, and does not include the com-
munication failure into the problem (i.e., the communication is
assumed to be reliable in this study).

C. Resource Consumption Cost Model

The priced timed automata defines the computation resource
cost rate γ per time unit for task execution, which means that the
computation resource cost grows constantly with γ in a proces-
sor (location) and the computation resource grows constantly
with computation resource rate in a processor to access data
stored in memory [17]. In other words, for a task with execution
time w, the cost should be γ × w.

As heterogeneous processors are used in this study, all proces-
sors should have individual computation cost rates because dif-
ferent processors are configured with different memory compo-
nents and access operations. Hence, let U = {γ1, γ2, . . . , γ|U |}
represent a set of rates on heterogeneous processors.

The priced timed automata defines fixed cost for message
transitions (transmission). However, when a message is trans-
mitted on a distributed embedded system, different sizes of mes-
sages should consume different resource costs. The reason is
that each message should be packed before it is sent and should
be unpacked after it is received, even though the packing and
unpacking times depend on the sizes of messages. As homo-
geneous communication links are employed in this study, the
communication cost rate γcomm per time unit is the same for
each message transmission.

When a task is finished in one processor, this task sends mes-
sages to all its successor tasks that may be located in different
processors. Therefore, let cost(ni, uk) represent the generated
resource consumption cost of the task ni on the processor uk

and is calculated by

cost(ni, uk) = wi,k × γk +
∑

nx ∈pred(ni)

c
′
x,i × γcomm (3)

where c
′
x,i represents the actual communication time between

nx and ni . If nx and ni are assigned to the same processor,
then c

′
x,i = 0; otherwise, c

′
x,i = cx,i . That is, the cost(ni, uk)

includes the processor resource consumption cost that ni is exe-
cuted on uk and the communication resource consumption cost
that messages are transmitted between ni and its predecessors
when they are not assigned the same processor. Note that the cur-
rent task just considers its predecessors, and its successors will
consider the current task in calculating communication resource
consumption cost.

Finally, the total resource consumption cost of G is the sum
of that of all the tasks, namely

cost(G) =
∑

ni ∈N

cost
(
ni, uproc(i)

)
. (4)

IV. PRELIMINARIES

A. Reliability Goal

As the WCET of each task on each processor is known, the
minimum and maximum reliability values can be obtained by
traversing all the processors. Both of them are calculated by

Rmin(ni) = min
uk ∈U

R(ni, uk) (5)

and

Rmax(ni) = max
uk ∈U

R(ni, uk) (6)

respectively.
As the reliability of the application G is the product of reli-

ability values of all the tasks (2), the minimum and maximum
reliability values of G are calculated by

Rmin(G) =
∏

ni ∈N

Rmin (ni) (7)

and

Rmax(G) =
∏

ni ∈N

Rmax (ni). (8)

As mentioned earlier, if the reliability goal Rgoal(G) can be
satisfied, then the application is reliable. Note that Rgoal(G)
should be larger than or equal to Rmin(G); otherwise, Rgoal(G)
is always satisfied. Meanwhile, Rgoal(G) should be less than
or equal to Rmax(G); otherwise, Rgoal(G) cannot always be
satisfied. Hence, this study assumes that Rgoal(G) belongs to
the scope Rmin(G) and Rmax(G), namely

Rmin(G) � Rgoal(G) � Rmax(G). (9)

B. Problem Description

Given a parallel application G with known reliability goal
Rgoal(G) that would be executed on a heterogeneous multipro-
cessor set U , the problem to be addressed in this study is to
assign an available processor to each task while reducing the
resource consumption cost of G and satisfying its reliability
goal Rgoal(G). The formal description is finding the processor
assignments of all the tasks to minimize the resource consump-
tion cost of the application G

cost(G) =
∑

ni ∈N

cost
(
ni, uproc(i)

)

subject to

R(G) =
∏

ni ∈N

R
(
ni, uproc(i)

)
� Rgoal(G)

for ∀i : 1 � i � |N |, uproc(i) ∈ U .

XIE et al.: RESOURCE CONSUMPTION COST MINIMIZATION OF RELIABLE PARALLEL APPLICATIONS ON HETEROGENEOUS EMBEDDED SYSTEMS 1633

TABLE IV
UPWARD RANK VALUES OF THE TASKS OF THE

PARALLEL APPLICATION IN FIG. 1 [10]

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

ranku(ni) 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7

C. Task Prioritizing

The remaining work of this study is to assign each task to
an appropriate processor after the reliability goal and problem
description are determined. The first work is to determine the
assignment order of tasks. Similar to [1], [6], [7], and [10], this
study employs the upward rank value (ranku) of a task given by
(10) as the common task priority standard

ranku(ni) = wi + max
nj ∈succ(ni)

{ci,j + ranku(nj)} (10)

where wi represents the average WCET of task ni and calculated
by

wi =

⎛

⎝
|U |∑

k=1

wi,k

⎞

⎠ /|U |.

All the tasks are ordered according to the decreasing order of
ranku. Table IV shows the upward rank values of all the tasks
in Fig. 1. Note that only if all the predecessors of ni have been
assigned to the processors, ni will be prepared to be assigned.
Assume that two tasks ni and nj satisfy ranku(ni) > ranku(nj),
if no precedence constraint exists between ni and nj , then ni

may not have higher priority than nj . Finally, the task assign-
ment order in G is {n1, n3, n4, n2, n5, n6, n9, n7, n8, n10}.

D. MaxRe and RR Algorithms

The state-of-the-art MaxRe and RR algorithms were pre-
sented to minimize resource consumption while satisfying the
reliability goal of a parallel application on heterogeneous sys-
tems using fault tolerance. Calculating reliability goals of tasks
and assigning tasks to processors are two important steps.

1) In calculating the reliability goal, both MaxRe and
RR calculate the reliability goal of the entry task as
Rgoal(n1) = |N |

√
Rgoal(G), where Rgoal(G) and Rgoal(n1)

represent the reliability goals of the application and the
entry task, respectively, and |N | represents the num-
ber of tasks; for the rest of tasks (i.e., nonentry tasks),
the reliability goal of each task using MaxRe is still
Rgoal(n1) = |N |

√
Rgoal(G), whereas that using RR is cal-

culated by

Rgoal(nseq(j)) = |N |−j + 1

√
Rgoal(G)

∏j−1
x=1 R(nx)

where Rgoal(nseq(j)) represents the reliability goal of
the jth task; however, the reliability goals for tasks are
still too high and need to pay for more resource to
satisfy.

2) In assigning each task to processor, both MaxRe and
RR assign the task to the processor with the maximum
reliability value R (ni, uk) = e−λk wi , k (1); however, the
maximum reliability value does not mean minimum re-
source consumption costs in heterogeneous systems be-
cause different processors have different failure and cost
rates.

V. PROPOSED ALGORITHM

The problem of minimizing the resource consumption cost
of a reliable parallel application on heterogeneous embedded
systems comes down to two subproblems, namely, satisfying
reliability goal and minimizing resource consumption cost. This
section first solves the subproblem and then solves the second
subproblem with a proposed algorithm.

A. Satisfying Reliability Goal

The strategy of satisfying reliability goal of the parallel
application G is as follows. Assume that the task to be as-
signed is nseq(j) , where seq(j) represents the jth assigned
task (sequence number), then {nseq(1) , nseq(2) , . . . , nseq(j−1)}
represents the task set where the tasks have been assigned,
and {nseq(j+1) , nseq(j+2) , . . . , nseq(|N |)} represents the task set
where the tasks have not been assigned. To ensure that
the reliability of the application is satisfied at each task
assignment, we presuppose that each unassigned task in
{nseq(j+1) , nseq(j+2) , . . . , nseq(|N |)} is assigned to the proces-
sor with the maximum reliability value. Hence, when assigning
nseq(j) , the reliability of G is calculated by

Rseq(j)(G) =
j−1∏

x=1

R
(
nseq(x) , uproc(seq(x))

)

×R
(
nseq(j) , uproc(seq(j))

)×
|N |∏

y=j+1

Rmax
(
nseq(y)

)
.

For any task nseq(j) , only if Rseq(j)(G) � Rgoal(G), the actual
reliability R(G) =

∏
ni ∈N R

(
ni, uproc(i)

)
will be larger than or

equal to Rgoal(G). The correctness of this strategy is proved in
the Theorem 1.

Theorem 1: Each task nseq(j) in the parallel application G
can always find a processor to be assigned to satisfy

Rseq(j)(G) =
j−1∏

x=1

R
(
nseq(x) , uproc(seq(x))

)

× R
(
nseq(j) , uproc(seq(j))

)×
|N |∏

y=j+1

Rmax
(
nseq(y)

)
� Rgoal(G).

(11)

The theorem is proved in the Appendix.

1634 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

B. Minimizing Resource Consumption Cost

First, the reliability goal of each task is given before the
algorithm is proposed. According to Theorem 1, it should have

R(nseq(j) , uk) � Rgoal(G)
/⎛

⎝
j−1∏

x=1

R(nseq(x) , uproc(seq(x))) ×
|N |∏

y=j+1

Rmax(nseq(y))

⎞

⎠ .

Hence, let the reliability goal of the task nseq(y) be

Rgoal(nseq(j)) = Rgoal(G)
/⎛

⎝
j−1∏

x=1

R(nseq(x) , uproc(seq(x))) ×
|N |∏

y=j+1

Rmax(nseq(y))

⎞

⎠ .

(12)

Then, the reliability goal of the application can be transferred
to the reliability goal of each task. That is, just let nseq(j) satisfy
the following constraint:

R(nseq(j) , uk) � Rgoal(nseq(j)).

Hence, when assigning the task nseq(j) , the reliability goal
Rgoal(nseq(j)) of nseq(j) can be directly considered and the relia-
bility goal of application G need not be concerned about. In this
way, a low time complexity heuristic algorithm can be achieved.
As the minimum reliability goal of nseq(j) is Rmin(nseq(j)),
R(nseq(j)) should be required to satisfy the following constraint:

R(nseq(j) , uk) � max{Rgoal(nseq(j)), Rmin(nseq(j))}. (13)

In the following, the algorithm called minimizing resource
consumption cost with reliability goal (MRCRG) for a reliable
parallel application on heterogeneous embedded systems is pro-
posed, as shown in Algorithm 1.

The core idea of MRCRG is that the reliability goal of the
application is transferred to the reliability goal of each task.
Each task just selects the processor with the minimum resource
consumption cost while satisfying its reliability goal. The main
details are explained as follows.

1) MRCRG has obtained the reliability goal of each task
before it prepares to be assigned (line 5).

2) MRCRG skips the processors that do not satisfy the reli-
ability goal (lines 9–11). That is, MRCRG does not need
to calculate the total reliability of the application and de-
termine whether it satisfies the given reliability goal in
each task assignment by traversing all the tasks in the
parallel application.

3) MRCRG selects the processor with the minimum re-
source consumption cost for each task while satisfying
the condition RC(ni, uk) < max{Rgoal(ni), Rmin(ni)}
(lines 9–17).

The time complexity of the MRCRG algorithm is analyzed
as follows. Scheduling all tasks must traverse all tasks, which
can be done in O(|N |) time. Calculating the minimum resource
consumption value of each task can be done in O(|N | × |U |)
time. Hence, the time complexity of the MRCRG algorithm is

TABLE V
FAILURE AND COST RATES OF PROCESSORS {u1, u2, u3}

Parameter u1 u2 u3

λk 0.0005 0.0002 0.0009
γk 5 9 2

O(|N |2 × |U |), which is equal to that of the heterogeneous earli-
est finish time (HEFT) algorithm [10]. In other words, MRCRG
implements effective resource consumption cost minimization
without sacrificing the time complexity.

C. Example of the MRCRG Algorithm

The process and results of the motivating example using the
MRCRG algorithm are illustrated in this section. The failure
and resource consumption cost rates of processors are shown in
Table V and the rate of the link is γcomm = 1. For simplicity, all
the units of all parameters are ignored in the example.

The minimum and maximum reliability values are
Rmin(G) = 0.8792 and Rmax(G) = 0.9743 according to (7)
and (8), respectively. The reliability goal of G is set to
Rgoal(G) = 0.95. Table VI shows the task assignments of the
motivating example using MRCRG, where each row represents
a task assignment. The values in red text mean that the pro-
cessor is selected with the minimum resource consumption
cost. The values denoted with “–” mean that assigning task
to the processor cannot satisfy the reliability goal of the task.
The final reliability is R(G) = 0.9502 > Rgoal(G) = 0.95, and
the obtained total resource consumption cost is cost(G) = 910.

Fig. 2 also shows the task scheduling of the motivating parallel
application G based on after generated by MRCRG, where the
schedule length (makespan) is 113. Note that the arrows in Fig. 2
represent generated communications between tasks. The later

XIE et al.: RESOURCE CONSUMPTION COST MINIMIZATION OF RELIABLE PARALLEL APPLICATIONS ON HETEROGENEOUS EMBEDDED SYSTEMS 1635

TABLE VI
TASK ASSIGNMENT OF THE MOTIVATING PARALLEL

APPLICATION GENERATED BY MRCRG

Fig. 2. Task scheduling of the motivating parallel application generated
by MRCRG.

implementation phase can implement the application according
to the assigned processor, start time, and end time of each task
generated by MRCRG during the design phase.

VI. EXPERIMENTS

A. Experimental Metrics

The performance metrics selected for comparison are the
actual reliability value R(G) (2) and the final resource con-
sumption cost cost(G) (4) of the application. The com-
pared algorithms with the presented MRCRG algorithm are
of course the sate-of-the-art MaxRe [6] and RR algorithms
[7]. Processor and application parameters refer to [20], [21]:
10 ms � wi,k � 100 ms, 10 ms � ci,j � 100 ms, 0.000001/ms
� λk � 0.000009/ms, 0.1 Kb/ms � γk � 0.9 Kb/ms, and
γcomm = 0.2 Kb/ms. All parallel applications will be executed
in a simulated heterogeneous multiprocessor platform with
32 processors.

B. Real Parallel Applications

Parallel applications with precedence-constrained tasks
widely exist in some embedded applications, such as the Gaus-
sian elimination [25] and fast Fourier transform [26] applica-
tions. The Gaussian elimination and Fourier transform applica-
tion are the two typical parallel applications with low and high
parallelism, respectively. To verify the effectiveness and validity
of the proposed algorithm, these two types of real parallel ap-
plications are used to compare the results of all the algorithms.
A new parameter ρ is used as the matrix size of the Gaussian
elimination application and the total number of tasks should be
|N | = ρ2+ρ−2

2 [10]. Fig. 3 shows an example of the Gaussian
elimination application with ρ = 5. A new parameter ρ is used
as the size of the fast Fourier transform application and the
total number of tasks should be |N | = (2 × ρ − 1) + ρ ×

Fig. 3. Example of the Gaussian elimination application with ρ = 5.

Fig. 4. Example of the fast Fourier transform application with ρ = 4.

log 2
ρ , where assume that ρ = 2y for some integer y. Fig. 4

shows an example of the fast Fourier transform application
with ρ = 8. Note that ρ exit tasks exist in the fast Fourier
transform application with the size ρ. To adapt the applica-
tion model of this study, a virtual exit task is added and the
last ρ tasks are set as the immediate predecessor tasks of the
virtual task. In this situation, the total task number should be
|N | = (2 × ρ − 1) + ρ × log 2

ρ + 1.
Experiment 1: This experiment is conducted to compare the

actual reliability values and the total resource consumption
costs of Gaussian elimination applications for varying num-
ber of tasks. We limit Rgoal(G) = 0.93, because it is contained
in the interval of the reliability goals of the exposure E3 (i.e.,
[0.9,0.99)), which is primarily used in actual system design. ρ
is changed from 14 to 70, i.e., the task number is changed from
104 (small scale) to 2484 (large scale). The results are shown in
Fig. 5.

Fig. 5(a) shows the actual reliability values of Gaussian elim-
ination applications on different task scales. As can be seen,
all the algorithms can satisfy the reliability goals of applica-
tions in all cases and the actual reliability values decrease with
the increased numbers of tasks. In small scales (|N | = 104,
|N | = 405, and |N | = 902), the three algorithms obtain the
same reliability values. With the increasing numbers of tasks,

1636 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Fig. 5. Results of Gaussian elimination applications for varying numbers of tasks. (a) Actual reliability values. (b) Total resource consumption costs
(Mb).

Fig. 6. Results of fast Fourier transform applications for varying numbers of tasks. (a) Actual reliability values. (b) Total resource consumption
costs (Mb).

MRCRG generates least reliability values followed by RR and
MaxRe. For example, when |N | = 2484, the reliability value
using MRCRG is merely 0.939, which is very close to the relia-
bility goal value; however, the obtained reliability values using
RR and MaxRe reach to 0.95 and 0.968, respectively.

Fig. 5(b) shows the total resource consumption costs of Gaus-
sian elimination applications on different task scales. It is pleas-
ing that MRCRG generates the least resource consumption
costs followed by RR and MaxRe. In small scales (|N | = 104,
|N | = 405, and |N | = 902), RR and MaxRe generates the same
resource consumption costs. The reason for the same resource
consumption costs is that RR and MaxRe only need one replicas
for each task and they do not require fault tolerance; in addition,
considering that MaxRe and RR assign the task to the processor
with the maximum reliability value R (ni, uk) = e−λk wi , k (1),
the actual resource consumption costs should be equal. In small
scales (|N | = 104, |N | = 405, and |N | = 902), the resource
consumption costs using MRCRG are merely 66.7% (2/3) of
those of using RR and MaxRe. When |N | = 2484, the resource
consumption cost using MRCRG is merely 46.6% (56/120) and
58.9% (56/95) of those of using RR and MaxRe, respectively.
The reason for the least resource consumption costs using MR-
CRG is that it improves the strategy of satisfying reliability
goal (Theorem 1); moreover, MRCRG assigns the tasks to the
processors with the minimum resource consumption cost rather
than minimum reliability values of RR and MaxRe because

maximum reliability value does not mean minimum resource
consumption cost in heterogeneous systems.

Experiment 2: This experiment is conducted to compare the
actual reliability values and the total resource consumption costs
of fast Fourier transform applications for varying number of
tasks. Limit Rgoal(G) = 0.93. ρ is changed from 16 to 256, i.e.,
the task number is changed from 96 (small scale) to 2560 (large
scale). The results are shown in Fig. 6.

Fig. 6(a) shows the actual reliability values of fast Fourier
transform applications on different task scales. Compared with
the results of Gaussian elimination applications in Fig. 5(a), the
same regular pattern is shown in Fig. 6(a) in different cases. Such
results indicate that both the low and high parallel applications
have not obvious differences in obtaining the actual reliability
values.

Fig. 6(b) shows the total resource consumption costs of fast
Fourier transform applications on different task scales. Similar
to the results of Fig. 5(b), MRCRG generates the least resource
consumption costs followed by RR and MaxRe in all cases, and
RR and MaxRe generate the same resource consumption costs in
small scales (|N | = 96, |N | = 224, and |N | = 512). The main
difference is that the advantage of the resource consumption
costs using MaxRe is slightly weakened to some extent. For ex-
ample, in small scales (|N | = 96, |N | = 224, and |N | = 512),
the resource consumption costs using MRCRG are merely 72%
of those of using RR and MaxRe. When |N | = 2560, the

XIE et al.: RESOURCE CONSUMPTION COST MINIMIZATION OF RELIABLE PARALLEL APPLICATIONS ON HETEROGENEOUS EMBEDDED SYSTEMS 1637

Fig. 7. Resource consumption costs (unit: Mb) of randomly generated
parallel applications for varying numbers of tasks.

resource consumption cost using MRCRG is about 50%
(54/108) and 66.7% (54/81) of those of using RR and MaxRe, re-
spectively. Note that the resource consumption costs using MR-
CRG are not reduced in large scale for different applications,
but RR and MaxRe have generate less resource consumption
costs in high parallel applications than those in in low paral-
lel applications. Anyway, MRCRG still produces less resource
consumption costs than RR and MaxRe in all cases and the ad-
vantage is significant for both low and high parallel applications.

C. Randomly Generated Parallel Applications

To fully demonstrate the benefits of the proposed algorithm,
we consider parallel application samples, which are randomly
generated depending on the following parameters: shape pa-
rameter set α = {0.5, 1.0, 2.0}, range percentage of computa-
tion time set η = {0.1, 0.5, 1.0, 2.0, 4.0}, and communication
to computation ratio CCR = {0.1, 0.5, 1.0, 5.0, 10.0}. Random
DAGs have been generated by task graphs for free 3.5 [27], and
programmed by Java to compare the results. Statistical experi-
mental results are shown with “box and whiskers graphs,” which
can show the concrete values with maximum point, minimum
point, middle point (the median), and the middle points of the
two halves (submedians) clearly [12].

Experiment 3: This experiment is conducted to compare the
total resource consumption costs of randomly generated parallel
applications for varying number of tasks. Let Rgoal(G) still be
0.93. The task number is changed from 500 (small scale) to
2500 (large scale) with 500 increments. Statistical experimental
results are shown with “box and whiskers graphs,” which can
show the concrete values with maximum point, minimum point,
middle point (the median), and the middle points of the two
halves (submedians) clearly [12]. The results of total resource
consumption costs are shown in Fig. 7.

As can be seen in Fig. 7, MRCRG generates much more
resource consumption costs than MaxRe and RR in all the same
scales. It is easy to see that the resource consumption costs with

Fig. 8. Real-life automotive application [28].

2500 tasks using MRCRG is even less than those with 1500
tasks using MaxRe and RR.

D. Real-Life Automotive Application

In order to adapt to ISO 26262, we use the real-life au-
tomotive application shown in Fig. 8 adopted from [28] to
show the results. This application consists of six application
blocks: engine controller with seven tasks (n1–n7), automatic
gear box with four tasks (n8–n11), antilocking brake system
with six tasks (n12–n17), wheel angle sensor with two tasks
(n18–n19), suspension controller with five tasks (n20–n24), and
body work with seven tasks (n25–n31). Processor and applica-
tion parameters are as follows: 100 μs � wi,k � 400 μs, 100 μs
� ci,j � 400 μs, 0.000001/μs � λk � 0.000009/μs, 0.5 kb/ms
� γk � 1.5 kb/ms, and γcomm = 0.5 kb/ms.

Experiment 4: This experiment is conducted to compare the
final resource consumption costs of the real-life automotive ap-
plication for varying reliability goals. The reliability goal is
changed from 0.9 to 0.99 with a 0.01 increment because reli-
ability goal values fall in the range of exposure E3 and E2 in
ISO 26262. Meanwhile, the maximum reliability goal for the
application is calculated as 0.9947, which falls in the range of
exposure E1 in ISO 26262.

Fig. 9 shows the actual reliability values of the real-life appli-
cation for varying reliability goals. The following observations
are made.

1) MRCRG still generates least resource consumption costs
followed by MaxRe and RR. MRCRG outperforms
MaxRe and RR by 55.03% and 43.66%, respectively,
in the best case.

2) The maximum resource consumption costs using MaxRe
and RR are obtained when Rgoal(G) = 0.9947, whereas
that using MRCRG is obtained when Rgoal(G) = 0.99.
Such results indicate that higher reliability goals do not
lead to lower resource consumption costs using MRCRG.

1638 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Fig. 9. Resource consumption costs (unit: Mb) of real-life automotive
application for varying reliability goals.

3) MRCRG generates relatively stable resource consump-
tion cost of 12.483 Mb in different reliability goals of
0.91–0.98. In other words, a reliability goal that in this
interval can be accepted for the real-life automotive ap-
plication.

4) The maximum reliability goal of 0.9947 shows that it is
unrealistic to achieve very high and unreachable reliabil-
ity goal value (e.g., 0.999). In this case, a relatively low
but safe reliability goal (e.g., 0.93) can be achieved.

In summary, combined with the results of real and randomly
generated applications, the proposed MRCRG algorithm is very
effective in resource consumption cost minimization while sat-
isfying the given reliability goal. It is expected that MRCRG
can effectively explore a part of the design space and achieve
better solutions during the design phase aiming at reducing the
resource consumption cost.

VII. CONCLUSION

This study develops an effective and low time complexity
resource consumption cost minimization algorithm MRCRG
for a parallel application on heterogeneous embedded systems.
MRCRG is implemented by transferring the reliability goal of
the parallel application to the reliability goal of each task. In
each task assignment, MRCRG always selects the processor
with the minimum resource consumption cost while satisfying
the reliability goal of the task. First, MRCRG can always satisfy
the reliability goal of a parallel application and is verified with
various kinds of experiments. Second, MRCRG implements the
more effective resource consumption cost minimization while
satisfying the reliability goal compared with the state-of-the-
art algorithms. MRCRG can be used for different types of real
parallel applications in heterogeneous embedded systems. It is
expected that MRCRG can effectively explore a part of the
design space aiming at minimizing the resource consumption
cost of reliable parallel applications under different conditions.
In our future work, we will extend our method to the energy
consumption optimization of heterogeneous embedded systems.

APPENDIX

Proof of Theorem 1: The mathematical induction is used to
prove the theorem. First, the entry task n1 = nseq(1) is consid-
ered. In this case, all the tasks are not assigned to processors
and the application G needs to satisfy its reliability goal

Rseq(1)(G) = R(nseq(1) , uk) ×
|N |∏

y=2

Rmax(nseq(y)) � Rgoal(G)

(14)
namely, nseq(1) is required to be satisfied

R(nseq(1) , uk) � Rgoal(G)

/ |N |∏

y=2

Rmax(nseq(y)). (15)

As

Rmax(G) = Rmax(nseq(1)) ×
|N |∏

y=2

Rmax(nseq(y)) � Rgoal(G)

(16)
according to (8) and (9), then

Rmax(nseq(1)) � Rgoal(G)

/ |N |∏

y=2

Rmax
(
nseq(y)

)
. (17)

As the maximum value of R(nseq(1) , uk) is Rmax(nseq(1)), then
nseq(1) is able to find an assigned processor to satisfy the (14),
namely

Rseq(1)(G)=R(nseq(1) , uk) ×
|N |∏

y=2

Rmax
(
nseq(y)

)
� Rgoal(G).

(18)
Assume that the jth task nseq(j) can find an assigned processor

uproc(seq(j)) to satisfy the Rgoal(G), then

Rseq(j)(G) =
j−1∑

x=1

R(nseq(x) , uproc(seq(x)))

× R(nseq(j) , uproc(seq(j))) ×
|N |∏

y=j+1

Rmax
(
nseq(y)

)
� Rgoal(G)

(19)

namely

Rseq(j)(G) =
j∏

x=1

R(nseq(x) , uproc(seq(x)))

×
|N |∏

y=j+1

Rmax(nseq(y)) � Rgoal(G). (20)

Hence, it should have

i∏

x=1

R(nseq(x) , uproc(seq(x))) � Rgoal(G)

/ |N |∏

y=j+1

Rmax(nseq(y)).

(21)

XIE et al.: RESOURCE CONSUMPTION COST MINIMIZATION OF RELIABLE PARALLEL APPLICATIONS ON HETEROGENEOUS EMBEDDED SYSTEMS 1639

For the (j + 1)th task nseq(j+1) , the reliability of the application
is

Rseq(j+1)(G) =
j∏

x=1

R(nseq(x) , uproc(seq(x)))

×R(nseq(j+1) , uk) ×
|N |∏

y=j+2

R(nseq(y) , uproc(seq(y))). (22)

Placing (21) into (22) gives the following:

Rseq(j+1)(G) �

⎛

⎝Rgoal(G)

/ |N |∏

y=j+1

Rmax(nseq(y)

⎞

⎠

× R(nseq(j+1) , uk) ×
|N |∏

y=j+2

Rmax(nseq(y)))

=

(
Rgoal(G)

/
(Rmax(nseq(j+1))

)
× R(nseq(j+1) , uk).

(23)

As the maximum value of R(nseq(j+1) , uk) is Rmax(nseq(j+1)),
when R(nseq(j+1) , uk) = Rmax(nseq(j+1)), then it should have

Rseq(j+1)(G) � Rgoal(G) (24)

according to (23). That is, nseq(j+1) can also find an assigned
processor to satisfy Rgoal(G).

As all the tasks can find individual assigned processors to
satisfy Rgoal(G), Theorem 1 is satisfied. �

ACKNOWLEDGMENT

The authors would like to express their gratitude to the anony-
mous reviewers for their constructive comments, which have
helped to improve the quality of the paper.

REFERENCES

[1] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “Mixed real-time scheduling
of multiple dags-based applications on heterogeneous multi-core proces-
sors,” Microprocess. Microsyst., vol. 47, pp. 93–103, Nov. 2016.

[2] A. Schranzhofer, J. J. Chen, and L. Thiele, “Dynamic power-aware map-
ping of applications onto heterogeneous MPSoC platforms,” IEEE Trans.
Ind. Informat., vol. 6, no. 4, pp. 692–707, Nov. 2010.

[3] J. Castrillon, R. Leupers, and G. Ascheid, “Maps: Mapping concurrent
dataflow applications to heterogeneous MPSoCs,” IEEE Trans. Ind. Infor-
mat., vol. 9, no. 1, pp. 527–545, Feb. 2013.

[4] J. Henkel et al., “Design and architectures for dependable embedded
systems,” in Proc. 9th Int. Conf. Hardware/Softw. Codes. Syst. Synthesis,
2011, pp. 69–78.

[5] M. Chtepen, F. H. Claeys, B. Dhoedt, F. De Turck, P. Demeester, and P.
A. Vanrolleghem, “Adaptive task checkpointing and replication: Toward
efficient fault-tolerant grids,” IEEE Trans. Parallel Distrib. Syst., vol. 20,
no. 2, pp. 180–190, May 2009.

[6] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant scheduling with
dynamic number of replicas in heterogeneous systems,” in Proc. 12th IEEE
Int. Conf. High Perform. Comput. Commun., 2010, pp. 434–441.

[7] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling with less
resource redundancy,” Parallel Comput., vol. 39, no. 10, pp. 567–585, Jul.
2013.

[8] J. Machrouh et al., “Cross domain comparison of system assurance,” in
Proc. Embedded Real Time Softw. Syst., Toulouse, France, 2012, pp. 1–3.

[9] M. Hu, J. Luo, Y. Wang, M. Lukasiewycz, and Z. Zeng, “Holistic schedul-
ing of real-time applications in time-triggered in-vehicle networks,” IEEE
Trans. Ind. Informat., vol. 10, no. 3, pp. 1817–1828, Aug. 2014.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Aug. 2002.

[11] M. A. Khan, “Scheduling for heterogeneous systems using constrained
critical paths,” Parallel Comput., vol. 38, no. 4, pp. 175–193, Apr. 2012.

[12] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on networked
embedded systems,” J. Parallel Distrib. Comput., vol. 83, pp. 1–12, May
2015.

[13] A. Doğan and F. Özgüner, “Biobjective scheduling algorithms for ex-
ecution time–reliability trade-off in heterogeneous computing systems,”
Comput. J., vol. 48, no. 3, pp. 300–314, Mar. 2005.

[14] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics provid-
ing a guaranteed global system failure rate,” IEEE Trans. Depend. Sec.
Comput., vol. 6, no. 4, pp. 241–254, Oct.–Dec. 2009.

[15] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective scheduling
algorithms for optimizing makespan and reliability on heterogeneous sys-
tems,” in Proc. 19th Annu. ACM Symp. Parallel Algorithms Archit., 2007,
pp. 280–288.

[16] M. Qiu and E. H.-M. Sha, “Cost minimization while satisfying hard/soft
timing constraints for heterogeneous embedded systems,” ACM Trans.
Des. Autom. Electron. Syst., vol. 14, no. 2, Mar. 2009, Art. no. 25.

[17] T. Ovatman, A. W. Brekling, and M. R. Hansen, “Cost analysis for embed-
ded systems: Experiments with priced timed automata,” Electron. Notes
Theor. Comput. Sci., vol. 238, no. 6, pp. 81–95, 2010.

[18] M. W. Convolbo and J. Chou, “Cost-aware dag scheduling algorithms for
minimizing execution cost on cloud resources,” J. Supercomput., vol. 72,
no. 3, pp. 985–1012, Jan. 2016.

[19] S. M. Shatz and J.-P. Wang, “Models and algorithms for reliability-oriented
task-allocation in redundant distributed-computer systems,” IEEE Trans.
Rel., vol. 38, no. 1, pp. 16–27, Apr. 1989.

[20] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-time
embedded applications under hard energy constraint,” IEEE Trans. Ind.
Informat., vol. 6, no. 3, pp. 316–328, Aug. 2010.

[21] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency
and reliability enhancements in real-time applications with precedence
constraints,” ACM Trans. Des. Autom. Electron. Syst., vol. 18, no. 2,
pp. 99–109, Mar. 2013.

[22] X. Tang, K. Li, R. Li, and B. Veeravalli, “Reliability-aware scheduling
strategy for heterogeneous distributed computing systems,” J. Parallel
Distrib. Comput., vol. 70, no. 9, pp. 941–952, Sep. 2010.

[23] X. Tang, K. Li, M. Qiu, and E. H.-M. Sha, “A hierarchical reliability-
driven scheduling algorithm in grid systems,” J. Parallel Distrib. Comput.,
vol. 72, no. 4, pp. 525–535, 2012.

[24] Road Vehicles-Functional Safety, ISO 26262, 2011.
[25] T. Mladenov, S. Nooshabadi, and K. Kim, “Implementation and evaluation

of raptor codes on embedded systems,” IEEE Trans. Comput., vol. 60,
no. 12, pp. 1678–1691, Dec. 2011.

[26] J. Hascoet, J.-F. Nezan, A. Ensor, and B. D. de Dinechin, “Implementation
of a fast Fourier transform algorithm onto a manycore processor,” in Proc.
2015 Conf. Des. Archit. Signal Image Process., 2015, pp. 1–7.

[27] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,” in
Proc. 6th Int. Workshop Hardware/Softw. Codes., 1998, pp. 97–101.

[28] J. Gan, P. Pop, and J. Madsen, “Tradeoff analysis for dependable real-time
embedded systems during the early design phases,” Ph.D. dissertation,
Dept. Informat. Math. Model., Tech. Univ. Denmark, Kongens Lyngby,
Denmark, 2014.

Guoqi Xie (M’15) received the Ph.D. degree in
computer science and engineering from Hunan
University, Changsha, China, in 2014.

From 2014 to 2015, he was a Postdoctoral Re-
searcher at Nagoya University, Nagoya, Japan.
Since 2015, he has been working as a Post-
doctoral Researcher at Hunan University. His
research interests include embedded and real-
time systems, parallel and distributed systems,
and software engineering and methodology.

Dr. Xie received the Best Paper Award from
IEEE International Symposium on Parallel and Distributed Processing
with Applications 2016. He is a member of ACM and China Computer
Federation.

1640 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Yuekun Chen is currently working toward the
Ph.D. degree in computer science and engineer-
ing at Hunan University, Changsha, China.

Her research interests include service com-
puting, fault-tolerance computing, and software
engineering.

Yan Liu received the Ph.D. degree in computer
science and engineering from Hunan University,
Changsha, China, in 2010. He is an Assistant
Professor in the College of Computer Science
and Electronic Engineering, Hunan University,
Changsha, China.

His research interests include computer ar-
chitectures and embedded computing systems.

Prof. Liu is a member of the China Computer
Federation.

Yehua Wei received the Ph.D. degree in com-
puter science and engineering from Hunan Uni-
versity, Changsha, China, in 2009. He is an As-
sociate Professor in the College of Physics and
Information Science, Hunan Normal University,
Changsha, China.

His research interests include cyber-physical
systems and Internet of Things.

Prof. Wei is a member of the China Computer
Federation.

Renfa Li (M’05–SM’10) received the Ph.D. de-
gree in electronic engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 2003. He is a Professor of com-
puter science and electronic engineering, and
the Dean in the College of Computer Science
and Electronic Engineering, Hunan University,
Changsha, China. He is the Director in the Key
Laboratory for Embedded and Network Comput-
ing of Hunan Province, Hunan University. He is
also an expert committee member in the Na-

tional Supercomputing Center, Changsha, China. His research interests
include computer architectures, embedded computing systems, cyber-
physical systems, and Internet of Things.

Prof. Li is a member of the council of China Computer Federation and
a Senior Member of ACM.

Keqin Li (M’90–SM’96–F’15) received the Ph.D.
degree in computer science from the University
of Houston, Houston, Texas, USA, in 1990. He
is a SUNY Distinguished Professor of computer
science. He has published more than 460 jour-
nal articles, book chapters, and refereed con-
ference papers. His research interests include
parallel computing and high-performance com-
puting, distributed computing, energy-efficient
computing and communication, heterogeneous
computing systems, cloud computing, big data

computing, CPU-GPU hybrid and cooperative computing, multicore com-
puting, storage and file systems, wireless communication networks, sen-
sor networks, peer-to-peer file sharing systems, mobile computing, ser-
vice computing, Internet of Things, and cyber-physical systems.

Prof. Li received several best paper awards. He is currently or has
served on the editorial boards of the IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE TRANSACTIONS
ON SERVICES COMPUTING, and the IEEE TRANSACTIONS ON SUSTAINABLE
COMPUTING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

